

Scalable Data
Streaming with
Amazon Kinesis

Design and secure highly available, cost-effective
data streaming applications with Amazon Kinesis

Tarik Makota

Brian Maguire

Danny Gagne

Rajeev Chakrabarti

BIRMINGHAM—MUMBAI

Scalable Data Streaming with Amazon Kinesis
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author(s), nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Kunal Parikh
Publishing Product Manager: Devika Battike
Senior Editor: Mohammed Yusuf Imaratwale
Content Development Editors: Sean Lobo and Tazeen Shaikh
Technical Editor: Devanshi Deepak Ayare
Copy Editor: Safis Editing
Project Coordinator: Aparna Ravikumar Nair
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Shankar Kalbhor

First published: March 2021

Production reference: 1300321

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80056-540-1

www.packt.com

http://www.packt.com

Contributors

About the authors
Tarik Makota hails from a small town in Bosnia. He is a principal solutions architect
with AWS, a builder, a writer, and the self-proclaimed best fly fisherman at AWS. Never
a perfect student, he managed to earn an MSc in software development and management
from RIT. When he is not "doing the cloud" or writing, Tarik spends most of his time
fly fishing to pursue slippery trout. He feeds his addiction by spending summers in
Montana. Tarik lives in New Jersey with his family, Mersiha, Hana, and two exceptionally
perfect dogs.

Brian Maguire is a solutions architect at AWS, where he is focused on helping customers
build solutions in the cloud. He is a technologist, writer, teacher, and student who loves
learning. Brian lives in New Hope, Pennsylvania, with his family, Lorna, Ciara, Chris, and
several cats.

Danny Gagne is a solutions architect at AWS. He has extensive experience in the design
and implementation of large-scale, high-performance analysis systems. He lives in New
York City.

Rajeev Chakrabarti is a principal developer advocate with the Amazon Kinesis and the
Amazon MSK team. He has worked for many years in the big data and data streaming
space. Before joining the Amazon Kinesis team, he was a streaming specialist solutions
architect helping customers build streaming pipelines. He lives in New Jersey with his
family, Shaifalee and Anushka.

About the reviewers
Ritesh Gupta works as a software development manager with AWS, leading the control
plane and data plane teams on the Kinesis Data Streams service. He has over 20 years of
experience in leading and delivering geographically distributed web-scale applications and
highly available distributed systems supporting millions of transactions per second; he has
10 years of experience in managing engineers and managers. Prior to Amazon, he worked
at Microsoft, EA Games, Dell, and a few successful start-ups. His technical expertise cuts
across building web-scale applications, enterprise software, and big data. I thank my wife,
Jyothi, and daughter, Udita, for putting up with the late-night learning sessions that have
allowed me to be where I am.

Randy Ridgley is an experienced technology generalist working with organizations in
the media and entertainment, casino gaming, and public sector fields that are looking to
adopt cloud technologies. He started his journey into software development at a young
age, building BASIC programs on the Commodore 64. In his professional career, he
started by building Windows applications, eventually graduating to Linux with multiple
programming languages. Currently, you can find Randy spending most of his time
building end-to-end real-time streaming solutions on AWS using serverless technologies
and IoT.

Preface

Section 1:
Introduction to Data Streaming and
Amazon Kinesis

1
What Are Data Streams?

Introducing data streams� 4
Sources of data� 4

The value of real-time data in
analytics� 6
Decoupling systems� 8
Challenges associated with
distributed systems� 9
Transactions per second� 9
Scaling� 10
Latency� 11
Fault tolerance/high availability� 11

Overview of messaging concepts�12
Overview of core messaging components�12
Messaging concepts� 13

Examples of data streaming� 16
Application log processing� 17
Internet of Things � 18
Real-time recommendations� 18
Video streams� 18

Summary� 19
Further reading� 19

Table of Contents

2
Messaging and Data Streaming in AWS

Amazon Kinesis Data Streams
(KDS)� 23
Encryption, authentication, and
authorization� 25
Producing and consuming records� 26
Data delivery guarantees� 26
Integration with other AWS services� 26
Monitoring� 26

Amazon Kinesis Data Firehose
(KDF)� 27
Encryption, authentication, and
authorization� 29
Monitoring� 30
Producers� 30
Delivery destinations� 30
Transformations� 30

Amazon Kinesis Data Analytics
(KDA)� 32
Amazon KDA for SQL� 32
Amazon Kinesis Data Analytics for
Apache Flink (KDA Flink)� 35

Amazon Kinesis Video Streams
(KVS)� 37
Amazon Simple Queue Service
(SQS)� 38
Amazon Simple Notification
Service (SNS)� 40
Amazon SNS integrations with other
AWS services� 43
Encryption at rest� 43

Amazon MQ for Apache
ActiveMQ� 44
IoT Core� 46
Device software � 46
Control services� 47
Analytics services� 47

Amazon Managed Streaming
for Apache Kafka (MSK)� 48
Apache Kafka� 48
Amazon MSK� 51

Amazon EventBridge� 54
Service comparison summary� 56
Summary� 57

3
The SmartCity Bike-Sharing Service

The mission for sustainable
transportation� 60
SmartCity new mobile features� 61
SmartCity data pipeline� 62
SmartCity data lake � 63
SmartCity operations and analytics
dashboard � 63

SmartCity video � 64

The AWS Well-Architected
Framework� 64
Summary� 65
Further reading� 66

Section 2:
Deep Dive into Kinesis

4
Kinesis Data Streams

Technical requirements� 70
Discovering Amazon Kinesis
Data Streams� 71
Creating streams and shards� 73

Creating a stream producer
application� 78
Creating a stream consumer
application� 90
Data pipelines with Amazon
Kinesis Data Streams� 100
Data pipeline design (simple)� 100
Data pipeline design (intermediate)� 101

Data pipeline design (full design)� 102
Designing for scalable and reliable
analytics pipelines� 103
Monitoring and scaling with Amazon
Kinesis Data Streams� 105
X-Ray tracing with Amazon Kinesis
Data Streams� 108
Scaling up with Amazon Kinesis Data
Streams� 109
Securing Amazon Kinesis Data Streams� 109
Implementing least-privilege access� 109

Summary� 110
Further reading� 111

5
Kinesis Firehose

Technical requirements� 114
Setting up the AWS account� 114
Using a local development environment�114
Using an AWS Cloud9 development
environment� 114
Code examples� 115

Discovering Amazon Kinesis
Firehose� 115
Understanding KDF delivery streams� 116

Understanding encryption in
KDF� 119
Using data transformation in
KDF with a Lambda function� 120

Understanding delivery stream
destinations� 123
Amazon S3� 124
Amazon Redshift � 136
Amazon Elasticsearch Service � 142
Splunk destination� 152
HTTP endpoint destination� 157

Understanding data format
conversion in KDF� 160
Deserialization� 161
Schema� 163
Serializer� 163
Data format conversion errors� 163

Understanding monitoring in
KDF� 164
Use-case example – Bikeshare
station data pipeline with KDF� 165

Steps to recreate the example� 167

Summary� 171
Further reading� 172

6
Kinesis Data Analytics

Technical requirements � 174
AWS account setup� 174
AWS CDK� 174
Java and Java IDE� 175
Code examples� 175

Discovering Amazon KDA� 175
Working on SmartCity bike
share analytics use cases� 176
Creating operational insights
using SQL Engine� 178
Core concepts and capabilities� 179

Creating operational insights
using Apache Flink � 190

Options for running Flink applications
in AWS Cloud� 192
Flink applications on KDA � 193

Building bike ride analytic
applications� 197
Setting up a producer application� 197
Building a KDA SQL application� 200
Building a KDA Flink application� 205

Monitoring KDA applications� 210
Summary� 211
Further reading� 212
Blogs� 212
Workshops� 212

7
Amazon Kinesis Video Streams

Technical requirements� 214
AWS account setup� 214
Using a local development environment�214
Code examples� 215

Understanding video
fundamentals � 215
Containers� 216
Codecs� 216

Discovering Amazon Kinesis
video streams WebRTC� 217
Core concepts and connection patterns� 218
Creating a signaling channel� 222
Establishing a connection� 224

Discovering Amazon KVS� 229
Key components of KVS� 229
Stream� 230
Kinesis producer� 231

Consuming � 232
Creating a stream� 234
Producing� 236
Integration with Rekognition� 239

Building video-enabled
applications with KVS� 240
Summary� 242
Further reading� 242

Section 3:
Integrations

8
Kinesis Integrations

Technical requirements � 246
AWS account setup� 246
AWS CLI� 246
Kinesis Data Generator� 247
Code examples� 247

Amazon services that can
produce data to send to Kinesis�247
Amazon Connect� 247
Amazon Aurora database activity � 250
DynamoDB activity� 253
Processing Kinesis data with Apache
Spark � 255

Amazon services that consume data
from Kinesis� 259
Serverless data lake � 259

Amazon services that transform
Kinesis data� 273
Routing events with EventBridge � 273

Third-party integrations with
Kinesis� 278
Splunk � 278

Summary� 281
Further reading� 282
Why subscribe?� 283

Other Books You May Enjoy
Index

Preface
Amazon Kinesis is a collection of secure, serverless, durable, and highly available
purpose-built data streaming services. These data streaming services provide APIs and
client SDKs to enable you to produce and consume data at scale.

Scalable Data Streaming with Amazon Kinesis begins with a quick overview of the core
concepts of data streams along with the essentials of the AWS Kinesis landscape. You'll
then explore the requirements of the use cases shown throughout the book to help you
get started, and cover the key pain points encountered in the data stream life cycle. As you
advance, you'll get to grips with the architectural components of Kinesis, understand how
they are configured to build data pipelines, and delve into the applications that connect
to them for consumption and processing. You'll also build a Kinesis data pipeline from
scratch and learn how to implement and apply practical solutions. Moving on, you'll learn
how to configure Kinesis on a cloud platform. Finally, you'll learn how other AWS services
can be integrated into Kinesis. These services include Redshift, Dynamo Database, AWS
S3, Elasticsearch, and third-party applications such as Splunk.

By the end of this AWS book, you'll be able to build and deploy your own Kinesis data
pipelines with Kinesis Data Streams (KDS), Kinesis Firehose (KFH), Kinesis Video
Streams (KVS), and Kinesis Data Analytics (KDA).

Who this book is for
This book is for solutions architects, developers, system administrators, data engineers,
and data scientists looking to evaluate and choose the most performant, secure, scalable,
and cost-effective data streaming technology to overcome their data ingestion and
processing challenges on AWS. Prior knowledge of cloud architectures on AWS, data
streaming technologies, and architectures is expected.

viii Preface

What this book covers
Chapter 1, What Are Data Streams?, covers core streaming concepts so that you will have
a detailed understanding of their application in distributed systems.

Chapter 2, Messaging and Data Streaming in AWS, takes a brief look at the ecosystem of
AWS services in the messaging space. After reading this chapter, you will have a good
understanding of the various services, be able to differentiate them, and understand the
strengths of each service.

Chapter 3, The SmartCity Bike-Sharing Service, reviews the existing bike-sharing
application and how the city plans to modernize it. This chapter will provide the
background information for the examples used throughout the book.

