

Actionable Insights
with Amazon
QuickSight

Develop stunning data visualizations and machine
learning-driven insights with Amazon QuickSight

Manos Samatas

BIRMINGHAM—MUMBAI

Actionable Insights with Amazon QuickSight
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author(s), nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

Publishing Product Manager: Sunith Shetty
Senior Editor: David Sugarman
Content Development Editor: Joseph Sunil
Technical Editor: Rahul Limbachiya
Copy Editor: Safis Editing
Project Coordinator: Aparna Nair
Proofreader: Safis Editing
Indexer: Sejal Dsilva
Production Designer: Roshan Kawale

First published: January 2022
Production reference: 2250122

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-929-7
www.packt.com

http://www.packt.com

To Gabriela

For her unconditional support and encouragement.

Contributors

About the author
Manos Samatas is a solutions architect specializing in big data and analytics. He has
several years of experience developing and designing big data applications for various
industries, including telecommunications, cybersecurity, healthcare, and the public sector.
He is an accredited AWS Subject Matter Expert (SME) in analytics and he possesses the
AWS Data Analytics Specialty and the AWS Solutions Architect Professional certifications.
Manos lives in London with his fiancée Gabriela. In his free time, he enjoys traveling,
socializing with friends, and taking care of his plants.

About the reviewers
Madhavan Sriram is a manager of data science at Amazon and focuses on building data-
intensive products for Amazon's transportation business. His team processes over 200 TB
of data annually to build intelligent products that enable automated warehouse operations
by leveraging machine learning, big data, and visualisation techniques. His research focus
areas are in the space of big data and machine learning from an applied context. In the
past, he worked for several large enterprises including IBM, Toyota, and Royal Philips on
furthering their science and data landscape. He and his wife reside in Luxembourg and
enjoy spending the time outdoors with their furry golden retriever "Richard Parker".

Raquel Marasigan is an information security engineer II lead at CBSPI, where she
analyses the effectiveness of security strategies. Raquel earned her Bachelor of Arts from
Arellano University, majoring in political science. Her interest in technology and security
motivated her to continue her education in data analytics. She is currently enrolled with the
University of Asia and the Pacific, completing a Masters Applied Business Analytics degree,
and completing her capstone project for the 2022 school year. Raquel is fortunate to work
alongside the author, Jason Dunn, Mia Heard, and other experts in the AWS Community
Builders and AWS Users Group where they share their insights. Many thanks to Raquel's
two sons for their encouragement throughout the process of reviewing this book.

Table of Contents
Preface

Section 1: Introduction to Amazon
QuickSight and the AWS Analytics
Ecosystem

1
Introducing the AWS Analytics Ecosystem

Technical requirements� 4
Discovering the AWS analytics
ecosystem� 4
Business intelligence� 5
Data warehousing� 6
Data lake storage and governance� 6
Ad hoc analytics� 7
Extract, transform, load� 8

Exploring the modern data
architecture on AWS� 10

Data lakes versus data warehouses� 10
modern data architecture on AWS� 11

Creating a basic modern data
architecture� 13
Creating the data lake storage� 13

Summary� 24
Questions� 24
Further reading� 25

2
Introduction to Amazon QuickSight

Technical requirements� 27
Introducing Amazon
QuickSight� 28
Datasets� 28
Analysis� 28

Visuals and insights� 29
Dashboards� 29
Introducing Amazon QuickSight
user types� 29
Introducing QuickSight architecture� 32

viii Table of Contents

Introducing QuickSight
editions and user authorization
options� 34
QuickSight editions� 34
User authorization with QuickSight� 35

Setting up Amazon QuickSight� 36
Summary� 40
Questions� 40
Further reading� 40

3
Preparing Data with Amazon QuickSight

Technical requirements� 42
Adding QuickSight data
sources� 42
Supported data sources with
QuickSight� 42
Configuring our first data source� 44

Editing datasets� 50
Importing into SPICE � 50
Editing column names and
data types � 55

Working with advanced
operations� 59
Adding calculated fields� 59
Filtering and joining datasets� 61

Configuring security controls� 63
Summary� 66
Q&A� 66
Further reading� 66

4
Developing Visuals and Dashboards

Technical requirements� 68
Working with QuickSight
visuals� 68
Creating an analysis� 68
Supported visual types� 70

Publishing dashboards� 82

Customizing the look and feel
of the application� 84
Applying themes� 85
Formatting visuals� 87

Summary� 90
Q&A� 91
Further reading� 91

Table of Contents ix

Section 2: Advanced Dashboarding and
Insights

5
Building Interactive Dashboards

Technical requirements� 95
Using filters and parameters� 96
Working with filters� 96
Working with parameters� 99

Working with actions� 106
Working with filter actions� 106

Working with navigation actions� 108
Working with URL actions � 109

Summary� 112
Q&A� 112
Further reading� 112

6
Working with ML Capabilities and Insights

Technical requirements� 114
Using forecasting� 114
Adding forecasting� 114
Working with what-if scenarios � 117

Working with insights � 118
Adding suggested insights� 118
Creating and editing an insight� 119

Working with ML insights� 124
Working with forecasting insights� 124
Working with anomaly detection
insights� 126

Summary � 130
Questions� 130
Further reading � 130

7
Understanding Embedded Analytics

Technical requirements� 132
Introducing QuickSight
embedded analytics� 132
Understanding the business drivers
for embedding� 132
Understanding embedded
analytics types� 133

Understanding read-only dashboard
embedding� 133

Exploring the architecture
and user authentication� 135
Overview of the web application layer� 136
Overview of the BI layer� 137
Understanding the authentication
layer� 137

x Table of Contents

Putting everything together� 140

Generating an embedded
dashboard URL� 142

Summary� 145
Q&A� 145
Further reading� 145

Section 3: Advanced Topics and
Management

8
Understanding the QuickSight API

Technical requirements� 149
Introducing the QuickSight API� 150
Accessing the QuickSight API� 150

Controlling resources using the
QuickSight API� 155
Setting up a dataset using the CLI� 155

Editing account settings using the
QuickSight API� 159
Reusing assets using the template API� 161
Building automation using the
QuickSight API� 166

Summary� 173
Questions� 173
Further reading � 173

9
Managing QuickSight Permissions and Usage

Technical requirements� 176
Managing QuickSight
permissions� 176
Using user groups� 177
Setting up custom permissions� 179
Integrating with Amazon Lake
Formation� 182

Managing QuickSight usage� 186

Managing folders� 186
Creating reports and alerts� 190
Working with QuickSight
threshold-based alerts� 193

Summary� 197
Questions� 198
Further reading� 198

Table of Contents xi

10
Multitenancy in Amazon QuickSight

Technical requirements� 199
Introducing multitenancy
using namespaces� 200
Understanding multitenancy� 200
Introducing QuickSight namespaces� 201

Setting up multitenancy� 203
Creating a namespace� 203

Using QuickSight namespaces� 204

Summary � 209
Questions� 210
Further reading� 210
Why subscribe?� 211

Other Books You May Enjoy
Index

Preface
The adoption of cloud-native business intelligence (BI) tools, such as Amazon
QuickSight, enables organizations to gather insights from data at scale. This book is a
practical guide to performing simple-to-advanced tasks with Amazon QuickSight.

You'll begin by learning QuickSight's fundamental concepts and how to configure
data sources. Next, you'll be introduced to the main analysis-building functionality of
QuickSight to develop visuals and dashboards. The book will also demonstrate how
to develop and share interactive dashboards with parameters and onscreen controls.
Advanced filtering options with URL actions will then be covered, before learning how
to set up alerts and scheduled reports. Later, you'll explore the insight visual type in
QuickSight using both existing insights and by building custom insights. Further chapters
will show you how to add machine learning insights such as forecasting capabilities,
analyzing time series data, adding narratives, and outlier detection to your dashboards.
You'll also explore patterns to automate operations and look closer into the API actions
that allow us to control settings. Finally, you'll learn about advanced topics such as
embedded dashboards and multitenancy.

By the end of this book, you'll be well versed in QuickSight's BI and analytics
functionalities that will help you create BI apps with ML capabilities.

Who this book is for
This book is for BI developers and data analysts who are looking to create interactive
dashboards using data from modern data architecture on AWS with Amazon QuickSight.
This book will also be useful for anyone who wants to learn Amazon QuickSight in depth
using practical examples. You will need to be familiar with general data visualization
concepts; however, no prior experience with Amazon QuickSight is required.

xiv Preface

What this book covers
Chapter 1, Introducing the AWS Analytics Ecosystem, starts by introducing the AWS
analytics ecosystem. Then we will discuss how Amazon QuickSight fits within the wider
ecosystem. We will look closer at the modern data architecture and its benefits and
different components. Finally, we will provide a step-by-step guide for the reader to set up
this architecture in their development environment and add demo data that we will use
with Amazon QuickSight to create visualizations later in the book.

Chapter 2, Introduction to Amazon QuickSight, introduces Amazon QuickSight and its
main benefits as a cloud-native BI tool. We will explain the various options at the account
creation stage, including the user authorization options. Finally, we will provide a step-
by-step guide for the reader to set up a QuickSight account and configure the required
permissions to connect to Amazon Redshift.

Chapter 3, Preparing Data with Amazon QuickSight, focuses on how to create data sources
with Amazon QuickSight and use the dataset editor. We will provide a step-by-step guide
to help readers set up data sources on their environment. Finally, we will look at more
advanced operations such as joins, row-level security controls, and calculated fields.

Chapter 4, Developing Visuals and Dashboards, introduces the main analysis-building
functionality of Amazon QuickSight. We will start by exploring the author UI and
explain the different visual types. After adding certain visual types and explaining their
functionality we will introduce the concepts of dashboards and stories and explain how we
can share these dashboards with other users. Finally, we will look how to style a dashboard
and create custom themes.

Chapter 5, Building Interactive Dashboards, explores how to develop interactive
dashboards with Amazon QuickSight. The reader will learn to add custom controls on
their dashboards and add interactivity to their BI application using parameters. We will
also look at advanced filtering options with point-and-click actions with URL actions.
Finally, we will explore the reader user experience via the web and mobile QuickSight app
and we will explain how to set up alerts and scheduled reports.

Chapter 6, Working with ML Capabilities and Insights, explores the insight visual type in
Amazon QuickSight. We will use both the QuickSight-suggested insights and build our
own custom insights. We will add forecasting capabilities by analyzing time-series data,
and we will add narratives and outlier detection. Finally, we will look more closely at how
to integrate Amazon QuickSight with models deployed with Amazon SageMaker.

Preface xv

Chapter 7, Understanding Embedded Analytics, dives deeper into embedded dashboards.
We will describe the architecture and the business drivers behind embedding, and we will
explain the permission models. We will have a step-by-step guide to set up embedded
analytics for authenticated or unauthenticated users. Finally, we will look briefly at how to
embed the QuickSight console for QuickSight authors.

Chapter 8, Understanding the QuickSight API, explores patterns to automate certain
operations using the QuickSight API. We will see how to create dashboards and reuse
analyses using the Template API. We will also explore patterns to automate monitoring of
dataset operations and finally, we will look more closely into the API actions that allow us
to control settings.

Chapter 9, Managing QuickSight Permissions and Usage, focuses on data permissions and
managing Amazon QuickSight operations. We will explain how it integrates with Lake
Formation Redshift and Redshift Spectrum tables from a data authorization point of view.
We will look at incident reporting using AWS CloudTrail and will examine the use of
common operations to manage QuickSight usage.

Chapter 10, Multitenancy in Amazon QuickSight, talks about multitenancy in Amazon
QuickSight. To understand it better, we will look at a simple hands-on example. Finally,
we will look at an architecture that combines the two concepts of embedded analytics and
multitenancy and explain its practical use cases.

To get the most out of this book
You will need to be familiar with general data visualization concepts, but won't need
any previous experience with Amazon QuickSight. Also, we expect you to have a basic
understanding of the AWS cloud.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Please ensure that you terminate all running instances of AWS when not needed, to
reduce costs.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Actionable-Insights-with-Amazon-
QuickSight. If there's an update to the code, it will be updated in the GitHub repository.

https://github.com/PacktPublishing/Actionable-Insights-with-Amazon-QuickSight
https://github.com/PacktPublishing/Actionable-Insights-with-Amazon-QuickSight
https://github.com/PacktPublishing/Actionable-Insights-with-Amazon-QuickSight

xvi Preface

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: http://www.packtpub.com/sites/
default/files/downloads/9781801079297_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here
is an example: "For example, in QuickSight, the DeleteDataSet action deletes a dataset."

A block of code is set as follows:

$aws quicksight update-user --user-name author-iam --role
AUTHOR --custom-permissions-name custom-author --email <your-
email> --aws-account-id <account-id> --namespace default
--region us-east-1

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

{

 "Status": 200,

 "EmbedUrl": "https://us-east-1.quicksight.aws.amazon.
com/... ?code=...&identityprovider=quicksight&isauthcode=true",

 "RequestId": "21d2ad96-3c2b-42a4-ae10-8eb28b20892c"

}

https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781801079297_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781801079297_ColorImages.pdf

Preface xvii

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "With the
Manage Users option selected, click on Manage Permissions as shown."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/support/errata and
fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

xviii Preface

Share Your Thoughts
Once you've read Actionable Insights with Amazon QuickSight, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page for this book and
share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

This section is an introduction to Amazon QuickSight and modern data architecture.
After completing this part, the reader will understand how to set up Amazon QuickSight,
manage data sources, and build and share basic dashboards.

This section consists of the following chapters:

•	 Chapter 1, Introducing the AWS Analytics Ecosystem

•	 Chapter 2, Introduction to Amazon QuickSight

•	 Chapter 3, Preparing Data with Amazon QuickSight

•	 Chapter 4, Developing Visuals and Dashboards

Section 1:
Introduction to

Amazon QuickSight
and the AWS

Analytics Ecosystem

1
Introducing the AWS
Analytics Ecosystem

As data increases in both volume and variety, organizations from all verticals are adopting
cloud analytics services for their data analytics. AWS offers a number of analytics
services covering data lakes, data warehousing, big data processing, extract, transform,
load (ETL), and data visualization. In this chapter, we will introduce the AWS analytics
ecosystem. Some of the services we discuss here will be mentioned again later in the book.

First, we will map the AWS services into categories. Then, we will discuss how Amazon
QuickSight fits into the wider AWS analytics ecosystem. We will look more closely at a
modern modern data architecture and we will discuss its benefits and its components.
Finally, we will provide a step-by-step guide to set up a data modern data architecture on
AWS and load and query a demo data sample. Some of this information may already be
familiar to you, but let's go back over the basics.

4 Introducing the AWS Analytics Ecosystem

In this chapter, we will cover the following topics:

•	 Discovering the AWS analytics ecosystem

•	 Exploring the data modern data architecture on AWS

•	 Creating a basic modern data architecture

Technical requirements
To follow along with this chapter, you will need the following pre-requisites:

•	 An AWS account with console access

•	 AWS CLI access

The code sample for this chapter can be accessed on the GitHub repository for this book
at https://github.com/PacktPublishing/Actionable-Insights-with-
Amazon-QuickSight/tree/main/chapter_1.

Discovering the AWS analytics ecosystem
AWS provides a large number of analytics services. In addition to that, AWS has a number
of partners who specialize in data analytics and offer analytics solutions that run on
the AWS infrastructure. Partner solutions are not in the scope of this section, however.
This section focuses on the AWS fully managed analytics services. In order to list the
services, we will first define the specific categories related to analytics functions. Machine
learning and predictive analytics are also out of the scope of this chapter. For every service
category, we will then list the AWS services available, and for each service, we will provide
a high-level description. Figure 1.1 depicts the commonly used AWS analytics services.

https://github.com/PacktPublishing/Actionable-Insights-with-Amazon-QuickSight/tree/main/chapter_1
https://github.com/PacktPublishing/Actionable-Insights-with-Amazon-QuickSight/tree/main/chapter_1

Discovering the AWS analytics ecosystem 5

Figure 1.1 – AWS analytics services

Business intelligence
More and more organizations aspire to be data-driven and use data to drive their strategic
decisions. Business intelligence (BI) tools help organizations to transform data into
actionable insights. With the use of BI tools, users can analyze data and then present their
findings in reports or dashboards. These reports or dashboards can then be consumed by
business users who are interested in getting a picture of the state of the business.

6 Introducing the AWS Analytics Ecosystem

In 2015, AWS launched Amazon QuickSight, a cloud-native BI tool. Since then, AWS has
added new features to QuickSight, enriching the standard dashboard functionality with
machine learning capabilities and offering embedded dashboard functionality. Amazon
QuickSight is the main technology we will be covering in this book. Over the next few
chapters, we will start with the basic functionality of Amazon QuickSight, and then we
will explore more advanced features. Where possible, we will use practical examples that
can be repeated in your own development environment, to give you hands-on experience
with Amazon QuickSight.

Data warehousing
Data warehouses are repositories of data; they are important components of the BI process.
Data stored in data warehouses is typically structured. Traditionally, data is ingested and
centralized into data warehouses from different operational data stores. Data warehouses
are optimized to run analytical queries over large amounts of data. The results of analytical
queries are usually calculated after an aggregation over multiple rows from one or more
tables. BI applications use analytical queries to aggregate data and visualize it. It is a
common architectural approach to use a data warehouse to serve data to a BI application.

Back in 2012, AWS launched Amazon Redshift, a cloud-native, fully managed data
warehouse service. Today, Redshift is one of the most popular cloud data warehouses
with thousands of organizations from different verticals using it to analyze their data.
Other popular cloud data warehouses include Snowflake and Google BigQuery. Amazon
Redshift integrates with most BI tools and it integrates natively with Amazon QuickSight.
We will discuss this topic in more detail in Chapter 3, Preparing Data with Amazon
QuickSight, when we look more closely into Amazon QuickSight-supported data sources.

Data lake storage and governance
A data lake is a repository of data where organizations can easily centralize all of their
data and apply it in different use cases such as reporting, visualization, big data analytics,
and predictive analytics. Data stored in data lakes can be structured or semi-structured.
Usually, data is ingested into the data lake in its raw format, and is then transformed
and stored back into the data lake for further processing and analysis. A cloud data lake
typically uses a cloud object store to store data. AWS introduced Amazon Simple Storage
Service (S3) in March 2006, offering developers a highly scalable, reliable, and low-latency
data storage infrastructure at very low cost. Amazon S3 can store an unlimited amount
of data, a particularly useful feature for data lakes. Organizations have one less thing to
worry about because they don't need to think about scaling their storage as the amount of
data stored grows.

Discovering the AWS analytics ecosystem 7

While scaling data lake storage is something that organizations and CIOs don't need to
worry about much anymore, data lake governance needs to be considered carefully. Data
lakes do not enforce data schemas or data formats and, without any governance, data lakes
can degrade into unusable data repositories, often referred to as data swamps. AWS offers
a number of services for data governance.

The AWS Glue Catalog is part of the AWS Glue service. It is a fully managed Apache Hive
metastore-compatible data catalog. Big data applications (for example, Apache Spark,
Apache Hive, Presto, and so on) use the metadata in the catalog to locate and parse data.
The AWS Glue Catalog is a technical metadata repository and can catalog data in Amazon
S3, and a number of relational or non-relational data stores including Redshift, Aurora,
and DynamoDB, among others.

AWS Lake Formation runs on top of AWS Glue and Amazon S3 and provides a
governance layer and access layer for data lakes on Amazon S3. It also provides a set of
reusable ETL jobs, called blueprints, that can be used to perform common ETL tasks (for
example, loading data from a relational data store into an S3 data lake). Lake Formation
allows users to manage access permissions, using a familiar GRANT REVOKE syntax that
you might have seen in relational database management systems (RDBMSes).

Amazon Macie is an AWS service for data protection. It provides an inventory of Amazon
S3 buckets and it uses machine learning to identify and alert its users about sensitive data,
such as personally identifiable information (PII).

Finally, and perhaps most importantly, AWS Identity and Access Management (IAM)
is a fundamental AWS service that allows users to assign permissions to principals (for
example, users, groups, or roles) and explicitly allow or deny access to AWS resources
including data lake locations or tables in the data catalog.

Ad hoc analytics
Ad hoc analytics refers to getting answers from the data on an as-needed basis. Contrary
with what happens with scheduled reports, ad hoc querying is initiated by a user when
they need to get specific answers from their data. The user typically uses SQL via a
workbench type of application or other analytics frameworks (for instance, Apache Spark)
using notebook environments or other BI applications. AWS has a number of analytics
services that can be used for ad hoc analytics.

8 Introducing the AWS Analytics Ecosystem

Amazon Redshift can be used for ad hoc analysis of data. For ad hoc querying, users will
typically connect to Amazon Redshift using a query editor application with the Redshift
JDBC/ODBC drivers. Notebook integrations or BI tool integrations are also possible for
ad hoc analysis. AWS offers a number of managed notebook environments such as EMR
notebooks and SageMaker notebooks. Amazon Redshift also allows its users to query data
that is stored outside the data warehouse. Amazon Redshift Spectrum allows Redshift
users to query data stored in Amazon S3, eliminating the need to load the data first
before querying. Redshift's federated querying capability allows users to query live data in
operational data stores such as PostgreSQL and MySQL.

For big data and data lakes, Presto is a popular choice for ad hoc analysis. Presto provides a
high-performance parallel SQL query engine. Amazon Athena lets users run Presto queries
in a scalable serverless environment. Amazon QuickSight natively supports Amazon Athena.
We will talk more about this native integration in Chapter 3, Preparing Data with Amazon
QuickSight. Amazon EMR is a fully managed Hadoop cluster, and it comes with a range of
applications from the open source big data ecosystem. Presto has two community projects,
PrestoSQL and PrestoDB, both of which are part of the Amazon EMR service. Other options
included with EMR are Hive on EMR and Spark on EMR.

Extract, transform, load
ETL is a term used to describe a set of processes to extract, transform, and load data
usually for analytical purposes. Organizations gather data from different data sources
and centralize them in a central data repository. Data from different sources typically
has different schemas and different conventions and standards, and therefore it can be
challenging to combine them to get the required answers. For that reason, data needs
to transformed so that it can work together. For example, cleaning the data, applying
certain data quality thresholds, and standardizing to a specific standard (for instance,
date and time formats used) are all important tasks to ensure the data is useable. A visual
representation of the ETL process is shown in the following figure.

Discovering the AWS analytics ecosystem 9

Figure 1.2 – The ETL process

AWS Glue is a fully managed ETL service offered by AWS. When it was first introduced in
2017, Glue ETL offered an Apache Spark environment optimized for ETL. Now, Glue ETL
offers a wider range of options:

•	 PySpark – Apache Spark using Python

•	 Spark with Scala – Apache Spark with Scala

•	 Python shell – For smaller ETL jobs that don't need a Spark cluster

•	 Glue Studio and Glue Databrew – Visual approach to ETL without the need to
write code

Amazon EMR transient clusters, with applications such as Spark or Hive, can be leveraged
for ETL workloads. ETL workloads can be bulk or streaming: streaming ETL workloads
usually need to be up and running constantly, or at least for as long as the source stream
is on; batch ETL workloads don't need to run at all times and they can stop once the data
is loaded into the target system. This type of workload fits nicely with the flexibility of
the cloud. With the cloud, data architects don't need to think of Hadoop clusters as big
monolithic clusters. Instead, users prefer purpose-built transient clusters, optimized and
sized to handle specific workloads and data loads.

Now that we've had our overview of the AWS analytics ecosystem, let's learn about
modern data architecture and how they are built.

10 Introducing the AWS Analytics Ecosystem

Exploring the modern data architecture
on AWS
The modern data architecture is a modern data analytics architecture: as the name
suggests, it combines the data lake and the data warehouse into a seamless system. This
approach extends the traditional data warehouse approach and opens up new possibilities
for data analytics. For this reason, it is important to understand this architecture,
which can be used as a data backend for Amazon QuickSight or other BI applications.
To understand the architecture better, let's first start by understanding the differences
between a data lake and data warehouse.

Data lakes versus data warehouses
Data lakes and data warehouses are designed to consume large amounts of data
for analytics purposes. Data warehouses are traditional database systems, used by
organizations and enterprises for years. Data lakes, on the other side, are relatively
young implementations that emerged from the big data and Hadoop ecosystems. Tables
stored in data warehouses need to have clearly defined schemas. The schema needs to
be defined upfront, before any data is added. This approach is called schema on write,
and it ensures that data conforms to a specific structure before being ingested into the
data warehouse. However, it can be less flexible, and it may introduce complexity when
dealing with evolving schemas. Evolving schemas are an increasingly common scenario
because organizations need to capture more and more data points from their customer
interactions to drive data-driven decisions.

On the other side, data lakes don't enforce a schema upfront. Instead, applications that
have the required permissions can write data to a data lake. Structure and data formats
aren't enforced by the data lake: it is a responsibility of the writing application.

Data stored in a data lake has few to no limitations regarding its format: it can be
structured, semi-structured, or completely unstructured. For many datasets, a schema
can be inferred, either because the data is semi-structured (CSV, JSON, and others),
or they follow patterns that can be identified after applying regular expressions and
extracting specific columns. In data lakes, the schema is inferred when the data is
read by the querying application. This approach is called schema on read, and it gives
an organization flexibility regarding the data type stored. However, it also introduces
challenges with data complexity and enforcing data quality.

For that reason, it is common that data that lands into the data lake goes through a series
of transformations to get to a stage where it is useable. The first stage, often referred to as
the raw layer, is where the data first lands, and it is stored as is.

Exploring the modern data architecture on AWS 11

After the data has landed, the first series of transformations is applied and the data is
stored at the processed layer. Since the data can be of any format, the types of possible
transformations are limitless. To give just some examples, data quality functions can be
applied at this stage to remove incomplete rows and standardize the data in line with
a specific datetime or time zone format. Other data engineering activities can also be
performed at this stage, such as converting data into different file data formats optimized
for analytics, or organizing them into folders using specific information (usually
temporal) that can be later used as a partition column by the querying application.

Finally, data can then be converted for specific use cases and landed into the target layer.
As an example, data can be transformed in a way that is relevant for a specific machine
learning algorithm to work with the data. Another use case could be BI applications, such
as Amazon QuickSight, where data can be pre-joined or aggregated and therefore reduced
from a large dataset into a smaller dataset that is easier to visualize. Additional data
engineering can be applied at this stage to optimize for performance.

Figure 1.3 – Data lake layers

The data warehouse and data lake architectures are now being challenged by a new, hybrid
type of storage: the modern data architecture.

modern data architecture on AWS
This section will look more closely at an example modern data architecture on AWS
using AWS managed services. Let's start by defining the key components of the modern
data architecture:

•	 Amazon Redshift is the data warehouse service.

•	 Amazon S3 is the object store that can be used for cloud data lake storage.

•	 AWS Glue is the data lake catalog to store technical metadata.

12 Introducing the AWS Analytics Ecosystem

Note
AWS Glue Catalog tables can be stored in Amazon Redshift, providing a
unified metadata catalog across both the data warehouse and the S3 data lake.

Amazon Redshift supports functionality that allows it to interact with the data warehouse.
Let's look at those features in more detail.

Ability to query the data lake from the data warehouse
Redshift Spectrum is a feature of Redshift that allows you to perform SQL queries against
data in the S3 data lake. The queries are triggered directly from the data warehouse, and
therefore you don't need to connect to a different environment to submit your queries.
You need to define the Spectrum tables as external tables on their data warehouse. The
Redshift cluster also needs to have permission to access the data lake S3 location(s). The
Redshift cluster will need to be assigned an IAM role, which needs to have access to the
desired S3 locations.

Another key characteristic of Redshift Spectrum is that the Spectrum queries are
running in the Spectrum nodes that are outside of the Redshift cluster. This effectively
extends the Redshift cluster with additional compute capacity when data lake data needs
to be queried.

Finally, Spectrum tables and Redshift tables can be combined and joined. Without this
feature, you would have to move data and collocate it before joining it.

Ability to load data from the data lake
Redshift can efficiently load data from the S3 data lake. Specifically, Redshift's COPY
command can load data in parallel from Amazon S3. You (at a minimum) need to define
a table name, the data location (commonly S3), and the authorization to access the data in
the source location. When loading multiple files from S3, Redshift parallelizes the loading
by allocating each file to a Redshift slice (the unit of processing in Redshift).

Ability to unload data to the data lake
Redshift also comes with the ability to unload data from the data warehouse back to
the data lake. Specifically, the UNLOAD command unloads the result of the query onto
Amazon S3. You (as a minimum) need to specify the S3 location and the authorization.
There are more options, such as defining the file format (using the FORMAT AS option) or
applying partitioning (using the PARTITION BY option), and others.

Creating a basic modern data architecture 13

In the following diagram, we see an example data pipeline that is using both a data
warehouse and a data lake on AWS. Data is loaded from the operational data stores into
the Amazon S3 object store in the raw layer of the data lake. Then, with a set of ETL jobs,
the data reaches a stage that can be loaded into the data warehouse for BI purposes. For
cost-effectiveness, you might not want to load all the data into the warehouse. Instead, you
might want to leave the data in the data lake but have the ability to query the data when
needed. This architecture considers the temperature of the data (how frequently the data
is accessed) to determine the best storage. Hot data that needs to be accessed frequently
is loaded into the data warehouse, while colder data remains in the data lake, a cheaper
long-term storage option.

Figure 1.4 – Example data pipeline on AWS

Now that we have had an overview of the modern data architecture on AWS, let's build a
basic modern data architecture on AWS.

Creating a basic modern data architecture
In this section, we will go through a hands-on example to create a basic modern data
architecture. This tutorial will use the AWS CLI and the AWS console. By the end of this
section, we will have spun up a working data lake and a data warehouse environment with
demo data loaded.

Important note
The resources for this tutorial might introduce charges to your AWS account.
Once you finish with the exercise, make sure you clean up the resources to
prevent incurring further charges.

Creating the data lake storage
In this step, we will add the data lake storage. Then we will upload a demo dataset and will
discover its schema automatically.

14 Introducing the AWS Analytics Ecosystem

Step 1 – creating the S3 bucket
Let's begin:

1.	 If you haven't installed it already, follow the AWS documentation to install and
configure the AWS CLI. To complete this tutorial, you will need to use a role that
has access to the S3, Glue, Redshift, and IAM services: https://docs.aws.
amazon.com/cli/latest/userguide/cli-chap-configure.html.

2.	 First, let's create the S3 bucket as the data lake storage. Your S3 bucket needs to have
a globally unique name. For that reason, we should introduce some randomness to
it. Let's pick a random set of 10 characters and numbers. For this tutorial, you should
choose your own random set of characters for this string; for example, SF482XHS7M.

We will use the random string in the data lake name, to ensure it is globally unique.