Chapter 4, Kinesis Data Streams, teaches concepts and capabilities, common deployment
patterns, monitoring and scaling, and how to secure KDS. We will step through a data
streaming solution that will ingest, process, and feed data from multiple SmartCity data
systems.

Chapter 5, Kinesis Firehose, teaches the concepts, common deployment patterns,
monitoring and scaling, and security in KFH.

Chapter 6, Kinesis Data Analytics, covers the concepts and capabilities, approaches for
common deployment patterns, monitoring and scaling, and security in KDA. You will
learn how real-time streaming data can be queried like a database with SQL or code.

Chapter 7, Amazon Kinesis Video Streams, explores the concepts, monitoring and scaling,
security, and deployment patterns for real-time communication and data ingestion.
We will step through a solution that will provide real-time access to a video stream
and ingest video data for the SmartCity data system.

Chapter 8, Kinesis Integrations, reviews how to integrate Kinesis with several Amazon
services, such as Amazon Redshift, Amazon DynamoDB, AWS Glue, Amazon Aurora,
Amazon Athena, and other third-party services such as Splunk. We will integrate a wide
variety of services to create a serverless data lake.

Preface ix

To get the most out of this book
All of the examples in the chapters in this book are run using an AWS account to access
services such as Amazon Kinesis, DynamoDB, and Amazon S3. Readers will need
a Windows, Mac, or Linux computer with an internet connection. Many of the examples
in the book use a command-line terminal such as PuTTY, macOS Terminal, GNOME
Terminal, or iTerm2 to run commands and change configuration. The examples written in
Python are written for the Python 3 interpreter and may not work with Python 2. For the
examples written for the Java platform, readers are encouraged to use Java version 11 and
AWS Java SDK version 1.11. We make extensive use of the AWS CLI v2 and will also use
Docker for some examples. In addition to software, a webcam or IP camera and Android
device will be needed to fully execute some of the examples.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Streaming-Data-Solutions-with-
Amazon-Kinesis. In case there's an update to the code, it will be updated on the
existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800565401_ColorImages.pdf.

https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800565401_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800565401_ColorImages.pdf

x Preface

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "In this command, we'll send the test2.mkv file we downloaded to the KVS
stream."

A block of code is set as follows:

aws glue create-database --database-input
"{\"Name\":\"smartcitybikes\"}"

aws glue create-table --database-name smartcitybikes --table-
input file://SmartCityGlueTable.json

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

mediaSource.start();

Any command-line input or output is written as follows:

aws rekognition start-stream-processor --name kvsprocessor

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Once you have entered the appropriate information, all that's left is to click Create
signaling channel."

Tips or important notes	
Appear like this.

Preface xi

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://authors.packtpub.com

Section 1:
Introduction to

Data Streaming and
Amazon Kinesis

In this section, you will be introduced to the concept of data streams and how they are
used to create scalable data solutions.

This section comprises the following chapters:

•	 Chapter 1, What Are Data Streams?

•	 Chapter 2, Messaging and Data Streaming in AWS

•	 Chapter 3, The SmartCity Bike-Sharing Service

1
What Are Data

Streams?
A data stream is a system where data continuously flows from multiple sources, just like
water flows through a stream. The data is often produced and collected simultaneously
in a continuous flow of many small files or records. Data streams are utilized by a wide
range of business, medical, government, social media, and mobile applications. These
applications include financial applications for the stock market and e-commerce ordering
systems that collect orders and cover fulfillment of delivery.

In the entertainment space, live data is produced by sensing devices embedded in player
equipment, video game players generate large amounts of data at a massive scale, and
there are new social media posts thousands of times per second. Governments also
leverage streaming data and geospatial services to monitor land, wildlife, and other
activities.

Data volume and velocity are increasing at faster rates, creating new challenges in data
processing and analytics. This book will detail these challenges and demonstrate how
Amazon Kinesis can be used to address them. We will begin by discussing key concepts
related to messaging in a technology-agnostic form to provide a solid foundation for
building your Kinesis knowledge.

4 What Are Data Streams?

Incorporating data streams into your application architecture will allow you to deliver
high-performance solutions that are secure, scalable, and fast. In this chapter, we will
cover core streaming concepts so that you will have a detailed understanding of their
application to distributed systems. You will learn what a data stream is, how to leverage
data streams to scale, and examine a number of high-level use cases.

This chapter covers the following topics:

•	 Introducing data streams

•	 Challenges associated with distributed systems

•	 Overview of messaging concepts

•	 Examples of data streaming

Introducing data streams
Data streams are a way of storing a sequence of messages. They enable us to design
systems where we think about state as a series of events instead of only entities and values,
or rows and columns in a database. This shift in mindset and technology enables real-time
analytics to extract the value from data by acting on it before it is stale. They also enable
organizations to design and develop resilient software based on microservice architectures
by helping them to decouple systems. We will begin with an overview of streaming data
sources, why real-time data analysis is valuable, and how they can be used architecturally
to decouple systems. We will then review the core challenges associated with distributed
systems, and conclude with an overview of key messaging concepts and some high-level
examples. Messages can contain a wide variety of information and come from different
sources, so let's look at the primary sources and data formats.

Sources of data
The proliferation of data steadily increases from sources such as social media, IoT devices,
web clickstreams, application logs, and video cameras. This data poses challenges to most
systems, since it is typically high-velocity, intermittent, and bursty, making it difficult to
adequately provision and design downstream systems. Payloads are generally small, except
when containing audio or video data, and come in a variety of formats.

Introducing data streams 5

In this book, we will be focusing on three data formats. These formats include the
following:

•	 JavaScript Object Notation (JSON)

•	 Log files

•	 Time-encoded binary files such as video

JSON streams
JSON has become the dominant format for message serialization over the past 10 years.
It is a lightweight data interchange format that is easy for humans to read and write and
is based on the JavaScript object syntax. It has two data structures – hash tables and lists.
A hash table consists of key-value pairs, {"key":"value"}, where the keys must
be unique. A list is a set of values in a specific order, ["value 1", "value 2"]. The
following code sample shows a sample IoT JSON message:

{

 "deviceid" : "device001",

 "eventTime": -192778200,

 "temp" : 68.4,

 "humidity" : 77.3,

 "coords" : {

 "latitude" : 32.779039,

 "longitude" : -96.808660

 }

}

Log file streams
Log files come in a variety of formats. Common ones include Apache Commons
Logging, Apache Combined Log, Apache Error Log, and RFC3164 Syslog. They are
plain text, and usually each line, delineated by a newline ('\n') character, is a separate
log entry. In the following sample log, we see an HTTP GET request where the IP address
is 10.13.37.01, the datetime of the request, the HTTP verb, the URL fragment, the
HTTP version, the response code, and the size of the result.

The sample log line in Apache Commons Logging format is as follows:

10.13.37.01 - - [03/Sep/2017:12:00:01 +0830] "GET /mailman/
listinfo/test HTTP/1.1" 200 2457

6 What Are Data Streams?

Time-encoded binary streams
Time-encoded binary streams consist of a time series of records where each record is
related to the adjacent records (prior and subsequent records). These can be used for
a wide variety of sensor data, from audio streams and RADAR signals to video streams.
Throughout this book, the primary focus will be video streams and their applications.

Figure 1.1 – Time-encoded video data

As shown in Figure 1.1, video streams are composed of fragments, where each fragment is
a self-contained sequence of media frames. There are no dependencies between fragments.
We will discuss video streams in more detail in Chapter 7, Kinesis Video Streams. Now that
we've covered the types of data that we'll be processing, let's take a step back to understand
the value of real-time data in analytics.

The value of real-time data in analytics
Analysis is done to support decision making by individuals, organizations, or computer
programs. Traditionally, data analysis has been done on batches of data, usually in
long-running jobs that occur overnight and that happen periodically at predetermined
times: nightly, weekly, quarterly, and so on. This not only limits the scope of actions
available to decisions makers, but it is also only providing them with a representation
of the past environment. Information is now available seconds after it is produced, so we
need to design systems that provide decision makers with the freshest data available to
make timely decisions.

The OODA – Observe, Orient, Decide, Act – loop is a decision-making, conceptual
framework that describes how decisions are made when reacting to an event. By breaking
it down into these four components, we can optimize each to reduce the overall cycle
time. The key idea is that if we make better decisions quicker than our opponent, we can
outmaneuver them and win. By moving from batch to real-time analytics, we are reducing
the observed portion of this cycle.

The value of real-time data in analytics 7

John Boyd
John Boyd was a USAF colonel and military strategist. He developed the
OODA loop to better understand pilot combat operations. It has since been
expanded and is used at a more strategic level by the military, sports teams, and
businesses.

By reducing the OODA loop cycle time, new actions become available. They can be
taken while events are unfolding and not merely responding to them after the event
has occurred. These time-critical decisions can range from responding to security log
anomalies to providing customer recommendations based on a user's recently viewed
items. These actions are extremely valuable because they allow us to quickly respond to
changing events and are only possible because we can process the data in near real time.
The following diagram, inspired by the Perishable Insights report by Mike Gualtieri, shows
how time to action correlates to the data's perishability. Each insight has a corresponding
action that can only be taken if the data is processed quickly enough – before the insight
perishes:

Figure 1.2 – Perishable insights

8 What Are Data Streams?

The preceding diagram uses shopping as an example to highlight the key distinction
between time-critical and historical analysis. Combining historical data and recent data is
extremely valuable since it allows deeper insights and can be used to detect patterns and
anomalies. The goal of stream analysis is to reduce the amount of time between an event
occurring and the appropriate response.

Decoupling systems
A distributed system is composed of multiple networked servers that work together by
sending messages between each other. They allow applications to be built that require
more compute, storage, or resiliency than is available on a single instance. Some common
distributed systems are the World Wide Web, distributed databases, and scientific
computing clusters. Distributed systems are often fractal. For example, the three-tier
web application, perhaps the most common architecture you will see in the wild, is often
constructed of distributed databases, log analysis systems, and payment providers.

The need for distributed systems has increased dramatically over the past 10 years.
There are three primary drivers for this: data scale, computational requirements, and
organization design and coordination. At first, these systems were brittle and challenging
to manage, but over time, certain key patterns emerged that have enabled them to scale by
reducing complexity.

The first key in managing complexity was adopting standardized interfaces and common
data formats and encodings. This allowed the development of microservice-based
architectures where different teams could manage functionality and provide it as a service
to the rest of the organization. This reduced the amount of coordination among teams and
allowed them to iterate and release at their own appropriate speed, thereby acknowledging
and leveraging Conway's Law.

Conway's Law
In 1967, Melvin Conway stated: "Any organization that designs a system
(defined broadly) will produce a design whose structure is a copy of the
organization's communication structure." This is based on the observation that
people need to communicate in order to design and develop systems. When
this is applied to microservices, it allows the groups to own their services
directly and explicitly model the organization/communication/software
architecture correspondence.

Challenges associated with distributed systems 9

The second was to separate the program into different fault domains by moving to
a loosely coupled architecture. This is often achieved by having one system send another
system a message. However, messages being sent from one fault domain to another
made it difficult to reason and understand the complex failure modes of these systems.
By introducing asynchronous message brokers, we can define clear boundaries between
different fault domains, making it possible to reason about them. The message queue acts
as an invariant in the system. It provides a clean interface where it can send messages and
retrieve them. If another system is unavailable, the message broker will be able to cache
the messages, called a backlog, and that system is responsible for handling them when it
resumes service.

There are still many challenges to the design, deployment, and orchestration of these
decoupled systems. However, the introduction of modern highly available message
brokers has been key in reducing their complexity.

Now that we've seen how asynchronous messaging can separate fault domains, let's learn
how they fit into distributed systems.

Challenges associated with distributed
systems
The fundamental challenge of distributed systems is intra-system communication.
When possible, a messaging system can provide a core decoupling function, allowing
intermittent and transient failures not to cascade or cross fault boundaries. These systems
must be highly available, scalable, and durable. The following core concepts are essential
to understand and reason about these systems: transactions per second, scaling, latency,
and high availability. They allow us to understand the system's key dynamics so that
resources can be provisioned to support the workload.

Transactions per second
The most important metric for all messaging systems is Transactions Per Second (TPS).
This metric is not as simple as it may seem initially, as the maximum TPS is constrained
by either a discrete number of transactions or the maximum size of data that can be
processed. This max TPS is called capacity. In general, messaging systems have different
capacity for the inbound side and the outbound side, with the outbound side normally
having a greater capacity to support multiple consumers and prevent large message
backlogs.

10 What Are Data Streams?

Backpressure refers to a system state in which the producer TPS is higher than the
consumer TPS. The input is coming in faster than it can be processed. There are multiple
strategies for handling backpressure. The easiest is to reduce the number of messages
being sent, for example, having a temperature sensor send data once a minute instead
of once a second. The second is to scale the compute for the consumers to increase the
consumer TPS. If the flow of messages is intermittent or bursty, a buffer can temporarily
hold the messages and allow the consumers to catch up. Buffers are often used in
conjunction with scaling to store messages while compute is scaled up. The last method is
to drop messages. Depending on the message type, this can be unacceptable – you don't
want to drop customer orders – but, in the case of sensor data, sampling, can be used to
process a fixed percentage of data, for example, 5% of data.

Scaling
Messaging systems need to present an access point that hides the complexity of the
internal system. In general, messaging systems consist of multiple independent channels
and shards. A shard is an independent unit of capacity. This internal complexity cannot
be completely hidden from users since the way data is distributed to the different shards
needs to be understood by both senders and receivers. Scaling is used to increase the
capacity of the messaging system. One way to think about scaling is to consider cables
supporting a bridge. If it has 5 strands, it can support 50 tons, and with 50 strands it can
support 500 tons. Thus, one unit of scaling for bridges would be the number of cable
strands.

As a system scales, its ability to maintain the global order of records becomes limited. In
general, order will only be maintained at a sub-global group level. This is an important
design consideration that must be covered when designing real-time solutions. If global
order is needed, there are fundamental limits on the system's maximum throughput, and
if the throughput required is higher, the system will have to be rearchitected.

Etymology of the shard
In 1997, the game Ultima Online was released. In order to reduce latency and
handle scale, there were multiple servers around the world that a player could
log in to. Each server functioned independently and existed as its own universe
in a multi-verse. This was explained in-game by the wizard Mondain capturing
the world of Sosaria in the Gem of Immortality. This gem was then shattered
by the Avatar into multiple shards. The player then selected which shard they
wanted to play in. The term shard, or sharding, is another way to talk about the
horizontal partitioning of data, that is, spreading data across multiple servers.

Challenges associated with distributed systems 11

Latency
Latency is the amount of time between a cause and effect in a system. In the context
of a messaging system, there are multiple measures of latency that are important in
understanding its behavior. In general, it is the time between when a message enters the
system and when the message leaves the system. For example, it can be thought of as the
time between pressing the brakes in a car and the vehicle stopping. Some workloads, for
example, real-time audio/video communication, are especially latency-sensitive and care
must be taken to minimize this across all aspects of the system.

The two primary measures of latency in a messaging system are propagation delay and
age of message.

The propagation delay is the amount of time from when a message is written to
the message broker to when it is read by the consumer application. In most cases,
propagation delay is a reflection of how often producers or consumers are polling the
message broker. Network effects on the producer's connection to the message system
and the acknowledgment of putting a message are known as producer latency, and
correspondingly, the time it takes for a request to complete on the consumer side is
consumer latency.

The last measure of latency that is extremely important is understanding how long
a message has been in the system before it is retrieved, that is, the age of the message.
If the average age of messages is increasing, that indicates a backlog and means that
messages are being added faster than they are being retrieved.

Fault tolerance/high availability
Messaging systems are foundational to modern distributed systems and need to be
designed in such a way to be highly available.

"Everything fails all the time."

 – Werner Vogel, Amazon CTO
The preceding quote hints at the difficulty of building highly available systems. To avoid
single points of failure, redundancy is required, and messages, once acknowledged,
need to be durably stored. Even though messaging systems present a simple interface, to
achieve this level of performance, they are actually comprised of many systems configured
as a cluster.

Now that we have the vocabulary to talk about inter-system communication, let's
introduce the components of messaging systems.

12 What Are Data Streams?

Overview of messaging concepts
In this section, we will review the concept of message brokers in a high-level,
implementation-agnostic manner. First, we will go over the core components of all
messaging systems and then we will review some key terminology and concepts related
to their use.

Overview of core messaging components
There are four components in all messaging systems: producers, consumers, streams,
and messages. The following diagram shows a logical breakdown of producers sending
messages to a stream, the stream buffering them, and consumers receiving them:

Figure 1.3 – High-level view of messaging

Despite this design's relative simplicity, there is a substantial amount of configuration and
optimization that is possible. Now, let's dive a little deeper into each component.

Streams
The stream is the system that stores the messages or records sent by the producers and
retrieved by the consumers. They can be ordered in a First In First Out (FIFO) model.
Messages in the stream that have been received, but not yet retrieved, are referred to as
a backlog.

The retention period is the length of time that the records are accessible after they are
added to the stream. This is the maximum size the backlog can be, and it is also the
maximum time a new, slow, or intermittent consumer can access the records.

Messages (records)
A message consists of a payload and header information. The header information consists
of information set by the producer, and it includes a unique identifier assigned by the
message broker when it is inserted into the stream. In general, messages are relatively
small, in the order of kilobytes, and messaging systems generally have a maximum
payload size.

Overview of messaging concepts 13

Producers
The producer is an application that is the source of data that will go into the message or
record. It connects to the message broker and puts the data into the stream. There can
often be multiple producers sending data to the same message broker.

Consumers
The consumer is an application that receives the messages that are sent by the producer. It
connects to the message broker and retrieves the data from the stream. The responsibility
for keeping track of the last read message, so that the consumer can retrieve the next
message, can be handled either by the message broker (RabbitMQ or SQS) or by the
consumer (Kinesis or Kafka). There can be multiple consumers for a message broker.

Real-time analytics
When thinking about real-time analytics, it can be useful to expand it from the
producer, stream, consumer model to a five-stage model (Figure 1.3): 1) source of data;
2) data ingestion mechanisms; 3) stream storage; 4) real-time stream processing; and
5) destination, data sink, or action. This model helps us elevate our thinking from the
structural communication level to the data processing level. For instance, filtering can be
applied at every stage to reduce compute downstream.

The source of data refers to where the data is coming from. For example, it could be
mobile devices, web clickstreams, log analytics, IoT devices, or smart devices. Once you
have the source, the data needs to be ingested into the stream. This requires a solution
that can capture data coming from hundreds of thousands of devices, in a scalable and
reliable manner, into a stream for analysis. You then need a platform that can reliably
and durably store the data while simultaneously reading from any point in the stream.
This refers to the stream storage platform. The stored data is then processed by
real-time applications to generate actionable insights, perform actions, and execute
real-time extract-transform-load (ETL) operations that deliver the stream of data
to an end destination, such as a data lake.

Next, let's see how systems can be designed in a resilient manner.

Messaging concepts
While relatively simple, the implementation of the four components can be nuanced.
In all networked systems, failure is complicated. Every network call can have issues, and
the systems need to be resilient to handle them. In the following sub-sections, we will
review a few key concepts related to resilient systems and also a few advanced stream
processing features.

14 What Are Data Streams?

Here are eight fallacies associated with distributed computing. In 1994, Peter Deutsch
identified the fact that everyone who builds distributed systems initially gets into trouble
by making the assumptions listed here:

•	 The network is reliable.

•	 Latency is zero.

•	 Bandwidth is infinite.

•	 The network is secure.

•	 The topology doesn't change.

•	 There is one administrator.

•	 The cost of transport is zero.

•	 The network is homogeneous (added by James Gosling in 1997).

Note
All systems should be designed with those fallacies in mind, and with special
attention to the unreliability of the network. Systems that don't properly handle
these issues will exhibit complicated and confusing behavior as well as error
modes that are challenging to debug.

Timeouts
Timeouts allow for efficient allocation of resources and help prevent cascading failures.
If an individual process has an error, it can fail to return a value and hang. In this case,
the client may continue to wait indefinitely for a response. Timeouts help prevent
server resource exhaustion by ending the connection after a maximum amount of time
has passed. This allows the server to free up limited resources, for example, memory,
connections, and ports, and use them to handle new requests. The client can retry the
request again.

Retries
Many errors are ephemeral, and merely retrying the exact same request again will succeed.
In order for retries to be safe, the system handling them must be idempotent, meaning
that it is designed in such a way that the same input will cause the same side effects.
At a more systemic level, to prevent a server from being inundated with retry requests,
each client should implement back-off and jitter.

Overview of messaging concepts 15

Back-off is the process of increasing the time between subsequent retries. Jitter is the
process of adding a bit of random delay to retries. Together, these two mechanisms spread
out message requests over time so that the server is able to handle the number of requests.

When a producer has to retry due to a timeout, it will send the request again. There is the
possibility that a duplicate record could be created. If a record should only be processed
once, it is important that the payload of the record has a unique ID that the final system
can use to remove duplicates. When a consumer fails, it can fetch the same records again.
Consumer retries tend to happen more often than producer retries. It is up to the final
application to handle the message payload data properly and in an idempotent manner.

Backlogs
A backlog is the number of messages that the stream contains that have yet to be received
by a consumer. Backlogs occur when the number of messages a producer sends into
a stream is higher than the number of messages received by a consumer. This often
happens when the system consuming the messages has an error and the messages keep
being added to the stream. This can quickly go from a small backlog to a large backlog.
Large backlogs increase the overall system latency by a large amount as the backlog must
be processed before the recently arriving messages are processed. This typically results in
a bimodal distribution of message latencies, where the latency is low when the system is
working correctly and high when the system is having errors.

Large backlogs are a hidden risk that need to be considered when designing asynchronous
applications because they can increase the recovery time following an outage – that is,
instead of merely restarting the system and it being down for a brief period of time, the
system has to work through the large backlog before it can function properly again.