Let's use my-data-lake-<random string> as the bucket name.
3.	 To create a bucket, we can type the following command into the CLI. Replace the

following random string with your random string:

% aws s3api create-bucket --bucket data-lake-xxxxxxxxxx
--region us-east-1

And the response should look like this:
{

 "Location": "/data-lake-xxxxxxxxxx"

}

Step 2 – adding data into the data lake
Now let's add some data. For this exercise, we will use a subset of the New York City Taxi
and Limousine Commission (TLC) Trip Record Data:

1.	 Let's first have a look at the dataset:

% aws s3 ls 's3://nyc-tlc/trip data/' --no-sign-request

This command will return all the files in the open S3 location:
2016-08-11 15:32:21 85733063 fhv_tripdata_2015-01.csv

2016-08-11 15:33:04 97863482 fhv_tripdata_2015-02.csv

2016-08-11 15:33:40 102220197 fhv_tripdata_2015-03.csv

…

2021-02-26 16:54:00 138989555 yellow_tripdata_2020-11.
csv

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html

Creating a basic modern data architecture 15

2021-02-26 16:54:00 134481400 yellow_tripdata_2020-12.
csv

We don't need to download all of them. For this tutorial, we will copy only the files
for 2020.

2.	 We can use the S3 CLI exclude and include parameters to apply a pattern to
match the desired filenames. The command to copy is as follows:

% aws s3 cp "s3://nyc-tlc/trip data/" s3://data-lake-
xxxxxxxxxx/yellowtrips/ --recursive --exclude "*"
--include "yellow_tripdata_2020*"

3.	 Once completed, we can then verify that the files exist in our environment with the
aws s3 ls command, which lists the files under a specific S3 location:

% aws s3 ls s3://data-lake-xxxxxxxxxx/yellowtrips/

2021-03-27 16:53:41 593610736 yellow_tripdata_2020-01.
csv

2021-03-27 16:53:41 584190585 yellow_tripdata_2020-02.
csv

2021-03-27 16:53:42 278288608 yellow_tripdata_2020-03.
csv

2021-03-27 16:53:41 21662261 yellow_tripdata_2020-04.
csv

2021-03-27 16:53:43 31641590 yellow_tripdata_2020-05.
csv

2021-03-27 16:53:42 50277193 yellow_tripdata_2020-06.
csv

2021-03-27 16:53:44 73326707 yellow_tripdata_2020-07.
csv

2021-03-27 16:53:46 92411545 yellow_tripdata_2020-08.
csv

2021-03-27 16:53:50 123394595 yellow_tripdata_2020-09.
csv

2021-03-27 16:53:54 154917592 yellow_tripdata_2020-10.
csv

2021-03-27 16:53:57 138989555 yellow_tripdata_2020-11.
csv

2021-03-27 16:53:58 134481400 yellow_tripdata_2020-12.
csv

16 Introducing the AWS Analytics Ecosystem

Note
You can use data in a shared data lake as part of your data lake without the
need to actually copy it across to your data lake.

Step 3 – identifying the schema
The next step is to identify the schema of the dataset. For this purpose, we will use the
AWS Glue crawlers. AWS Glue crawlers crawl through the data to detect the schema. If a
schema can be determined (remember there is no guarantee that the data has a specific
schema) then Glue crawlers will populate the Glue Catalog with the schemas identified
after crawling the data. Glue tables always belong to a Glue database. A database in Glue is
just a logical repository of tables in the Glue Catalog:

1.	 Let's start by creating a database using the create-database command:

% aws glue create-database --database-input
"{\"Name\":\"my-data-lake-db\"}" --region us-east-1

2.	 We can verify the successful database creation using the get-databases
command:

% aws glue get-databases --region us-east-1

{

 "DatabaseList": [

 {

 "Name": "default",

 "CreateTime": 1553517157.0

 },

 {

 "Name": "my-data-lake-db",

 "CreateTime": 1616865129.0

 }

]

}

Creating a basic modern data architecture 17

3.	 Before we create the Glue Crawler, we need to create an IAM role that will be
assigned to the Crawler and allow it to access the data in the data lake. The crawler
doesn't need to write to the data lake location, therefore only the read access
permission is needed. To give the required permissions to a role, we need to attach
policies that define the permissions. Let's define a policy document that allows read
access to our data lake:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "s3:GetObject",

 "s3:ListBucket"

],

 "Resource": [

 "arn:aws:s3:::data-lake-xxxxxxxxxx",

 "arn:aws:s3:::data-lake-xxxxxxxxxx/*"

]

 }

]

}

The preceding policy document allows the policy holder to use the S3
ListBucket and the GetObject API. The crawler will use ListBucket to list
the objects in our data lake bucket and getObject to read objects as it crawls data.
This policy restricts access to the data lake bucket only.

4.	 Now, let's create a file and copy the policy text. Replace the random string in the
data lake name with the random string in your environment. I used vim, but you
can use any text editor:

% vim policy

5.	 Then, let's create the IAM policy using the create-policy CLI command:

% aws iam create-policy --policy-name DataLakeReadAccess
--policy-document file://policy

18 Introducing the AWS Analytics Ecosystem

The preceding command created the policy and we should get a confirmation JSON
object back. Note the policy ARN, as we will use it in a later step.

6.	 Next, let's create the IAM role that the Glue crawler will assume. First, let's define
the role policy document:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Action": "sts:AssumeRole",

 "Effect": "Allow",

 "Principal": {

 "Service": "glue.amazonaws.com"

 }

 }

]

 }

7.	 Then create a file called role-policy and copy in the preceding JSON document:

% vim role-policy

This role policy document allows the Glue service to assume the role we will create.
8.	 To create the role, we will use the iam create-role CLI command:

% aws iam create-role --role-name GlueCrawlerRole
--assume-role-policy-document file://role-policy

We should get a confirmation JSON message after running the command.
9.	 Capture the role ARN, as it will be used later when defining the crawler.
10.	 Then, let's attach the required policies to this role. For this role, we want to allocate

two policies: the AWSGlueServiceRole policy (this is managed by AWS) and the
DataLakeReadAccess policy we created earlier. To attach policies to the IAM
role we will use the iam attach-role-policy command. Let's start with the
AWSGlueServiceRole policy:

% aws iam attach-role-policy --role-name GlueCrawlerRole
--policy-arn arn:aws:iam::aws:policy/service-role/
AWSGlueServiceRole

Creating a basic modern data architecture 19

11.	 Then we will attach the DataLakeReadAccess policy. We will need the policy
ARN that we captured earlier. The policy ARN should look like the following line:

arn:aws:iam::<accountid>:policy/DataLakeReadAccess

And the command should look like the following:
% aws iam attach-role-policy --role-name GlueCrawlerRole
--policy-arn arn:aws:iam::<ACCOUNT-ID>:policy/
DataLakeReadAccess

12.	 Now, let's create the AWS Glue crawler. For this purpose, we will use the glue
create-crawler CLI command. Make sure you replace the role ARN and the
data lake location with the values for your environment:

% aws glue create-crawler --name qs-book-crawler
--role arn:aws:iam::xxxxxxxxxxxx:role/GlueCrawlerRole
--database-name my-data-lake-db --targets
"{\"S3Targets\":[{\"Path\":\"s3://data-lake-xxxxxxxxxx/
yellowtrips\"}]}" --region us-east-1

13.	 Then, just start the crawler using the glue start-crawler command:

% aws glue start-crawler --name qs-book-crawler --region
us-east-1

After 1-2 minutes, the Glue crawler should populate the database.
14.	 We can confirm this by calling the glue get-tables cli command:

% aws glue get-tables --database-name my-data-lake-db

15.	 You can view the Catalog from the AWS Console. Log in to the AWS Console and
navigate to AWS Glue.

16.	 Then on the left-hand side menu, under Data Catalog, choose Databases and then
find my-data-lake-db. Then click on View tables under my-data-lake-db.
It should look like the following screenshot:

Figure 1.5 – Glue console

20 Introducing the AWS Analytics Ecosystem

Tip
You can click the checkbox to select the table and then, under Action, you can
choose Preview Data. This will open the Amazon Athena console and run an
Athena query that returns 10 values from the table.

Step 4 – creating the data warehouse
Let's create our data warehouse next.

To create the data warehouse, we will use the redshift create-cluster CLI
command, or you can use the AWS Console:

%aws redshift create-cluster --node-type dc2.large --number-of-
nodes 2 --master-username admin --master-user-password R3dsh1ft
--cluster-identifier mycluster --region us-east-1

This command should give a response with the cluster metadata. After a few minutes, our
cluster will be up and running.

Note
This command will create a Redshift cluster with a public IP address. This is
something that should be avoided in real-world scenarios. The instructions
provided are oversimplified for the purposes of this tutorial as this book is not
focused on Amazon Redshift.

Step 5 – loading the data into the data warehouse
First, let's create an IAM role that we will assign to the Redshift cluster. We will use this
role when using the Redshift Spectrum feature to query data in S3. We want the cluster
to be able to write and read to our S3 location. We also want the cluster to be able to have
read access to the Glue Catalog:

1.	 Similarly to what we did earlier, we will create the following role policy document to
allow the role to be assumed by the Redshift service:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Action": "sts:AssumeRole",

Creating a basic modern data architecture 21

 "Effect": "Allow",

 "Principal": {

 "Service": "redshift.amazonaws.
com"

 }

 }

]

 }

2.	 Then copy this JSON object into a policy document:

% vim role-policy-redshift

3.	 Now, let's create the role using the iam create-role command:

% aws iam create-role --role-name RedshiftSpectrumRole
--assume-role-policy-document file://role-policy-redshift

Note the role ARN, as we will use it later to attach it to the cluster.
4.	 Next, we need to give the desired permissions by attaching the correct policies.

This time, for simplicity, we will just attach two AWS managed policies. These
policies are overly permissive, and normally we would attach policies with
narrower permissions, as we did for the Glue crawlers in Step 3. Let's attach
AWSFullS3Access and AWSFullGlueAccess:

% aws iam attach-role-policy --role-
name RedshiftSpectrumRole --policy-arn
arn:aws:iam::aws:policy/AmazonS3FullAccess

% aws iam attach-role-policy --role-
name RedshiftSpectrumRole --policy-arn
arn:aws:iam::aws:policy/AWSGlueConsoleFullAccess

5.	 Next, we will attach this role to our cluster using the redshift modify-
cluster-iam-roles CLI command. Note that you need to update the role ARN
with the value from your environment:

% aws redshift modify-cluster-iam-roles
--cluster-identifier mycluster --add-iam-roles
arn:aws:iam::<ACCOUNT-ID>:role/RedshiftSpectrumRole
--region us-east-1

22 Introducing the AWS Analytics Ecosystem

6.	 The cluster change will take a few minutes to be applied. After the change is applied,
the cluster will be ready to fetch data from the S3 data lake. To connect to the cluster,
we will use the built-in query editor found in the AWS Management Console. To
find the editor, navigate to the Redshift console, and see the left-hand side menu. The
editor will need to establish a connection. Make sure you select the cluster we created
earlier, and type dev as the database name and admin as the username.

Note
We didn't set a database name earlier. Redshift uses dev as the default value.

7.	 In the editor page, we will need to create a table to store the data. Let's name the
table yellowtrips_3mo, as we will only store 3 months' worth of data:

create table yellowtrips_3mo

(vendorid varchar(10),

tpep_pickup_datetime datetime,

tpep_dropoff_datetime datetime,

passenger_count int,

trip_distance float,

ratecodeid varchar(10),

store_and_fwd_flag char(1),

pulocationid varchar(10),

dolocationid varchar(10),

payment_type varchar(10),

fare_amount float,

extra float,

mta_tax float,

tip_amount float,

tolls_amount float,

improvement_surcharge float,

total_amount float,

congestion_surcharge float);

Creating a basic modern data architecture 23

8.	 Then, let's copy 3 months' worth of data into the data warehouse. Let's use the COPY
command, as follows:

copy yellowtrips_3mo from

's3://data-lake-afo59dkg84/yellowtrips/yellow_
tripdata_2020-10.csv'

iam_role 'arn:aws:iam::xxxxxxxxxxxx:role/
RedshiftSpectrumRole' FORMAT AS CSV dateformat 'auto'
ignoreheader 1;

copy yellowtrips_3mo from

's3://data-lake-afo59dkg84/yellowtrips/yellow_
tripdata_2020-11.csv'

iam_role 'arn:aws:iam::xxxxxxxxxxxx:role/
RedshiftSpectrumRole' FORMAT AS CSV dateformat 'auto'
ignoreheader 1;

copy yellowtrips_3mo from

's3://data-lake-afo59dkg84/yellowtrips/yellow_
tripdata_2020-12.csv'

iam_role 'arn:aws:iam::xxxxxxxxxxxx:role/
RedshiftSpectrumRole' FORMAT AS CSV dateformat 'auto'
ignoreheader 1;

9.	 At this stage, we have a data lake with 12 months' worth of data and a data
warehouse that contains only the most recent data (3 months). One of the
characteristics of the modern data architecture is that it allows its users to query the
data lake from the data warehouse. Feel free to query the data and start getting an
understanding of the dataset. Let's create the external schema so that we can enable
the Spectrum feature. Use the following command in your Redshift editor. Replace
the role ARN with the values from your environment:

create external schema spectrum_schema from data catalog

database 'my-data-lake-db'

iam_role 'arn:aws:iam::xxxxxxxxxxxx:role/
RedshiftSpectrumRole'

create external database if not exists;

10.	 Let's just compare the size of the two tables using a simple count(*) query:

select count(*) from public.yellowtrips_3mo;

select count(*) from spectrum_schema.yellowtrips;

24 Introducing the AWS Analytics Ecosystem

The first query will run against the recent data in the data warehouse. The second
will run against the first query using the Spectrum nodes using the data in the data
lake. As expected, the number of records in the data lake should be much higher
than the number of records in the data warehouse. Specifically, the query result was
24,648,499 for the year 2020 and 4,652,013 records for the last 3 months of 2020.

Note
The Spectrum queries use the Spectrum nodes and are charged separately from
the Redshift cluster. Every query incurs an added cost based on the data it
needs to scan. Refer to the AWS pricing for details.

Feel free to experiment with the data and trigger a few queries to understand the dataset.
When you finish with the Redshift cluster, you can pause the cluster so that you stop the
on-demand billing. Once the cluster is paused you will only pay for the cluster storage.

Summary
Congratulations, you have reached the end of the first chapter! By now, you should
have a good understanding of the AWS analytics ecosystem and its data lake and data
warehousing options. In this chapter, we discussed in detail the key differences between
data warehouses and data lakes. We also discussed the modern data architecture on AWS,
and we looked at its main components in more detail. Finally, during the step-by-step
section in this chapter, you had a chance to create a data lake and a data warehouse from
scratch, and you loaded an open dataset for further analysis later on. We also defined
Spectrum tables and queried the data lake directly for the data warehouse.

In the next chapter, we will discuss the basic concepts of Amazon QuickSight, understand
its main benefits, and learn how to set up a QuickSight account.

Questions
1.	 What is the difference between data lakes and data warehouses?
2.	 What is schema on read and what is schema on write?
3.	 How can we identify the schema of new data in a data lake on AWS?
4.	 Which AWS storage service is ideal for a data lake on AWS?
5.	 What data is better served from the data lake in the modern data architecture?
6.	 How do Redshift Spectrum tables differ from Redshift tables?

Further reading 25

Further reading
•	 Big Data and Analytics Options on AWS – 2018 – AWS whitepaper: https://

d0.awsstatic.com/whitepapers/Big_Data_Analytics_Options_
on_AWS.pdf

•	 Cloud Native Data Virtualization on AWS – 2020 – AWS whitepaper:
https://d1.awsstatic.com/whitepapers/cloud-native-data-
virtualization-on-aws.pdf?did=wp_card&trk=wp_card

https://d0.awsstatic.com/whitepapers/Big_Data_Analytics_Options_on_AWS.pdf
https://d0.awsstatic.com/whitepapers/Big_Data_Analytics_Options_on_AWS.pdf
https://d0.awsstatic.com/whitepapers/Big_Data_Analytics_Options_on_AWS.pdf
https://d1.awsstatic.com/whitepapers/cloud-native-data-virtualization-on-aws.pdf?did=wp_card&trk=wp_card
https://d1.awsstatic.com/whitepapers/cloud-native-data-virtualization-on-aws.pdf?did=wp_card&trk=wp_card

2
Introduction to

Amazon QuickSight
In this chapter, we will introduce Amazon QuickSight and we will define its main
components. We will discuss fundamental architectural topics such as networking and
storage, and look closely at the different editions of Amazon QuickSight and understand
the different options available during account creation. Finally, we will walk through
a step-by-step guide to set up a QuickSight account, and configure the QuickSight
permissions to access data in a data lake.

To summarize, in this chapter, we will cover the following:

•	 Introducing Amazon QuickSight

•	 Introducing QuickSight editions and user authorization options

•	 Setting up Amazon QuickSight

Technical requirements
The only thing you will need for this chapter is an AWS account.

28 Introduction to Amazon QuickSight

Introducing Amazon QuickSight
Amazon QuickSight is a business intelligence (BI) cloud-native service. BI developers
use QuickSight to develop data visualizations and dashboards and report the state of
the business. Being cloud-native BI software, QuickSight can scale to thousands of
users without the need to provision additional compute capacity. In fact, the concept of
compute capacity doesn't exist in QuickSight: AWS is responsible for scaling QuickSight
up or down when demand grows or shrinks, while BI developers focus on developing
data visualizations.

Next, we will define the following core concepts of QuickSight:

•	 Datasets

•	 Analysis

•	 Visuals and insights

•	 Dashboards

Datasets
QuickSight datasets are the data imported into QuickSight for visualization; a dataset can
be built from one or more data sources. Amazon QuickSight supports a number of data
sources. Datasets can either be cached in QuickSight (SPICE, which we will cover later
in this chapter) or query the data source directly. We will discuss data sources and data
preparation in more detail in Chapter 3, Preparing Data with Amazon QuickSight.

Note
Datasets and data sources are different concepts in QuickSight. A dataset can
consist of one or more data sources. Typically, a degree of data preparation is
applied to a data source before it becomes a dataset.

Analysis
An analysis in QuickSight refers to the editing part of the application, typically used by a
BI developer to build their visualizations. We will see how to create an analysis in Chapter
4, Developing Visuals and Dashboards.

Note
A QuickSight analysis can be developed against one or more datasets.

Introducing Amazon QuickSight 29

Visuals and insights
A QuickSight analysis consists of onscreen components/widgets that contain data
visualizations. A BI developer can add two different types of these components:

•	 Visuals

•	 Insights

Visuals are graphical representations of a dataset commonly using plot types and charts.
Other visual types include tables (simple or pivot), geospatial visualizations such as
maps, and others. We will cover the various visual types in detail in Chapter 4, Developing
Visuals and Dashboards.

Tip
QuickSight has a special visual type called AutoGraph. It appears with the
symbol. When selected, QuickSight automatically identifies and applies the
most appropriate visual type for the data types and fields selected.

Insights are special components that use common analytical or ML functions to
provide insights into data. The result of an insight appears in natural language. Amazon
QuickSight provides both pre-built insights and customizable insights. We will talk more
about QuickSight insights in Chapter 6, Working with ML Capabilities and Insights.

Dashboards
Once an analysis is developed and ready to be published, a BI developer can export it into
a QuickSight dashboard. A dashboard is a read-only version of an analysis. A dashboard
is typically accessed by business users and shared by BI developers for reporting reasons.
A BI developer can also add custom controls and add interactivity to their dashboards.
We will cover QuickSight dashboards in detail in Chapter 4, Developing Visuals
and Dashboards.

Next, we will define the different user roles found in Amazon QuickSight.

Introducing Amazon QuickSight user types
QuickSight supports three different user types:

•	 Admin

•	 Author

•	 Reader

30 Introduction to Amazon QuickSight

Admin
The QuickSight admin role can perform both administrative tasks and BI development
tasks. A QuickSight account can have one or more users with the admin role assigned. The
admin user role can do the following:

•	 Manage users

•	 Manage QuickSight settings and subscriptions

•	 Manage connections and storage

•	 Whitelist domains for dashboard embedding

•	 Configure single sign-on (SSO)

Note
Admins are not superusers in Amazon QuickSight and they don't gain
automatic access to analyses or dashboards created by other users.

Author
In QuickSight, author is the role needed for BI developers to build datasets and analyses.
The author role can do the following:

•	 Create datasets

•	 Create and develop analyses

•	 Share analyses

•	 Publish dashboards to users

Reader
In QuickSight, reader is the role for business users to consume dashboards. The reader
role can do the following:

•	 Log in to the QuickSight mobile or web app

•	 Receive email alerts

•	 Access and view dashboards

•	 Use a dashboard's predefined onscreen controls

Introducing Amazon QuickSight 31

The following table summarizes the differences between the three different user roles.

Figure 2.1 – QuickSight user role permissions

Putting it all together
In the following diagram, we see the end-to-end BI process with Amazon QuickSight.
We start from the data sources on the left. Data sources can be relational databases, data
warehouses, APIs from SaaS vendors, or data from a data lake and files. From these data
sources, an author (BI developer) can configure datasets, which can then be used for
creating QuickSight analyses. When an analysis is ready, the BI developer can share it as a
dashboard with other business users. The business users can then access the dashboard via
their web browsers or their mobile phones, and drive business decisions using data.

Figure 2.2 – QuickSight end-to-end process

32 Introduction to Amazon QuickSight

Now that we have introduced the main components of QuickSight, we will look more
closely into its architectural concepts, such as networking and storage.

Introducing QuickSight architecture
QuickSight is a fully managed service that runs exclusively on the AWS cloud. QuickSight
visualizations can be consumed either via QuickSight for the web, the QuickSight mobile
app, or can be embedded into a custom application. Embedded analytics will be covered
in more detail in Chapter 7, Understanding Embedded Analytics. QuickSight is centrally
hosted, which means that AWS is responsible for scaling and managing the underlying
infrastructure, allowing users to focus on developing BI applications. QuickSight is
licensed on a subscription basis according to the number of users or sessions.

In this section, we will cover a few fundamental topics of the QuickSight architecture.
These will cover the basic networking concepts and storage.

Introducing QuickSight networking concepts
In this section, we will cover fundamental networking topics that will help us understand
how to architect with QuickSight. Networking is an important concept when you
configure your data sources because QuickSight will need to establish a working
connection to either query the data source or load data from the source into the
QuickSight service.

AWS Virtual Private Cloud (VPC) is a logically isolated virtual network on the AWS
cloud. Organizations that need to achieve workload isolation use AWS VPC to create a
virtual network to host their workloads. Analytical databases, such as data warehouses,
are commonly hosted on a VPC configured to block inbound internet connectivity.
BI applications that need to connect to those data sources will need to have a network
route to them. In Amazon QuickSight, admins can configure VPC connectivity. Once
configured, Amazon QuickSight will automatically set up a QuickSight elastic network
interface inside your VPC. An elastic network interfacenterface (ENI) is the equivalent
of a virtual network card.

Only data sources that have been configured to use the VPC connection will use the
interface. Using this connection, you can access a data source with a private IP address,
without internet access. The following diagram shows the network configuration when
connecting QuickSight to a VPC data store.

Introducing Amazon QuickSight 33

Figure 2.3 – VPC connectivity with Amazon QuickSight

Now that we have discussed the networking fundamentals, we will talk about SPICE, the
QuickSight managed storage technology.

Introducing SPICE
Super-fast Parellel In-memory Calculation Engine (SPICE) is an important concept
in Amazon QuickSight that can speed up QuickSight performance while reducing costs.
You can import data into SPICE and use it as a caching layer between your data source
and QuickSight. BI applications make it possible to trigger many queries at one time,
some of which can be expensive. Typically, analytical queries scan and aggregate a large
number of rows, and this can be computationally intensive. However, when datasets
are imported into SPICE, you avoid direct queries against the data source. Instead, data
is served by SPICE, which is optimized to run analytical queries. Data imported into
SPICE can be reused by multiple dashboards and users, eliminating the need to scale the
underlying database or the data warehouse. If the data source is a pay-per-query type,
such as Amazon Athena, then SPICE will introduce direct cost benefits, as it will reduce
the number of queries needed to run the BI application. The data sources will only need to
serve data imports into SPICE, and not the analytical queries to populate the visuals.

Capacity planning for SPICE storage is the responsibility of the QuickSight admin. Each
AWS Region has a separate SPICE capacity. AWS provides a formula to calculate the size
of SPICE capacity for a data source. The overall capacity is determined by the following:

•	 The number of rows

•	 The number of columns

•	 The type of columns

34 Introduction to Amazon QuickSight

For each numeric or date column, QuickSight needs 8 bytes of SPICE storage. For text
columns, SPICE needs 8 bytes plus the number of UTF-8 encoded characters in the text.
Once you estimate how much data will be needed for one row, you can then multiply that
by the total number of rows to find the total SPICE capacity required for a data source.

Now that we have looked at the fundamental networking and storage concepts of Amazon
QuickSight, we will look into the different QuickSight editions and account creation
options, which will be useful when setting up a QuickSight account later on.

Introducing QuickSight editions and user
authorization options
In this section, we will discuss the QuickSight editions and authorization options. These
are choices we will need to make first when creating a QuickSight account.

QuickSight editions
Amazon QuickSight is offered in two editions:

•	 Standard edition: The QuickSight Standard version contains the basic QuickSight
functionality. The concepts of an author and a reader user role don't apply in the
Standard edition. For every registered user, bundled SPICE capacity is included, and
additional SPICE capacity can be purchased.

•	 Enterprise edition: The Enterprise edition offers the full functionality of Amazon
QuickSight. The concept of a reader user is only applicable in the Enterprise edition
of QuickSight. Every author user is bundled with SPICE storage. For reader users,
Amazon QuickSight has pay-per-session pricing capped to a maximum price point
per month. ML Insights, forecasting, and embedded dashboards are only available
in the Enterprise edition of QuickSight.

Note
There are certain features, including forecasting, ML Insights, and dashboard
embedding and AD integration, that aren't supported in the Standard edition
and are only available with the Enterprise edition.

Introducing QuickSight editions and user authorization options 35

Choosing between editions
For some users, the Standard version might suffice to try the basic functions of Amazon
QuickSight and get familiar with the user interface and the look and feel. However,
the Standard edition does not offer the full functionality of QuickSight. Given that
a subscription to the Enterprise version can be stopped at any time, without any
commitment, the Enterprise edition might be the best starting point for the majority of
use cases. For this book, we will choose the QuickSight Enterprise edition, as we will be
using features only found in the Enterprise edition.

Now that we have seen the different options for QuickSight editions, we will discuss the
different options for user authorization.

User authorization with QuickSight
In this section, we will look more closely into user authorization options for Amazon
QuickSight. This concept is more relevant to AWS administrators, who are responsible for
setting up the QuickSight subscription. During QuickSight setup, the administrator will
need to select the method to authenticate QuickSight users.

First, let's examine the required permissions needed to set up an Amazon QuickSight
account. The AWS principal who sets up a QuickSight account will need to have
permissions to call the QuickSight API. An AWS administrator (assuming that they have
the AdministratorAccess managed policy) can set up a QuickSight subscription as
they inherit full access to the QuickSight API. However, if another user needs to set up a
QuickSight subscription, then they will need to be explicitly allowed to call the required
QuickSight API actions. For example, the QuickSight:Subscribe action is needed
to subscribe to QuickSight and QuickSight:CreateAdmin to create a QuickSight
administrator. The full list of API actions that are allowed will depend on the actions a
user needs to be allowed. If you don't explicitly allow an API action for a user, then deny
is the AWS IAM default behavior.

When you set up Amazon QuickSight Enterprise edition, you will need to specify how
your users will connect to the service. QuickSight offers the following two options:

•	 Use Role Based Federation (SSO)

•	 Use Active Directory

Once configured, you can invite your users, either via email or via their federated logins,
or via Active Directory if you have an Active Directory QuickSight account. When
inviting users, you can choose to use AWS IAM user authentication credentials, or create
brand-new credentials for QuickSight.

36 Introduction to Amazon QuickSight

Now that we have looked at the basic concepts of Amazon QuickSight and understood its
account creation options, let's set up an Amazon QuickSight account.

Setting up Amazon QuickSight
In this part of the book, we will create an Amazon QuickSight account. By the end of this
section, you will have set up the following:

•	 A QuickSight Enterprise account

•	 An author user

•	 A reader user

This part of the book will be completed using the QuickSight user interface and the AWS
Management Console:

1.	 To access QuickSight, first log in to the AWS Management Console. You will need
to use a principal with elevated access. Since this is a non-production account, you
can use an IAM user with the AdministratorAccess policy attached.

2.	 Then, find and select Amazon QuickSight, located under the Analytics category. If
this is a brand-new account that doesn't have Amazon QuickSight set up, we will get
a prompt to sign up for the service. Select Sign up for QuickSight.

Figure 2.4 – Sign up for QuickSight

3.	 Then, we will see the main options for account creation. First, we will need to
choose between the Standard or the Enterprise version of QuickSight. For this book,
we will choose the Enterprise version. Once selected, we will need to enter the main
settings to create the account.

Setting up Amazon QuickSight 37

Figure 2.5 – Account creation options

4.	 We will choose Use Role Based Federation (SSO) (instead of Use Active Directory).
5.	 Then, we will select our home region for this QuickSight account. You can go ahead

with the default US East (N. Virginia) or pick a different region if your data sources
are located in another region.

Note
It is preferable for QuickSight and the data sources to be in the same AWS
Region. Apart from networking costs and latency reasons, QuickSight has the
autodiscovery feature, which allows QuickSight to discover data sources within
the same AWS Region, saving you time and effort when configuring data sources.

6.	 Then, type the QuickSight account name and an email address to receive important
notifications about this QuickSight account.

Note
The account name needs to be globally unique. The account name will be used
by your users to log in to Amazon QuickSight.

38 Introduction to Amazon QuickSight

Then, scroll down to get to the remaining options.

Figure 2.6 – Remaining options during account sign-up

7.	 Leave everything as is, and check to enable Amazon S3 access. This will allow the
QuickSight service to access a specific S3 bucket in your account.

Figure 2.7 – Enable access to S3 buckets

Setting up Amazon QuickSight 39

8.	 At this stage, the screen should look like the preceding figure. You should be able to
view the S3 bucket you created earlier, in Chapter 1, Introducing the AWS Analytics
Ecosystem. Check S3 Bucket and click Finish. This step will automatically configure
the permissions that will allow QuickSight to access your S3 bucket. Click Finish
again to create the account.

Congratulations! Your QuickSight account is being created and you can navigate to
the home page of your account.

Now, let's configure the first two users. One user will be allocated the author role
and the other the reader role. These users will be used later in the book.

9.	 To invite new users, you need to navigate to the QuickSight settings. Click on your
username in the top-right corner of your screen, then select Manage QuickSight.

Note
Depending on the configurations you need to perform, you might need to
select a specific region before you navigate to QuickSight Management. Some
configurations are only available in the us-east-1 region and others only in
your QuickSight home region.

10.	 After you select Manage QuickSight, select the User Management option to invite
users. Click the Invite Users button.

11.	 Then we will add your two QuickSight users. Type the username you want as the
first user and select READER or AUTHOR from the drop-down menu depending
on the user you configure. You will also need to enter an email address for each user.
This will be used to send the user invitation email. The following screenshot shows
what the user invitation page looks like after configuring the two users.

Figure 2.8 – User invitation form

40 Introduction to Amazon QuickSight

12.	 Once you fill in the user invitation form, click Invite. Your users will receive an
invitation at the invitation email address where they can verify their email address
and set up a new password to access QuickSight.

Note
You can also use IAM user credentials. You can select this option at the user
invitation stage using the IAM user checkbox.

After your users respond to the invitation, they will be able to log in to Amazon
QuickSight. You now have an Amazon QuickSight account, with an author and a reader
user. You also have an admin user who was used to sign up for the QuickSight account.

Summary
Congratulations on completing this chapter! In this chapter, we introduced Amazon
QuickSight and we defined its main concepts and its terminology. We explored the
differences between the different QuickSight editions and we looked closely at the options
during account creation. We also looked at networking and storage concepts and we
discussed the different user roles: admin, author, and reader. In the last part of this chapter,
you had a step-by-step guide on how to create a QuickSight account and how to invite
your first users. We addressed some of the key topics that are essential to understand when
working with QuickSight. We will be using this knowledge throughout this book.

In the next chapter, we will use our QuickSight account and its author user to configure
data sources and datasets.

Questions
1.	 What are the different editions of Amazon QuickSight?
2.	 What is the difference between an analysis and a dashboard in QuickSight?
3.	 What is SPICE?
4.	 How can we calculate how much SPICE storage is needed?
5.	 How can the QuickSight admin invite users to a QuickSight account?

Further reading
•	 QuickSight User Guide – AWS: https://docs.aws.amazon.com/

QuickSight/latest/user/amazon-QuickSight-user.pdf

https://docs.aws.amazon.com/QuickSight/latest/user/amazon-QuickSight-user.pdf
https://docs.aws.amazon.com/QuickSight/latest/user/amazon-QuickSight-user.pdf

3
Preparing Data with
Amazon QuickSight

In this chapter, we will focus on QuickSight data source and dataset configurations.
We will provide a step-by-step guide to set up a dataset using the data we configured in
Chapter 1, Introducing the AWS Analytics Ecosystem. Then we will focus on using the data
editor in QuickSight to edit datasets. Next, we will explore advanced dataset operations,
such as the use of calculated fields and join operations. Finally, we will understand how to
set up security controls.

In summary, we will learn how to do the following in this chapter:

•	 Adding QuickSight data sources

•	 Editing QuickSight datasets

•	 Working with advanced operations

•	 Configuring security controls

42 Preparing Data with Amazon QuickSight

Technical requirements
For this chapter, you will need the following:

•	 An AWS account.

•	 A QuickSight account with the Author user configured.

•	 For certain sections of this chapter, we will use the architecture created in Chapter 1,
Introduction to the AWS Analytics Ecosystem.

Adding QuickSight data sources
In this section, we will learn how to add and configure data sources with Amazon
QuickSight. QuickSight supports a number of data sources. We will begin by listing the
supported data sources.

Supported data sources with QuickSight
Let's look at the different types of data sources that can be configured in Amazon
QuickSight. A very common scenario for BI tools is to drive the visualizations from an
analytical database or a data warehouse. Specifically, QuickSight supports the following
data warehouses:

•	 Redshift with autodiscover

•	 Redshift manual connect

•	 Snowflake

•	 Teradata

Note
A use case for Redshift manual connect is when QuickSight and the Redshift
cluster are in different AWS Regions.

Other relational database systems that are supported include the following:

•	 RDS

•	 MySQL

•	 PostgreSQL

•	 Oracle

Adding QuickSight data sources 43

•	 Amazon Aurora

•	 MariaDB

QuickSight also supports the following:

•	 Amazon Timestream

•	 Amazon Elasticsearch Service

Both are popular data stores for time series datasets.

For certain use cases, users might need to work with individual files, for example a
Microsoft Excel file (.xls). Amazon QuickSight supports files as data sources either via
direct upload or via a manifest file that points to the S3 location of one or more files.

QuickSight also supports popular big data technologies; specifically, the following:

•	 Amazon Athena

•	 Presto

•	 Spark

Another category is data sources from APIs and popular SaaS applications; specifically,
the following:

•	 Salesforce

•	 GitHub

•	 Twitter

•	 Jira

•	 ServiceNow

•	 Adobe Analytics

Finally, QuickSight supports AWS IoT Analytics to visualize Internet of Things (IoT)
data and integration with S3 Analytics to visualize access patterns on your S3 buckets.

Now that we have seen the data source options, in the next section we will configure our
first data source using the autodiscover feature.

44 Preparing Data with Amazon QuickSight

Configuring our first data source
In this section, we will configure our first two data sources, connecting the architecture we
built in Chapter 1, Introducing the AWS Analytics Ecosystem.

Before we set up the data source in QuickSight, we will need to ensure that QuickSight
service has a network route to our Redshift cluster. Since we are using the default settings,
our cluster is locked down by default. We can confirm this by opening its security group.
A security group acts as a virtual firewall to control the inbound and outbound traffic. The
default security group will not allow any inbound or outbound traffic, unless it is coming
from itself (a self-referencing security group). Therefore, without any action, Amazon
QuickSight won't have access to the Redshift cluster. To allow QuickSight to access our
Redshift cluster we will need to edit the security group of the Redshift cluster and allow
inbound traffic from the IP address range of Amazon QuickSight.

In the next section, we will provide a step-by-step guide for enabling QuickSight access to
our Redshift cluster.

Enabling access to the Redshift cluster
Let's start:

1.	 First, let's get the security group of our Redshift cluster:

%aws redshift describe-clusters --cluster-identifier
mycluster --region us-east-1

The AWS CLI response will contain a lot of information about the cluster. The
security group ID can be found under the VpcSecurityGroups key of the API
response:

 "VpcSecurityGroups": [

 {

 "Status": "active",

 "VpcSecurityGroupId": "sg-xxxxxxx"

 }

]

Alternatively, we can easily find this information from the Redshift console.
Navigate to the Redshift console, select your Redshift cluster (mycluster) and then
select the Properties tab. The security information is under Network and security
settings, so expand this option.

Adding QuickSight data sources 45

Figure 3.1 – Redshift Network and security settings tab

2.	 Now that we have the VPC security group ID, let's check its content to verify that it
doesn't allow inbound access to Amazon QuickSight. Click on the security group
ID to open the EC2 console and observe its rules. In the EC2 console, click on the
security group ID and then select the inbound rules. You should be able to see a
self-referencing inbound rule, but nothing else. Amazon QuickSight isn't a member
of this security group; therefore, access is not possible at this stage.

3.	 Now that we have verified the inbound rules, we will add inbound access to Amazon
QuickSight. To do that select Edit inbound rules to add a new rule. Select Redshift
from the drop-down menu as the rule type. For the source, we will need to add the
QuickSight service IP address space. To find this, we will need to look up the AWS
documentation at https://docs.aws.amazon.com/quicksight/latest/
user/regions.html and find the IP address space for the Region we are working
in. In our example, we are working with N. Virginia. The QuickSight IP address
range for that Region is 52.23.63.224/27. Add this IP range as the source. It is a
good practice to add a description to this rule to help you remember the purpose of
this configuration, for example, QuickSight Access to Redshift.

4.	 Verify the values are as following:

•	 Type: Redshift

•	 Protocol: TCP

•	 Port Range: 5439

•	 Source: Custom – 52.23.63.224/27

•	 Description: QuickSight Access to Redshift

5.	 Once these values are verified, click Save rules.

Now that we have configured network access between QuickSight and Redshift, in the
next section we will set up our first Redshift data source.

https://docs.aws.amazon.com/quicksight/latest/user/regions.html
https://docs.aws.amazon.com/quicksight/latest/user/regions.html

46 Preparing Data with Amazon QuickSight

Setting up a Redshift data source
In this section, we will set up our Redshift data source. For this step, we will need to access
Amazon QuickSight using the Author user we created during Chapter 2, Introduction to
Amazon QuickSight:

1.	 First, log in to Amazon QuickSight as the Author user. Once logged in, navigate to
Datasets in the left-hand side menu and select New Dataset.

2.	 In the next screen, you will see a list of the supported QuickSight data sources.
Select Redshift (Auto-discovered).

Figure 3.2 – QuickSight data sources

3.	 In the following screen, add the required information for the Redshift data source.
You should be able to choose your cluster from the Instance ID drop-down menu.

Adding QuickSight data sources 47

Figure 3.3 – Set up the Redshift data source

4.	 Once the form is completed, click Create data source.

Note
The auto-discovered option finds clusters in the same Region as QuickSight.
To verify the QuickSight Region or to change to the desired one, navigate to the
top right-hand corner of the screen and click on the drop-down icon next to
the username to reveal the Region settings.

48 Preparing Data with Amazon QuickSight

5.	 In the next screen, we will need to select the Redshift schema first. Once a schema is
selected, we will see a list of tables for the selected schema.

Figure 3.4 – Schema and table selection
Select public and then the yellowtrips_3mo table and click Select.

6.	 Next, we will finalize the creation of the data source by selecting Direct Query
your data.

Figure 3.5 – Finalizing dataset creation

Adding QuickSight data sources 49

The last step will redirect you to the analysis web interface. We will work on this
interface in Chapter 4, Developing Visuals and Dashboards. For now, click on the
top left hand-side of the screen (the QuickSight logo) to go back to the QuickSight
home page. You can verify the creation of the newly created dataset by accessing the
dataset menu on the left-hand side.

To configure the Redshift Spectrum table, repeat the steps above. At the schema
and table selection step, choose spectrum_schema (instead of public) and the
yellowtrips table under that schema. Then repeat the steps as previous to configure
a second Redshift data source for the Spectrum table we configured earlier. Note that
the Redshift Spectrum tables aren't loaded into the data warehouse; instead, they
reside in our data lake and they can be accessed and queried directly from there.

Note
To access the data into the Spectrum table, QuickSight will need to have access
to the underlying data in Amazon S3.

Setting up an S3 data source
A common data source for QuickSight is S3. For example, you might want to visualize
CSV files that are stored in Amazon S3. Before you configure an S3 data source, you need
to ensure your QuickSight account has the required permissions to access the S3 locations
where the files are stored.

Note
QuickSight doesn't automatically inherit access to newly created buckets. Even
if you enable the Access all buckets in my account checkbox, QuickSight will
only get access to every bucket in your account at that point in time, and not to
any bucket you create from the point onward. If you need to add permissions to
new buckets, you will need an AWS administrator to manage the permissions
of the QuickSight service to AWS services in your account.

For the S3 data source, QuickSight requires a manifest file containing the required
information to set up the datasets. The manifest file is in JSON format and contains the
following objects:

•	 fileLocations: Here you will define the S3 location of the file (or files) you
need to import by just appending the full S3 URI of your files (as a JSON array)
using the URIs property. You can populate the URIPrefixes property, if you
want to add all of the files that are under a specific S3 prefix (similar to a folder in
a traditional filesystem).

50 Preparing Data with Amazon QuickSight

•	 globalUploadSettings: The globalUploadSettings is optional. You
can use this property to override the QuickSight default options. QuickSight will
default to CSV format, using a "," (comma) field delimiter and double quotes (") as
the text qualifier. By default, QuickSight will use the first row of the CSV file as the
header, which implies that the first row will determine the dataset field names, and
won't be considered as values in the dataset.

Now that we have learned how to configure certain datasets types, in the next section we
will edit datasets using the QuickSight dataset editor.

Editing datasets
In this section, we will look more closely at the typical tasks an author user needs to do
to edit a dataset. In real-world applications, it is common that datasets might need some
degree of processing so that they can be used optimally by QuickSight.

These tasks include the following:

•	 Importing into SPICE

•	 Renaming fields

•	 Changing the field types

•	 Adding calculated fields

•	 Combining datasets together

•	 Applying security filters

In the next section, we will learn how to complete these tasks using the example dataset
we configured earlier.

Importing into SPICE
It's time for us to learn how to import a dataset into SPICE. We will change the query
mode using the dataset editor and then we will observe the status of the import job.
Finally, we will learn how to schedule automatic refresh jobs for our SPICE datasets.

Editing datasets 51

Setting the dataset query mode
Earlier in this chapter, we configured a Redshift dataset as a Direct Query. Let's assume
that we realized that our data warehouse is busy serving many applications and producing
reports for the organization, so we would prefer to import the data into SPICE, so that
the QuickSight dashboards are using the SPICE storage, rather than accessing the data
warehouse directly. After importing the data into SPICE, our data warehouse will only be
used for data imports, and not for querying the data to populate the dashboards.

Now let's add our dataset into SPICE and configure its import duration:

1.	 First, you will need to log in as the author user we created earlier.
2.	 Then, select datasets on the left-hand side menu to get a list of all the datasets.
3.	 For this hands-on example, we will import the yellowtrips_3mo dataset into

SPICE. Click on yellowtrips_3mo and then click Edit dataset on the pop-up
window you see in the following screenshot.

Figure 3.6 – Dataset pop-up screen

52 Preparing Data with Amazon QuickSight

4.	 Now we should be at the dataset editor main page. On this page, we will complete
most of the operations to edit and transform our datasets later in this section. For
now, we will just set Query mode to SPICE as shown in the following screenshot.
Once done, click Save.

Figure 3.7 – Setting the dataset query mode to SPICE

5.	 You will notice that our dataset is now marked as a SPICE dataset. Now that we have
set up the SPICE dataset for the first time, QuickSight will automatically run its first
import job in the background.

Figure 3.8 – Viewing the SPICE datasets

Monitoring the import jobs status
After a few minutes, QuickSight will complete its first import job into SPICE. Next, we
will gather information about the status of the import jobs:

1.	 First, click on the dataset name to get information about the import status, as shown
in the following screenshot:

Editing datasets 53

Figure 3.9 – View import status
From the first page we can observe that 4.6 million rows were imported successfully,
using 1.3 GB of SPICE capacity.

2.	 Next, let's look at the history of the import. We can do that by simply clicking View
history, and we will get a pop-up screen like the following:

Figure 3.10 – View import history

54 Preparing Data with Amazon QuickSight

3.	 From the preceding screen we can get useful information about when the dataset
was imported, how much time was required to import the dataset, the number of
rows imported, and the number of rows skipped.

Now that we have covered the refresh and import jobs, in the next section we will look at
how to automatically refresh the dataset.

Scheduling automatic refresh
QuickSight supports a simple refresh feature to automatically refresh datasets from SPICE.
Specifically, users can set up hourly, daily, weekly, or monthly refresh jobs. Let's see how
this is done:

Note
You can configure more than one refresh schedule for each dataset, unless your
schedule is hourly. You can have up to one hourly refresh schedule per dataset.

1.	 In our example, first you need to access the dataset and then click Schedule refresh,
as shown in the following screenshot.

Figure 3.11 – Schedule refresh option

2.	 Next, you will get a notification that there is no schedule, and you have the option to
create a new schedule. Click on the Create button to create a new refresh schedule.

3.	 Next, you can create your schedule using the editor shown in Figure 3.12. For the
purposes of this tutorial, we don't need to create a scheduled refresh, as our dataset
is static, but feel free to familiarize yourself with the various options.

Editing datasets 55

Figure 3.12 – The Create a schedule dialog

Now that we have learned how to configure SPICE datasets, schedule automatic refresh,
and monitor the refresh jobs, in the next section we will learn how to edit datasets by
renaming columns and data types.

Editing column names and data types
It is common for BI developers to edit their datasets before building visualizations. For
example, a column name might not be as user friendly or as descriptive when it comes
directly from a database. When designing BI applications, we need to think from the
end-user perspective, and try to name the columns in a friendly and descriptive way that
will make sense in the context of a BI application. Also, it is important to ensure that
each field in our dataset has the expected data type, so that we can perform the required
calculations. In this section, we will provide a step-by-step guide to edit our columns and
data types using our SPICE dataset we configured earlier.

Renaming columns
Renaming columns using the dataset editor is a straightforward process:

1.	 First, we start by accessing the dataset and select the Edit dataset option, which will
take us to the dataset editor page.

56 Preparing Data with Amazon QuickSight

2.	 In the dataset editor, we can see a preview of our data including the column names,
as shown in the following screenshot.

Figure 3.13 – Dataset preview screen

3.	 Next, we can simply rename the column names by clicking the pencil icon next
to the column name. For example, let's rename the tpep_pickup_datetime
column to the user-friendlier name of Pick up date as shown in the next
screenshot. At this stage, we can also give a column description to describe the
column to other authors who might work on the same dataset.

Figure 3.14 – The Edit field dialog

Editing datasets 57

Now that we have seen how to edit a column name and description, in the next section we
will see how to edit data types.

Changing data types
By using the right data type for every column, we can make sure to access the right
functionality for each column in our datasets. For example, QuickSight supports
time aggregation for date column types. If a date column is incorrectly mapped as a
string column, then those aggregations cannot be used. Similarly, calculations such as
calculating the average or min/max applies only to numerical data types. If we need to
perform and visualize these calculations, we will need to ensure that a numerical data type
has been applied.

QuickSight supports the following data types:

•	 String

•	 Date

•	 Decimal

•	 Integer

The following geospatial types are also supported:

•	 County

•	 State

•	 City

•	 Postcod

•	 Latitude

•	 Longitude

Now, let's see a quick hands-on example of how to edit data types in our dataset. For this
example, we will use the yellowtrips dataset (in the yellowtrips_3mo set, the
column data types seem to be correct, so there is nothing to edit).

1.	 First, we will need to access the yellowtrips dataset and navigate to the
dataset editor.

2.	 In this dataset, you can see that the date columns have been identified as strings.
This is something that we will need to edit, so that we can use time-based
aggregations later on in our analysis.

58 Preparing Data with Amazon QuickSight

3.	 To change the data type, we will need to click on the data type (String in this
example) under the column name and select Date.

4.	 Next, QuickSight will open the edit date format pop-up screen as shown in the
following screenshot. We will need to define the date format of our dataset. In our
example, this is yyyy-MM-dd HH:mm:ss, where yyyy represents the year using
four digits (for example, 2020); MM the month using two digits (such as 02 for
February), and so on similarly for the other elements in this syntax. Once we enter
the date format, QuickSight will validate our dataset against the date format chosen
to ensure that the data complies with it.

Figure 3.15 – Edit date format

We can repeat the process for the tpep_dropoff_datetime column. Now that
we have learned how to edit columns, including changing column names and types
and adding descriptions, in the next section we will learn advanced dataset operations
including joins and security controls.

Working with advanced operations 59

Working with advanced operations
In this section, we will focus on advanced dataset operations. We will learn to add
calculated fields to our dataset and apply dataset operations such as filtering and joining.
Finally, we will add security controls, including row- and column-level filters. For this
section, we will use our SPICE dataset that we configured earlier in this chapter.

Adding calculated fields
QuickSight allows BI developers to add calculated fields to their datasets at the data
preparation stage. This dataset, including its calculated fields, can then be used to develop
multiple analyses.

There are a number of prebuilt functions with QuickSight that we can use when building a
calculated field. Those functions include the following:

•	 Aggregate functions are used to calculate metrics over a number of values. For
example, we can use the min() function to calculate the minimum value of a
set of values.

•	 Conditional functions allow us to use conditional logic in a calculated field, for
example, isNotNull() returns true if the argument passed is not null.

•	 Date functions help us work with date column types. For example, we can use the
dateDiff() function to calculate the difference between two date fields.

•	 Numeric functions and string functions can help us work with numerical values
and string values respectively. For example, we can calculate the absolute value of
a given expression using the abs() function or we can concatenate two or more
strings using the concat() function.

•	 Finally, table calculations, can be used to discover how dimensions influence
specific measures. For example, the sumOver() function calculates the sum of a
measure partitioned by a list of dimensions.

60 Preparing Data with Amazon QuickSight

To add a calculated field, we do the following:

1.	 First, we need to open our dataset in the dataset editor.
2.	 Then, we can simply select the Add calculated field option to get to the calculated

field editor, as shown here:

Figure 3.16 – Calculated field editor

3.	 Next, let's add our first calculated field. In our dataset, while we have the pick-up
time and drop-off time, it might be interesting to get the difference between these
two timestamps in minutes. To calculate this, we can type the following:

dateDiff({Pick up Date},{tpep_dropoff_datetime},"MI")

4.	 Finally, let's give a descriptive name, for example Trip duration(mins), and
click Save.

Now we can observe our new calculated field in the dataset editor. Next, we will see other
dataset operations including filtering and joining.

Working with advanced operations 61

Filtering and joining datasets
In this section, we will discuss how to filter and join data sources together.

Filtering datasets
There are scenarios where you might need a subset of the table from a data source.
QuickSight supports data source filtering so you can import the required subset of a dataset
into SPICE. That allows you to build efficient BI solutions by only using the SPICE capacity
that's really required. Adding a filter in QuickSight is simple. In the following example, we
will see an example of how to filter out columns and rows from the dataset we created earlier:

1.	 First, you will need to access the dataset editor. On the left-hand side, you can find
the Excluded fields and Filters menus.

2.	 For this example, let's assume that we aren't interested in the information in the
store_and_fwd_flag column. To exclude this column from our dataset,
expand the Excluded fields option and then select store_and_fwd_flag.

3.	 Now that we have removed a column, let's apply a filter to remove rows. Let's
assume that for this analysis, we don't want to include trips if the distance is shown
as 0.0, and we only want data where the value is greater than 0.

4.	 Expand the Filter menu and select the trip_distance column. Select Greater
than from the drop-down menu and then 0. After adding those values, the filter
should look as in the following screenshot:

Figure 3.17 – Adding dataset filters

5.	 Next, click Apply. QuickSight will trigger a refresh job for the dataset.

62 Preparing Data with Amazon QuickSight

Now that we have learned how to apply filters on datasets, in the next section, we will
enrich our dataset by joining it with reference data.

Joining datasets
Joining datasets can be used to combine datasets together and provide a single view of our
data. Having relevant and good-quality data is key to the success of our BI application. For
this example, we will enrich the dataset we used earlier with a reference dataset that can be
downloaded from the website provider. Alternatively, we can create a lookup CSV file and
upload it to QuickSight. Let's begin:

1.	 First, let's download our small lookup table from https://s3.amazonaws.
com/nyc-tlc/misc/taxi+_zone_lookup.csv.

2.	 Next, on the dataset editor, click Add data and then upload the file.
3.	 Upload the lookup file.
4.	 Next, select the location ID for the join column and select Left as the join

configuration. See the following screenshot for an example.

Figure 3.18 – Join configurations

5.	 Once applied, you can confirm the new columns in the dataset editor.

Now that we have learned how to join datasets, we will learn how to add security controls
to our datasets.

https://s3.amazonaws.com/nyc-tlc/misc/taxi+_zone_lookup.csv
https://s3.amazonaws.com/nyc-tlc/misc/taxi+_zone_lookup.csv

Configuring security controls 63

Configuring security controls
QuickSight supports row-level and column-level security controls. In this section, we will
learn how to add security controls to our datasets.

Adding column-level security controls
In certain cases, BI developers might want to restrict access to specific columns to protect
sensitive data (such as personally identifiable data). Once a BI developer adds column-
level security, only the allowed users will be able to view and access the restricted column.
By default, when you share a dataset with another user, you give them access to all
columns of this dataset. Therefore, you will need to add column-level security controls
if you need to restrict certain columns. To add column-level security, you can select the
Column-level security option.

Figure 3.19 – Column-level security

64 Preparing Data with Amazon QuickSight

You will then see the list of columns in your dataset. You will notice that by default, users
and groups with access to the dataset have access to all columns. To restrict a column, you
will need to select it and then add the users or groups you want to enable access for. This
selection will override the "everyone" default setting and only the users or groups you add
will have access. Once completed, you will notice a padlock icon next to your dataset to
confirm that security restrictions are present.

Adding row-level security
QuickSight supports row-level security for your datasets. Row filters are particularly
useful when you want certain users or groups to have different levels of access to a subset
of data depending on their username or group membership. To apply row-level security
you will need to provide a permissions file or create a permissions table in your database
and then add it to QuickSight. In our example, the vendorid column has two distinct
values, 2 and 1, each representing a different vendor. Let's imagine a scenario where users
from vendor 1 need to have access to the dataset, but they should only be able to access
the vendor 1 data and not data from vendor 2. Likewise, vendor 2 should only be allowed
to view their data. For this example, we can apply row-based security controls.

Applying a row-level filter
For our example, we can consider two different users, user1 for vendor 1 and user2
for vendor 2. QuickSight will match the username accessing the dataset with the value of
the UserName field and then apply the filter or filters using the remaining column. In our
example, it will use the vendorid column from the yellowtrips_3mo dataset.

See our following mapping table for the scenario described previously:

Figure 3.20 – Mapping table

Configuring security controls 65

To apply row-based permissions, we need to do the following:

1.	 We save the mapping table as a .csv file and then import it as a new dataset. The
format of the file will be as follows:

UserName,vendorid

user1,"1"

user2,"2"

<your-admin-user>,""

2.	 Edit the newly created dataset, and ensure that vendorid field is of type String.
3.	 Then, select the yellowtrips_3mo dataset and select Row-level security, as shown

in the following screenshot:

Figure 3.21 – Add row-level security

4.	 Then select the mapping table you added in step 1.
5.	 Then click on Apply to dataset. Now the filter has been applied, as shown in the

following screenshot:

Figure 3.22 – Dataset rules applied

66 Preparing Data with Amazon QuickSight

We will not need these permissions for the next chapter. After you have applied the
row-level filters, you can remove them by doing the following:

1.	 Select the yellowtrips_3mo dataset and then Row-level security.
2.	 With the mapping table selected, click on Remove dataset.
3.	 Click Remove dataset again to confirm the action.

Summary
Congratulations on completing this chapter. In this chapter, we learned how to create
and edit datasets in Amazon QuickSight. We managed to import datasets into SPICE
and schedule automatic refresh jobs. We also edited fields and added custom calculations
to get more value from a dataset and its columns. We then looked at advanced dataset
operations including joining datasets together and enriching them with reference data.
In the last part of this chapter, we learned how to apply security controls, either at the
column level or row level, so that you can protect sensitive information or apply specific
filters to your users.

In the next chapter, we will learn how to visualize datasets with QuickSight analyses
and dashboards.

Q&A
1.	 What is the difference between a direct query and a SPICE data source?
2.	 How do you add column-level security controls in Amazon QuickSight?
3.	 When might we need row-level security for our dataset?
4.	 Why might we need to exclude columns from a dataset?
5.	 How do we enrich a dataset with reference data?
6.	 Why is it important to configure the correct data type for every column in

our dataset?

Further reading
•	 QuickSight User Guide – Preparing data: https://docs.aws.amazon.com/

quicksight/latest/user/preparing-data.html.

https://docs.aws.amazon.com/quicksight/latest/user/preparing-data.html
https://docs.aws.amazon.com/quicksight/latest/user/preparing-data.html

4
Developing Visuals

and Dashboards
In this chapter, we will introduce the main analysis building functionality of Amazon
QuickSight. We will start by exploring the author user interface and understanding the
different visual types. After adding certain visual types and explaining their functionality,
we will introduce the concept of a dashboard and show how to share dashboards with
business users with simple, hands-on examples. Finally, we will look at how to style a
dashboard using existing or custom themes.

In this chapter, we will cover the following topics:

•	 Working with QuickSight visuals

•	 Publishing dashboards

•	 Customizing the look and feel of the application

68 Developing Visuals and Dashboards

Technical requirements
For this chapter, you will need the following:

•	 An AWS account

•	 A QuickSight account with the author and reader users configured

•	 The datasets we created in Chapter 3, Preparing Data with Amazon QuickSight

Working with QuickSight visuals
Visuals are defined as the on-screen widgets that you can add to your QuickSight analysis
to visualize your data. Selecting the right visual type is important for the success of your
BI application. In this section, we will learn about the supported visual types and how to
select the most appropriate visual type for different scenarios.

Creating an analysis
Before we look at the available visual types, we need to create our first analysis. QuickSight
analysis is the main user interface for developing your BI applications. While working on
an analysis, you will be able to add data visualization widgets, configure ML capabilities,
and configure the look and feel of your BI application.

To create an analysis, perform the following steps:

1.	 First, log into QuickSight as an author user.
2.	 Next, select Analyses from the left-hand side menu and select New analysis, as

shown in the following screenshot:

Figure 4.1 – Analyses menu

Working with QuickSight visuals 69

3.	 You will then need to select a dataset to start your analysis. Choose the
yellowtrips_3mo dataset we configured earlier and select Create Analysis.

4.	 This will take you to the main analysis user interface, as shown in the
following screenshot:

Figure 4.2 – Analysis user interface

This is the main user interface that we will be using throughout this book to develop our
BI application.

Note
Familiarize yourself with the analysis user interface, including the main screen,
the top menu, the side menu, the field wells, the dataset, the column list, and
the visual types selection tool as we will be using them throughout this book.

Next, we will focus on the different visual types by looking at examples using our
example datasets.

70 Developing Visuals and Dashboards

Supported visual types
QuickSight supports several visual types that you can choose to visualize your data with.
AWS is constantly expanding this list. In the next few sections, we will explore those types
by focusing on the business question and how the visuals can help you address them.

Visualizing a metric or a key performance indicator
There are scenarios where you might want to visualize a key performance indicator
(KPI). Visualizing the progress of a metric against a target metric or comparing the
monthly sales of the current month with the sales of the last month are examples of KPIs
that organizations often need to monitor. The two visual types that are ideal for these
types of visualizations are as follows:

•	 KPI visual type

•	 Gauge chart

Let's look closer at each of these visual types using the dataset we created in Chapter 3,
Preparing Data with Amazon QuickSight.

The KPI visual type
The KPI visual type allows you to display metrics, including comparisons against time
intervals or a trend. To select the KPI visual type, you simply need to select the icon.
Then, you can start parameterizing your KPI visual, as shown in the following screenshot:

Figure 4.3 – The KPI visual fields

Working with QuickSight visuals 71

The KPI visual allows us to set up three types of fields:

•	 Value: This field represents the value we want to measure.