Dead letter queues
Dead letter queues store messages that cannot be processed correctly by the message
broker for some reason or another. It could be that it is an invalid message, it is too big,
or, for some reason, it fails a certain number of retry attempts. It is important to
periodically review dead letter queues because they represent errors in the system.

Replay
Replay is the ability to read, or replay, the same records in the same order multiple times.
This means that a new consumer can be added and re-read messages that have already
been consumed. Replay is limited to data in the stream. Data is aged out of the stream
after it has existed for a specified period of time, for example, 1 hour, 1 day, or 7 days. This
retention period affects the amount of storage required to support the stream.

16 What Are Data Streams?

Record processing
When processing records, there are multiple approaches depending on the type of data
in the payload and the type of analysis required. In the simplest of systems, each record
is processed one at a time, that is, record by record. A more complicated approach is to
aggregate records by a sliding time window, where records are accessed by the consumer
over a period of time, for instance, calculating the highest, lowest, and the average
message value over the last 10 seconds.

Filtering
Filtering allows consumers to receive only the messages that they are interested in. This
reduces the amount of data that is needed to be processed and transmitted, which helps
the system scale. Messages can be filtered at multiple stages: source, ingestion, stream
storage, stream processing, and in the consumer stage. In general, it is best to filter
messages as early in the five-stage model as possible as it reduces compute and storage
requirements in all subsequent stages. Filtering is determined by the message contents, the
source, or the destination. For instance, the producer can send different types of messages
to different streams.

Now that we've covered the core concepts, let's see them applied in some example use
cases.

Examples of data streaming
Data streams are essential for supporting a wide variety of workloads. This section will go
into detail on how data streams can be used for near real-time monitoring of applications
through log aggregation, support bursty IoT workloads, be fast to insert recommendations
into web applications, and enable machine learning on video. The following diagram
shows the data flow of these workloads:

Figure 1.4 – Examples of data stream applications

Examples of data streaming 17

While these workloads have different performance requirements and scale, the
fundamental architecture is the same – producing and consuming messages. Now, let's
look at an example of real-time monitoring.

Application log processing
Near real-time monitoring of applications and systems can be used to identify usage
patterns, troubleshoot operation events, detect and monitor security incidents, and ensure
compliance. Log events are generated on multiple systems and are pushed to a centralized
system for analysis. Messaging systems enable this by decoupling the log processing
and the analysis systems. In general, for log analysis, there are two different systems
consuming the messages: one for near real-time analysis and one for larger historical
batch analysis. The near real-time analysis system, often Elasticsearch, contains only fresh
data as specified by a data retention policy, and might only hold an hour, a day, or a week's
worth of information. The historical system is often an Apache Spark cluster processing
data in a data lake (data stored in S3).

Log events are generated in real time and are pushed to the messaging system. The two
consumers access the data and perform ETL operations on the data to convert it into
the appropriate format for further analysis. For instance, an Apache Commons Logging
format can be converted to JSON for insertion into Elasticsearch. The message broker
simplifies the system by providing a clear boundary between the log collection and log
analysis systems. Since it's designed in a highly available manner, it can cache events if the
log analysis system goes down.

There are many sources of log events; two common ones are CloudWatch Logs and agents
that can be installed on a machine, for example, Kinesis Agent. CloudWatch is an AWS
service that collects logs, metrics, and events from AWS resources and user applications.
The logs are sent to streams based on subscriptions and subscription filters that define
patterns to determine which log events should be sent. The events are Base64-encoded
and compressed with gzip. Agents monitor sets of files and stream events normally
delineated by a new line (\n) character.

By bringing all the logs together in near real time, proactive measures can be taken.
For example, imagine an attacker is trying to use an automated tool, for example,
SQLMAP, to perform a SQL injection attack via an HTTP query string. A query string
is a set of key-value pairs separated from the base URL by a question mark (?) character,
and each key-value pair is separated by the ampersand (&) character. For example, in
the following URL, there are two keys, key1 and key2, and their corresponding values,
value1 and value2:

https://example.com/mypage?key1=value1&key2=value2

18 What Are Data Streams?

The first thing that will be detected is a lot of query strings that are different, originating
from a single IP address. Once the IP address is identified, it can be blocked to prevent
further attacks. The analysis system can be used to determine all requests made by the
client and detect whether they were able to exploit any vulnerabilities.

Internet of Things
IoT devices present unique challenges as they are often only connected to the internet
intermittently to save bandwidth and conserve energy. This intermittent connectivity,
combined with a large number of devices, can lead to extremely bursty workloads. For
instance, a fleet of IoT devices with temperature sensors might send data back every hour.
The messaging system provides a buffer that allows downstream systems to be provisioned
for the average velocity of data and not the peak loads.

Real-time recommendations
Clickstream events are generated at extremely high volume and velocity as users navigate
and use web applications and mobile applications. Clickstream analysis can be used for
A/B testing, understanding user engagement, detecting system issues, and in this example,
recommendations.

Simple recommendations can be pre-computed based on historic usage patterns, for
instance, people who watched this movie also liked these movies. However, this fails to
capture the user's intent – that is, personalized recommendations depending on the user's
behavior in the given session. This requires clickstream data to be captured in real time,
analyzed, and recommendations made, all in the time it takes for a page to load. In other
words, the system needs to work in milliseconds. These performance constraints require
highly scalable messaging systems to achieve extremely low latency so that page load
performance is not degraded.

Video streams
Video streams can be used for both real-time workloads (chat, peer to peer) or batch
(surveillance, machine learning). In the batch case, multiple cameras can be streaming
the video to the messaging system and machine learning can be applied to detect faces.
These faces can then be identified and checked against a set of known individuals. Any
face that doesn't match a known individual can trigger an alert and send the relevant
portion of the video to the appropriate person. Messaging frameworks simplify the
architecture by providing a highly scalable system to handle large volumes of data from
multiple devices. Much like in the IoT case, they also provide a buffer to provide time for
downstream resources to be provisioned in response to demand as new devices connect.

Summary 19

Summary
In this chapter, we discussed the need for streams, the types of data they can handle, the
core concepts of messaging services, and some examples of how messaging can be applied
to support challenging use cases, such as near real-time monitoring and video processing.
You should now have a detailed understanding of distributed systems as a solution for
scale, what a data stream is, and its properties.

In the next section, we will take what we've learned here and review the messaging
services available on Amazon Web Services and introduce Kinesis.

Further reading
•	 How Do Committees Invent?, by Melvin E. Conway: http://www.melconway.

com/Home/Committees_Paper.html

•	 Certain to Win: The Strategy of John Boyd, Applied to Business, by Chet Richards

•	 Fallacies of Distributed Computing Explained, by Arnon Rotem-Gal-Oz:

http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.90.7285

http://www.melconway.com/Home/Committees_Paper.html
http://www.melconway.com/Home/Committees_Paper.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.7285
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.7285

2
Messaging and Data

Streaming in AWS
AWS has an extensive array of services in the messaging space and is constantly adding
more services and features to its repertoire. Some of these services are purpose-built and
proprietary to Amazon, such as Amazon SQS, Amazon SNS, and the Amazon Kinesis
umbrella of services. Several are open source projects being offered as managed services
such as Amazon MQ and Amazon MSK.

In this chapter, we will take a brief look at the ecosystem of AWS services in the messaging
space. After reading this chapter, you should have a good understanding of the various
services, be able to differentiate between them, and understand the strengths of each
service and how best to apply them to different architectures depending on the use
case. The similarities and differences between each of these messaging services are also
summarized in a table at the end of the chapter. The list of services covered in this chapter
is as follows:

•	 Amazon Kinesis Data Streams (KDS)

•	 Amazon Kinesis Data Firehose (KDF)

•	 Amazon Kinesis Data Analytics for SQL (KDA SQL)

•	 Amazon Kinesis Video Streams (KVS)

22 Messaging and Data Streaming in AWS

•	 Amazon Simple Queue Service (SQS)

•	 Amazon Simple Notification Service (SNS)

•	 Amazon MQ for Apache Active MQ

•	 IoT Core

•	 Amazon EventBridge
•	 Amazon Managed Streaming for Apache Kafka (MSK)

Before we get started on the services, let's take a brief look at some AWS concepts that are
common across services.

AWS services are API-driven, and all functionality is exposed via REST APIs. Amazon
SDKs offered in multiple programming languages such as Java, Python, JavaScript,
Node.js, and others simplify the use of the services by providing higher-level abstractions
and a library consistent across languages that can handle many boilerplate tasks, such as
credential management, retries, and data serialization. In addition to the API, the control
plane functionality is also available through the AWS command-line interface (CLI) and
the AWS console.

AWS service APIs use secure HTTP (HTTPS) to provide encryption in transit through
TLS (https://en.wikipedia.org/wiki/Transport_Layer_Security). In
addition, most services provide encryption at rest using a customer master key (CMK)
from AWS Key Management Service (KMS) utilizing envelope encryption. Envelope
encryption is a mechanism where an entity is encrypted using a plaintext data key and the
data key, in turn, is encrypted using a master key.

AWS KMS
AWS KMS is a fully managed cryptographic key management service that
provides highly available key storage, auditing, and management, allowing you
to encrypt and decrypt your data stored across AWS services.

AWS Identity and Access Management (IAM) is used to provide authentication and
authorization. Authentication for programmatic access (via AWS SDKs) is provided
through a Signature Version 4 signing process using keys associated with IAM users,
or by using temporary credentials by assuming roles.

Let's take a look at some of the streaming and messaging services in AWS, starting with
the Kinesis umbrella of services.

https://en.wikipedia.org/wiki/Transport_Layer_Security

Amazon Kinesis Data Streams (KDS) 23

Amazon Kinesis Data Streams (KDS)
Amazon KDS was launched in November 2013 and was the first service in the Amazon
Kinesis umbrella of services. It is a fully managed, serverless platform for streaming data
at any scale. It provides a highly durable, scalable, and elastic service for real-time data
streaming that requires no provisioning of any infrastructure and enables users to get
started with just a few clicks on the AWS console.

Amazon KDS falls into stage 3 of the 5 stages of enabling stream analytics described in
Chapter 1, What Are Data Streams?. There are a number of core requirements of a stream
storage platform. They include the following:

•	 Data durability: Data, once sent to and received by a stream storage system, needs
to be durably stored; there should be no data loss.

•	 High parallelism: Provide high throughput and low latency in data retrieval or low
overall propagation delay.

•	 Read from any point in the stream: The ability to rewind to different points in
a stream for a defined retention period.

•	 Support one-to-many read: Support multiple consumers reading the same set
of messages at the same time.

Amazon KDS embodies these core tenets of a stream storage platform.

There are thousands of organizations using Amazon KDS for myriad use cases. The scale
ranges from only few kilobytes to gigabytes per second from thousands of data sources.
In addition, within AWS, it is considered to be a tier-0 service since there are other
services that are dependent on it. It is used as the backbone for services such as AWS
metering, Amazon S3 events, and Amazon CloudWatch Logs. KDS is also used by other
Amazon companies, such as Amazon.com for their online catalog and Amazon Go for
video analytics.