•	 Target value: This field represents the target metric we want to compare the value
field against.

•	 Trend group: There are scenarios where you will need to visualize how a metric
is trending; for example, a trend over time. The trend group field can be used for
this purpose.

Note
You can use either a target value or a trend group with the KPI visual, but
not both.

To understand the KPI visual, we will look at an example of using the New York Taxi
dataset we imported into QuickSight earlier in this book. For this example, let's assume
we want to visualize how the tips are performing compared to the overall fare. A tip value
below 10% of the total might indicate that people aren't very generous with their tips. Let's
see what the data tells us!

For this KPI visual, we will use tip_amount as the value field and total_amount
as the target. To add these fields, simply drag and drop each field to the corresponding
column, as shown here. Once you've added these fields, the visual should look as follows:

Figure 4.4 – Tips KPI visual

72 Developing Visuals and Dashboards

Now that we have our first KPI visual, we will configure some of its parameters. Each
field that's in a field can be configured individually by selecting the respective drop-down
menu, as follows:

Figure 4.5 – Field options

From this menu, we can choose how the field is aggregated and how it is formatted. For
aggregation, we have the following options:

•	 Sum (default).

•	 Average.

•	 Count.

•	 Count distinct.

•	 Max.

•	 Median.

•	 Min.

•	 Percentile: When percentile is selected, you will also need to select the percentile
value; for example, 95 to calculate P95.

•	 Standard deviation.

•	 Standard deviation: Population.

•	 Variance.

•	 Variance: Population.

For our example, we can keep the default setting, which is the Sum aggregation, as it
shows us the total amount of tips and fares. Next, let's look at the format. The available
options are as follows:

•	 Number

•	 Currency

•	 Percentage

Working with QuickSight visuals 73

The Currency format type fits better for our field. Once the type has been selected, you
will be able to edit the format in detail by selecting the More formatting options menu.
Finally, we can format the entire visual by selecting the cog icon next to our visual.
This will open up a menu where we can edit the comparison format (for example, the
percentage of actual values), change the font size, and change the title. Let's set the title to
New York Taxi Tips Percentage and set the subtitle to 10% Target. Now, the visual should
look as follows:

Figure 4.6 – New York Taxi Tips Percentage KPI

Now that we have seen how to configure the KPI visual type, we will learn how to
configure the gauge chart visual.

The gauge chart
The gauge chart is a useful way to compare a value with the target value. Gauge charts help
us visualize the progress against a target.

Note
A similar visualization to the gauge chart can be achieved with the progress bar
on the KPI visual.

74 Developing Visuals and Dashboards

To understand the gauge chart, we can use our New York Taxi dataset. For this example,
let's assume that our target for these 3 months is to have 6.5 million passengers and we
want to compare the actual numbers against this target. A quick way to add this target
value is to simply create a calculated field and assign it with the value 6,500,000. This value
will be added to every row of our dataset, increasing the total SPICE space required. Then,
we can use passenger_count (sum) as the Value field of the gauge chart and the
newly created calculated field (aggregated as the average) as the Target field. Similar to the
KPI chart that we saw earlier, we will be able to access additional settings for this visual,
such as setting a title, controlling the values that are displayed, the thickness of the fonts,
the data labels, and the tooltip. Feel free to get familiar with the settings of this visual. With
the default settings (and only increased font size) the gauge visual will look as follows:

Figure 4.7 – The gauge chart

Now that we have learned how to visualize KPIs, we can focus on other visual types.
Next, we will look at using visual types to help us visualize the composition of a selected
attribute in our dataset.

Visualizing the composition of an attribute
Visualizing the composition of one or more of your dataset dimensions can be a common
question you want to answer with your BI application. For example, you might want to see
how much each region contributes to the total sales. In our example, we can visualize how
much each taxi zone contributes to the total taxi fares collected. These types of questions
can be visualized with the following types of charts:

•	 Pie charts

•	 Donut charts

Working with QuickSight visuals 75

When setting up both visuals, you will need to specify a group/color field and the
value field.

Note
If you don't specify a value field, QuickSight will default to the count of records.

Using our example dataset, we will use a donut chart to visualize the records by service
zone. Similarly, we will use a pie chart to visualize the count of records by borough. For
this purpose, we can set the service_zone field and then the Borough field as a
group/color for the donut chart and the pie chart, respectively. As a result, the two visuals
will look as follows:

Figure 4.8 – The donut and pie charts

Both visual types can help you visualize the composition of an attribute, and they work
particularly well when you have a small number of categories. Both visual types are not
very effective when you want to do side-by-side comparisons. Next, we will look at visual
types that can help you visualize such side-by-side comparisons.

Visualizing side-by-side comparisons
QuickSight allows you to visualize side-by-side comparisons by offering several bar chart
options. Horizontal, vertical, or stacked bar charts are some examples of this type of visual.
To understand these visuals, we will use our dataset and configure a bar chart. Let's assume
we want to understand and compare the tip percentage for each of the New York boroughs:

1.	 First, we need a calculated field and must assign the {tip_amount}/{fare_
amount} value to Tip Percentage.

2.	 Next, we will need to add our visual. A bar chart would be an ideal solution to
compare the tip percentage for each borough.

76 Developing Visuals and Dashboards

A bar chart, either vertical or horizontal, will need the following fields to be configured:

•	 X axis

•	 Value

•	 (Optionally) Group/color

The x axis is the primary dimension that you want to understand for your value. In our
example, this will be the Borough field. For the value field, you will need to set the value
you want to understand and compare. In our example, this will be the newly created Tip
Percentage calculated field, aggregated as the average. Finally, you can add a Group/
Color field, if you need to add another dimension to your visual.

Note
A bar chart needs at least an x-axis and a value field. The group/color field is
optional. You can set more than one value field if you need to monitor multiple
values in the same visual.

Once we've applied these fields, this is what the vertical bar chart will look like:

Figure 4.9 – Vertical bar chart

Now that we have learned how to use a simple bar chart, in the next section, we will learn
how to visualize time series.

Working with QuickSight visuals 77

Visualizing time series
It is common for BI applications to visualize how a metric is changing over time. Time
series data is usually represented with line charts. Time series visualizations need to
ensure that temporal fields are stored as the Date field type in QuickSight. This will
enable time-based aggregations; for example, day, week, month, quarter, or year.

In this section, we will use a simple line chart to create our first time series visualization.
Let's assume that we want to visualize the total amount of taxi fares over time so that we
can observe how the fare amount is distributed over time.

A line chart requires you to define the following:

•	 X axis: In time series, this will be our temporal field.

•	 Value: The value you want to measure over time.

•	 Optionally, the Color field: When you want to visualize multiple categories, you can
use the Color field. This will result in multiple lines on the same line chart.

For our example, you will need to pick tpep_dropoff_datetime as the x-axis and
total_amount (Sum) as the value. This dataset is only for 3 months; therefore, a daily
aggregate is likely to have enough data points for a meaningful data visualization. You will
need to ensure that the daily aggregation is chosen. To do that, select the x-axis column
and expand the drop-down menu, as shown in the following screenshot:

Figure 4.10 – Time-based aggregations

78 Developing Visuals and Dashboards

The following screenshot shows a line chart of the total fare amount aggregated daily for
the period from September to December:

Figure 4.11 – The line chart

Now that we have learned how to set up line charts, we will learn how to use table visuals.

Using tables
Tables can be useful when we want to display the values of specific metrics, without using
other visual means. Table visuals can be used to display raw data, which can be useful for
users familiar with the data being used to populate a BI application. QuickSight supports
the following:

•	 Table visual for simple table visualizations

•	 Pivot table visual for tables that need to summarize data in multiple dimensions

For the simple table visual, you will need to define the value and the group by fields
in the field well. The group by field is used to aggregate your data, while the value field
contains the metrics that will be added to the table, broken down by the group by fields.
You can add one or more value fields if you are interested in more than one metric. You
can use one or more group by fields; however, a pivot table might be a better fit if you
need to break down the data using more than one dimension.

To understand the use of tables, let's use our example dataset. For this example, let's
assume that we want to visualize a table with the total fare amount broken down by
borough. For this visual, we will use the Borough column as the group by field and
fare_amount(sum) as the value field.

Working with QuickSight visuals 79

You can customize a table visual with additional options. First, you can control the visual
title and column names. In our example, we can replace the fare_amount column name
with the user-friendly name Fare amount, which is easier to read. Additionally, we can
choose to display a total aggregate of the value fields and control how and where the total
will be displayed. In our example, the total will be useful to add to the table.

Note
The total is not shown by default in the table visual, so we will need to enable it
if we need to show it.

Feel free to familiarize yourself with the additional settings by accessing the cog icon on
the right-hand side of the visual. In the following screenshot, you can see a table visual
using our sample data:

Figure 4.12 – The table visual

Now, let's assume that we want to provide a table to our readers that allows them to dive
deeper into each borough's data and break it down by payment type. A pivot table visual
can be used instead of a simple table. In pivot tables, you can define the following:

•	 Rows

•	 Columns

•	 Values as rows or as columns

80 Developing Visuals and Dashboards

In our example, we will use the fare_amount column as the value field (as a column).
For the row fields, we will add two fields this time: Borough and Payment Type.
Similar to the table visual, you can use the cog icon to access the additional settings to
change your visual's title, field naming, and total calculation. Additionally, pivot tables
can display subtotals for each category and have additional styling controls. The following
pivot table is using the dataset from our example:

Figure 4.13 – The pivot table visual

Now that we have learned how to use tables, in the next section, we will learn about
visualizing geospatial data.

Visualizing geospatial data
QuickSight can work with geospatial data. At the time of writing, QuickSight supports
two types of geospatial visuals:

•	 Points on map

•	 Filled map

The points on map visual is a good fit when you need to highlight specific points on
the map. The size of the point is determined from the Size field. When you need to
visualize different categories, you can add multiple colors. The points on map visual works
well with coordinates, but it can work with other geospatial data types too, such as city,
state, and country.

Working with QuickSight visuals 81

The filled map visual might be a better fit when you need to visualize a metric that covers
wider geography, such as a country. When creating a filled map visual, you will need to
define two fields: the location field and the color field.

In the next section, we will learn how to visualize the flow between the source and
a destination.

Visualizing the flow between the source and a destination
There are scenarios where you might want to visualize a metric while considering a source
and a destination. The Sankey visual type can be a great fit when we need to visualize a
metric that flows between a source and a destination. The Sankey diagram depicts the
flow from the source to a destination as a line. The width of the line depends on the
value of the metric. For example, in our dataset, we capture the taxi pick-up and drop-off
locations. We can enrich the location ID using a lookup table and get the pick-up borough
and drop-off borough. Now, let's assume that we want to visualize the total miles traveled
between the New York boroughs. Using the Sankey visual type, we will need to set Pick
Up Borough as the Source field, Drop off Borough as the Destination field,
and trip_distance as the Weigh field.

The following screenshot shows an example Sankey visual using our example dataset:

Figure 4.15 – The Sankey visual type

82 Developing Visuals and Dashboards

Now that we have learned how to work with most of the visual types that are available, in
the next section, we will learn how to publish our analysis so that it can be shared with
other users.

Publishing dashboards
In this section, we will learn how to publish a dashboard and share it with other reader users.
A dashboard is the read-only version of an analysis that can be consumed by reader users. A
dashboard is not a point-in-time snapshot of the analysis. When a user accesses a dashboard,
QuickSight will fetch the data to populate the dashboard visuals. Depending on how you
configured your data source, data is fetched either using a direct query or using SPICE.
When you use SPICE data sources, QuickSight will scale automatically for the number of
users you have. When you query your data source directly, you need to ensure that the data
source (for example, a data warehouse) has enough resources to support the workload.

Sharing a dashboard is easy. Let's take a look:

1.	 First, you will need to open the analysis you want to share as a dashboard.
2.	 Click on the Share button on the top-right corner of the screen. This will open the

Publish a dashboard screen, as shown in the following screenshot:

Figure 4.16 – Publish a dashboard screen

Publishing dashboards 83

3.	 Type in a name – for example, New York Taxi Dashboard – and then click
Publish dashboard.

4.	 After a few seconds, the dashboard will be generated and the Share dashboard
screen will appear, as shown in the following screenshot:

Figure 4.17 – Share dashboard screen

5.	 Add any users or groups you want to share your dashboard with and click Share.

84 Developing Visuals and Dashboards

6.	 Congratulations – you have created your first QuickSight dashboard! This can be
seen in the following screenshot:

Figure 4.18 – Our first QuickSight dashboard

A QuickSight dashboard is primarily used by business users who want to get insights
from the organization's data. For these users, the look and feel of the application can be an
important factor. In the next section, we will learn about some of the basic controls we can
use to change the look and feel of our BI application.

Customizing the look and feel of the application
In this section, we will focus on the look and feel of the application. There are different
reasons why we might need to change the default look and feel of the application. For
example, an organization might need to use colors that match its branding. In this section,
we will learn how to do the following:

•	 Apply themes

•	 Format individual visuals

Let's get started!

Customizing the look and feel of the application 85

Applying themes
Themes in QuickSight are a collection of look-and-feel settings that can be applied to
multiple analyses and dashboards. To access the Themes menu, we will need to have an
analysis open:

1.	 First, log in as an author user and open an analysis. Here, we will use the New York
Taxi analysis that we have developed in this chapter.

2.	 Notice that on the left-hand side menu, the Themes option is present. Click on the
Themes menu, as follows:

Figure 4.19 – Themes

3.	 Notice that there are prebuilt themes that we can start with. For this example, we
will select the Midnight theme and observe the look and feel using the dashboard
we created earlier.

4.	 Select the Midnight theme.
5.	 Now, we need to refresh our dashboard. Click on the Share option at the top right-

hand side of the screen, and then click Publish dashboard.

86 Developing Visuals and Dashboards

6.	 This time, we will need to replace an existing dashboard, rather than create a new
one. See the following example:

Figure 4.20 – Updating an existing dashboard

7.	 Observe the new look and feel of our dashboard, as shown in the following screenshot:

Figure 4.21 – Dashboard with the Midnight theme applied

Customizing the look and feel of the application 87

Note
You can create a theme using your colors and a selection of different fonts.
Consult the AWS documentation to understand how each color group setting
is used by QuickSight.

While themes can be applied to all visuals of an analysis, you might want to change the
colors of an individual visual. In the next section, we will learn how to change the look
and feel of individual visuals.

Formatting visuals
You might want to change the color of a specific visual or change the color of a specific
data point within a visual. In other cases, you might want to apply formatting settings
based on specific conditions. In this section, you will learn how to do the following:

•	 Edit the colors of a specific visual.

•	 Apply conditional formatting.

Let's get started!

Editing the color of a specific visual
To edit the colors of a specific visual, follow these steps:

1.	 First, open an analysis and click on a colored area of your visual to open the color
options, as shown in the following screenshot:

Figure 4.22 – Chart color settings

88 Developing Visuals and Dashboards

2.	 Notice that our bar chart has only one color. Let's assume that we want to change
the chart color and that we also want the top value (Manhattan) to be highlighted
with another color.

3.	 To change the color of the chart, you need to pick the color you want from the
Chart Color options. You can select a set of predefined colors, or you can pick a
custom color.

4.	 Finally, to change only the top value – Manhattan, in our example – you need to
pick a color from Color Manhattan. You can choose from a set of predefined colors
or pick a custom color.

5.	 The following screenshot shows the charts after making the color changes described
in the previous steps:

Figure 4.23 – Bar chart after updating its color

Now that we have learned how to change the color of a visual, let's learn how to apply
conditional formatting.

Applying conditional formatting
Some visual types support conditional formatting. Conditional formatting can be used when
you need to control the look and feel of your visual based on a condition. In this section, we
will select one of the visuals we developed earlier and apply conditional formatting.

Customizing the look and feel of the application 89

The gauge chart visual supports visual formatting. For this example, let's assume that we
want the color of the text to be red when the percentage target is below 95%:

1.	 First, we will need to access the Conditional formatting settings, as shown in the
following screenshot:

Figure 4.24 – Conditional formatting menu

2.	 In this example, we are interested in changing the text color, so we need to click the
Add text color option.

3.	 Then, we must configure the condition, as follows:

a) Format field based on: Percent (%)

b) Condition: Less than

c) Value (%): 95

d) Color: Red:

Figure 4.25 – Adding a condition for conditional formatting

90 Developing Visuals and Dashboards

Note
Not all visual types have the option for conditional formatting. The conditional
formatting parameters will depend on the visual's type.

4.	 Next, click Apply. Once the setting has been applied, the visual will be reloaded and
displayed, as shown in the following screenshot. Notice that the color changed to
red since the value is less than the 95% threshold:

Figure 4.26 – Visual after conditional formatting has been applied

Feel free to try out different visual types and different conditions and settings.

Summary
Congratulations on completing this chapter. In this chapter, we learned how to create
analyses, which is the main user interface for BI developers. We added the most
common visual types that answer the most common questions in BI applications, such
as visualizing KPIs, categories, and time series data. After we completed an analysis, we
learned how to export an analysis into a dashboard and share it with business users.

Finally, we learned how to change the look and feel of our dashboards by applying themes
or changing the colors of each visual independently and applying conditional formatting.
With the knowledge obtained in this chapter, you can build meaningful visualizations for
your business using QuickSight.

In the next chapter, we will learn how to build richer BI applications by adding
interactivity to our dashboards.

Q&A 91

Q&A
1.	 What is a visual in Amazon QuickSight?
2.	 What visual types are better fits for visualizing time series data?
3.	 Can you give some examples where conditional formatting is particularly useful?
4.	 How can you create and apply a custom theme?
5.	 What is a Sankey diagram and when would you use it?

Further reading
For more information regarding what was covered in this chapter, take a look at the
following resource:

•	 QuickSight User Guide – AWS: https://docs.aws.amazon.com/
quicksight/latest/user/amazon-quicksight-user.pdf

https://docs.aws.amazon.com/quicksight/latest/user/amazon-quicksight-user.pdf
https://docs.aws.amazon.com/quicksight/latest/user/amazon-quicksight-user.pdf

In this section, we will dive deeper into some more advanced features of Amazon
QuickSight that will allow the reader to develop interactive and embedded dashboards
and add machine learning capabilities to their dashboards.

This section consists of the following chapters:

•	 Chapter 5, Building Interactive Dashboards

•	 Chapter 6, Working with ML Capabilities and Insights

•	 Chapter 7, Understanding Embedded Analytics

Section 2:
Advanced

Dashboarding
and Insights

5
Building Interactive

Dashboards
In this chapter, we will learn how to develop interactive dashboards with Amazon
QuickSight. You will learn how to add custom controls to your dashboards and add
interactivity to your BI application using parameters. We will also look at advanced
filtering options with point and click actions, as well as URL actions.

In this chapter, we will cover the following topics:

•	 Using filters and parameters

•	 Working with QuickSight Actions

Technical requirements
For this chapter, you will need the following:

•	 An AWS account

•	 A QuickSight account with the Author and Reader users configured

•	 The dashboard we created in Chapter 4, Developing Visuals and Dashboards

96 Building Interactive Dashboards

Using filters and parameters
Users can interact with dashboards by clicking on specific areas of the application or
hovering over a visual to get additional information on specific data points. As a BI
developer, you might come across scenarios where you will need to add additional
interactivity to your dashboards, allowing your users to filter datasets or implement specific
actions. In this section, we will learn how to leverage those specific QuickSight features to
add interactivity to our dashboards. We will provide hands-on examples while using the
New York dataset and dashboard we developed earlier in Chapter 4, Developing Visuals and
Dashboards. But first, we will need to understand how to use QuickSight filters.

Working with filters
QuickSight authors can filter datasets. For example, you can use filtering when you need
to refine a dataset before you visualize it. You can control the scope of the QuickSight
filters so that they can be applied to the visuals you want. Filtering, when applied to a
QuickSight analysis, is transparent from the reader's perspective. You can apply additional
settings when sharing a dashboard with your readers if you need to allow your readers to
filter data. Let's look at an example to understand how to add and apply filters. For our
example, let's assume that we have detected null values and that we want to remove them
from certain visuals:

1.	 First, we will need to open our New York Taxi analysis.
2.	 We will use the pivot table we created earlier. When we open the Borough category,

we can observe the null value as the payment type. null values can be useful as
they can help us detect issues with our data. For this example, let's assume we don't
want to visualize the null values in the pivot table while keeping the rest of the
visuals unaffected:

Figure 5.1 – Pivot table with null values

Using filters and parameters 97

3.	 Select the pivot table by clicking on the visual. Then, select the filter tab from the
left-hand side menu, as shown in the following screenshot:

Figure 5.2 – Select visual for filtering

4.	 Since we have no filtering, we will get a prompt to create one. Click on the Create
one… prompt and then select the filter you need to filter against (Payment Type, in
this example).

5.	 This action will create a filter. Click on the newly created filter to get the filter
configuration options.

6.	 Now that we created the filter, we need to confirm its scope. By default, a filter
is only applied to the selected visual. The filter will not be applied to the entire
analysis. We can change the scope of a filter if we need to add more visuals to
its scope.

98 Building Interactive Dashboards

7.	 Next, we will need to define the conditions of the filtering. For our example, we will
add a condition that excludes the NULL values, as shown here:

Figure 5.3 – Defining filter conditions

8.	 Click Apply and observe how the NULL values are excluded from our visual. Note that
the rest of the visuals that are outside of the scope of our filter remain unchanged.

By default, filters don't appear on the reader user interface. Some BI applications might
need to give users the ability to filter data.

Note
When filtering a dataset, QuickSight will query the dataset and then apply
filtering. If your dataset has been configured as a direct query, QuickSight
will connect to the data source to fetch the latest data before filtering. If your
dataset is configured as a SPICE dataset, then QuickSight will fetch the data
directly from SPICE, without the need to query or import data from the
original data source.

Using filters and parameters 99

To allow our reader users to filter data, we need to check the Enable ad hoc filtering
option on the dashboard publishing screen. This option can be found under Advanced
publish options, as shown here:

Figure 5.4 – Enable ad hoc filtering

Now that we have learned how to add a filter, let's introduce the concept of
QuickSight parameters.

Working with parameters
Parameters in QuickSight are variables that a user can set, commonly using on-screen
controls. A parameter can be used in various ways. For example, we can filter the analysis
data dynamically based on a parameter. To understand this concept, we will use our
example New York taxi analysis. Let's assume that our business users need to understand
patterns and changes in customer behaviors based on what payment type the customers
are using. To implement this use case, we will create a parameter that will store the user
selection for the Payment Type field.

100 Building Interactive Dashboards

Creating a parameter
Creating a parameter is straightforward, as shown here:

1.	 You can either select the Parameter item on the left-hand side menu or click the +
Add button at the top right-hand side of the screen and then select Add parameter.
Once selected, you will see the parameter creation screen, as shown here:

Figure 5.5 – Adding parameters

2.	 For this example, we will use the following values (as shown in the
preceding screenshot):

	� Name : paymenttype

	� Data type: String

	� Values: Multiple values

	� Default values: Cash, Credit Card, Dispute, No Charge

3.	 Next, click Create. The parameter should now be added to your analysis.

At this stage, our parameter has been added to the analysis, but we are not using it yet.
Next, we will link this parameter to the filter we created earlier.

Using filters and parameters 101

Linking parameters to filters
While we are still on the analysis and logged in as the author user, to link parameters to
filters, we will need to do the following:

1.	 First, locate the filter we created earlier. You can click on the visual where the filter
has been applied and then click on the filters item on the left-hand side menu.

2.	 Now click Edit, or simply click on the Payment Type filter we created earlier.
3.	 To link a filter with a parameter, we will need to select Custom filter from the Filter

Type drop-down menu.
4.	 Next, tick the Use parameters checkbox.
5.	 Next, there will be a pop-up, asking if you want to change the scope of your filter.

Since we don't need to filter other visuals from our analysis, we will select No.

Note
The scope of the filter can be edited at any time once the parameter has been
created. The scope update will have an immediate effect, without the need to
update the parameters or your controls.

6.	 From the drop-down menu, select the paymenttype parameter we created earlier.
The following screenshot shows what the filter configuration will look like when
linking a filter to a parameter:

Figure 5.6 – Linking filters to parameters

7.	 Click Apply and then Close.

102 Building Interactive Dashboards

Now that our filter and parameter are connected, the filter will inherit the default values
of our parameter. In our example, we have used a multi-value parameter. We can confirm
that the pivot table only displays the records that contain the default values of the
parameter. Now that we have linked the parameter with the visual, we will learn how to
add on-screen controls and allow readers to change the parameter value.

Adding on-screen controls
QuickSight allows you to add on-screen controls so that your reader users can set the
value of a parameter dynamically. In our example, setting the paymenttype parameter
value will result in changes in the value of the Payment Type filter, which has been
applied to the pivot table visual. To add an onscreen control, follow these steps:

1.	 First, select the Parameters item from the left-hand side menu.
2.	 Then, select the paymenttype parameter we created earlier. From the drop-down

menu, click Add control, as shown here:

Figure 5.7 – Adding on-screen controls

3.	 From the control's creation settings, we will need to define the following parameters:

	� Display Name: A user-friendly name for the on-screen control. In our example,
we used Payment Type.

	� Style: The type of control that your users will be using to set the parameter. The
control styles options are also determined by the data type of the parameter. For
example, if our parameter was a date type, Date Picker would be among the
available options. For our example, we will use the List – Multiselect style, as
shown in the following screenshot. This type will allow our users to select multiple
values from a drop-down menu.

Using filters and parameters 103

	� Values: The values that the users can select from. You can link these values to
values from a dataset, which ensures that the available values are synced with the
dataset, so there isn't a need to maintain these values separately. In our example,
we linked the values of the Payment Type field. The following screenshot shows
an example of an on-screen control configuration:

Figure 5.8 – Adding on-screen controls to the parameter

4.	 Click Apply to add the on-screen control.

104 Building Interactive Dashboards

Now that we've added the on-screen control, we have all the required components that
allow us to publish interactive dashboards. Let's look at the sequence of events that enable
interactivity on our dashboards:

1.	 First, the user selects values using on-screen controls.
2.	 The selected values are passed to parameters.
3.	 Then, these parameters are used as filter conditions.
4.	 Finally, the visuals in the scope of the filter are updated after user selections.

The following diagram depicts the flow described here:

Figure 5.9 – Components for interactive filtering

Now that we have configured all the required components, let's test the on-screen controls:

1.	 First, notice that at the top of the screen, we have a new section named Controls,
under which we have the newly created Payment Type on-screen control. The
following screenshot shows the newly created control:

Using filters and parameters 105

Figure 5.10 – Multi-select control

2.	 Changing the selection of this control will automatically change the values of
the paymenttype parameter, which was configured to work with our Payment
Type filter.

3.	 You can access additional options from the on-filter controls. One of the options
that's available allows you to detach the control from the top of the screen and add
it to the analysis sheet. This is a good option for filters that have a narrow scope. In
our example, our filter covers only a single visual, so placing the control next to the
visual might provide a better overall user experience while saving screen estate at
the top of the screen. The following screenshot shows the on-screen control being
placed next to the pivot table:

Figure 5.11 – On-screen control placed on the analysis sheet

106 Building Interactive Dashboards

Now that we have configured the analysis and arranged the onscreen controls, we can
publish the analysis as a dashboard and share it with our reader users. With that, we have
created our first truly interactive QuickSight dashboard. Next, we will learn how to use
actions to add more interactive controls to our dashboards.

Working with actions
QuickSight Actions allow you to add interactivity to your dashboards. They can be any of
the following:

•	 Filter actions

•	 Navigation actions

•	 URL actions

Next, we will look closer at each of these action types. To understand each type, we will
configure them using our New York taxi sample analysis.

Working with filter actions
URL actions allow us to instantly filter data when the user clicks on a specific area of a
dashboard. Filter actions make it easier for your readers to focus on specific data points of
the analysis.

When configuring filter actions, you will need to choose a visual in your analysis and then
provide the following information:

•	 Action Name: A user-friendly and descriptive name for the filter action.

•	 Activation: Menu Option or Select: Menu Option will add a menu item when you
click a data point in your visual. This option, when clicked, will activate the URL
action. On the other hand, with the Select option, your URL action will be activated
directly when you click a data point.

•	 Filter scope: Which visuals will be filtered.

To understand filter actions, we will use an example from our New York Taxi analysis.
Let's assume that we want our users to instantly focus on a specific borough and update
the KPI and Sankey visual to reflect the selected borough only. To select a borough,
we will use the bar chart diagram that displays the average tip per borough, which we
configured in Chapter 4, Developing Visuals and Dashboards:

1.	 First, navigate to the analysis and select the bar chart visual by simply clicking on it.
2.	 Next, with the visual selected, click on Actions from the left-hand side menu.

Working with actions 107

3.	 Click Add action and then Filter action from the Action Type drop-down menu.
4.	 Add the values shown in the following screenshot:

Figure 5.12 – Filter action
We'll update the following parameters:

	� Action name: Filter by borough

	� Activation: Select

	� Filter scope: Selected fields

	� Target visuals: The KPI and Sankey visuals

108 Building Interactive Dashboards

5.	 Click Save.

The filter action has now been applied. To quickly test the newly created action,
just click on any Pickup Borough data point on the bar chart and notice how the
target visuals update. For example, with the Queens borough selected, we can see an
example of how the Sankey diagram looks, as follows:

Figure 5.13 – Sankey diagram once the filter action has been applied

Feel free to try adding add more filter actions to other visuals in your analysis. Next, we
will learn how to configure navigation actions.

Working with navigation actions
As you are adding visuals to analysis, it can reach a point when there might be too many
visuals for a single page. In these scenarios, you can organize visuals into sheets. For each
sheet, you can provide a user-friendly name to help your BI users navigate the dashboard.
For each sheet, you can provide the following details:

•	 Title

•	 Description

Working with actions 109

Both can help give your users context. Title and description can be particularly useful in
scenarios where there are many sheets. Navigation actions can help you define actions that
will allow your users to quickly navigate to different sheets within the same analysis.

When configuring navigation actions, you will need to choose a visual in your analysis
and then provide the following information:

•	 Action name: The name of the navigation action.

•	 Activation: Menu option or Select: Menu Option will add a menu item when you
click a data point in your visual. This option, when clicked, will activate the URL
action. On the other hand, with the Select option, your URL action will be activated
directly when you click a data point.

•	 Target sheet: The sheet name where your user redirects to when the action activates.

•	 Parameters: This lets the user set parameter values after navigating to the
target sheet.

Next, we will look at another type of action: URL actions.

Working with URL actions
URL actions allow us to redirect our user to another website or another dashboard when
the user clicks on a specific area of a dashboard. URL actions can help your BI users easily
retrieve additional context for the dashboard.

When configuring URL actions, you will need to choose a visual in your analysis and then
provide the following information:

•	 Action Name: A user-friendly and descriptive name for the URL action.

•	 Activation: Menu Option or Select: Menu Option will add a menu item when you
click a data point in your visual. This option, when clicked, will activate the URL
action. On the other hand, with the Select option, your URL action will be activated
directly when you click a data point.

•	 URL: The URL where you want to redirect your user.

Note
You can add references to the parameters of field values in the URL field.
This will allow you to redirect your users to different URLs, based on the user
selection. The syntax to refer to a parameter is <<$parameter-name>>,
while the syntax to refer to a field is {{field-name}}.

110 Building Interactive Dashboards

•	 Open in: This option determines how your browser will open the link from the
URL actions. The options are opening in the same tab, opening in a different tab, or
opening in a different browser window.

To understand how to set up URL actions, we will use our New York Taxi analysis. Let's
assume that we need to add a link to an external website with additional information
on each of the New York boroughs. For this example, we will use the bar chart visual we
configured in Chapter 4, Developing Visuals and Dashboards. We will use Wikipedia as our
external website:

1.	 First, navigate to the analysis and select the bar chart visual.
2.	 Next, with the visual selected, click on Actions from the left-hand side menu.
3.	 Click Add action and then select URL action from the Action Type

drop-down menu.
4.	 Add the values shown in the following screenshot:

Figure 5.14 – URL action

Working with actions 111

These values are as follows:

	� Action name: Wikipedia look up

	� Activation: Menu option

	� URL: https://en.wikipedia.org/wiki/<<{Pick Up Borough}>>

	� Open in: New browser tab

5.	 Click Save.

The URL action has now been applied to our visual. To test URL actions, you
need to click on the data points of the visual where you applied the action. In our
example, every data point will redirect to a different URL, since we are using the
Pickup Borough field as part of our URL. When you test something like this
in the real world, you will need to ensure that each URL is redirecting the user
correctly. The following screenshot is what we'll see upon right-clicking on the
Manhattan bar in our bar chart. Notice that a Wikipedia look up menu option
appears, which will redirect us to the Manhattan Wikipedia page (https://
en.wikipedia.org/wiki/Manhattan) when we click on it:

Figure 5.15 – URL action menu item

Thus, we have figured out how to work with various types of actions as well.

https://en.wikipedia.org/wiki/Manhattan
https://en.wikipedia.org/wiki/Manhattan

112 Building Interactive Dashboards

Summary
Congratulations on completing this chapter! In this chapter, we learned how to add
interactivity to our dashboards. We learned how to add QuickSight parameters and
on-screen controls to filter the data of our analysis following user input. We also learned
how to configure the three types of actions: the filter action, the navigation action, and
the URL action. Using these features, you will be able to create BI applications, with
interactive controls enhancing the user experience of your BI applications. With the
actions we learned about in this chapter, your users will be able to perform single-click
filtering, navigate easily between multiple sheets, and open external websites that provide
additional context.

In the next chapter, we will learn how to use insights and add machine learning to
our analyses.

Q&A
1.	 What filter type can be linked to a parameter?
2.	 How can you use a parameter with a URL action?
3.	 When do we need to use sheets?
4.	 How can we help business users navigate between different sheets?
5.	 What is the difference between filter actions and navigation actions?
6.	 What is the difference between Menu option and Select for action activation?

Further reading
•	 QuickSight User Guide – AWS: https://docs.aws.amazon.com/

quicksight/latest/user/amazon-quicksight-user.pdf

https://docs.aws.amazon.com/quicksight/latest/user/amazon-quicksight-user.pdf
https://docs.aws.amazon.com/quicksight/latest/user/amazon-quicksight-user.pdf

6
Working with ML

Capabilities
and Insights

In this chapter, we will explore visual types in Amazon QuickSight. Using hands-on
examples, we will add machine learning (ML) capabilities to our dashboards. More
specifically, we will add forecasting for time series data and anomaly detection capabilities.
To describe insights from the data, we will add natural language narratives in our
dashboards.

In this chapter, we will cover the following topics:

•	 Using forecasting

•	 Working with insights

•	 Working with ML insights

114 Working with ML Capabilities and Insights

Technical requirements
For this chapter, you will need the following:

•	 An AWS account

•	 A QuickSight account with Author and Reader users configured

•	 The datasets created in Chapter 2, Introduction to Amazon QuickSight

•	 The analysis created in Chapter 3, Preparing Data with Amazon QuickSight

Using forecasting
Amazon QuickSight allows you to add forecasting to your dashboards without the
need to develop complex ML models. To better understand how to configure forecasting,
we will use the example dataset we configured in Chapter 2, Introduction to Amazon
QuickSight.

Adding forecasting
For our example, let's assume that we need to develop a dashboard that contains forecasts
about the total number of taxi fares in the future. As expected, our data has a certain
degree of seasonality. Also, we can see from the line chart visual we developed in Chapter
3, Preparing Data with Amazon QuickSight, that during Sundays, there is a drop in the
total taxi fares compared to the other days of the week. Identifying the most appropriate
seasonality for our dataset is not always straightforward. In our example, we have different
levels of seasonality depending on what time interval we will consider. A season can be 24
hours, or a week, or a year. Identifying the right seasonality is important when configuring
forecasts, as they can be used to more accurately predict future events and metrics.

Now, let's add forecasting in our New York Taxi analysis:

1.	 First, select the line chart diagram we developed in Chapter 3, Preparing Data with
Amazon QuickSight.

Note
Not all visual types support forecasting. Line charts with a time dimension
are very good candidates for forecasting, as they commonly visualize time
series data.

Using forecasting 115

2.	 Next, click on the visual settings and then click Add forecast, as shown here:

Figure 6.1 – Adding forecasts

3.	 Next, we will edit the forecasting parameters as follows:

	� Forecast length: Periods forward/backward are the number of time intervals that
you want to get a forecast for.

Note
When configuring forecasting periods, a period is matching the period of the
visual where the forecasting is applied. For example, if your data is aggregated
daily, then a period of seven (7) intervals equals 1 week. If your data is
aggregated monthly, then a period will correspond to a month, therefore a
period of 12 intervals will be a full year.

	� Prediction interval: This represents the probability that the future values will be
within the forecasted values.

Note
The prediction interval can be between 5% and 95%. The lower the prediction
interval, the narrower the forecasting range will be.

	� Seasonality: This is the time interval when your time series has predictable
changes. By default, QuickSight will automatically identify the best seasonality
pattern for your data. You can choose to override the automatic selection with a
manual selection.

116 Working with ML Capabilities and Insights

For our example, we will use the following values:

	� Periods forwards: 30 – This will give us predictions for 1 month if our data is
aggregated daily.

	� Periods backwards: 0 – In this example, we are not interested in
backward predictions.

	� Prediction interval: 75 – We can start with 75 as a starting point, and then adjust.

	� Seasonality: Automatic.

4.	 The forecasted area is shown as a range of values, highlighted with different colors.
We can see the visual with forecasting as shown in the following figure:

Figure 6.2 – Time series data with forecasting

Now that we have added forecasting capabilities to a line chart visual, in the next
section, we will learn how to add different scenarios that can alter our forecasts,
called what-if scenarios.

Using forecasting 117

Working with what-if scenarios
What-if scenarios allow us to project a specific target in the future and then observe how
this affects a forecast. To better understand the what-if analysis, we will use the forecast
visual we just configured. Let's assume, because of a new initiative, taxi ridership is
expected to increase, and by 15 January 2020, we will have at least a 2.5x increase. We can
use this scenario to understand how this goal will affect our projections for the future:

1.	 First, to open the what-if analysis, we simply need to click on a data point in the
forecast area.

2.	 Next, we will need to define our scenario. In our case, with 15 Jan, 2021 selected,
we simply add our target value as $2,500,000, which is more than double the
original forecast.

3.	 Click Apply and then observe that we have a second forecast line that corresponds to
the scenario of having increased revenue. The original forecast can be observed too
with the dotted lines. See the following figure for an example of a what-if scenario:

Figure 6.3 – What-if scenario

Congratulations, you have added a what-if analysis with only a few clicks. Next, we will
learn how to use insights, which are a special type of QuickSight visual that allow you to
describe your insights from your data using natural language.

118 Working with ML Capabilities and Insights

Working with insights
QuickSight insights offer a set of features that allow you to express insights from data
using natural language. QuickSight can automatically interpret a diagram and suggest
narratives that you can quickly add to your analysis. In addition to that, you can build
your own custom narrative. In this section, we will do the following:

•	 Learn how to use suggested insights.

•	 Create and edit a custom insight.

Adding suggested insights
To better understand the autonarrative features, we will use the example New York Taxi
analysis. Let's start with the Sankey diagram to discover interesting insights from the data:

1.	 First, open the analysis and select any visual by clicking on it.
2.	 Next, click on the insights icon to reveal the Suggested insights list, as shown here:

Figure 6.4 – Selecting the suggested insights

Working with insights 119

Next, we will select an insight that looks interesting to display. For example, we
can display the days with the highest and lowest taxi fares over the entire period
we are visualizing.

3.	 Scroll down to find the WORST DAY insight and then click the plus icon to add the
insight to your analysis.

4.	 Repeat Step 3 for the BEST DAY insight.
5.	 Resize and format the insights.

Figure 6.5 – Adding suggested insights

Interestingly, Christmas day happens to be the day with the least taxi fares. Feel free to
explore and familiarize yourself with the other narrative suggestions. In the next section,
we will learn how to create a new narrative manually, which is particularly useful when
you need a different narrative from those autosuggested, and need to control the text
displayed by customizing your narrative.

Creating and editing an insight
In this section, we will learn how to create and edit a custom insight. To better understand
how to set it up, we will use the New York dataset analysis. Let's assume that we want to
display the total number of miles traveled by New York taxis and display it on the screen
using natural language. For example, consider the following:

The total distance traveled in New York over the period between
<Start Date> to <End Date> was <number> miles.

In the next section, we will learn how to develop an insight that answers the
previous questions.

120 Working with ML Capabilities and Insights

Adding an insight
In this section, we will start by learning how to add an insight in Amazon QuickSight:

1.	 First, click on the + Add button and then select Add Insight.
2.	 Next, we will need to select the computation type for our insight, as shown in the

following figure:

Figure 6.6 – Selecting the computation type

3.	 Select the Total aggregation computation type, since our problem is a total
aggregation of the trip_distance field, which represents the total miles traveled.

4.	 Now, we need to choose the fields from our dataset to populate our insight.
Selecting fields is similar to how we were selecting fields for our visuals, by dragging
and dropping the values into the Field Well area of the screen at the top of the
analysis. For our calculation, we need to select trip_distance (Sum) as the
Values field and leave the Time and Categories fields empty.

Working with insights 121

5.	 Now, the insight should appear as follows:

Figure 6.7 – Total aggregation insight

Now, we have managed to add the insight into our analysis. We now need to edit it so that
it matches the narrative we were aiming for. In the next section, we will learn how to edit
an insight.

Editing an insight
When adding elements to your narrative, you can automatically add the following:

•	 Computations: Predefined calculations

•	 Parameters: Variables that you can set in your analysis

•	 Functions: Used to change a field into the desired format

To better understand how to use these terms, we will edit our example narrative:

1.	 First, let's add two new parameters, DateStart and DateEnd, as we learned in
Chapter 5, Building Interactive Dashboards. Set the default value to 01 October
2020 for the DateStart parameter and 31 December 2020 for the
DateEnd parameter.

2.	 Connect these parameters to a filter, and use the Pick Date field to control the
parameter value. Make sure that the filter scope includes the insight visual.

3.	 Now that we have the two parameters set up, we will edit the narrative.

122 Working with ML Capabilities and Insights

To edit an insight, we need to click on the insight settings by hovering over the
right-hand side of the insight, clicking on the … icon, and then selecting Customize
narrative to open the narrative expression editor, shown as follows:

Figure 6.8 – Editing a narrative

Note, the narrative contains Total TotalAggregate.metricField.name is
TotalAggregate.totalAggregate.formattedValue. We can alter this text so
that we can achieve the desired narrative.

For our target narrative, we will need to see something like the following:

"The total distance traveled in New York over the period
between 01 Oct 2020 and 31 Dec 2020 is 21,036,854.06 miles."

From the previous step, we already have the total number of miles as TotalAggregate.
totalAggregate.formattedValue. To reach our target narrative, we will need to
do the following:

1.	 Customize the remaining text.
2.	 Add the two date parameters.
3.	 Convert the date into the desired date format.

Starting with the text, we need to replace the existing text with the following:

"The total distance traveled in New York over the period
between <> and <> is TotalAggregate.totalAggregate.
formattedValue miles."

Working with insights 123

Next, we will add the two date parameters. You can access the Parameters menu on the
right-hand side of the screen and simply add the two parameters.

Note, the expression will look like ${DateStart}. Observe Preview, which is located
below the editor. You might notice that the time is displayed in the epoch format, which
is not what the end user would expect. For that reason, we will need to covert the date
into a format that is understandable by the end user. To change the format, we will use the
formatDate function. You can locate the function by expanding the Functions menu on
the right-hand side menu and selecting formatDate. The function expects two arguments:

•	 The date column

•	 The format expressed as a string

In our example, we will use the dd MMM yyyy format, and therefore, the function
will be formatDate(${DateStart},'dd MMM yyyy') for the start date and
formatDate(${DateEnd},'dd MMM yyyy') for the end date.

Now that we have added the start and end date, the text will be as follows:

The total distance traveled in New York over the period between
formatDate(${DateStart},'dd MMM yyyy') and
formatDate(${DateEnd},'dd MMM yyyy') is TotalAggregate.
totalAggregate.formattedValue miles.

Finally, use the editor to edit the text format. For example, we can change the color of the
number of miles and make the start and end date text bold for emphasis. After applying
these changes, click Save. The narrative will look like the following:

Figure 6.9 – Insight with a customized narrative

Narratives can be really useful to describe important insights from the data using natural
language. With the QuickSight editor, we have full control over how the text is displayed
to the end user. Now that we have learned how to work with and customize insights, in the
next section, we will learn how to use ML-driven insights.

124 Working with ML Capabilities and Insights

Working with ML insights
QuickSight has a special type of insight where the results are driven from ML-based
computations. QuickSight supports two types of ML insights:

•	 Forecasting

•	 Anomaly detection

In the next section, we will learn how to configure each of these types of insights.

Working with forecasting insights
We learned how to add forecasting in a line graph visual. QuickSight also allows you to
add forecasting as a narrative to display forecasted values. For example, how many miles is
expected to be traveled between Manhattan and Queens on a specific date?

To better understand how to configure this type of visual, we will use our example New
York Taxi analysis to answer this question:

1.	 First, let's create a new insight and select Forecast ML-Powered Insight from the
drop-down list.

2.	 For this example, let's assume that we want the user to choose the pick-up
borough and the destination borough (drop-off borough). To achieve this, we will
create two filter parameters (let's name them PickUpBoroughForecast and
DropOffBoroughForecast) with on-screen controls that allow the user to
select the pick-up and drop-off boroughs, as we learned in Chapter 4, Developing
Visuals and Dashboards. Make sure the filter applies only to the newly created
forecast insight so that it is not affecting the other visuals in our analysis.

3.	 Now, let's focus on the ML forecast visual. Let's assume that we need to estimate the
total miles driven between Manhattan and Queens on the 10 January, which is 10
days after our latest data point.

4.	 Select the Pick Up Time value as the Time field and the trip_
distance(sum) value as the Value field. Now, the forecasting visual should
automatically display text like the following:

Total trip_distance is forecasted to be
4,546.560032279868 for Jan 14, 2021

5.	 Now, we will need to customize the narrative to ensure it displays the text we need
and the forecast time is what we expect.

Working with ML insights 125

6.	 In the narrative editor, we will alter the text and include the two parameters. We can
optionally round the miles to the nearest integer. After these changes, the narrative
should look like the following:

Total distance driven from ${PickUpBoroughForecast}
to ${DropOffBoroughForecast} on the ForecastInsight.
timeValue.formattedValue is forecasted to be
round(ForecastInsight.metricValue.value,0) miles.

7.	 Next, we need to ensure that the forecast parameters are correct. To access the
forecast parameters, click the pencil icon next to the ForecastInsight computation,
as shown here:

Figure 6.10 – Accessing the ForecastInsight parameters

8.	 In the next screen, ensure that the forecast length is set as 10 for the forward
period and 0 for the backward period.

9.	 Optionally, edit the text styling. After these changes, the forecast insight, including
the two onscreen controls, will look like the following:

Figure 6.11 – ML-driven forecast insight

126 Working with ML Capabilities and Insights

With this visual, our end users can choose any pick-up borough and drop-off borough
and easily access ML forecasts generated by QuickSight, and get it displayed back to them
in natural language. Now that we've learned how to add forecasting insights, in the next
section, we will learn how to work with another type of ML-driven insight – the anomaly
detection insight.

Working with anomaly detection insights
QuickSight also allows you to add anomaly detection insights and explore anomalies. For
example, are there any dates where taxi traffic is lower than normal?

Adding and editing anomaly detection insights
To better understand how to configure this type of visual, we will use our New York
Taxi analysis:

1.	 First, let's create a new insight and select Anomaly Detection (ML-powered
Insight) from the drop-down menu.

2.	 Now, we need to choose the fields for our newly created insight. Set the Time field
as Pick Up Time and the Value field as trip_distance(sum).

3.	 Next, we need to configure our anomaly detection. Click on Get started, as
shown here:

Figure 6.12 – Get started with anomaly detection

Working with ML insights 127

4.	 Next, on the anomaly detection configuration page, leave everything as is for now.
Add Pick Up Borough, Drop Off Borough, Pick Up Zone, and Drop
Off Zone as the four contributor fields. Before you click Save, let's observe the key
components of this page, shown as follows:

Figure 6.13 – Set up anomaly detection page
On the left-hand side, we have all the settings, and on the right-hand side, we
have the Preview screen. The Preview screen can help us instantly understand the
impact of any changes we are applying. Looking at the settings, you can select the
hierarchy of analyzed fields (this doesn't apply in our example, since we only use
a single Time field and a single Value field, without any dimension). You can also
configure the display options, and determine what anomalies need to be displayed.
You can schedule the ML job, and you can also define fields that are considered
contributors to an outlier. These fields will later be used for contribution analysis
when an anomaly is detected.

128 Working with ML Capabilities and Insights

5.	 Next, click Save, and then run the ML analysis to generate the anomalies. After
a couple of minutes, our insight will be populated with any anomalies found. See
the following screenshot as an example:

Figure 6.14 – Anomaly detection insight example

6.	 Similarly to other narratives, we can customize this narrative so that we can display
the text we want to be displayed to our end users. For now, we will leave the
autogenerated text. Let's observe the anomaly identified – on a particular date
(8 December), there were over six times more miles driven than expected.

Note the Explore anomalies button at the bottom of the anomaly detection insight. In the
next section, we will learn how to explore anomalies and perform contributor analysis.

Exploring anomalies
QuickSight offers users a tool to explore anomalies and understand contributing factors
to outliers. To better understand this capability, we will use the anomaly detection insight
we configured in the previous section. Click on Explore anomalies at the bottom of the
ML-powered insight to access this user interface:

Working with ML insights 129

Figure 6.15 – Explore anomalies

On the top of the screen, we can choose our settings to determine what anomalies will be
displayed. We can choose from the following:

•	 Severity: This determines how sensitive our algorithm is when detecting anomalies.

•	 Direction: This determines whether we are interested in higher-than-expected
values, lower-than-expected values, or both.

•	 Minimum delta (absolute value or percentage): This allows us to set a specific value
or percentage to determine a threshold for anomaly detection.

For this example, we don't need to change these values. We can focus on the left-hand side
of the screen and see the contributors to the anomaly. We can rank their contribution to
the anomaly and sort them by the following criteria:

•	 Deviation from expected

•	 Absolute difference

•	 Contribution percentage

•	 Percentage difference

130 Working with ML Capabilities and Insights

Now, let's observe what kind of insight we get using the data from our example. When
we sort by contribution percentage, we can observe that the Boro Zone for both the
pick-up and drop-off zone is contributing significantly more to the total miles compared
to normal. In regard to boroughs, Queens is coming in front as the largest difference in
contribution as the pick-up borough and Manhattan Beach and Crown Heights
North as the largest difference in contribution for drop-off borough. The results we get
are consistent when we sort the contributors by Deviation from expected. I am not sure
whether there was any significant event on that day in New York, but we can certainly
easily see that there was some unusual taxi data on that Sunday.

Summary
Congratulations on completing this chapter. In this chapter, we learned how to add ML
capabilities to our dashboards. We learned how to add forecasting, including building
complex scenarios with what-if analysis. We also learned how to configure narratives
and customize them using the QuickSight narrative editor. Finally, we learned how to
create outlier detections and perform contributor analysis for anomaly detection. With
the capabilities we learned in this chapter, your users will be able to get access to rich
visuals and narratives in natural language with simple calculations or more sophisticated
ML-driven calculations.

At this stage, we have learned about most of the capabilities of QuickSight analysis, and by
combining the knowledge you have learned so far in this book you can configure complex
dashboards that provide rich insights for your business users. In the next chapter, we will
learn how to embed these dashboards into your own custom application.

Questions
1.	 What are the most appropriate visual types to add forecasting?
2.	 What are the QuickSight narratives and when should we use them?
3.	 When should we use ML insights versus simpler computations for our insights?
4.	 What are the contributors when configuring anomaly detection in QuickSight?
5.	 How can we access the outlier detection application?

Further reading
•	 Amazon QuickSight User Guide:

https://docs.aws.amazon.com/quicksight/latest/user/amazon-
quicksight-user.pdf

https://docs.aws.amazon.com/quicksight/latest/user/amazon-quicksight-user.pdf
https://docs.aws.amazon.com/quicksight/latest/user/amazon-quicksight-user.pdf

7
Understanding

Embedded Analytics
In this chapter, we will understand the embedded capabilities of Amazon QuickSight. We
will discuss the business drivers for embedded analytics, and we will take a closer look at
its architecture. Finally, throughout this chapter, we will provide hands-on examples to
help you understand how to set up embedded analytics.

In this chapter, we will cover the following topics:

•	 Introducing QuickSight embedded analytics

•	 Architecture and user authentication

•	 Generating an embedded dashboard URL

132 Understanding Embedded Analytics

Technical requirements
For this chapter, you will need the following:

•	 An AWS account with administrator permissions

•	 A QuickSight account with the Author and Reader users configured

•	 The dashboards we created in Chapter 4, Developing Visuals and Dashboards

Introducing QuickSight embedded analytics
So far in this book, we have learned how to create dashboards and work with analyses
within the native QuickSight web application. For many use cases, this is sufficient. On the
other hand, some organizations need to add data visualizations to an existing web portal,
outside of the native QuickSight application.

Understanding the business drivers for embedding
Before embedding, organizations needed to develop their own custom Business
Intelligence (BI) solutions. D3.js (https://d3js.org) is an open source JavaScript
library for data visualizations on the web. D3.js requires a high level of expertise.
This can be hard to find, making it challenging for many organizations to adopt this
technology. While there are numerous examples on the web regarding how to build D3.js
visualizations (https://observablehq.com/@d3/gallery), JavaScript can be
a difficult language to learn for BI developers. At the same time, web developers might
not have a deep understanding of the organization's data, which would enable them to
choose the right visualizations for the questions they are trying to get answers for, as
well as insights from the data. On top of this, when building embedded BI solutions,
organizations need to consider other aspects, such as the following:

•	 How do we fetch data from the datastore?

•	 How frequently do we need to fetch new data?

•	 How many users are going to access the application?

https://d3js.org

Introducing QuickSight embedded analytics 133

QuickSight can directly address these challenges with dashboard embedding. Instead
of developing custom visualization components, you can request data visualizations
using the QuickSight API and embed them into your HTML code. QuickSight is a fully
managed AWS service and will scale automatically for the number of users, enabling
organizations and BI developers to focus their efforts on building dashboards rather than
scaling their BI solution. For these reasons, embedded dashboards can be an efficient and
simple-to-use solution when organizations need to leverage the scale of the AWS cloud for
their BI solution, which is embedded into their web applications. Next, we will distinguish
between the two types of embedded analytics supported by QuickSight.

Understanding embedded analytics types
There are two different embedded capabilities Amazon QuickSight supports:

•	 Read-only dashboard embedding

•	 QuickSight console embedding

Understanding read-only dashboard embedding
You can embed read-only dashboards into your web applications. This type of embedding
can be used to add read-only visuals to your custom portal application and expose it
to internal or external users. Users that access embedded dashboards have a similar
experience to the one when accessing a QuickSight dashboard via the web application,
as shown in Chapter 3, Preparing Data with Amazon QuickSight. While users can view
the visuals, as well as drill down or select specific datapoints or categories, they don't
have access to the authoring interface and dataset creation processes. In this mode,
visual creation, dataset setup, and all the other operations that an author user can
complete can only be completed using the QuickSight web app. For read-only dashboard
embedding, your users can be authenticated, or you can enable anonymous access to
allow unauthenticated users to view the dashboards. The latter is a good option when you
don't need your users to be authenticated to access dashboards, such as when you need to
embed your dashboard into a public-facing website.

Note
To enable anonymous access, your QuickSight admin needs to enable session
capacity planning. With session capacity planning, you can buy several
sessions, based on the traffic expected for your dashboard. Each session is a
30-minute usage block.

134 Understanding Embedded Analytics

The embedded dashboard is in the form of a URL with an authorization code. To get the
embedded dashboard URL, you will need to call the GetDashboardEmbedUrl API call.
This API call returns a session URL with an authorization code that can be used to embed
the dashboard into your website. The GetDashboardEmbedUrl API call needs to be
initiated by the web application server, not from the user's browser. To add an embedded
dashboard URL to your website, you can use the embedDashboard(options)
method from the QuickSight Embedding SDK. This allows you to easily set a parameter
value so that your dashboard starts with specific initial parameters. Other options
include the embedded frame formatting, allow/not allow printing, scrolling behavior,
and starting sheet. For more information, you can read the QuickSight Embedding
SDK documentation: https://github.com/awslabs/amazon-QuickSight-
embedding-sdk.

Understanding QuickSight console embedding
You can embed the full QuickSight console application into your web application. The
embedded console capabilities are only available to authenticated QuickSight users.
As expected, anonymous access is not an option for this type of embedding. Similar to
the QuickSight web app, only authenticated users can access the QuickSight console.
Console embedding will provide your users with the full QuickSight experience. You
will be able to have both reader and author users using it. Authors will be able to
configure datasets, perform analysis, and share dashboards, while your readers will be
able to access read-only dashboards. The console session is in the form of a URL with
an authorization code. To get the console embedding URL, you will need to use the
QuickSight GetSessionEmbedUrl API action. Once you have the URL, you can use
embedSession(options) from the QuickSight Embedding SDK to embed the
QuickSight console into your web application. For more information, go to https://
github.com/awslabs/amazon-QuickSight-embedding-sdk.

Now that we've discussed the two types of embedded analytics, in the next section, we will
discuss the embedded analytics architecture.

https://github.com/awslabs/amazon-QuickSight-embedding-sdk
https://github.com/awslabs/amazon-QuickSight-embedding-sdk
https://github.com/awslabs/amazon-QuickSight-embedding-sdk
https://github.com/awslabs/amazon-QuickSight-embedding-sdk

Exploring the architecture and user authentication 135

Exploring the architecture and user
authentication
In this section, we will focus on the architectural components of embedded analytics. To
understand this end-to-end architecture, we will break it down into three layers:

•	 Web application layer

•	 BI and data layer

•	 Authentication and authorization layer

This is better represented with the following diagram:

Figure 7.1 – Generic architecture for embedded analytics

Generally, a client typically accesses a web app or a web portal using their web browser.
In many cases, the user will need to authenticate with the web app. The client will present
user credentials (typically, a username and a password) to the authentication layer,
which sends back an access code/token so that the client can communicate with the web
application layer. In embedded analytics, the web application layer will be responsible for
getting the embedded visuals from the BI layer, which, in turn, would be responsible for
querying the data from the data sources and visualizing them (data layer).

In the next section, we will analyze each of these architectural components and identify
AWS services that can be used to build them.

136 Understanding Embedded Analytics

Overview of the web application layer
In embedded dashboarding applications, embedded dashboards are embedded within
this layer. The web application layer interfaces with both the authentication layer and the
dashboarding layer. A web application is typically accessed by the user's web browser.
The web application layer is responsible for sending the application's content back to the
browser user. Ensuring that the web application layer has enough resources to support your
users is your responsibility, and you will need to make sure that there is enough capacity
for your web server to accept incoming connections. For that reason, you can consider
AWS serverless services such as Amazon Lambda, Amazon S3, for static content, and
Amazon API Gateway to build a serverless web application that scales automatically to
the incoming demand. Other options include the other compute and container services,
such as Amazon EKS, ECS, Fargate, and EC2. You can also host this layer outside of AWS,
which means that you don't need to move your application to the AWS cloud to make use
of QuickSight's embedded analytics. For embedded analytics to work, you will need to
whitelist the domain of your web application in QuickSight's settings.

To whitelist a domain in Amazon QuickSight, follow these steps:

1.	 Log in as an admin user and select Manage QuickSight from the top right-hand
corner's drop-down menu.

2.	 Next, select Domains and Embedding to go to the menu shown in the
following screenshot:

Figure 7.2 – Domains and embedding settings

Exploring the architecture and user authentication 137

3.	 Type in the domain of your web application and click Add. Note that you have
the option to include subdomains if you need to by simply checking the Include
subdomains checkbox.

Now that we've discussed the web application layer, we will move on to the BI layer.

Overview of the BI layer
The dashboard layer is the component that serves embedded dashboards to the web
application layer. Amazon QuickSight is the central component of this layer. This layer
can be embedded too, with the full console embedding. The BI layer is responsible for
the following:

•	 Integrating with data sources

•	 Enforcing access to dashboards

•	 Serving embedded dashboard URLs

Concerning scalability, QuickSight will scale automatically for the number of users you
configure. If you have anonymous embedding, you will need to enable session capacity
planning. This layer interfaces with the data stores, eliminating the need to embed code
that accesses the data stores into your application, which simplifies the integration with
data sources. To work with datasets, you must use the QuickSight capabilities we learned
about in Chapter 3, Preparing Data with Amazon QuickSight, rather than developing
custom code. Visuals and insights are developed using QuickSight's native capabilities.
Finally, at this layer, we configure which users have access to which dashboards.
Authorized users get a dashboard URL with an authorization code, while users who don't
have access won't get the dashboard URL. Next, we will talk about the authentication layer
of an embedded analytics solution within QuickSight.