Amazon KDS has APIs for both the control plane and the data plane. On the control
plane, the APIs allow creating streams, deleting streams, describing streams, listing
streams, setting up stream consumers, changing stream capacity and properties, enabling
and disabling monitoring, and enabling and disabling encryption. On the data plane, the
APIs allow inserting records (both one at a time and as batches) and getting records from
streams. We will go through most of these capabilities in this book.

24 Messaging and Data Streaming in AWS

Figure 2.1 illustrates the shards in a data stream and the ecosystem of different types of
producers and consumers available that work with Amazon KDS:

Figure 2.1 – KDS ecosystem of producers and consumers

A stream in Amazon KDS is composed of one or more shards. A shard is a unit of capacity
and also a unit of parallelism. There are fixed capacity constraints for each shard and
the number of shards in a stream defines the capacity and throughput for a stream both
on the ingress side and the egress side. On the ingestion or ingress side, each shard can
support a throughput of 1 MB per second or 1,000 records per second. On the egress side,
for standard consumers (there are two supported types of consumers – standard, which
utilizes the pull model, and Enhanced Fan Out (EFO), which utilizes the push model; the
service pushes records to consumers), each shard supports 2 MiBs per sec (or double the
ingress throughput) and five transactions per second (a transaction is a GetRecords API
call to get records from a KDS stream). In addition, the maximum size of an individual
record is 1 MB before base-64 encoding.

Amazon Kinesis Data Streams (KDS) 25

To calculate how many shards are needed for a stream, workload information around
ingress and egress throughputs and the number of consumers is needed. There are
calculators available from AWS and other third parties that make this task easier. Armed
with information on the number of shards required for the workload, a new KDS stream
can be created in seconds. Once created, applications can start sending and receiving
records from the KDS stream immediately. There is no administration needed at all apart
from monitoring the capacity usage of the shards and adding and removing shards as
needed.

It is very easy to scale up the capacity of the stream by adding additional shards, as well
as to scale down by removing shards, thus cost-effectively managing capacity by tracking
the capacity requirements of the workload. Scale-up happens by splitting shards and
scale-down by merging shards, and they can be performed online while the stream is
actively receiving records and consumers are consuming records, with no downtime.
Mechanisms exist to orchestrate the scaling automatically by tracking stream or shard
metrics using a Lambda function.

For durability, once a record is received by Amazon KDS, it is durably stored across
multiple Availability Zones, before sending a response back to the producer. The service
provides a default retention period of 24 hours once a message is successfully received
but it can be increased up to 8,760 hours, or 365, days at an additional cost. The service
provides an SLA (https://aws.amazon.com/kinesis/sla/) of 99.9%.

Encryption, authentication, and authorization
Both the control plane and the data plane are integrated with AWS IAM and support
authentication via AWS Signature Version 4 and identity-based IAM policies for
authorization. At this time, resource-based IAM policies are not supported.

The service also offers encryption at rest by encrypting messages as soon as they're
received, before writing to the storage layer and decrypted after reading from the storage
layer and before returning it to the consumer. It uses a CMK from KMS, which can be
either user-managed or service-managed.

https://aws.amazon.com/kinesis/sla/

26 Messaging and Data Streaming in AWS

Producing and consuming records
Amazon KDS provides a simple API for producing and consuming records that is
wrapped in AWS SDKs offered in multiple programming languages, but there still exists
considerable work in actually writing high-performance, scalable, highly available
producers and consumers that provide an array of consumer and producer metrics for
monitoring performance. In order to ease those tasks, Amazon KDS provides a producer
library called the Kinesis Producer Library (KPL) and a consumer library called
Kinesis Client Library (KCL), which are offered under the Apache 2.0 license and are
open source. The KPL and KCL are both written in Java. The KPL has a C++ core with
a Java wrapper. The KCL does provide support for other languages through a multi-lang
daemon. These libraries can be used to accelerate creating high-quality producers and
consumers and are used by many other third-party products to integrate with Amazon
KDS, such as the Logstash kinesis plugin and the Fluent plugin for Amazon Kinesis. In
addition, connectors exist for popular data processing frameworks such as Apache Spark
and Apache Flink.

Data delivery guarantees
Amazon KDS supports at-least-once delivery. The consumers need to be either
idempotent, which means processing the same message multiple times does not change
the outcome, or capable of deduping the message.

Integration with other AWS services
Amazon KDS is tightly integrated with a number of AWS services and is able to directly
ingest records from them. One important integration is with AWS Lambda, wherein
a Lambda function can be invoked with a payload of records retrieved from Amazon
KDS either periodically (with standard consumers) or whenever records are available
(with EFO consumers).

Monitoring
For monitoring, Amazon KDS is integrated with Amazon CloudWatch, and metrics at
both the stream level (enabled by default) and the shard level (referred to as enhanced
shard-level metrics; this needs to be enabled and costs extra) are available.

Next, we take a look at a closely related service that simplifies the ingestion and delivery
of streaming data to a number of destinations.

Amazon Kinesis Data Firehose (KDF) 27

Amazon Kinesis Data Firehose (KDF)
Amazon KDF was launched in October 2015. It is a fully managed, serverless service
for ingesting streaming data and delivering to destinations in AWS, third-party services
such as Splunk, or even generic HTTP endpoints. In terms of the five core stages of
enabling real-time analytics, Amazon KDF straddles stream storage and real-time stream
processing. Some of the core capabilities of Amazon KDF are as follows:

•	 Ingesting data at high volumes

•	 Ingesting high-throughput streaming data from myriad data sources

•	 Buffering and aggregating data

•	 Transforming and processing data inline

•	 Sending data to one of a number of destinations

•	 Handling errors and retries while sending

•	 Storing ingested data in the service for 24 hours, to enable retries and handle
situations when destinations are unavailable

When Amazon KDS first launched, the majority of organizations used the service to
ingest streaming data and store it in Amazon S3 or load it in Amazon Redshift. Amazon
Redshift is a fully managed, highly parallel data warehousing service for analytical
processing and analytical querying. With KDS, customers were spending a lot of time
and energy on writing custom applications to store the data in S3 and Redshift. AWS
recognized this need across a large segment of customers and built Amazon KDF to
support the most popular destinations, thereby reducing customer effort and providing
an easier experience for landing persistent data in near real time. If there appears to be
some overlap between the Amazon KDS and Amazon KDF services, it is because Amazon
KDF was designed to ease the burden of doing some common stream storage and
processing tasks.

In general, since Amazon KDF buffers data; in any scenarios where latency is important,
Amazon KDS should be considered instead. Similarly, even though Amazon KDF
provides the ability to perform some degree of inline Extract, Transform, and Load
(ETL), if the requirement is to do heavy transformations, custom stream processing,
or stateful (processing events depend on previous events) processing, Amazon KDS is
a better fit. However, if the use case requires stateless, low-touch ingestion and delivery
of streaming data with some inline transformations, encryption, batching, and
compression to supported destinations, Amazon KDF is the best choice.

28 Messaging and Data Streaming in AWS

Just like Amazon KDS, Amazon KDF is an API-driven service and has APIs for both
the control plane and the data plane. In the control plane, it has APIs for creating and
deleting delivery streams, listing and describing delivery streams, starting and stopping
encryption at rest, and updating the destination for the delivery stream (changing the
target destination to deliver records to). On the data plane, it has APIs to send records to
the service both one at a time and in batches.

Figure 2.2 illustrates producers sending data to Amazon KDF and the delivery
destinations it supports:

Figure 2.2 – Producers and delivery destinations for Amazon KDF

Amazon Kinesis Data Firehose (KDF) 29

A delivery stream is the core construct of Amazon KDF and defines the entity streaming
records are sent to. Unlike Amazon KDS, however, there is no need to define the capacity
of the delivery stream. The service supports two ways of sending data:

•	 Direct PUT

•	 Using Amazon KDS stream as a source

For Direct PUT, the service provides the PutRecord and PutRecordBatch APIs to
send records one by one and in batches, respectively. In this case, the default delivery
stream capacity is based on the choice of AWS region. For US East (N. Virginia), US West
(Oregon), and Europe (Ireland), it is 5,000 records/second, 2,000 requests/second, and 5
MiB/second. For many other regions, it is 1,000 records/second, 1,000 requests/second,
and 1 MiB/second. The important thing to note here is that these are soft limits and if the
throughput for a particular use case is higher than the specified limits, a limit increase
support ticket needs to be submitted and the service raises the limit for the delivery
stream. In addition, the service is able to auto-scale up to the delivery stream capacity
limit. If an Amazon KDS stream is used as a source, the delivery stream capacity is the
capacity of the source Amazon KDS stream and the service can auto-scale up to that limit.

For durability, Amazon KDF redundantly stores data across multiple Availability Zones
and provides an SLA (https://aws.amazon.com/kinesis/sla/) of 99.9%.
It stores records in the service for 24 hours in case it is unable to send records to the
destination.

Encryption, authentication, and authorization
For authentication and authorization, both the control plane and the data plane are
integrated with AWS IAM and support Signature V4 for authentication and identity-
based IAM policies for authorization. At this time, resource-based IAM policies are not
supported.

The service also provides encryption at rest using AWS KMS CMK, which could be either
user-managed or service-managed. However, how encryption at rest is provided differs
based on whether the source is Amazon KDS or Direct PUT. If an Amazon KDS stream
is the source, Amazon KDF does not store the data; instead, it depends on the records
being encrypted at rest in the Amazon KDS stream. When it reads records from the
stream, Amazon KDS decrypts the data before Amazon KDF receives it and then Amazon
KDF buffers the records in memory for the timeframe specified in the configuration and
delivers the records to the destination without storing them at rest in the service. If Direct
PUT is used, Amazon KDF provides APIs to start and stop encryption or configuration
parameters when creating a delivery stream with an AWS KMS CMK to encrypt the data
at rest.

https://aws.amazon.com/kinesis/sla/

30 Messaging and Data Streaming in AWS

Monitoring
For monitoring, Amazon KDF is integrated with both CloudWatch metrics and
CloudWatch Logs. There are metrics collected and made available for data ingestion,
data delivery, individual APIs, data transformation, data format conversion,
server-side encryption at rest, and Amazon KDF usage. Also, if enabled, when inline
data transformation is used within Amazon KDF using a Lambda function, Amazon
KDF logs errors when Lambda invocation fails. In addition, if there are errors delivering
to the specified destination, Amazon KDF logs the errors to CloudWatch Logs as well.

Producers
As mentioned, in addition to having an Amazon KDS stream as a data source, Amazon
KDF provides APIs to send data to a delivery stream that are wrapped in AWS SDKs
offered in multiple programming languages as well as in the AWS CLI. Producer
applications can be written using the SDKs to send data to a delivery stream. In addition,
there are a number of other methods and integrations that allow the easy ingestion of
data into a delivery stream. These include Kinesis Agent (Linux-based), Kinesis Agent for
windows and integrations with other AWS services including Amazon CloudWatch Logs,
Amazon CloudWatch Events, AWS IoT, AWS Web Application Firewall (WAF), and
Amazon MSK.