Understanding the authentication layer
User authorization and authentication are important considerations when building
embedded BI applications with QuickSight. The key questions to be addressed are as follows:

•	 How do you authenticate your users? (Authentication)

•	 Which users have access to which dashboards? (Authorization)

138 Understanding Embedded Analytics

In embedded analytics, it is common that users authenticate with credentials that are
stored outside of Amazon QuickSight in an identity store. You can use Amazon Cognito
User Pool as an identity store for your cloud-native embedded analytics architecture. You
can configure your identity provider with IAM so that you can assume IAM roles for your
authenticated entities.

To configure an identity provider with IAM, follow these steps:

1.	 Log in as an AWS administrator and open the IAM console.
2.	 Click on the Identity providers option, as shown here:

Figure 7.3 – Configuring identity providers

3.	 Select the type of identity provider (SAML or OIDC) and provide the required
metadata for your identity provider.

Once you have set up the identity provider, you can configure trust relationships for IAM
roles. Your web application will need to be able to assume an IAM role that has access to
the required QuickSight APIs so that it can retrieve the embedding URLs.

An example policy that allows the caller to call the GetDashboardEmbedUrl and
GetAuthCode functions for all resources is shown here:

{

 "Version": "2012-10-17",

 "Statement": [

Exploring the architecture and user authentication 139

 {

 "Sid": "VisualEditor0",

 "Effect": "Allow",

 "Action": [

 "QuickSight:GetDashboardEmbedUrl",

 "QuickSight:GetAuthCode"

],

 "Resource": "*"

 }

]

}

Policies can be assigned to IAM roles, which can be assumed by applications before they
call AWS services. A policy will determine the level of access to AWS. The next important
step is to establish a trust relationship between the IAM identity provider and the role so
that authenticated entities can assume the role and generate the embedding dashboard
URL. When you create an IAM role, you will need to select the type of trusted entity. The
choice is between an AWS service, such as a role that can be assumed by a service, for
example, AWS Lambda, another AWS account, a web identity such as Amazon Cognito or
other OpenID identity providers, or SAML 2.0 Federation for corporate users. You will see
the following when selecting the type of your entity when creating a role:

Figure 7.4 – IAM role trusted entity

Once you create the role, you can attach a policy with the required permissions to call
the QuickSight APIs for the dashboard embedding. To get the temporary credentials,
your web application layer will need to call the Amazon STS service's AssumeRole API
or AssumeRoleWithSAML or AssumeRoleWithWebIdentity, depending on the
identity provider. Once you have the required credentials, then your web application will
be able to call the QuickSight APIs to retrieve the embed URL, which is then added to
your web frontend.

140 Understanding Embedded Analytics

Now that we have seen the main functionality of the three main architectural components,
in the next section, we will describe the E2E flow of embedded analytics.

Putting everything together
Now that we have looked at the main architectural components of the architecture, we
will enrich Figure 7.1 by adding more specific components (including the relevant AWS
services) to each of its layers.

For the authentication layer, we can use the following AWS services:

•	 IAM to define your required roles

•	 A Cognito User Pool or another compliant IDP as the identity provider

For the web application layer, we can use the following services:

•	 AWS Lambda, S3, and API Gateway. There are several examples online of how to
use these services to build a serverless web application using these services.

•	 Other options include hosting our web app using container services or using
Amazon EC2 instances. You are not limited to hosting your web application on AWS;
you can host your web application anywhere, including on-premises if you need to.

For the BI layer, we can use the following service:

•	 Amazon QuickSight, including its SPICE storage

For the data layer, we can use the following services:

•	 Amazon S3 as the central data lake storage.

•	 Amazon Athena, which allows you to perform SQL queries over data stored in S3
or other data stores (using Federated Query: https://docs.aws.amazon.
com/athena/latest/ug/connect-to-a-data-source.html).

•	 Amazon Redshift as a data warehouse. Snowflake, another popular cloud data
warehouse, is also natively supported.

•	 Other databases that are hosted inside or outside AWS.

https://docs.aws.amazon.com/athena/latest/ug/connect-to-a-data-source.html
https://docs.aws.amazon.com/athena/latest/ug/connect-to-a-data-source.html

Exploring the architecture and user authentication 141

After adding these components, our architecture diagram will look as follows:

Figure 7.5 – Dashboard embedding with AWS services

The flow for dashboard embedding would be as follows:

1.	 The user uses their web browser to open the web portal application.
2.	 The user authenticates with the identity provider and accesses the resource provider

via the web application.
3.	 The web application assumes the embedding IAM role.

142 Understanding Embedded Analytics

4.	 Using the IAM role, the web server calls QuickSight APIs to get the embed URL and
display it to the user.

5.	 To populate the visuals, QuickSight will fetch the data from the various data
sources, abstracting this from the user and the web application.

Now that we have explored the main components of the embedded analytics architecture
and the flow between components, in the next section, we will use a few simple
commands to generate an embedded dashboard URL.

Generating an embedded dashboard URL
In this section, we will use the QuickSight CLI to generate an embedded dashboard URL
that, for this example, we will display on a web browser. Setting up authentication and
the web server is outside the scope of this book. In Chapter 2, Introduction to Amazon
QuickSight, we created a reader user in our QuickSight account. First, let's verify the
details of this user and get their unique resource number:

1.	 Log in to the AWS console as a QuickSight or AWS admin and open
AWS CloudShell.

2.	 To view the details of the reader user, use the describe-user CLI command:

$aws quicksight describe-user --user-name reader
--aws-account-id <aws account id> --namespace default
--region us-east-1

Verify that the user has been found. The response should look similar to the following:
{

 "Status": 200,

 "User": {

 "Arn": "arn:aws:quicksight:us-east-1:<aws account
id>:user/default/reader",

 "UserName": "reader",

 "Email": "your-email@something.com",

 "Role": "READER",

 "IdentityType": "QUICKSIGHT",

 "Active": true,

 "PrincipalId": ""

 },

 "RequestId": "818a21fc-4146-3bf6-b5c3-a1b315cb874b"

}

Generating an embedded dashboard URL 143

Note the User Arn property as we will use it later in Step 4.
3.	 Next, we will need to retrieve our dashboard ID. We will use the list-dashboards

CLI command to do. Type in the following command. Replace <aws account id>
with the 12-digit long ID from your AWS account. Ensure your dashboard is shared
with the admin user so that the following command returns the expected results:

$aws quicksight list-dashboards --aws-account-id <aws
account id> --region us-east-1

So far, we have only created one dashboard, so the response should look as follows:
{

 "DashboardSummaryList": [

 {

 "Arn": "arn:aws:QuickSight:us-east-1:<aws
account id>:dashboard/<dashboard id>",

 "DashboardId": "<dashboard id>",

 "Name": "New York Taxi Dashboard",

 "CreatedTime": "2021-06-
02T19:19:00.285000+00:00",

 "LastUpdatedTime": "2021-07-
06T22:55:04.960000+00:00",

 "PublishedVersionNumber": 14,

 "LastPublishedTime": "2021-06-
02T19:19:00.285000+00:00"

 }

],

 "Status": 200,

 "RequestId": ""

}

Note the dashboard ID as we will use it in the next step.
4.	 Next, we will use the get-dashboard-embed-url CLI command to generate

the embedding URL. Type the following command. Replace the AWS account ID
with your 12-digit long account ID, along with the dashboard ID we captured in
Step 3, and the user arn property that we captured in Step 1:

%aws quicksight get-dashboard-embed-url --aws-account-id
<aws account id> --dashboard-id <dashboard id>
--identity-type QUICKSIGHT --user-arn <user arn> --region
us-east-1

144 Understanding Embedded Analytics

This command will return the following output:
{

 "Status": 200,

 "EmbedUrl": "https://us-east-1. quicksight.aws.
amazon.com/embed/xxxxxxxxxx/dashboards/xxxxx-xxxx-xxxx-
xxxx-xxxxxxxx?code=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxx

&identityprovider=QuickSight&xisauthcode=true",

 "RequestId": "xxxxxx-xxxx-xxxxx-xxxxx-xxxxx"

}

Note the EmbedUrl value. For this example, just open a browser and paste the
embed URL to view the dashboard. This will look as follows:

Figure 7.6 – Opening the embed URL on a web browser

In real-world examples, the embed URL will be generated by your application server, and
the embed URL will be embedded within your web server. The domain of your web server
will need to be whitelisted.

Summary 145

Summary
Congratulations on completing this chapter. In this chapter, we learned about the
embedding capabilities of Amazon QuickSight and talked about the different types of
embedded analytics. We started by focusing on its main drivers and business benefits.
We learned about the main architectural components of dashboard embedding, and
then we identified key AWS services that can be used to build these architectural layers.
We discussed the end-to-end flow of embedded analytics. Finally, we used simple CLI
commands to generate a read-only dashboard URL so that we could see the APIs in action.

In the next chapter, we will focus on managing QuickSight and learn how to automate
operations using the QuickSight API.

Q&A
Answer the following questions to test your knowledge of this chapter:

1.	 What are the main drivers for dashboard embedding?
2.	 What are the different types of embedded analytics with Amazon QuickSight?
3.	 What is the role of the STS service in the embedded analytics flow?
4.	 What is session capacity planning and what type of embedded analytics

is relevant to it?
5.	 What are the different layers in the embedded analytics architecture?

Further reading
For more information on the topics that were covered in this chapter, take a look at the
following resources:

•	 QuickSight User Guide – AWS: https://docs.aws.amazon.com/
QuickSight/latest/user/amazon-QuickSight-user.pdf

•	 Working with Embedded Analytics – AWS: https://docs.aws.amazon.com/
QuickSight/latest/user/embedded-analytics.html

•	 Build Your First Serverless Web Application – AWS: https://aws.amazon.com/
serverless/build-a-web-app/

https://docs.aws.amazon.com/QuickSight/latest/user/amazon-QuickSight-user.pdf
https://docs.aws.amazon.com/QuickSight/latest/user/amazon-QuickSight-user.pdf
https://docs.aws.amazon.com/QuickSight/latest/user/embedded-analytics.html
https://docs.aws.amazon.com/QuickSight/latest/user/embedded-analytics.html
https://aws.amazon.com/serverless/build-a-web-app/
https://aws.amazon.com/serverless/build-a-web-app/

This chapter will focus on managing and monitoring Amazon QuickSight using the
QuickSight API and other AWS services, such as Amazon CloudTrail. We will also look at
multitenancy with namespaces.

This section consists of the following chapters:

•	 Chapter 8, Understanding the QuickSight API

•	 Chapter 9, Managing QuickSight Permissions and Usage

•	 Chapter 10, Multitenancy in Amazon QuickSight

Section 3:
Advanced Topics

and Management

8
Understanding the

QuickSight API
In this chapter, we will learn how to perform operations using the Amazon QuickSight
API. We will also explore patterns to automate dataset operations, and we'll demonstrate
some of the API actions that allow us to control our account settings. After completing
this chapter, you will be familiar with the QuickSight API and how to programmatically
control its resources, which is essential when building automation.

We will cover the following topics in this chapter:

•	 Introducing the QuickSight API

•	 Controlling resources using the API

Technical requirements
For this chapter, you will need access to the following:

•	 An AWS account and an AWS Identity and Access Management (IAM) user,
with elevated access

•	 Python 3

150 Understanding the QuickSight API

•	 An Amazon QuickSight account with Author and Reader users configured

•	 The environment created in Chapter 1, Introducing the AWS Analytics Ecosystem

•	 The dashboards created in Chapter 3, Preparing Data with Amazon QuickSight

Introducing the QuickSight API
In this section, we will introduce the Amazon QuickSight API. An application
programming interface (API) is a set of defined functions that allow application developers
to access the features of a certain application or library. The AWS API allows developers
to access AWS services programmatically. Traditionally, AWS provided infrastructure
services, allowing developers to programmatically provision virtual machines on the cloud.
Now, AWS provides many more services, many of which are not infrastructure services.
Amazon QuickSight is a great example of one such service. QuickSight is a cloud-based
business intelligence (BI) service that runs on AWS infrastructure, but developers don't
need to provision infrastructure. Instead, developers can use the QuickSight API to access
features and conduct actions in the application, such as creating datasets, performing data
analysis, or sharing dashboards. So far in this book, we have learned how to complete
these operations using the QuickSight console with a graphical user interface (GUI)
accessed via a web browser. In this chapter, we will learn how to complete these operations
programmatically, which will allow us to build automation when creating BI applications.
First, we will learn how to access the QuickSight API.

Accessing the QuickSight API
In this section, we will learn about the methods you can use to access the QuickSight API.
There are two main ways of accessing AWS APIs:

•	 Using a software development kit (SDK)

•	 Using the command-line interface (CLI)

Next, we will look at these options in more detail with hands-on examples.

Accessing the QuickSight API using the AWS CLI
AWS provides a simple CLI that allows developers to access the AWS API. Before using
the CLI, you will need to install it. Follow the AWS instructions to install the CLI for your
operating system:

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-
install.html

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

Introducing the QuickSight API 151

Verifying the installation
Once installed, open a terminal and run the following command to check what CLI
version was installed:

$aws –version

aws-cli/2.1.13 Python/3.7.4 Darwin/20.5.0 exe/x86_64 prompt/off

Configuring the AWS CLI
Now that we have installed the CLI, we need to configure it. First, we need to create a set
of credentials that will be used by the CLI:

1.	 Log in to the AWS Console with your user credentials.
2.	 Open Services and select Identity and Access Manager.
3.	 Under Access Management, select Users, and then click on the IAM username

whose security credentials need to be generated.
4.	 On the next page, select the Security credentials tab.

Figure 8.1 – Creating access keys

152 Understanding the QuickSight API

5.	 Under the Access keys section, select Create access key.

Figure 8.2 – Retrieving the access key

6.	 Note the values in the Access key ID and Secret access key fields.
7.	 Next, open the terminal, run the following command, and add your access key ID

and secret access key when prompted. Leave everything else as-is by hitting the
Return key.

$aws configure

Accessing the QuickSight API using the CLI
Now that we have configured the CLI, we can run a few commands:

1.	 To get a list of all QuickSight CLI commands, type the following:

$aws quicksight help

2.	 To list our dashboards, type the following command:

$ aws quicksight list-dashboards --aws-account-id
<numerical account id> --region us-east-1

{

 "Status": 200,

 "DashboardSummaryList": [

 {

 "Arn": "arn:aws:quicksight:us-east-
1:xxxxxxx:dashboard/xxxxxxxx",

 "DashboardId": "xxxxxxx",

 "Name": "New York Taxi Dashboard",

 "CreatedTime": "2021-06-
02T20:19:00.285000+01:00",

Introducing the QuickSight API 153

 "LastUpdatedTime": "2021-07-
06T23:55:04.960000+01:00",

 "PublishedVersionNumber": 14,

 "LastPublishedTime": "2021-06-
02T20:19:00.285000+01:00"

 }

],

 "RequestId": "xxxxxxx"

}

Note the structure of the CLI command:

	� aws: To access all CLI commands.

	� quicksight: To access the QuickSight CLI commands.

	� list-dashboards: To access the API that returns all the dashboards for an
account and region.

	� Options (--): Use this symbol to add options for the command.

Now that we have configured the CLI and run a simple command, feel free to experiment
with the other commands before proceeding to the next section. Refer to the AWS
documentation to view the available and required options for your selected CLI command:

https://awscli.amazonaws.com/v2/documentation/api/latest/
reference/quicksight/index.html

Next, we will access the QuickSight API using the AWS SDK.

Accessing the QuickSight API using SDKs
AWS provides various development kits that support a number of programming languages.
This means developers can integrate their applications with AWS services without the
need to change their programming language. Most common programming languages are
supported by AWS, including Python, Java, C++, Go, JavaScript, and Ruby. For more
information on the latest language support, refer to the AWS documentation at https://
aws.amazon.com/tools/. To better understand the AWS SDK, we will use a simple
hands-on example. For this example, we will use the Python SDK to programmatically
retrieve the QuickSight dashboards and print their names on the screen.

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/quicksight/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/quicksight/index.html
https://aws.amazon.com/tools/
https://aws.amazon.com/tools/

154 Understanding the QuickSight API

Installing the AWS SDK
For this example, we will use the Python AWS SDK. You will need to install Python in
your environment if you haven't already.

If you have Python installed, then type the following command in a terminal:

$pip install boto3

Next, open your preferred code editor, and type in the upcoming Python code.

Note
AWS provides a cloud-based integrated development environment (IDE),
called Cloud9.

To create a Cloud9 environment, log in to the AWS Console and select Cloud9 from the
services list. For this tutorial, you can leave all the default settings as they are. For more
information on setting up Cloud9, follow the AWS documentation:

https://docs.aws.amazon.com/cloud9/latest/user-guide/create-
environment.html

Before running the following code, replace the AwsAccountId value with the numerical
account ID from your environment:

import boto3

client = boto3.client('quicksight',region_name='us-east-1')

response = client.list_dashboards(AwsAccountId='xxxxxxxxx')

dashboards_list = response['DashboardSummaryList']

print('Number of dashboards: ' + str(len(dashboards_list)) +
'\n')

for dashboard in dashboards_list:

 print(dashboard['Name'])

Save the Python script and run it. It should print the total number of dashboards for that
region, followed by the name of each dashboard.

https://docs.aws.amazon.com/cloud9/latest/user-guide/create-environment.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/create-environment.html

Controlling resources using the QuickSight API 155

Controlling resources using the QuickSight API
In this section, we will learn how to control QuickSight resources using the QuickSight
API. This section is not meant to be a full reference guide to the QuickSight API, nor is it
going to cover every possible action that can be done using the API. For a full reference
guide to the QuickSight API, please refer to the QuickSight documentation:

https://docs.aws.amazon.com/quicksight/latest/APIReference/
Welcome.html

This section will provide you with practical hands-on examples of using the API to control
QuickSight resources. These examples will give you a solid understanding of the types of
activities that can be completed using the API, which in turn will help you to manage your
QuickSight environment.

Our first example will be to learn how to set up a data source using the QuickSight API.

Setting up a dataset using the CLI
In Chapter 2, Introduction to Amazon QuickSight, we learned how to create data sources and
datasets. To create these resources, we accessed the QuickSight GUI via our web browser.
While the GUI is user-friendly, we can create datasets programmatically using the API. This
can be a good option when we need to ensure the consistency of a specific configuration,
as manual configurations can be prone to errors. Let's create a data source from the data
warehouse we created in Chapter 1, Introducing the AWS Analytics Ecosystem.

Note
The tutorial from Chapter 1, Introducing the AWS Analytics Ecosystem, included
creating a sample Amazon Redshift cluster, which will incur charges. For this
tutorial, you don't need the cluster running. A paused cluster can work well for
this example, as we only need to configure the dataset and we won't need a live
connection to it.

Now, let's create a Redshift data source using the CLI. We will use the create-data-
source CLI command to create a Redshift data source:

https://docs.aws.amazon.com/cli/latest/reference/quicksight/
create-data-source.html

https://docs.aws.amazon.com/quicksight/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/quicksight/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cli/latest/reference/quicksight/create-data-source.html
https://docs.aws.amazon.com/cli/latest/reference/quicksight/create-data-source.html

156 Understanding the QuickSight API

Here are a few parameters we need to configure:

•	 AwsAccountId: This value represents your AWS numerical account ID.

•	 DataSourceId and Name: You will need to define a unique account and region
identifier and a user-friendly name to describe your data source.

•	 Type: This is the type of data source. For Redshift data sources, this needs to be set
up as REDSHIFT.

•	 DataSourceParameters: The type of data source parameters will depend on the
type of data source you configure. For Redshift data sources, you will need to define
the hostname, port number, Redshift database name, and cluster identifier.

•	 Credentials: These are the credentials required by QuickSight to access the
data store. For Redshift data sources, you can use a credential pair consisting of a
username and password.

•	 Permissions: In this section, you will need to define the permissions for the
newly created datasets and determine which user has access to it and what levels
of access they have. For our example, we want our reader user to be able to create
datasets from the newly created data source, but we also want to restrict that user
from deleting or updating the data source.

Now, let's see how to configure the Redshift connection described previously, using the
QuickSight CLI:

1.	 First, open a text editor and copy the following JSON configuration. Replace the
highlighted values with those from your environment. For the permissions, note
that we only give permissions to the PassDataSource, DescribeDataSource,
and DescribeDataSourcePermissions actions, which will allow this user to
use this data source to set up new datasets, but it will not allow them to update or
delete the data source:

{

 "AwsAccountId": "<account id>",

 "DataSourceId": "RedshiftDatasouceCLI",

 "Name": "CLI Datasouce",

 "Type": "REDSHIFT",

 "DataSourceParameters": {

 "RedshiftParameters": {

 "Host": "hostname",

 "Port": 5439,

Controlling resources using the QuickSight API 157

 "Database": "dev",

 "ClusterId": "mycluster"

 }

 },

 "Credentials": {

 "CredentialPair": {

 "Username": "admin",

 "Password": "R3dsh1ft"

 }

 },

 "Permissions": [

 {

 "Principal": "arn:aws:quicksight:us-east-
1:xxxxxxxxxxx:user/default/author",

 "Actions": [

 "quicksight:DescribeDataSource",

"quicksight:DescribeDataSourcePermissions",

 "quicksight:PassDataSource"

]

 }

]

}

2.	 Save the file as create-data-source.json.
3.	 Run aws quicksight create-data-source --cli-input-json

file://create-data-source.json.

The result of this command will look like the following:
{

 "Status": 202,

 "DataSourceId": "SampleRedshiftDatasouce",

 "RequestId": "xxxxxx-xxxxx-xxxxx-xxxxx-xxxxxxxxxx",

 "CreationStatus": "CREATION_IN_PROGRESS",

 "Arn": "arn:aws:quicksight:us-east-
1:xxxxxxxxxx:datasource/SampleRedshiftDatasouce"

}

158 Understanding the QuickSight API

Now that we have configured the new data source, let's validate that the Author user will
be able to use it to set up a new dataset:

1.	 For this tutorial, we can verify the newly created data source simply by logging into
QuickSight as the author user.

2.	 Then, navigate to Datasets, and then click New Datasets. You should be able to
find the newly created data source under the FROM EXISTING DATA SOURCES
menu, as shown in the following figure:

Figure 8.3 – Creating a data source using the CLI

3.	 Click on the data source. Note that the buttons to delete or edit the data source are
not shown, as this user doesn't have the permissions required to update or delete
this data source:

Figure 8.4 – Sample CLI data source permissions

Now that we have learned how to configure a data source, we will use the QuickSight CLI
to change the QuickSight settings for our environment.

Controlling resources using the QuickSight API 159

Editing account settings using the QuickSight API
In this section, we will use the QuickSight API to edit settings on our account. This allows
us to configure account customizations on our account. For our example, we will change
the default theme for our QuickSight Account.

1.	 First, let's use the QuickSight API to retrieve the global QuickSight account details.
Using the CLI as a QuickSight or AWS admin, type the following command,
replacing the aws-account-id value with the value from your environment:

$aws quicksight describe-account-settings
--aws-account-id <account-id>

The response should look like the following:
{

 "Status": 200,

 "AccountSettings": {

 "DefaultNamespace": "default",

 "Edition": "ENTERPRISE",

 "NotificationEmail": "your-email",

 "AccountName": "quicksight-account-name"

 },

 "RequestId": "xxxxxxxxxxxxxxxxxxxxxx"

}

2.	 Next, let's type the following command to get our QuickSight account
customizations. Account customizations refer to a set of settings that can be
parameterized for a QuickSight account. Currently, you can add a custom default
theme by using account customization:

$aws quicksight describe-account-customization
--aws-account-id <account-id>

Since we haven't yet added any customizations, the response would most likely look
like the following:

An error occurred (ResourceNotFoundException) when
calling the DescribeAccountCustomization operation:
Account customization does not exist for AwsAccountId
<account-id>

160 Understanding the QuickSight API

3.	 Now, let's add an account customization and set Midnight as the default theme.
Type the following command using the CLI, replacing the aws-account-id
value with your account ID value:

aws quicksight create-account-customization
--aws-account-id <account-id> --account-customization
DefaultTheme=arn:aws:quicksight::aws:theme/MIDNIGHT
--region=us-east-1

4.	 Now, let's confirm the creation of the new account customization by running again
the describe-account-customization command from Step 2. This time,
the response should look like the following:

{

 "Status": 200,

 "RequestId": "xxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx",

 "AccountCustomization": {

 "DefaultTheme": "arn:aws:quicksight::aws:theme/
MIDNIGHT"

 },

 "Arn": "arn:aws:quicksight:us-east-
1:xxxxxxxxxxxx:customization/account/xxxxxxxxxxxx ",

 "AwsAccountId": "xxxxxxxxxxxx "

}

Note
The account customization applies at the account and AWS Region levels.

To verify that the customization setting has been applied on this account, you can
create a sample analysis on the account for the same region where you applied the
account customization.

Now that we have learned how to edit our account settings using the CLI, in the next
section, we will learn how to use the template API, which is useful when developing
analysis and dashboards across multiple environments.

Controlling resources using the QuickSight API 161

Reusing assets using the template API
QuickSight offers a template API, which allows you to build blueprints for analysis and
then use those blueprints to create other analyses for different users, or even for different
accounts, with consistency. Templates are not visible on the GUI, and we can access them
only by using the API. Next, we will show a simple example of creating a template using
the New York Taxi analysis:

1.	 First, let's list our existing analysis. Using the CLI, type the following command,
replacing the <account-id> value with the value from your account:

$aws quicksight list-analyses --aws-account-id
<account-id> --region us-east-1

Note the analysis-id value from our New York Taxi analysis.
2.	 Next, we will capture additional analysis details, including details about our

datasets. Type the following command, replacing the <account-id> and
analysis-id values with the values from your environment:

aws quicksight describe-analysis --aws-account-id
<account-id> --analysis-id xxxxxxx-xxxx-xxxxx-xxxxx-
xxxxxxxxxx --region us-east-1

The response should look like this:
{

 "Status": 200,

 "Analysis": {

 "Status": "CREATION_SUCCESSFUL",

 "Name": "yellowtrips_3mo analysis",

 "LastUpdatedTime": 1629144517.0,

 "DataSetArns": [

 "arn:aws:quicksight:us-east-1:
xxxxxxxxxxxx:dataset/xxxxxxx-xxxx-xxxxx-xxxxx-
xxxxxxxxxx",

 "arn:aws:quicksight:us-east-1:
xxxxxxxxxxxx:dataset/xxxxxxx-xxxx-xxxxx-xxxxx-xxxxxxxxxx
"

],

 "CreatedTime": 1621766161.633,

 "Sheets": [

 {

162 Understanding the QuickSight API

 "SheetId": " xxxxxxx-xxxx-xxxxx-xxxxx-
xxxxxxxxxx ",

 "Name": "Executive Summary"

 }

],

 "ThemeArn": "arn:aws:quicksight::aws:theme/
MIDNIGHT",

 "Arn": "arn:aws:quicksight:us-east-1:
xxxxxxxxxxxx:analysis/xxxxxxx-xxxx-xxxxx-xxxxx-
xxxxxxxxxx",

 "AnalysisId": "xxxxxxx-xxxx-xxxxx-xxxxx-
xxxxxxxxxx"

 },

 "RequestId": " xxxxxxx-xxxx-xxxxx-xxxxx-xxxxxxxxxx "

}

Capture the dataset's arn value (highlighted), as we will use them in the next step.
3.	 Next, open a text editor and paste the following JSON configuration, which will

be used to create our first QuickSight template. Replace the AwsAccountId,
source analysis arn, and dataset references arn values with the values from your
environment. Save the file as create-template.json:

{

 "AwsAccountId": "xxxxxxxxxxxx",

 "TemplateId": "first-template",

 "Name": "My First Template",

 "SourceEntity": {

 "SourceAnalysis": {

 "Arn": "arn:aws:quicksight:us-east-1:
xxxxxxxxxxxx:analysis/xxxxxxx-xxxx-xxxxx-xxxxx-
xxxxxxxxxx",

 "DataSetReferences": [

 {

 "DataSetPlaceholder": "Main Dataset",

 "DataSetArn": "arn:aws:quicksight:us-
east-1: xxxxxxxxxxxx:dataset/xxxxxxx-xxxx-xxxxx-xxxxx-
xxxxxxxxxx"

 },

Controlling resources using the QuickSight API 163

 {

 "DataSetPlaceholder": "Enrich
Dataset",

 "DataSetArn": "arn:aws:quicksight:us-
east-1: xxxxxxxxxxxx:dataset/xxxxxxx-xxxx-xxxxx-xxxxx-
xxxxxxxxxx"

 }

]

 }

 },

 "VersionDescription": "1"

}

4.	 Next, we will confirm the creation of our template. As mentioned earlier, a template
can only be used and listed using the QuickSight API, and there isn't a UI element
to it. Using the CLI, we will type the following command:

$aws quicksight list-templates --aws-account-id
<account-id> --region us-east-1

The response should look like this:
{

 "Status": 200,

 "TemplateSummaryList": [

 {

 "LatestVersionNumber": 1,

 "LastUpdatedTime": 1629320961.782,

 "TemplateId": "first-template",

 "CreatedTime": 1629320961.782,

 "Arn": "arn:aws:quicksight:us-east-
1:xxxxxxxxxxxxxx:template/first-template",

 "Name": "My First Template"

 }

],

 "RequestId": "xxxxxxxxxxx"

}

164 Understanding the QuickSight API

5.	 Next, we will use this template to create a new analysis. For this example, to avoid
incurring costs, we will use our existing Author user, and we'll create an analysis
from a template. For this part, we'll use the create-analysis CLI command.
Open a text editor and paste the following, then save it as create-analysis-
from-template.json. Replace the highlighted values with those matching
your environment:

{

 "AwsAccountId": "xxxxxxxxxxx",

 "AnalysisId": "analysis-from-template",

 "Name": "Analysis From Template",

 "Permissions": [

 {

 "Principal": "arn:aws:quicksight:us-east-
1:xxxxxxxxxxxx:user/default/author",

 "Actions": [

 "quicksight:RestoreAnalysis",

 "quicksight:UpdateAnalysisPermissions",

 "quicksight:DeleteAnalysis",

 "quicksight:DescribeAnalysisPermissions",

 "quicksight:QueryAnalysis",

 "quicksight:DescribeAnalysis",

 "quicksight:UpdateAnalysis"

]

 }

],

 "SourceEntity": {

 "SourceTemplate": {

 "DataSetReferences": [

 {

 "DataSetPlaceholder": "Main Dataset",

 "DataSetArn": "arn:aws:quicksight:us-
east-1: xxxxxxxxxxxx:dataset/xxxxxxx-xxxx-xxxxx-xxxxx-
xxxxxxxxxx" },

 {

 "DataSetPlaceholder": "Enrich
Dataset",

Controlling resources using the QuickSight API 165

 "DataSetArn": "arn:aws:quicksight:us-
east-1: xxxxxxxxxxxx:dataset/xxxxxxx-xxxx-xxxxx-xxxxx-
xxxxxxxxxx"

 }

],

 "Arn": "arn:aws:quicksight:us-east-
1:xxxxxxxxxxx:template/first-template"

 }

 }

}

6.	 Next, type the following command:

$aws quicksight create-analysis --cli-input-json file://
create-analysis-from-template.json --region us-east-1

7.	 You can confirm the creation of the analysis by using the list-analyses
CLI command:

$aws quicksight list-analyses --aws-account-id
xxxxxxxxxxxx

8.	 Log back into the QuickSight UI as the Author user and view the newly
created analysis:

Figure 8.5 – Generating an analysis from a template

166 Understanding the QuickSight API

Once you open the analysis, you will notice an identical analysis to the one we created in
previous chapters. The main difference is that the analysis from the template was created
programmatically using a few CLI commands. Using the template and analysis API, we
can create and share a blueprint of an analysis, and then using this blueprint, we can create
a new analysis and share it with other users or accounts. Without the template API, you
would need to recreate the analysis manually, which can involve many steps and makes it
harder to apply changes consistently.

Now that we have learned how to control QuickSight resources programmatically, in the
next section, we will discuss patterns to build automations.

Building automation using the QuickSight API
So far, we have learned how to use the QuickSight API to control resources by using the
AWS CLI. In this section, we will discuss an architecture that will allow us to call the
QuickSight API automatically.

Understanding the role of AWS Lambda
AWS Lambda is a serverless compute service that allows you to run code without creating
servers. The unit of computation is a Lambda function. Lambda functions can be triggered
by specific events or at a specific point in time. Using AWS Lambda and the AWS SDK,
we can control QuickSight resources programmatically to respond to specific events or
changes to our infrastructure. For example, instead of scheduling a refresh on an interval,
we could use the SDK to set our data to refresh on specific events.

Amazon EventBridge can be used for more complex integrations. Amazon EventBridge
is a serverless event bus that makes it easier to build event-driven applications on
AWS. Using EventBridge, you can deliver real-time events that are generated by your
applications, integrated software-as-a-service (SaaS) applications, and AWS services.
AWS Lambda can be a target of these events, and this allows you to design responses to
certain events. To better understand how to automate QuickSight operations, in the next
section, we will create a simple event-driven ingestion from an Amazon S3 data source
using AWS Lambda.

Controlling resources using the QuickSight API 167

Automating the ingestion of an Amazon S3 data source
In this section, we will configure a simple application that will automatically refresh an
Amazon SPICE data source when the underlying S3 data is updated. With this approach,
instead of waiting for a scheduled refresh (which would introduce delays), we will
trigger a refresh as soon as new data is available (which will minimize delays). For this
example, we will use a sample .csv file, which will be configured as an S3 data source
in QuickSight. Then, we will configure a Lambda function that will be triggered by S3
notifications. The Lambda function will call the createIngestion function of the
QuickSight API, which will result in QuickSight importing the new dataset into SPICE.
The following figure shows how the various components work together:

Figure 8.6 – An event-driven data refresh

Now that we have discussed the high-level architecture, to better understand it, let's
explore a hands-on example.

Creating an S3 dataset
Let's begin by creating a sample dataset. We will need to create a .csv file and
a manifest file:

1.	 First, open a text editor and create a sample.csv file. Copy the following as
its content:

"Name","Age"

"George","54"

2.	 Upload the file into the S3 data lake you created in Chapter 1, Introducing the AWS
Analytics Ecosystem. Create a folder named samples under your data lake bucket,
or simply use the s3 cp CLI command to upload your .csv file:

$aws s3 cp sample.csv s3://<data-lake-xxxxxxxxx>/samples/

168 Understanding the QuickSight API

3.	 Next, we will create a manifest file, which defines which files need to be
imported into QuickSight. We can have more than one file, but in this example
and for simplicity, we will import a single file. Open a text editor and create a
manifest.json file. Copy the following, replacing the highlighted values with
the values from your environment:

{

 "fileLocations": [

 {

 "URIs": [

 "s3://data-lake-xxxxxxxxxx/samples/
sample.csv"

]

 }

]

}

4.	 Next, we will create an S3 data source in QuickSight. Log in to QuickSight as an
Author user and click Datasets, and then click Create. Select S3 from the list of
available sources. Next, name your data source, and upload the manifest file.

5.	 Once imported, you should be able to edit the dataset and verify its content.

Figure 8.7 – Creating an S3 data source

Controlling resources using the QuickSight API 169

Now that we have configured our S3 data source and imported it into SPICE, in the next
section, we will configure the Lambda function that will trigger a SPICE refresh.

Configuring the QuickSight ingestion Lambda function
In this section, we will learn how to configure a Lambda function to trigger a SPICE
refresh. The function will call the createIngestion QuickSight API call to refresh the
sample dataset we created during the previous steps.

Log in to the AWS console and select AWS Lambda. In the Lambda console, select Create
function. Add the following details:

•	 Name: quicksight-refresh

•	 Runtime: Python 3.8

•	 Execution Role: Create a new role with basic Lambda permissions

Leave the remaining options with their default values, and then click Create function.

Before we proceed, we need to make sure our lambda function has the required
permissions to call the QuickSight API. Select the IAM role for this function, and add a
policy that allows access to the following QuickSight API actions:

•	 quicksight:CreateIngestion

•	 quicksight:CancelIngestion

•	 quicksight:DeleteDataSource

•	 quicksight:DeleteDataSet

For this tutorial, you can use the following policy document. Replace the highlighted
values with those from your environment:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "VisualEditor0",

 "Effect": "Allow",

 "Action": "quicksight:DeleteDataSet",

 "Resource": "arn:aws:quicksight:*:<aws-account-
id>:dataset/*"

 },

 {

170 Understanding the QuickSight API

 "Sid": "VisualEditor1",

 "Effect": "Allow",

 "Action": [

 "quicksight:CreateIngestion",

 "quicksight:DeleteDataSource",

 "quicksight:CancelIngestion"

],

 "Resource": [

 "arn:aws:quicksight:*:<aws-account-
id>:datasource/*",

 "arn:aws:quicksight:*:<aws-account-
id>:dataset/*/ingestion/*"

]

 }

]

}

Now that our Lambda function has access to the required APIs, let's add the Python code.
Using the lambda code editor, simply paste the following code. Replace the highlighted
values with the values from your environment:

import boto3

import uuid

client = boto3.client('quicksight')

def lambda_handler(event, context):

 response = client.create_ingestion(

 DataSetId='<dataset-id>,

 IngestionId=uuid.uuid4().hex,

 AwsAccountId='<aws-account-id>'

)

 return response

Controlling resources using the QuickSight API 171

After you complete this step, click Deploy. We can test our Lambda function and verify
that it triggers a refresh. Look for "IngestionStatus": "INITIALIZED" in the
response to verify the response from the QuickSight API.

Now that we have configured our Lambda functions, in the next section, we will configure
our S3 trigger.

Configuring an S3 trigger
In this section, we will configure our S3 trigger. The trigger should only trigger a refresh
when we have new objects in the samples folders of our data lake:

1.	 Open the Lambda console and select Add trigger.
2.	 Select the S3 service from the drop-down menu, and then your S3 data lake bucket.

Then, configure the following values:

	� Event type: All object create events

	� Prefix: samples/

	� Suffix: .csv

3.	 Click Add to add the new trigger.

Now that we have configured our trigger, in the next section, we will test our application.

Testing the application
To test the application, complete the following steps:

1.	 Open the sample.csv file and add a new line so that it looks like the following:

"Name","Age"

"George","54"

"Anna","56"

2.	 Next, we will update the file in S3. You can either use the AWS Console or AWS CLI:

$aws s3 cp sample.csv s3://<data-lake-xxxxxxxxx>/samples/

172 Understanding the QuickSight API

3.	 This should trigger our Lambda function, which in turn will call the API and trigger
a refresh. To verify, log in to QuickSight and select Datasets. Select the sample
dataset and then edit to access the preview mode:

Figure 8.8 – Previewing the imported data

Note the new values in our dataset. QuickSight completed the ingestion, and now the
new values are in SPICE, shortly after we updated the file. A key benefit of our event-
driven architecture is that we don't need to wait for a scheduled refresh – instead, data is
refreshed as soon as we have new values.

Summary 173

Summary
Congratulations on completing this chapter.

In this chapter, we learned the different options of accessing the QuickSight API, including
the CLI, and we have seen an example using the Python SDK. Then, using the AWS CLI,
we learned how to control our QuickSight resources programmatically. We learned how to
create a new data source programmatically, and we also used the QuickSight API to control
the account settings (such as changing the default theme of QuickSight). Finally, using a
simple example, we learned how to use the template API to create an analysis blueprint,
and then how to use the template to create an analysis programmatically.

Using the things you learned in this chapter, you will be able to control QuickSight
resources programmatically, which will make it easier to work across multiple
environments and securely and consistently apply changes to your QuickSight account.
Finally, using a simple hands-on example, we learned how to build an event-driven
application that calls the QuickSight API and automatically imports an S3 dataset into
SPICE. In the next chapter, we will learn how to manage QuickSight permissions
and usage.

Questions
Here are a few questions to revise what we learned in this chapter.

1.	 What is a QuickSight template?
2.	 How can we access the QuickSight API?
3.	 How can we create an analysis from a template?
4.	 How can you build automation using the QuickSight API?

Further reading
•	 Amazon QuickSight User Guide:

https://docs.aws.amazon.com/quicksight/latest/user/amazon-
quicksight-user.pdf

https://docs.aws.amazon.com/quicksight/latest/user/amazon-quicksight-user.pdf
https://docs.aws.amazon.com/quicksight/latest/user/amazon-quicksight-user.pdf

9
Managing

QuickSight
Permissions

and Usage
In this chapter, we will learn how to manage Amazon QuickSight operations and
permissions. We will focus on the QuickSight permissions model and learn how to
configure fine-grained permissions. We will also learn how to manage and organize
QuickSight assets into folders, and how to set up threshold-based alerts and email reports.

We will cover the following topics in this chapter:

•	 Managing QuickSight permissions

•	 Managing QuickSight usage

176 Managing QuickSight Permissions and Usage

Technical requirements
For this chapter, you will need access to the following:

•	 An AWS account and AWS Identity and Access Management (IAM) user, with
elevated access

•	 The AWS Command Line Interface (CLI)

•	 An Amazon QuickSight account with Author and Reader users configured

•	 The environment created in Chapter 1, Introducing the AWS Analytics Ecosystem

•	 The dashboards created in Chapter 4, Developing Visuals and Dashboards

Managing QuickSight permissions
In this section, we will learn how to configure user permissions against QuickSight
resources. First, let's introduce the fundamental topics we need to understand when
setting up permissions:

•	 Principal: An AWS principal is the user (or group of users) or application that
needs to access AWS resources.

•	 Action: Actions define the set of API operations that a principal is allowed or
denied. For example, in QuickSight, the DeleteDataSet action deletes a
dataset. To see a full list of QuickSight actions, refer to the AWS Documentation:
https://docs.aws.amazon.com/service-authorization/latest/
reference/list_amazonquicksight.html#amazonquicksight-
actions-as-permissions.

•	 Resource: For most actions, we can narrow down the scope of a policy to a specific
resource(s). Typically, a single resource has its own unique Amazon Resource
Number (arn).

•	 Condition: AWS allows you to define access based on specific conditions. For
example, a condition that gives access to an application from a specific IP address.

When granting AWS permissions, including QuickSight permissions, make sure you
follow the least privilege security best practice. According to the principle of least
privilege, you should only allow users to have access to the specific actions and resources
they require.

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonquicksight.html#amazonquicksight-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonquicksight.html#amazonquicksight-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonquicksight.html#amazonquicksight-actions-as-permissions

Managing QuickSight permissions 177

Using user groups
As the number of users increases and their access patterns become more and more
sophisticated, the complexity of configuring their permissions to resources also rises
exponentially. In these circumstances, we can use user groups. User groups allow you
to group users together and then apply permissions at the group level, rather than
the individual level, which saves you time and effort. When a user joins a group, they
automatically inherit the group permissions. Likewise, when a user leaves the group, then
they lose access to the group's resources.

To better understand how to manage groups in Amazon QuickSight, we will use a simple
hands-on example:

1.	 First, let's create a group for the marketing department. Using a terminal with AWS
CLI configured and with elevated access, type the following command, replacing the
<account-id> value with the value from your environment:

$aws quicksight create-group --group-name "Marketing"
--description "Group for the Marketing Department"
--aws-account-id <account-id> --namespace default
--region us-east-1

2.	 Next, let's add our Reader user to this group. For this purpose, we will use the
create-group-membership CLI command. Type the following, replacing the
highlighted values with those from your environment:

$aws quicksight create-group-membership --member-
name reader --group-name Marketing --aws-account-id
<account-id> --namespace default --region us-east-1

3.	 Next, we will use the QuickSight Console to share a new dashboard with the
marketing group, rather than an individual user. Log into QuickSight as the Author
user. Open the New York Taxi analysis and publish it as a brand-new dashboard.
Give any name to your newly created dashboard.

178 Managing QuickSight Permissions and Usage

4.	 On the next screen, when sharing the dashboard, select the Marketing group and
share your dashboard, as shown in the following screenshot:

Figure 9.1 – Sharing a dashboard with a group

5.	 To verify that your dashboard has been shared successfully, log out and log back in as
the Reader user. Navigate to Dashboards, and notice the newly created dashboard:

Figure 9.2 – Confirming dashboard group access

Managing QuickSight permissions 179

Note that we didn't need to give access directly to the Reader user for this dashboard.
Instead, we added the Reader user into the Marketing group, and then we allowed all
users from that group to have access to our published dashboard. In the future, if we
had more users joining the Marketing group, they would automatically assume access
to resources shared with that particular group, eliminating the need to define specific
permissions at the individual user level.

Now that we have learned about user groups and how to use them to simplify our
permissions, in the next section, we will talk about custom permissions.

Setting up custom permissions
In Chapter 2, Introduction to Amazon QuickSight, we learned the different user cohorts:
Admin, Author, and Reader. The user cohort determines the level of access to features in
the QuickSight console. Custom profiles allow you to override the default permissions with
custom security profiles and define permissions that fit your organization's requirements.

Note
For custom permissions to work, you will need to be using IAM federated
users.

To better understand custom permissions, we will use a simple hands-on example. By
default, an Author user is able to configure a new data source. For our example, let's
assume that to protect our Amazon SPICE space, we want to prevent authors from
creating new data sources:

1.	 First, log into the QuickSight Console as a QuickSight Admin user.
2.	 Expand the QuickSight menu in the top-right corner of the screen and select

Manage QuickSight.
3.	 With the Manage users option selected, click on Manage permissions, as shown in

the following screenshot:

Figure 9.3 – Accessing custom permissions

180 Managing QuickSight Permissions and Usage

4.	 On the next screen, tick the Creating or updating all data sources checkbox, as
shown in the following screenshot:

Figure 9.4 – Editing custom permissions

Note
When defining custom permissions using the QuickSight Console, you choose
which actions you want to restrict access to. The rest of the actions will be
permitted based on which cohort the user belongs to.

5.	 Before we assign permissions, it is worth confirming that our Author user will be
able to create a new dataset. Log into the QuickSight Console as the Author user
and confirm that you can create a new dataset by selecting New dataset.

6.	 Next, we will need to add a new Author user. Make sure you use the IAM
credentials for this user by ticking the IAM checkbox when registering the user. For
this example, we can call the user author-iam.

Managing QuickSight permissions 181

7.	 After you register the new author-iam user, we will assign the new custom
permissions profile to them. Using the AWS CLI and as the QuickSight Admin
user, type the following command, replacing the highlighted values with those
from your environment:

$aws quicksight update-user --user-name author-iam
--role AUTHOR --custom-permissions-name custom-author
--email <your-email> --aws-account-id <account-id>
--namespace default --region us-east-1

8.	 Now, we have attached our custom permissions to our newly created Author user.
We can verify that the console access is as expected. Log out and log back into the
QuickSight Console as the author-iam user.

9.	 Next, select Datasets from the left-hand side menu, and then select Create a
Dataset. Your screen should look like the following figure, giving you no options for
creating a new dataset:

Figure 9.5 – Applying custom permissions
By applying custom permissions, we were able to override the default Author
behavior and prevent our newly registered Author user from creating new data
sources. You can configure multiple custom permissions profiles in your QuickSight
account and allocate them to your users. A user cannot have more than one custom
permissions profile.

10.	 As a final step, we will deregister the author-iam user from QuickSight, since
we no longer need them. To deregister the user, you can either use the QuickSight
Admin Console or the AWS CLI by typing the following command and replacing
the highlighted value with the values from your environment:

aws quicksight delete-user --user-name author-iam
--aws-account-id <account-id> --namespace default
--region us-east-1

182 Managing QuickSight Permissions and Usage

Now that we have learned how to configure custom permissions, in the next section, we
will learn how to integrate QuickSight with Amazon Lake Formation.

Integrating with Amazon Lake Formation
In this section, we will learn about the QuickSight integration with Amazon Lake
Formation. Amazon Lake Formation provides an additional permission layer above the
AWS Glue Data Catalog, allowing you to set up fine-grained permissions on top of your
data lake on AWS. The integration with Lake Formation is useful for Amazon Athena
datasets. Combined with QuickSight, Lake Formation will allow you to manage your
data permissions from a single place, enforcing the permissions at the data lake layer by
enhancing the existing QuickSight fine-grained permissions. To understand the value
added by Lake Formation, we will first need to understand how to apply permissions for
Athena datasets without Lake Formation.

Configuring Amazon Athena datasets permissions without Amazon
Lake Formation
To better understand the value of Lake Formation, it is important to understand how to
configure permissions for Athena datasets. We will use the demo data we configured in
Chapter 1, Introducing the AWS Analytics Ecosystem. Specifically, we have configured the
following AWS Glue database:

•	 Database: my-data-lake-db

•	 Table name: yellowtrips

•	 S3 location: s3://data-lake-xxxxxxxxx/yellowtrips/

In order to be able to create the Athena dataset, you will need QuickSight to do
the following:

•	 Configure access to Amazon Athena.

•	 Configure access to the underlying S3 buckets.

In Chapter 2, Introduction to Amazon QuickSight, we learned how to give QuickSight
access to Amazon S3 buckets. You can follow a similar process to give access to the
Athena service.

To enable Athena access, we can use the following steps:

1.	 First, log into the AWS Console as the QuickSight Admin user and select
Manage QuickSight.

Managing QuickSight permissions 183

2.	 Select Security & permissions.
3.	 Select Add or remove from the QuickSight access to AWS services menu.

Figure 9.6 – Allowing QuickSight access to other AWS services

4.	 Select Athena, and ensure that the S3 data lake bucket is also selected.

Figure 9.7 – Enabling Amazon Athena access

184 Managing QuickSight Permissions and Usage

5.	 Click Finish.
6.	 To verify access, you can create a new Athena dataset (as we learned in Chapter 2,

Introduction to Amazon QuickSight).

While this is straightforward to set up, it gives all users the same level of access to Athena
and S3. It is very common for organizations to have different requirements when it
comes to permissions to data for different users and groups. For that reason, QuickSight
offers you the ability to define fine-grained access controls. This feature can be accessed
via the Resource access for individual users and groups menu under the Security
and Permissions settings. This will allow you to assign specific IAM policies to specific
QuickSight users or groups, allowing you to define more detailed permissions to your
QuickSight environment.

Now that we have learned how to create Athena datasets without Lake Formation, in
the next section, we will understand how to configure datasets that are managed by
Lake Formation.

Configuring Amazon Athena datasets with Amazon Lake Formation
Lake Formation provides an additional permission layer over your Athena datasets.
Instead of granting permissions using IAM, you register your S3 storage in Lake
Formation, and then you can use the Lake Formation Console or the Lake Formation API
to grant or revoke permissions to the tables in your data catalog. Lake Formation supports
column-based access policies, row-based filtering, and tag-based access controls, which
allow you to define advanced and fine-grained access controls for your dataset.

Instead of defining IAM policies and defining assignments to your users or groups, you
can use Lake Formation to manage your permissions centrally. In Lake Formation, you
manage permissions with a grant/revoke syntax (which will be familiar to business
intelligence (BI) developers), rather than defining JSON documents for IAM. When
working with QuickSight principals, you will need to use the QuickSight user or group
arn as the Lake Formation principal, as shown in the following figure:

Managing QuickSight permissions 185

Figure 9.8 – Configuring QuickSight users with Amazon Lake Formation

Defining permissions in Lake Formation allows you to define complex, fine-grained
permissions, without writing code or IAM policies. These data permissions are managed
centrally within the AWS Console, and this allows you to easily change and verify the level
of access each user has for specific datasets.

Now that we have learned how to configure custom permissions and talked briefly
about the Lake Formation integration, in the next section, we will learn how to organize
QuickSight assets using folders and set up alarms and email reports.

186 Managing QuickSight Permissions and Usage

Managing QuickSight usage
In this section, we will focus on managing QuickSight assets. We will learn how to
organize QuickSight assets using folders and how to set up alarms and reports.

Managing folders
You can use folders to easily organize, navigate, and discover QuickSight assets.
QuickSight assets include the following:

•	 Datasets

•	 Analyses

•	 Dashboards

Folders can be either of the following:

•	 Personal folders: These can be used to organize your work for yourself.

•	 Shared folders: These can be used to simplify the sharing of QuickSight assets
across multiple teams and BI developers.

Note
Only a QuickSight Admin user can create shared folders. Ownership of shared
folders can be transferred to another user who belongs to the Author user
cohort. Personal folder ownership always belongs to the user who created it.

To create folders, you can use either the QuickSight Console or QuickSight API. To
better understand how to use folders, we will use a hands-on example using the New York
Taxi sample dataset, analysis, and dashboard configured in Chapter 4, Developing Visuals
and Dashboards.

Working with personal folders
In this section, we will work with personal folders and use them to group different assets
together. For our example, let's assume that the Author user needs to organize all assets
(datasets, analyses, and dashboards) of a specific project together. This will allow them to
organize the QuickSight assets as they develop different projects.

To organize these assets, you can use QuickSight folders:

1.	 First, log into the QuickSight console as the Author user.
2.	 Then, click My folders, and then click + New in the top right-hand corner.

Managing QuickSight usage 187

3.	 Select a meaningful project name for your folder, for example, New York
Taxi Project.

4.	 Next, we will add the relevant assets. Locate each asset (dataset, analysis, and
dashboard), click Add to folder, and select the newly created folder, as shown in the
following screenshot:

Figure 9.9 – Adding assets to folders

5.	 After adding all the relevant assets, navigate back to My folders and open your New
York Taxi Project folder, as shown in the following screenshot:

Figure 9.10 – Grouping different assets into folders

Note that now we have grouped together different assets relevant to a specific project,
which saves you time when searching for relevant assets. The benefits of managing and
organizing assets using folders are greater when you have a large number of projects and
assets to work with.

188 Managing QuickSight Permissions and Usage

Now that we have learned how to use personal folders, in the next section, we will look at
shared folders.

Working with shared folders
Shared folders can be used to share assets between users or groups. Shared folders can
be particularly useful when there are many BI developers working on a project. You can
create shared folders for your users so they can easily find assets in a consistent way. As
you onboard new users into your QuickSight environment, you can share folders with the
new users, and your users will inherit the access to the underlying assets.

Note
Sharing a folder will give the underlying assets the same permissions as the
shared folders. This will allow you to share multiple dashboards that belong to a
folder with multiple users or groups, without having to configure specific rules
for each asset.

To create a shared folder, we will use the following steps:

1.	 Log in to the QuickSight Console (or use the CLI) as a QuickSight Admin user and
select Shared folders, and then select + New.

2.	 Give your shared folder a meaningful name, and select Create.
3.	 Now we will share our folder with our Reader user. Before this step, to better

understand the concept, we will remove the access to the dashboard for that
user and then re-enable access by sharing the shared folder, which will contain
the dashboard.

4.	 In Chapter 4, Developing Visuals and Dashboards, we learned how to manage user
access for QuickSight dashboards. To remove user access from a dashboard, log in
as the Author user, open your New York Taxi dashboard, then select Share, then
Manage Access, and then remove the Reader user.

5.	 To add your New York Taxi dashboard into your newly created shared folder,
simply select the dashboard and select Add to folder, as shown in the following
screenshot. Select your shared folder, and then click Add:

Managing QuickSight usage 189

Figure 9.11 – Adding a dashboard to a shared folder
Note the message informing you that your asset will have the same sharing
permissions to your shared folder:

Figure 9.12 – The sharing permissions message

6.	 Next, we will share our folder with our Reader user. To share a folder, select the
shared folder, and then select Share (as shown in the following screenshot), and add
your Reader user:

Figure 9.13 – Sharing a folder with other users

190 Managing QuickSight Permissions and Usage

7.	 As a final step, we can verify that the Reader user can open the dashboard shared
with them via the shared folder. To verify, log into the QuickSight Console as the
Reader user, open the shared folder, and then open your shared dashboard.

Managing folders effectively can help you organize and efficiently share QuickSight
assets with your users or group of users. With effective folder management, your users
will be able to easily navigate and find the assets they need to view or work with. Access
management can also be simplified by grouping assets together in shared folders, and then
providing access to the container folder, rather than on an individual asset level.

Note
You can transfer ownership of a shared folder to other QuickSight users who
are in the Author or Admin user cohort. Readers cannot own shared folders
and can only view them. Reader users can create personal folders only.

Now that we have learned how to work with shared folders, in the next section, we will
learn how to create reports and alerts.

Creating reports and alerts
In this section, we will learn how to configure email reports and alerts. QuickSight
allows you to configure email reports to update your business users on the latest state
of the business.

Email reports are configured against a QuickSight dashboard. To better understand how
to set up email reports, we will use the dashboard we created in Chapter 4, Developing
Visuals and Dashboards. To set up an email report, follow these steps:

1.	 First, log into Amazon QuickSight as the Author user.
2.	 Next, open the New York Taxi dashboard.

Managing QuickSight usage 191

3.	 Click the Share button, and then select Email report, which opens the report
configuration screen, as shown in the following figure:

Figure 9.14 – Configuring email reports

192 Managing QuickSight Permissions and Usage

4.	 On the next screen, you can customize your report preferences:

	� Schedule: You can set the repeat schedule of your report (send once, repeat once
a day, once a week, or once a month) and configure the time when the first report
will be sent.

	� Customize email text and report preferences: You can customize your report
text, including the email title, email text, and report title. You can also select
whether the report layout is optimized for mobile screens or desktop screens.

	� Recipients: Select the users (these can be either Author or Reader user roles) who
will receive the report. You can also choose to email the report to all users with
access to this dashboard. If you tick this checkbox, then when you add new users
to the dashboard, they will automatically receive the email report.

5.	 Click Save report to complete the email report configuration.

Now that we have configured the email report as the Author user, we will now focus on
the Reader user and learn how to manage the report subscriptio:

1.	 First, log out and log back in as the Reader user.
2.	 Select Reports from the top-right corner menu, as shown in the following

screenshot. Note that this option will be visible only when there are email reports
configured for this dashboard:

Figure 9.15 – Accessing the report subscription options

3.	 In the next screen, you can change your report subscription preferences:

	� Choose to subscribe (or unsubscribe) to the report.

	� Choose a desktop/mobile-optimized layout.

Managing QuickSight usage 193

These report preferences can be seen in the following screenshot:

Figure 9.16 – Managing email report preferences

Now that we have learned how to set up email reports as Authors and how to
manage subscriptions as Readers, in the next section, we will learn how to work with
QuickSight alerts.

Working with QuickSight threshold-based alerts
QuickSight allows you to set up threshold-based alerts when certain changes occur in
your data. Using threshold-based alerts, you can receive notifications when a specific
metric changes above or below a certain threshold. For example, when a key performance
indicator (KPI) falls below a target, you get notified so that action can be taken to get the
KPI back on target.

Note
You can have multiple alerts based on different conditions for a specific KPI.
Creating different types of alerts for the same metric allows you to implement a
complex KPI-monitoring alert system.

In the next section, we will learn how to add threshold-based alerts.

194 Managing QuickSight Permissions and Usage

Adding a threshold-based alert
To better understand how to configure threshold-based alerts, we will use the New York
Taxi dashboard we developed in Chapter 4, Developing Visuals and Dashboards. We will
use the gauge visual of this dashboard. At the time of writing, there are two visual types
that can be configured with alerts:

•	 KPI visual

•	 Gauge visual

To configure threshold-based alerts, complete the following steps:

1.	 First, log into the QuickSight Console (either as the Author or the Reader user) and
open the New York Taxi dashboard.

Note
Threshold-based alerts can only be configured at a QuickSight dashboard, and
not on a QuickSight analysis.

2.	 Next, locate the gauge visual that shows the total number of passengers against
a hypothetical target, and click on the visual. Notice the alert (bell) icon on the
right-hand side:

Figure 9.17 – Adding an alert for a gauge visual

Managing QuickSight usage 195

3.	 Click the alert (bell) icon to configure your alert. For this scenario, let's assume we
want to add the first alert when our KPI is below the 95% mark of the target. Type
the following values:

	� Alert name: [Amber] New York Taxi Number of Passengers

	� Alert value: Percent

	� Condition: Is below

	� Threshold: 95

	� Notification preference: As frequently as possible

Alerts for SPICE datasets are evaluated every time the dataset is refreshed. According
to the AWS documentation, for direct query datasets, alert rules are evaluated at a
random time between 6:00 PM and 8:00 AM in the AWS Region that holds the dataset:

https://docs.aws.amazon.com/quicksight/latest/user/
threshold-alerts.html

Figure 9.18 – Configuring alerts

https://docs.aws.amazon.com/quicksight/latest/user/threshold-alerts.html
https://docs.aws.amazon.com/quicksight/latest/user/threshold-alerts.html

196 Managing QuickSight Permissions and Usage

4.	 Click Save. Repeat the process to create a second alert. For the second alert, use the
same configuration as the first one, replacing only the Amber word with Red in the
alert name, and set the threshold to 90.

5.	 The next time you refresh your dataset, you will see an example alert in your
mailbox, as shown in the following screenshot:

Figure 9.19 – Receiving QuickSight alerts

Now that we have configured two alerts, in the next section, we will learn how to
manage alerts.

Managing threshold-based alerts
In this section, we will learn how to manage threshold-based alerts:

1.	 Stay logged into the QuickSight Console with the user you used in the previous
section. Open the New York Taxi dashboard we used in the previous step to set
up our alerts.