Delivery destinations
Once ingested, Amazon KDF offers the ability to buffer and aggregate records before
delivery to a configured destination. Only one destination is supported per delivery
stream and the buffering options provided vary by destination. At this time, the supported
destinations include Amazon S3, Amazon Redshift, Amazon Elasticsearch Service,
generic HTTP endpoints, and service providers such as Datadog, New Relic, Splunk,
and MongoDB. The service handles delivery failures and retries and message backups to
Amazon S3 on failures for subsequent processing, but the semantics vary by destination.
Amazon KDF supports at-least-once data delivery semantics.

Transformations
Amazon KDF provides the ability to do multiple transformations inline after data
ingestion and before delivery. This includes the ability to do data transformations by
invoking a Lambda function (called a Lambda transform), and multiple Lambda function
blueprints are provided to do common transformations such as Apache Log to JSON and
CSV, Syslog to JSON, and CSV and General Firehose Processing.

Amazon Kinesis Data Firehose (KDF) 31

Figure 2.3 illustrates data transformation in KDF using a Lambda transform:

Figure 2.3 – Data transformation in KDF using a Lambda transform

In addition, the service also provides the ability to do data format conversion in which
the format of the incoming records can be converted from JSON to Apache Parquet or
Apache ORC, before sending the data to Amazon S3 (Amazon S3 is the only destination
supported). Data transformation using Lambda functions and data format conversions
can be combined in a pipeline inside the Amazon KDF service for various use cases, such
as converting the data format of records in comma-separated values (CSV) format to
Apache Parquet. In this case, a Lambda transform can be used to first convert the CSV
format to JSON before using data format conversion to convert the record to Apache
Parquet and store it in Amazon S3. For the Amazon S3 destination, an additional facility
using expressions is provided to customize the Amazon S3 object keys for objects
delivered to Amazon S3. This feature can be used to store data in partitions using Apache
Hive naming conventions, which requires partition names to be defined in key=value
format, for example, year=2021.

Now let's look at a service that provides fully managed, serverless, real-time data
processing.

32 Messaging and Data Streaming in AWS

Amazon Kinesis Data Analytics (KDA)
Amazon KDA was launched in August 2016. KDA is a fully managed, serverless service
for continuously processing real-time streaming data. When it launched in August 2016,
it supported the SQL engine, allowing users to query continuously streaming data and get
insights from the data in real time without learning a new API or a new programming
language. KDA supports ANSI SQL standard with extensions. Later, in November 2018,
Amazon KDA launched the second supported underlying real-time processing engine
in Apache Flink. It is now called Amazon Kinesis Data Analytics for Apache Flink. As
the name suggests, it offers the popular, open source, highly parallel, and low-latency
distributed processing framework for stateful computations Apache Flink as a fully
managed serverless service. In terms of the five core stages of enabling real-time analytics,
Amazon KDA falls in the real-time stream processing stage.

Amazon KDA for SQL
Before getting into how the SQL engine in Amazon KDA works, let's first take a look at
how SQL works with streaming data. In general, drawing a parallel with batch data, where
SQL is used to query a table with data, the query is bounded by data present in the table
at the time the query is executed. Any aggregations or calculations performed by the SQL
query uses that bounded dataset, which is finite, and the query results are deterministic.
However, with streaming data, it is akin to having an in-memory table with the data just
flowing through the table with no bounds. So, if a SQL query is to be executed against the
table, what dataset is it going to work against? How are aggregations going to be computed
and calculations performed? So, in order to run a deterministic SQL query against the
table, the data needs to be bounded. These bounds are created by windowing. Windows
are bound based on time or number of messages or some other metric. The most common
forms of windows use time. Later chapters will go into the details of windowing.

In Amazon KDA for SQL, the in-memory tables are called in-application streams. If a
table receives data directly from the source, it is called an in-application input stream.

Amazon Kinesis Data Analytics (KDA) 33

Figure 2.4 illustrates the processing pipeline using Amazon KDA for SQL:

Figure 2.4 – Processing pipeline using Amazon KDA for SQL

The core component of Amazon KDA for SQL is an application that encapsulates all
functionality and has a configuration associated with it. There are control plane APIs
available to create and manage applications, and these APIs are wrapped in SDKs offered
in multiple programming languages and available through the AWS console and AWS
CLI. The application consists of the following:

•	 Input, shown as 1 in Figure 2.8, which is the source of streaming data and can either
be an Amazon KDS stream or an Amazon KDF delivery stream (there are no APIs
to directly send data to an Amazon KDA for SQL application).

•	 Application code, shown as 3 in Figure 2.8, which is written in SQL and can be
either a single SQL statement or a string of SQL statements feeding results to
intermediate in-application streams that are read by subsequent SQL statements and
fed to an output destination.

•	 Output, shown as 4 in Figure 2.8, which comprises in-application output streams
that send data to configured destinations that can either be an Amazon KDS stream,
an Amazon KDF delivery stream, or an AWS Lambda function. The application
configuration specifies each of these and the AWS console provides the interface to
create and update the application code and displays sample data as it flows and gets
transformed by the application.

34 Messaging and Data Streaming in AWS

•	 Reference data, shown as 2 in Figure 2.8, which is data that provides additional
information about the incoming event, such as address information for an event
that contains location information. It is stored in an S3 object and loaded by KDA
to an in-memory table to facilitate streaming joins.

The SQL language supports ANSI 11 with some data streaming extensions. The SQL
application code can utilize a variety of functions to analyze the data, including aggregate,
analytic, boolean, conversion, data/time, numeric, log parsing, sorting, statistical,
streaming SQL, string, search, and machine learning functions. These functions can
be used in-line with the SQL statements and make it very easy to do complex analysis
by encapsulating the complexity in the functions. In addition, user-defined functions
can be created in SQL to encapsulate logic not available as a standard function. It is
recommended that several small SQL statements with results flowing into intermediate
in-application streams be used instead of large, complex SQL statements, as that approach
makes it easier to troubleshoot application code. In addition to the input source, the
application code supports a reference (or lookup) data source (one only), with the source
being an object in S3 that is loaded into an in-application stream in the application and
allows joins with other in-application streams.

Amazon KDA uses a Kinesis Processing Unit (KPU) as a unit of capacity to provision
capacity and resources needed for an application. A KPU roughly translates to 1 vCPU
and 4 GB of memory. The service is able to elastically scale the application in response to
the throughput of data coming in from the source and the complexity of the application
code.

Encryption, authentication, and authorization
Amazon KDA SQL provides encryption in transit between supported data sources and
the application as well as between the internal components of Amazon KDA and Amazon
KDA and Amazon KDF. In addition, the service encrypts the application code and the
reference data at rest using an internal key.

The control plane APIs of the service are integrated with AWS IAM and support
authentication using Signature V4 and authorization with identity-based IAM policies.

Monitoring
For monitoring, Amazon KDA for SQL is integrated with Amazon CloudWatch and
provides a number of metrics in the AWS/KinesisAnalytics namespace.

Amazon Kinesis Data Analytics (KDA) 35

Data delivery guarantees
Amazon KDA for SQL supports at-least-once data delivery semantics. Now let's look at
the more recent engine offered as part of the Amazon KDA service.

Amazon Kinesis Data Analytics for Apache Flink (KDA
Flink)
In addition to using SQL, a developer can create Apache Flink applications and deploy
them as KDA applications. This feature was added to KDA during re:Invent 2018. The
key advantage of using KDA to run your Flink applications is that you don't need to
worry about infrastructure. KDA will provision the underlying resources needed to run
your application and provides the ability to automatically scale those resources on your
behalf. It's a turnkey solution for your Apache Flink applications. The high-level steps for
deploying your KDA application include creating and building it locally, packaging it
(in a JAR file), and uploading the code. To start your Flink application, once you have
created the JAR file, you have two options to upload it to KDA. You can use the Amazon
KDA kinesisanalytics:CreateApplication API or go through the the Amazon
KDA console. KDA manages the underlying infrastructure, from scaling through security.

While removing the overhead of handling the infrastructure, you do retain a lot of Flink
capabilities; however, you lose some of the flexibility. KDA will control the state backend
and manage it on your behalf. KDA uses RocksDB and S3 is used as a distributed state
backend; Flink savepoints (called snapshots in KDA Flink) get persisted on S3. You can
use externalized parameters called runtime properties to modify or change the behavior
of your application. KDA will also manage the application life cycle on your behalf. If
an update of your Flink application fails, KDA will retry the application update. When
updating your job, KDA will create a snapshot unless it is turned off in the configuration.
The application is then stopped and updated by KDA. KDA is capable of maintaining up
to a thousand snapshots that you can then restore from. KDA maintains your application
metadata in a DynamoDB database internally.

Amazon KDA is a serverless service and abstracts the underlying instances from you
and you don't get to choose the instance type that your KDA application runs on. Your
application will run on underlying instances controlled and managed by KDA. KDA will
allocate appropriate instance size from its fleet based on parallelism that you configure for
your application. In addition to selecting instances for your Flink application, KDA will
determine whether your application will be run on memory-optimized or CPU-optimized
instances. KDA determines this based on metrics your application produces, so if your
application consumes lots of CPU, KDA will move it to an appropriate compute-optimized
instance such as the C instance family.

36 Messaging and Data Streaming in AWS

KDA allocates capacity to your application in terms of Kinesis Processing Units (KPUs).
1 KPU is roughly equivalent to 1 vCPU and 4 GB of memory and includes 50 GB of
disk. When it comes to scaling your application, KDA automatically scales up and scales
down the underlying infrastructure on your behalf. You can turn this behavior off if you
wish to do so. If you don't want automatic scaling, you can specify parallelism, as well as
parallelism per KPU. Parallelism is a setting that determines how many Flink computation
processes should operate on data in parallel. As KDA detects an increase in CPU, it will
scale up your application. A drop in CPU usage triggers a scale down. When you turn on
autoscaling, KDA will not, however, reduce your application's CurrentParellelism value
to below the setting for your application's Parallelism value. You can still set a maximum
Parallelism value and KDA autoscaling will honor it. If you want full control, you can
turn off autoscaling and set your application's parallelism. If you have steady load and
you know what resources your application sources and sinks need, you can set parallelism
yourself. KDA will then scale your application according to the parallelism boundaries
that you have set.

Access and interaction with the KDA deployed Flink app is done through the KDA
native AWS API. The downside of this is that you lose some of the flexibility of using the
Flink REST API to manage jobs. However, the advantage is that you get out-of-the-box
integration with AWS IAM. In addition, KDA encrypts all the data at rest and transit
using an internal key. To ensure that your application is running in the case of failures in
AWS Availability Zones, KDA seamlessly fails your application over to another Availability
Zone. This removes the need for you to worry about disaster recovery within the AWS
Region. KDA monitors your Flink application as well as the underlying infrastructure for
any failures or issues such as bad drive, out of memory (OOM), and so on. KDA restarts
your application and publishes events into CloudWatch Logs or metrics to notify you.
You can use these to perform any processing that you may need to do when the job is
restarted.