2.	 Click the Alerts icon in the top-right corner of your QuickSight dashboard, as
shown in the following screenshot:

 Figure 9.20 – Accessing the dashboard alerts management console

Summary 197

3.	 This step will open the alerts management console, as shown in the following
screenshot. From this screen, you can view all your dashboard alerts and the
conditions that trigger them. You can enable/disable each alert separately by
toggling the radio button next to each alert. Finally, you can expand the alert history
and view when each alert has been triggered:

Figure 9.21 – Managing dashboard alerts

4.	 Using the Edit dropdown, you can open each alert and change its name,
condition, threshold, and notification preferences. You can also delete the alerts
using this option.

By using email reports and threshold-based alerts, you ensure your business users are up
to date with your latest dashboards. Your business users will receive email notifications
either when new data is available or when certain thresholds are met.

Summary
Congratulations on completing this chapter.

In this chapter, we learned how to configure permissions for our Amazon QuickSight users
and groups. We also learned how to define fine-grained permissions, and we discussed
the benefits of integrating QuickSight with Amazon Lake Formation. Then, we focused on
how best to organize QuickSight assets such as analyses, datasets, and dashboards by using
folders, and how to share assets using shared folders. Finally, we learned how to configure
automated email reports and how to configure threshold-based alerts.

198 Managing QuickSight Permissions and Usage

Using the things you learned in this chapter, you will be able to define your permissions and
make sure you manage them effectively, making use of groups and folders where possible.

In the next (and final) chapter, we will learn how to configure and architect multi-tenant
QuickSight environments.

Questions
1.	 What are the benefits of integrating Amazon Lake Formation with QuickSight?
2.	 What QuickSight visuals support threshold-based alerts?
3.	 How do we automate email reports?
4.	 What are the differences between personal and shared folders in Amazon

QuickSight, and when should we use them?

Further reading
•	 Amazon QuickSight User Guide:

https://docs.aws.amazon.com/quicksight/latest/user/amazon-
quicksight-user.pdf

https://docs.aws.amazon.com/quicksight/latest/user/amazon-quicksight-user.pdf
https://docs.aws.amazon.com/quicksight/latest/user/amazon-quicksight-user.pdf

10
Multitenancy in

Amazon QuickSight
In this chapter, we will learn how to set up multitenancy in Amazon QuickSight.
Specifically, we will look into multi-tenant architectures and understand how QuickSight
namespaces can help us build multi-tenant environments.

We will cover the following topics in this chapter:

•	 Introducing multitenancy using namespaces

•	 Setting up multitenancy

Technical requirements
For this chapter, you will need access to the following:

•	 An AWS account and AWS Identity and Access Management (IAM) user, with
elevated access

•	 An Amazon QuickSight (Enterprise edition) account with an Admin user
configured

•	 The dashboard created in Chapter 4, Developing Visuals and Dashboards

200 Multitenancy in Amazon QuickSight

Introducing multitenancy using namespaces
In this section, we will introduce the concept of multitenancy in Amazon QuickSight.
Based on what we have learned so far, a user that owns a QuickSight asset can share the
resource with any other registered user in the account. However, there are use cases where
a single QuickSight account needs to support multiple tenants.

Understanding multitenancy
QuickSight offers features that allow developers to build multi-tenant business
intelligence (BI) platforms. Due to its cloud-native architecture, QuickSight scales
automatically depending on the number of users. This feature, coupled with QuickSight's
embedding capabilities and its API actions that can be accessed programmatically, helps
developers to implement multi-tenant BI platforms.

A key characteristic of a multi-tenant platform is that tenants don't interact with each
other, which effectively prevents a tenant from granting (or revoking) access to users
belonging to another tenant. It is also common that different tenants can have different
permission requirements for their users and different look and feel requirements. Multi-
tenant platforms can serve large corporations, where a tenant can be each subsidiary or a
separate department within the company.

Another use case can be software vendors who offer BI capabilities to their customers.
In this example, each tenant of the platform would represent a customer of the software
vendor. Each tenant would be able to manage their own BI assets and share them with
their own users (but not with other tenants). For this scenario, the tenants would typically
access QuickSight through a web portal. To separate and organize users from different
tenants, QuickSight introduced the concept of namespaces.

In the next section, we will introduce QuickSight namespaces.

Introducing multitenancy using namespaces 201

Introducing QuickSight namespaces
To address multitenancy requirements, Amazon QuickSight introduced the namespace
API. The namespace API allows organizations to build multi-tenant environments without
the need to create multiple QuickSight accounts.

A QuickSight namespace is a logical container of users and groups, and it can be used to
separate different departments or organizations. While users within the same namespace
can share assets between themselves, users from different namespaces cannot interact with
each other.

A namespace can be one of the following:

•	 Default namespace

•	 Custom namespace

When you create a new QuickSight account, your first Author and Admin users will
belong to the default namespace. Any other namespaces that you create are custom
namespaces.

Note
In custom namespaces, only federated SSO users can access the QuickSight
console. For other types of users (such as users authenticated with a QuickSight
username and password), you should use the default namespace.

A user cannot belong to more than one namespace. It is not possible to move users
between namespaces. Other QuickSight assets, such as analysis dashboards and datasets,
don't belong exclusively to namespaces. Instead, access to QuickSight assets is managed
using the Access API, as we learned in Chapter 8, Understanding the QuickSight API.
Therefore, it is possible to programmatically share an asset with users from different
namespaces. For example, an organization might need to share a common dashboard with
all users of all namespaces.

202 Multitenancy in Amazon QuickSight

The following figure depicts an example architecture for multi-tenant BI analytics:

Figure 10.1 – Multi-tenant architecture

The main components of the architecture are as follows:

•	 Custom namespaces: These are to organize the users from different tenants.

•	 Default namespace: These are for Admin users.

•	 Amazon SPICE and datasets: These are specific to a QuickSight account. Access
to these resources is managed separately using the QuickSight API, as we learned
in Chapter 3, Preparing Data with Amazon QuickSight, and Chapter 9, Managing
QuickSight Permissions and Usage.

•	 Embedded portal and Identity Store: This allows users into the QuickSight
console. For those use cases that don't need an embedded web portal, the
QuickSight web app can be used instead. The embedded portal can be any custom-
built web app. Implementation details on how to build web applications are outside
the scope of this book.

Now that we have learned the fundamentals of using multi-tenant architectures in
QuickSight, in the next section, we will look at a hands-on example.

Setting up multitenancy 203

Setting up multitenancy
In this chapter, we will set up a simple multi-tenant environment using the namespace
API. This exercise will help you understand how to set up multi-tenant environments as
a QuickSight Admin user. It will also help you understand what your BI users' experience
will be in multi-tenant scenarios, and how QuickSight prevents users from sharing assets
with other tenants.

Creating a namespace
Creating namespaces is simple, and it can be done using the QuickSight API. At the time
of writing, it is not possible to create namespaces through the QuickSight graphical user
interface (GUI):

1.	 First, you need to log into Amazon QuickSight as the QuickSight Admin user.
2.	 Next, open the AWS Command Line Interface (CLI), and type the following

command, replacing the highlighted values with the values from your environment.
For this exercise, we will create a custom namespace called companyA. Note that
we already have a default namespace for our existing Admin, Author, and Reader
users used throughout this book:

$aws quicksight create-namespace --aws-account-id
<account-id> --namespace companyA --identity-store
QUICKSIGHT

This will result in an asynchronous creation of the new namespace. Note, in the CLI
response, the status is CREATING:

{

 "Status": 202,

 "Name": "companyA",

 "CapacityRegion": "us-east-1",

 "CreationStatus": "CREATING",

 "IdentityStore": "QUICKSIGHT",

 "RequestId": "xxxxxx-xxxxx-xxxxxxxxxxxxx"

}

3.	 To confirm that the new namespace has been created, we will use the list-
namespaces CLI command. Type the following command, replacing the
highlighted values with those from your environment:

$aws quicksight list-namespaces --aws-account-id
<aws-account-id>

204 Multitenancy in Amazon QuickSight

Note the response. It should look like the following:
{

 "Status": 200,

 "Namespaces": [

 {

 "Name": "companyA",

 "Arn": "arn:aws:quicksight:us-east-
1:<account-id>:namespace/companyA",

 "CapacityRegion": "us-east-1",

 "CreationStatus": "CREATED",

 "IdentityStore": "QUICKSIGHT"

 },

 {

 "Name": "default",

 "Arn": "arn:aws:quicksight:us-east-1:
:<account-id>:namespace/default",

 "CapacityRegion": "us-east-1",

 "CreationStatus": "CREATED",

 "IdentityStore": "QUICKSIGHT"

 }

],

 "RequestId": "xxxxxxx-xxx-xxx-xxx-xxx"

}

Both namespaces have now been created successfully.

Note
Namespaces span AWS Regions, and a user will be assigned to the same
QuickSight namespace, regardless of which Region they are using.

Now that we have created our new namespace, in the next section, we will allocate a new
user to the namespace.

Using QuickSight namespaces
In this section, we will add users, and then we will see how namespaces don't allow users
to share assets with other namespaces. At the end of this section, we will learn how we can
configure common assets across namespaces.

Setting up multitenancy 205

Adding users
Now that we have a new namespace, we will register new users using the new namespace.
For this exercise, we will register a new IAM user in QuickSight:

1.	 First, create a new IAM user called author-a using the AWS Console. Select
IAM, and then the users from the left-hand side menu.

2.	 Select Add users. On the next screen, choose a user name, and then check the
Password – AWS Management Console access checkbox, as shown in the
following screenshot:

Figure 10.2 – Creating an IAM user

3.	 On the next screen, leave the permissions empty and click Create. Take note of the
user arn value, as we will use it in the next step.

4.	 Now that we have created our new user, we will register them with QuickSight
under the companyA namespace. Using the CLI, type the following command,
replacing the highlighted values with those from your environment:

$aws quicksight register-user --identity-type IAM
--email <your-email> --user-role AUTHOR --iam-
arn arn:aws:iam::<aws-account-id>:user/author-a
--aws-account-id <aws-account-id> --namespace companyA

206 Multitenancy in Amazon QuickSight

To confirm the creation of the user, we will use the list-users CLI command.
Note that we specify companyA as the namespace:

$aws quicksight list-users --aws-account-id
<aws-account-id> --namespace companyA

The response will look like the following:
{

 "Status": 200,

 "UserList": [

 {

 "Arn": "arn:aws:quicksight:us-east-
1:xxxxxxxxxxxx:user/companyA/author-a",

 "UserName": "author-a",

 "Email": "xxx@xxx",

 "Role": "AUTHOR",

 "IdentityType": "IAM",

 "Active": true,

 "PrincipalId": "federated/iam/xxxxx"

 }

],

 "RequestId": "xxxx-xxxx-xxxx-xxxx"

}

5.	 Now that we have successfully created our user, let's try to understand the effects of
a namespace. Open the AWS Console, and log into QuickSight as the newly created
user. Expand the top-right menu. Note the namespace name, as shown in the
following screenshot:

Figure 10.3 – Logging in to a multi-tenant QuickSight account

Setting up multitenancy 207

6.	 Next, we want to ensure that this user cannot share their dashboards, analyses,
or datasets with users from other namespaces. The easiest way to check this is to
quickly create a new dataset, analysis, or dashboard and try sharing it with other
users. Once the asset is created, open its permissions manager and try to invite a
Author or Reader user who belongs to a different namespace:

Figure 10.4 – Sharing assets in multi-tenant environments

When sharing assets, QuickSight autocompletes when it finds relevant users. You will
notice that as you type author, there is no suggestion from QuickSight, and the dataset
cannot be shared. The reason for this is that the Author user belongs to a different
namespace to the author-a user.

Now that we have seen how namespaces prevent users from sharing assets with other
users, we will see how it is possible to configure common assets between users in different
namespaces.

Sharing common assets
It is possible to have use cases where assets need to be visible to users that inhabit different
namespaces. For example, a large corporation might want to share a specific dashboard
with users that belong to different departments, which are configured as namespaces.
To complete this action, we will need to use the QuickSight API. As we learned in the
previous section, completing this via the QuickSight console is not possible, as users from
one namespace cannot discover users from another namespace.

208 Multitenancy in Amazon QuickSight

To better understand this concept, we will use the New York Taxi dashboard
configured in Chapter 4, Developing Visuals and Dashboards. For this tutorial, we will use
the QuickSight Admin user and the AWS CLI:

1.	 First, open a terminal with the AWS CLI installed.
2.	 List the dashboards using the list-dashboard action. Type the following

command, replacing the highlighted values with those from your environment:

$aws quicksight list-dashboards --aws-account
<aws-account-id>

Focus on the DashboardSummaryList array, and capture the DashboardId
value, as we will use it in the next step:

"DashboardSummaryList": [

 {

 "Arn": "arn:aws:quicksight:us-east-
1:xxxxxxxxx:dashboard/xxxx-xxxx-xxxx-xxxx-xxxx",

 "DashboardId": "xxxx-xxxx-xxxx-xxxx-xxxx",

 "Name": "New York Taxi Dashboard",

…

 }

3.	 To update the dashboard permissions, we will use the update-dashboard-
permissions CLI command. Type the following command, replacing the
highlighted values with those from your environment:

$aws quicksight update-dashboard-permissions --aws-ac-
count-id <aws-account-id> --dashboard-id <dashboard-id>
--grant-permissions Actions=quicksight:DescribeDash-
board,quicksight:ListDashboardVersions,quicksight:Update-
DashboardPermissions,quicksight:QueryDashboard,quick-
sight:UpdateDashboard,quicksight:DeleteDashboard,quick-
sight:DescribeDashboardPermissions,quicksight:UpdateDash-
boardPublishedVersion,Principal=arn:aws:quicksight:us-
east-1:<aws-account-id>:user/companyA/author-a

Now that we have provided access to our author-a user, we will log in to the
QuickSight console and view the available dashboards.

4.	 Log into the QuickSight console as the author-a user. Then, navigate to
Dashboards to view the available dashboards. The New York Taxi dashboard
should now be available for you to view, as shown in the following screenshot:

Summary 209

Figure 10.5 – Viewing common assets in a multi-tenant environment

In a similar way to dashboards, other assets (such as datasets or analyses) can be shared
using the QuickSight API.

Summary
Congratulations on completing this chapter, which is the final chapter of this book.

In this chapter, we learned about multitenancy in Amazon QuickSight. We also looked
closely at an example architecture that allows multiple tenants to access embedded assets
in QuickSight through a web portal. Then, we focused on QuickSight namespaces, and
we learned how to configure them. Finally, we looked at two hands-on examples to
understand how namespaces prevent users from sharing assets, and how an Admin user
can configure common assets for users in different namespaces.

You should now understand the fundamental concepts of multitenancy in Amazon
QuickSight, and you should know how to use the AWS CLI to create namespaces and
organize your different tenants.

Before you close this book, please ensure that all AWS resources created for this book and
its exercises are shut down to prevent charges to your AWS account.

I want to thank you for your time, and I hope this book met your expectations. For any
comments and further questions, you can find me on LinkedIn. Feel free to connect with
me, I would love to hear your thoughts and feedback. Happy learning!

210 Multitenancy in Amazon QuickSight

Questions
1.	 What are the main characteristics of multi-tenant platforms?
2.	 What are the main use cases for creating multi-tenant BI platforms?
3.	 What are QuickSight namespaces, and how do you configure them?

Further reading
•	 Amazon QuickSight User Guide: https://docs.aws.amazon.com/

quicksight/latest/user/amazon-quicksight-user.pdf

•	 Supporting Multitenancy with Isolated Namespaces: https://docs.aws.
amazon.com/quicksight/latest/user/namespaces.html

https://docs.aws.amazon.com/quicksight/latest/user/amazon-quicksight-user.pdf
https://docs.aws.amazon.com/quicksight/latest/user/amazon-quicksight-user.pdf
https://docs.aws.amazon.com/quicksight/latest/user/namespaces.html
https://docs.aws.amazon.com/quicksight/latest/user/namespaces.html

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

212 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Machine Learning with Amazon SageMaker Cookbook

Joshua Arvin Lat

ISBN: 9781800567030

•	 Train and deploy NLP, time series forecasting, and computer vision models to
solve different business problems Push the limits of customization in SageMaker
using custom container images Use AutoML capabilities with SageMaker Autopilot
to create high-quality models Work with effective data analysis and preparation
techniques Explore solutions for debugging and managing ML experiments
and deployments Deal with bias detection and ML explainability requirements
using SageMaker Clarify Automate intermediate and complex deployments and
workflows using a variety of solutions.

https://packt.link/9781800567030

Other Books You May Enjoy 213

Amazon Redshift Cookbook

Shruti Worlikar, Thiyagarajan Arumugam, Harshida Patel

ISBN: 9781800569683

•	 Use Amazon Redshift to build petabyte-scale data warehouses that are agile at
scale Integrate your data warehousing solution with a data lake using purpose-
built features and services on AWS Build end-to-end analytical solutions from
data sourcing to consumption with the help of useful recipes Leverage Redshift's
comprehensive security capabilities to meet the most demanding business
requirements Focus on architectural insights and rationale when using analytical
recipes Discover best practices for working with big data to operate a fully managed
solution.

https://packt.link/9781800569683

214

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Actionable Insights with Amazon QuickSight, we'd love to hear your
thoughts! If you purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site
that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com

Index

A
actions

filter actions 106-108
navigation actions 108, 109
URL actions 109-111
working with 106

ad-hoc analytics 7
advanced dataset operations

calculated fields, adding 59, 60
datasets, filtering 61
datasets, joining 61
working with 59

Amazon API Gateway 136
Amazon Athena 8, 140
Amazon Athena dataset

about 182
configuring, with Amazon Lake

Formation 184, 185
permissions, configuring without

Amazon Lake Formation 182-184
Amazon Cognito 138
Amazon EC2 instances 140
Amazon EKS 136
Amazon EventBridge 166

Amazon Lake Formation
about 182
Amazon Athena dataset, permissions

configuring 182-184
integrating with 182
used, for configuring Amazon

Athena dataset 184, 185
Amazon Lambda 136
Amazon Macie 7
Amazon QuickSight

about 6, 28, 140
architecture 32
domain, whitelisting 136, 137
end-to-end BI process 31
networking concepts 32
setting up 36-40
user authorization options 34, 35

Amazon QuickSight, core concepts
analysis 28
dashboards 29
datasets 28
insights 29
visuals 29

Amazon QuickSight, data sources
adding 42, 43
configuring 44

216 Index

Redshift cluster access, enabling 44, 45
Redshift data source, setting up 46-49
S3 data source, setting up 49

Amazon QuickSight, editions
about 34
enterprise edition 34
standard edition 34
standard edition, versus

enterprise edition 35
Amazon QuickSight permissions

Amazon Lake Formation,
integrating with 182

managing 176
setting up 179-181
user groups, using 177-179

Amazon QuickSight usage
managing 186
QuickSight threshold-based

alerts, working with 193
Amazon QuickSight, user types

about 29
admin 30
author 30
reader 30

Amazon Redshift cluster 155
Amazon Resource Number (arn) 176
Amazon S3 dataset

application, testing 171, 172
creating 167-169
QuickSight ingestion lambda

function, configuring 169-171
trigger, configuring 171

Amazon S3 data source
about 166
ingestion, automating 167

Amazon Simple Storage Service
(S3) 6, 136, 140

Amazon SPICE data source 167

Amazon STS 139
anomalies

exploring 128-130
API Gateway 140
application

chart color settings, modifying 88
color of visual, modifying 87, 88
conditional formatting, applying

to visual 88-90
interface, customizing 84
themes, applying 85-87
visuals, formatting 87

application programming
interface (API) 150

authentication layer 135-138
autodiscover feature 43
AutoGraph 29
autonarrative features 118
AWS

modern data architecture,
exploring on 10

modern data architecture on 11
AWS analytics ecosystem

ad-hoc analytics 7
business intelligence (BI) 5
data lake governance 6, 7
data lake storage 6, 7
data warehousing 6
discovering 4
Extract, Transform, Load (ETL) 8, 9

AWS CLI
used, for accessing QuickSight

API 150-153
AWS documentation

reference link 153
AWS Glue Catalog 7
AWS Glue Data Catalog 182
AWS IoT Analytics 43

Index 217

AWS Lake Formation 7
AWS Lambda 140, 166
AWS Region level 160
AWS SDK

installing 154
used, for accessing QuickSight API 153

AWS Virtual Private Cloud (VPC) 32

B
bar chart

about 76
Group/Color field 76
value field 76
vertical bar chart 76
x-axis 76

BI layer 135, 137
business drivers

for embedding 132
business intelligence

(BI) 5, 28, 150, 184, 200

C
C++ 153
calculated fields, prebuilt functions

aggregate functions 59
conditional functions 59
date functions 59
numeric functions 59
string functions 59
table calculations 59

Cloud9 154
Cognito User Pool 140
Color field

value 77
column name

renaming 55-57

command-line interface (CLI) 150, 203
container services 140
control's creation settings, parameters

Display Name 102
Style 102
Values 103

custom namespace 201

D
D3.js

about 132
URL 132

dashboard
about 82
interactivity, enabling 104-106
publishing 82
sharing 82-84

dashboard embedding
flow 141, 142

data lake
data, loading from 12
data, unloading from 12, 13
querying, from data warehouse 12
versus data warehouses 10, 11

modern data architecture
creating 13
data lake storage, creating 13

modern data architecture
components 11
exploring, on AWS 10, 11

data lake storage
creating, steps 13-24

datasets
column name, editing 55
data types, editing 55

218 Index

editing 50
filtering 61, 62, 98
importing, into SPICE 50
joining 62

data swamps 7
data types

modifying 57, 58
data warehouse

data lake, querying from 12
default namespace 201
donut chart 75

E
EC2 136
ECS 136
Elastic Network Interface (ENI) 32
embedded analytics, QuickSight

about 132
architectural components 135
types 133

embedded dashboard URL
generating 142-144

embedding
business drivers 132

Extract, Transform, Load (ETL) 8, 9

F
Fargate 136
filled map visual 81
filter actions

Action Name option 106
Activation option 106
configuring 106
example 106
Filter scope option 106
working with 106-108

filters
ad hoc filtering, enabling 99
filter conditions, defining 98
parameters, linking to 101, 102
visual, selecting for filtering 97
working with 96, 97

folders, Amazon QuickSight usage
personal folders, working with 186, 187
reports and alerts, creating 190-193
shared folders, working with 188-190

forecasting
about 114
adding 114-116
using 114
what-if scenarios, working with 117

forecasting parameters
forecast length 115
prediction interval 115
seasonality 115

formatting options, KPI visual type
Currency 73
Number 73
Percentage 73

G
gauge chart 73, 74
gauge visual 194
generic architecture, embedded analytics

authentication layer 137, 138
BI layer 137
overview 140
web application layer 136

geospatial visuals
about 80
filled map visual 81
points on map visual 80

Index 219

Go 153
graphical user interface (GUI) 150, 203

I
IAM role trusted entity 139
Identity and Access Management (IAM) 7

about 140
identity provider, configuring 138, 139

insights
about 118
adding 118-121
creating 119
editing 119-123
working with 118

integrated development
environment (IDE) 154

interactive dashboards
actions, adding 106
building 95
filters, using 96
parameters, using 96

Internet of Things (IoT) 43

J
Java 153
JavaScript 153
JSON documents 184

K
key performance indicator (KPI) 70, 193
KPI visual type

about 70, 71, 194
field options 72
formatting options 73

target value field 71
trend group field 71
value field 71

L
modern data architecture, on AWS

features 12, 13
line chart

about 77
Value field 77
x-axis 77

M
Manhattan Wikipedia page

URL 111
ML insights

anomaly detection insights,
adding 126-128

anomaly detection insights,
editing 126-128

anomaly detection insights,
working with 126

forecasting insights, working
with 124-126

multi-tenancy
about 200
namespace, creating 203, 204
QuickSight namespace, using 204
setting up 203
with namespace 200

multi-tenancy architecture
components 202

220 Index

N
namespace

using, in multi-tenancy 200
navigation actions

Action Name option 109
Activation option 109
configuring 109
description 109
Parameters option 109
Target sheet option 109
title 109
working with 108

O
on-screen controls

adding, to parameter 102-106

P
parameters

about 99
creating 100
linking, to filters 101
on-screen controls, adding 102-106
working with 99

personally identifiable information (PII) 7
pie chart 74
pivot table

about 78-80
columns 80
rows 79
values 80

points on map visual 80
Python 153

Q
QuickSight

visuals, working with 68
visual types 70

QuickSight
embedded analytics 132

QuickSight analysis
creating 68, 69

QuickSight API
about 150
accessing, with AWS CLI 150-153
accessing, with AWS SDK 153
assets, reusing with template

API 161-165
AWS CLI, configuring 151, 152
AWS CLI installation, verifying 151
dataset, setting up with CLI 155-158
used, for building automation 166
used, for controlling QuickSight

resources 155
used, for editing account

settings 159, 160
QuickSight console embedding 134
QuickSight documentation

reference link 155
QuickSight Embedding SDK

reference link 134
QuickSight namespace 201, 202

common assets, sharing 207-209
users, adding 205-207
using 204

QuickSight resources
controlling, with QuickSight API 155

QuickSight threshold-based alerts
adding 194-196
managing 196, 197
working with 193

Index 221

R
read-only dashboard embedding 133
Redshift Spectrum 12
Relational Database Management

Systems (RDBMS) 7
relational database systems 42
row-level security controls

row-level filter, applying 64-66
Ruby 153

S
S3 140
S3 Analytics 43
Sankey visual type

about 81
example 81, 82

schema on read 10
schema on write 10
security controls

column-level security
controls, adding 63

configuring 63
row-level security controls, adding 64

self-referencing security group 44
session capacity planning 133
Single Sign-On (SSO) 30
Snowflake 140
software-as-a-service (SaaS) 166
software development kit (SDK) 150
Super-fast Parellel In-memory

Calculation Engine (SPICE)
about 33
automatic refresh, scheduling 54
dataset query mode, setting 51, 52
datasets, importing into 50

import job status, monitoring 52-54
using 82

T
table visual

about 78-80
group by field 78
value field 78

template API
used, for reusing assets 161-165

themes
applying, to application 85, 87

time-based aggregations 77

U
URL actions

about 109
Action Name option 109
Activation option 109
configuring 109
Open-in option 110
URL option 109
working with 110, 111

V
vertical bar chart 76
visuals

formatting, in application 87
visual types

about 70
bar chart 76
composition of attribute, visualizing 74
donut chart 75
gauge chart 73

222 Index

geospatial data, visualizing 81
geospatial visuals 80
KPI visual type 70-72
line chart 77
metric, visualizing 70
pie chart 74
Sankey visual type 81
side-by-side comparisons, visualizing 75
table visual 78
time series, visualizing 77

W
web application layer 135, 136
what-if scenarios 117

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Section 1:
Introduction to Amazon QuickSight and the AWS Analytics Ecosystem
	Chapter 1: Introducing the AWS Analytics Ecosystem
	Technical requirements
	Discovering the AWS analytics ecosystem
	Business intelligence
	Data warehousing
	Data lake storage and governance
	Ad hoc analytics
	Extract, transform, load

	Exploring the modern data architecture
on AWS
	Data lakes versus data warehouses
	modern data architecture on AWS

	Creating a basic modern data architecture
	Creating the data lake storage

	Summary
	Questions
	Further reading

	Chapter 2: Introduction to Amazon QuickSight
	Technical requirements
	Introducing Amazon QuickSight
	Datasets
	Analysis
	Visuals and insights
	Dashboards
	Introducing Amazon QuickSight user types
	Introducing QuickSight architecture

	Introducing QuickSight editions and user authorization options
	QuickSight editions
	User authorization with QuickSight

	Setting up Amazon QuickSight
	Summary
	Questions
	Further reading

	Chapter 3: Preparing Data with Amazon QuickSight
	Technical requirements
	Adding QuickSight data sources
	Supported data sources with QuickSight
	Configuring our first data source

	Editing datasets
	Importing into SPICE
	Editing column names and data types

	Working with advanced operations
	Adding calculated fields
	Filtering and joining datasets

	Configuring security controls
	Summary
	Q&A
	Further reading

	Chapter 4: Developing Visuals and Dashboards
	Technical requirements
	Working with QuickSight visuals
	Creating an analysis
	Supported visual types

	Publishing dashboards
	Customizing the look and feel of the application
	Applying themes
	Formatting visuals

	Summary
	Q&A
	Further reading

	Section 2:
Advanced Dashboarding
and Insights
	Chapter 5: Building Interactive Dashboards
	Technical requirements
	Using filters and parameters
	Working with filters
	Working with parameters

	Working with actions
	Working with filter actions
	Working with navigation actions
	Working with URL actions

	Summary
	Q&A
	Further reading

	Chapter 6: Working with ML Capabilities
and Insights
	Technical requirements
	Using forecasting
	Adding forecasting
	Working with what-if scenarios

	Working with insights
	Adding suggested insights
	Creating and editing an insight

	Working with ML insights
	Working with forecasting insights
	Working with anomaly detection insights

	Summary
	Questions
	Further reading

	Chapter 7: Understanding Embedded Analytics
	Technical requirements
	Introducing QuickSight embedded analytics
	Understanding the business drivers for embedding
	Understanding embedded analytics types
	Understanding read-only dashboard embedding

	Exploring the architecture and user authentication
	Overview of the web application layer
	Overview of the BI layer
	Understanding the authentication layer
	Putting everything together

	Generating an embedded dashboard URL
	Summary
	Q&A
	Further reading

	Section 3:
Advanced Topics and Management
	Chapter 8: Understanding the QuickSight API
	Technical requirements
	Introducing the QuickSight API
	Accessing the QuickSight API

	Controlling resources using the QuickSight API
	Setting up a dataset using the CLI
	Editing account settings using the QuickSight API
	Reusing assets using the template API
	Building automation using the QuickSight API

	Summary
	Questions
	Further reading

	Chapter 9: Managing QuickSight Permissions
and Usage
	Technical requirements
	Managing QuickSight permissions
	Using user groups
	Setting up custom permissions
	Integrating with Amazon Lake Formation

	Managing QuickSight usage
	Managing folders
	Creating reports and alerts
	Working with QuickSight threshold-based alerts

	Summary
	Questions
	Further reading

	Chapter 10: Multitenancy in Amazon QuickSight
	Technical requirements
	Introducing multitenancy using namespaces
	Understanding multitenancy
	Introducing QuickSight namespaces

	Setting up multitenancy
	Creating a namespace
	Using QuickSight namespaces

	Summary
	Questions
	Further reading
	Why subscribe?

	Other Books You May Enjoy
	Index