The Apache Flink framework contains connectors for accessing data from a variety of
sources. For information about connectors available in the Apache Flink framework, see
https://ci.apache.org/projects/flink/flink-docs-stable/dev/
connectors/.

https://ci.apache.org/projects/flink/flink-docs-stable/dev/connectors/
https://ci.apache.org/projects/flink/flink-docs-stable/dev/connectors/

Amazon Kinesis Video Streams (KVS) 37

Amazon Kinesis Video Streams (KVS)
Amazon KVS was released on November 29th, 2017. KVS is a fully managed, serverless
service for ingesting video and other time-encoded data such as audio, Light Detection
and Ranging (LIDAR), and Radio Detection and Ranging (RADAR) signals. KVS
abstracts away many of the core challenges of building video systems, enabling developers
to focus on the application instead of the complex video infrastructure required to handle
low-latency video at scale.

Video cameras can stream live video into KVS with only a few seconds' buffer delay. The
video can then be consumed with both real-time and batch-oriented processes. KVS also
supports Web Real-Time Communication (Web-RTC) to enable peer-to-peer two-way
video/audio communication. This is a low-latency peering technique designed for real-
time human-to-human interaction features such as video chat.

With KVS, a video is a series of images, and each one of these images is called a frame.
Frames are grouped together when compressing video. Frames usually have very little
visual difference, so only the incremental changes need to be stored in subsequent
frames. In KVS, the fundamental data structure is the fragment. It is a sequence of
frames that have no dependencies on frames in any other fragment. Each fragment
is assigned a unique fragment number (an increasing number), a producer-side
timestamp (absolute or relative to the start time of the recording), and a server-side
timestamp. KVS data is consumed in streams of chunks, where a chunk contains the
fragment, media metadata, and KVS-specific metadata.

The KVS producer and stream parser libraries are based on the Matroska Multimedia
Container (MKV) video format. This format can package an unlimited amount of video,
audio, and other data. The name Matroska is derived from the Russian word matryoshka,
which is the name of the wooden Russian nesting dolls. The KVS producer libraries can
support any time-serialized format, but the H.264 codec is required to be viewed in the
AWS Management Console.

38 Messaging and Data Streaming in AWS

There are three main use cases that KVS supports: live video streaming and recorded
stream playback, real-time two-way streaming, and computer vision-based applications.
Live video streaming is built on HTTP Live Streaming (HLS). HLS is an industry
standard that supports both on-demand and live streaming. HLS provides an HTTP
endpoint that multiple open source players can connect and display video on a mobile
device or browser-based web page. Lower latency is required to support bi-directional
interactive communication instead of broadcast streaming. KVS achieves lower latency
through support for WebRTC. It provides libraries that enable clients to directly connect
to each other in a peer-to-peer manner. However, due to firewall rules or certain Network
Address Translation (NAT) configurations, it is not always possible to connect directly in
this manner. In this case, the KVS libraries then provide a fallback to a Kinesis Traversal
Using Relays around NAT (TURN) server. The TURN server is a simple relay that
receives the data from one client and sends it to the other.

One of the most compelling use cases for KVS is building computer vision/machine
learning applications that analyze video data. The video can be either processed in real
time or in batches by a wide variety of machine learning services. These AWS services
range from high-level services such as Amazon Recognition and Amazon Transcribe
to custom models built using TensorFlow, MxNet, or PyTorch. Through these services,
developers can identify and label potentially unsafe or inappropriate content for
moderation, perform facial recognition, and identify key objects in the video.

Kinesis video streams enable the development of video-based applications that can scale
and remove many of the challenges involved in video consumption and processing.

Amazon Simple Queue Service (SQS)
Amazon SQS was launched in July 2006 and was one of the earliest services to launch on
Amazon Web Services. With more than 14 years in service, Amazon SQS has delivered
messaging services to some of the busiest e-commerce companies in the world. Amazon
SQS is a fully managed, serverless service that is highly scalable and easy to get started
with and use. It is one of the primary AWS native services providing message queue
functionality in AWS and has been used by numerous companies for myriad use cases.

Amazon SQS offers a publisher/subscriber pattern with consumers pulling the messages
from a queue. It offers queues without the need to set up message brokers. Authentication
and authorization to SQS queues are managed with Amazon Identity and Access
Management (IAM) and fine-grained IAM policies. These policies can be used to control
who has access to an Amazon SQS queue. This allows you to manage who has the ability
to send and receive messages from Amazon SQS.

Amazon Simple Queue Service (SQS) 39

Amazon SQS is a highly reliable and available service. The service leverages redundant
server infrastructure spread across multiple Availability Zones in an AWS Region. This
diversification protects against server and network failure, providing an uptime SLA
(https://aws.amazon.com/messaging/sla/) of 99.9%.

Availability Zone
An AWS Availability Zone (AZ) is a logical group of one or more data centers
in an AWS Region. A Region is a geographical area where AWS data centers
are clustered together. The AZs are isolated from each other with redundant
networking and power to provide high availability and fault tolerance. They are
connected with low-cost, high-bandwidth, high-throughput, and low-latency
networking, allowing the operation of applications and databases with high
availability, fault tolerance, and scalability.

Figure 2.5 illustrates the integration between an Amazon SQS queue and AWS Lambda.
Here a Lambda trigger can be created that automatically polls the SQS queue for messages
and invokes the provided Lambda function to process the messages:

Figure 2.5 – Integration between an Amazon SQS queue and AWS Lambda

Amazon SQS offers two types of queues – Standard and First-In-First-Out (FIFO).

Standard queues offer nearly unlimited throughput, including the number of API calls
per second per API action for SendMessage, ReceiveMessage, or DeleteMessage.
Amazon SQS provides at-least-once message delivery, which means that a message will
be delivered once but can be delivered more than once. This is due to the distributed
architecture of Amazon SQS and Amazon SQS storing a copy of the message on multiple
servers. It could happen, albeit rarely, that during the process of receiving and deleting
a message, one of the servers that a copy resides on is unavailable, which can cause the
same message to be delivered more than once. Consumers are, therefore, required to be
designed to be idempotent (processing the same message multiple times does not change
the outcome) or capable of deduping the message. Finally, it offers ordering as a best effort,
which means that even though an effort is made to deliver messages to consumers in the
order it was received by Amazon SQS, occasionally, they can arrive out of order.

https://aws.amazon.com/messaging/sla/

40 Messaging and Data Streaming in AWS

FIFO queues offer exactly-once processing, which guarantees that the message is
delivered once and only once. FIFO delivery guarantees that messages are delivered
strictly in the order they were received in. FIFO queues have reduced throughput quotas
over standard queues. Amazon SQS FIFO queues offer 300 API calls per second per
API action, which when combined with batching (the maximum batching level is 10
messages per API call) supports a maximum throughput of 3,000 messages per second.
In December 2020, Amazon SQS launched a preview of high-throughput FIFO queues
that offers 3,000 messages per second per API call.

Both queue types support message payloads up to 256 KB in size, and with the Amazon
SQS Extended Client Library for Java (https://github.com/awslabs/amazon-
sqs-java-extended-client-lib), larger messages can be sent by first storing the
messages in Amazon S3 and then sending a reference to the message payload in Amazon
S3 to Amazon SQS. Furthermore, both queues support batching up to 10 messages, long
polling, message retention up to 14 days, visibility timeouts for message locking, dead
letter queues (DLQs), and server-side encryption (SSE) with keys using Amazon Key
Management Service.

Now that we have had an overview of Amazon SQS and understand that it uses the pull
model, let's look at another extensively used AWS messaging service that uses the push
model: Amazon Simple Notification Service.

Amazon Simple Notification Service (SNS)
Amazon SNS was launched in 2010 and it is a fully managed serverless service offering
the publisher/subscriber pattern with a push mechanism for sending messages to
subscribers. Similar to Amazon SQS, Amazon SNS provides a highly scalable, available,
and elastic service that can be used for decoupled architectures.

Amazon SNS uses the concept of topics. Topics are logical entities used to denote
a specific category, subject, or type of event. The topic forms an "access point" of the
service. Subscribers can subscribe to one or more topics of interest and get messages,
and publishers send messages to their topics of interest. Amazon SNS identifies the list
of subscribers for a particular topic and then delivers the messages sent to those topics
to the corresponding list of subscribers. Unlike SQS message queues, where messages
are received by one consumer, SNS messages are delivered to all subscribers in a
process called fan-out. The topic owner can also specify which notification protocols are
supported. Supported protocols include http, https, email, email-json, sms, sqs,
application, and Lambda. Subscribers either subscribe to a topic and then go through
a subscription confirmation process or are subscribed by the topic owner. Subscribers,
when subscribing, need to provide the protocol and the corresponding endpoint to receive
notifications.

https://github.com/awslabs/amazon-sqs-java-extended-client-lib
https://github.com/awslabs/amazon-sqs-java-extended-client-lib

Amazon Simple Notification Service (SNS) 41

The topic owner can define permissions in two ways: through Amazon SNS by using
resource-based permissions (attached to topics that define the identities and the actions
those identities are authorized to perform on the topic) and identity-based permissions
(attached to identities that define the resources and the actions that are authorized on
those resources). In either case, permissions are specified using IAM policies.

Figure 2.6 illustrates Amazon SNS and the subscription endpoints that it supports:

Figure 2.6 – Amazon SNS subscription endpoints

One important distinction between Amazon SNS and Amazon SQS is that Amazon
SNS does not provide message retention. When a publisher sends a message to a topic,
Amazon SNS immediately tries to deliver the message to all subscribers of the topic.
If message delivery fails or the subscriber is not available, Amazon SNS goes through
a four-phase delivery retry policy that is pre-defined for each protocol. Only the HTTP(S)
retry policy can be modified. Once the delivery retry policy is exhausted, Amazon SNS
discards the message. In order to prevent message loss, it is recommended that a DLQ is
attached to the subscription (DLQs are attached to the subscription and not to the topic).
Storing undelivered messages in a DLQ enables you to re-process the messages at a later
time if they are still relevant.

42 Messaging and Data Streaming in AWS

Amazon SNS supports optional message attributes when the message structure is
a string, but they're not supported with JSON messages. Though separate from the
message payload, these message attributes, when defined, are sent along with the
messages. These attributes can help the subscriber process the message and implement
simple logic without having to process the message payload; for instance, the subscriber
could ignore messages with a certain attribute or forward them to another service.
Amazon SNS validates the attribute values for adherence to the data types specified
for the message attributes and can filter the messages based on attribute values.

Amazon SNS provides a very useful feature called message filtering. Filtering makes it
very efficient for consumers to receive only the messages they're interested in instead of
all messages sent to the subscribed topic. This is achieved by the subscriber assigning a
filter policy to the topic subscription. The filter policy is a simple JSON policy where the
subscriber specifies the message attributes and the values that the subscriber is interested
in. Amazon SNS performs the task of comparing the incoming topic message attributes to
the filter policy attributes and sends the message to the subscriber if any attribute matches
or skips the subscriber if there are no matches. Since the service performs this function,
filtering and routing functions are offloaded from both publishers and subscribers. This
also has the beneficial effect of allowing topic consolidation.

Amazon SNS by default supports message sizes up to 256 KB. For message sizes above
that, up to 2 GB, the Amazon SNS Extended Client Library for Java (https://github.
com/awslabs/amazon-sns-java-extended-client-lib/) can be used, which
uses Amazon S3 to store the message payloads and sends a reference to the message
payload to the Amazon SNS topic. Corresponding de-referencing libraries are available
when the subscriber is either an Amazon SQS queue (with the Amazon SQS Extended
Client Library for Java: https://github.com/awslabs/amazon-sqs-java-
extended-client-lib) or AWS Lambda (with the Payload Offloading Java Common
Library for AWS: https://github.com/awslabs/payload-offloading-
java-common-lib-for-aws), which provide the ability to use the reference in the
message to retrieve the payload from Amazon S3.

The messaging patterns enabled by Amazon SNS can be broadly categorized into two
categories:

•	 Application-to-application messaging

•	 Application-to-person messaging

Let's take a look at each of them in detail.

https://github.com/awslabs/amazon-sns-java-extended-client-lib/
https://github.com/awslabs/amazon-sns-java-extended-client-lib/
https://github.com/awslabs/amazon-sqs-java-extended-client-lib
https://github.com/awslabs/amazon-sqs-java-extended-client-lib
https://github.com/awslabs/payload-offloading-java-common-lib-for-aws
https://github.com/awslabs/payload-offloading-java-common-lib-for-aws

Amazon Simple Notification Service (SNS) 43

Application-to-application messaging
With application-to-application messaging, the asynchronous communication is between
two applications. One application is the publisher to a topic and other applications are
subscribers to that topic. Amazon SNS supports HTTP(S) endpoints, Amazon SQS
queues, AWS Lambda functions, and AWS Event Fork Pipelines as subscribers. When
there is more than one subscriber to the same topic, the messaging pattern is referred
to as fan-out.

Application-to-person messaging
In application-to-person messaging, the asynchronous communication is between an
application and a user. The user can be a mobile application, mobile phone number, SMS,
or email address. The primary purpose of this type of messaging is user notification, but
the notification can also be used in a mobile application to take automated action on the
client side.

Amazon SNS integrations with other AWS services
Amazon SNS is tightly integrated with a number of AWS services. One important
integration is with Amazon CloudWatch, a service for monitoring applications and
infrastructure. Amazon CloudWatch provides the ability to create alarms based on
configurable thresholds and then natively utilize a configured Amazon SNS topic to send
notifications. Amazon SNS sends notifications to configured email subscribers, AWS
Lambda functions, or Amazon SQS queues to direct actions that should be performed
when the alarm is triggered. For instance, a high CPU usage alarm can send an email to
the system administrators notifying them of the issue, while at the same time triggering
a Lambda function to automatically provision more capacity. These notifications can
also fan out through Amazon SNS, so other AWS services and third-party services can
receive the message. A commonly used pattern for application and operation automation
is to have SNS send messages to an SQS queue that is then drained by other applications,
including Lambda functions, to take the appropriate action. This pattern allows the
messages to be processed at the rate of the downstream systems.

Encryption at rest
In Amazon SNS, messages are encrypted as they are received using a CMK from AWS Key
Management Service (KMS). The encrypted messages are then stored across multiple
AZs and decrypted right before they're delivered to subscribers.

Amazon SNS is a fundamental service that is essential for notification and message
exchange in most AWS cloud-based architectures.

44 Messaging and Data Streaming in AWS

Next, let's take a look at Amazon MQ and how it helps with lift-and-shift approaches for
moving messaging workloads easily into the cloud.

Amazon MQ for Apache ActiveMQ
Amazon MQ is a managed message broker service for Apache ActiveMQ and RabbitMQ
that launched in 2017. Apache ActiveMQ is a popular Java-based open source
message broker that supports multiple protocols providing a choice of a wide range
of programming languages and protocol options for clients. The supported APIs and
protocols include JMS, NMS, AMQP, STOMP, MQTT, and WebSocket. RabbitMQ is
an open source, very popular lightweight message broker that supports many protocols,
including AMQP 0-9-1 and extensions, AMQP 1.0, STOMP, MQTT, AMQP 1.0,
WebSocket, and JMS via a plugin. Amazon MQ is a managed service that provides high
availability, infrastructure management, broker setup, software updates, and operations
and management of the brokers. Amazon MQ provides access to the industry-standard
APIs, the ActiveMQ console, and the RabbitMQ web console. One of the main advantages
of Amazon MQ is the ability to easily move to a managed service when using any message
broker utilizing one of the aforementioned protocols. When migrating to Amazon MQ,
there is no need to change the clients or applications interfacing with the message brokers.
The primary purpose of this service is to support such migrations.

Amazon MQ for Apache Active MQ offers two types of broker configurations from
a storage standpoint:

•	 High durability

•	 High throughput and low latency

In the high-durability configuration (the default), the service uses Amazon Elastic
File System (EFS) for broker storage. Amazon EFS is a cloud-based network file
system (NFS) that is elastic, scalable, fully managed, and highly durable as it is spread
across multiple AZs. It is possible to mount it on multiple broker nodes, so the broker
nodes can read and modify the same files on shared storage, allowing active/standby
broker configurations for high availability and failover.

In the high-throughput and low-latency configuration, the service uses Amazon Elastic
Block Store (EBS) for broker storage. While Amazon EBS maintains multiple copies of
the storage volume in the same AZ, the storage is not spread across multiple Availability
Zones. Correspondingly, it cannot be used for active/standby broker configurations.

Amazon MQ for Apache Active MQ provides the ability to set up brokers in multiple
configurations. Let's take a look at them.

Amazon MQ for Apache ActiveMQ 45

Single-instance brokers
Single-instance brokers, as the name suggests, have a single broker in a single Availability
Zone using either Amazon EFS or Amazon EBS for storage. This configuration does not
provide any high availability or failover.

Active/standby brokers
Active/standby brokers utilize two separate brokers in two different Availability Zones
using Amazon EFS for storage. Clients can connect to either of the brokers but typically
only one broker is active at a time. Amazon MQ provides a separate ActiveMQ web
console URL for each broker but only one is active at a time. Correspondingly, the service
provides separate endpoint URLs for each wire protocol for each broker with only one
being active at a time. ActiveMQ Failover Transport can be used by clients to connect to
the wire protocol endpoints of either broker and transparently handle connection failures
and broker failovers.

Network of brokers
A network of brokers consists of multiple active brokers, single-instance or active/standby,
configured in a variety of topologies such as hub and spoke, concentrator, mesh, and tree.
It provides both high availability and scalability and the ability to fail over almost instantly
in the case of broker failure. The service provides integration with AWS IAM for control
plane API authentication and authorization, via identity-based policies (resource-based
policies are currently not supported). In addition, encryption at rest is supported with
AWS KMS and a CMK, both user-managed and service-managed (when a user-managed
CMK is not provided).

All communication between brokers is encrypted using TLS V 1.2 and clients can access
the brokers over TLS using protocols AMQP, MQTT, MQTT over WebSocket, OpenWire,
STOMP, and STOMP over WebSocket. For message authentication and authorization
both native ActiveMQ authentication and LDAP authentication and authorization are
supported.

Next, let's take a quick look at the deployment options for Amazon MQ for Rabbit MQ.

Single-instance standalone
This deployment mode is primarily intended for development or low-latency workloads
that want to avoid replication There is a single broker, in a single Availability Zone that
can be either publicly accessible over the internet or deployed in a VPC with access only
within the VPC.

46 Messaging and Data Streaming in AWS

Cluster deployment
This deployment mode is intended for production workloads and utilizes three brokers
spread across three Availability Zones fronted by a network load balancer (NLB) to
provide a single access point for APIs and the RabbitMQ web console. To ensure high
availability, classic mirroring is employed. In addition, both private brokers as well as
publicly accessible brokers are supported.

Next, we look at a service that is at the heart of the IoT services offered by AWS.

IoT Core
AWS IoT Core is a family of managed services that allows IoT-connected devices to
interact with each other as well as with other cloud applications and services. You can use
a variety of protocols with AWS IoT Core. MQTT is the primary protocol used as it is
optimized for publish/subscribe messaging between various remote devices with scarce
resources and when network bandwidth is nominal.

This book will not cover IoT in depth; however, the purpose and key functionality apply
to streaming data solutions with IoT use cases.

Device software
FreeRTOS is an open source operating system for microcontrollers. FreeRTOS is similar
to the Raspberry Pi Raspian operating system. FreeRTOS is intended for embedded
software (software that controls devices and hardware) development for microcontrollers.
FreeRTOS provides you with building blocks to create software for microcontrollers and
implement multitasking. Whereas Raspian is an operating system intended for end users
just to install and run, FreeRTOS is a baseline operating system for developers to build
on top of. You can think of Raspian as a meal at the restaurant and FreeRTOS as being
a set of ingredients that you put together and cook to create a meal.

AWS Greengrass brings IoT capabilities to the edge. As IoT devices generate large
amounts of data, Greengrass provides the ability to filter that data. Rather than filtering
data once it arrives in the cloud, Greengrass lets you filter it on the device and only send
the data that you want. The AWS Greengrass functionality is similar to that performed
by "check-in" agents at the airport. Instead of letting everybody go to the gate, check-in
agents filter passengers in the pre-gate area inside the terminal.

IoT Core 47

Control services
AWS IoT Device Management enables the management of large device fleets from a single
management console. If you think of your car's dashboard, that's similar to IoT Device
Management: you can monitor your devices just like you monitor how much fuel you
have in your car or the temperature of the engine. It also allows you to access the remote
devices in a secure manner and perform maintenance tasks such as upgrades and setting
changes.

AWS IoT Device Defender is to devices what AWS Config is to the cloud. Device
Defender examines device configurations against expected security parameters. If it
detects deviations or tampering with device settings that aren't within the boundaries
of your expected baseline, it sends an alert.

AWS IoT 1-Click is for extending the functionality of simple devices, such as switches
or buttons. Actual devices such as IoT Button (https://aws.amazon.com/
iotbutton/) would send signals to AWS IoT 1-Click, which in turn executes an AWS
Lambda function to perform your desired functionality.

Analytics services
AWS IoT Analytics is a service that provides insights from the IoT data that the devices in
an IoT fleet produce. AWS IoT Analytics is a fully managed service that allows the devices'
data to be queried and analyzed using machine learning.

IoT Events provides a convenient way to take actions based on events produced by device
fleets. IoT Events can act across multiple data points such as weight, temperature, or speed
and invoke actions. The service is simple to use as it follows the if-else-then notion. Once
you determine that an event has occurred, for example, a temperature is above 32F, it can
trigger actions from a predefined set. Some of the actions include saving to DynamoDB,
sending messages to Kinesis, or invoking AWS Lambda.

AWS IoT SiteWise is intended for industrial large-scale monitoring of facilities such as
manufacturing plants or warehouses storing goods. For example, SiteWise can be set up
in a car manufacturing plant to capture equipment data and allow you to assess how your
equipment is performing and troubleshoot problems without needing to have physical
access to the devices.

https://aws.amazon.com/iotbutton/
https://aws.amazon.com/iotbutton/

48 Messaging and Data Streaming in AWS

AWS IoT Things Graph is kind of like a glue to connect various vendor devices or
different device types. It is a simplified orchestration engine to allow vendor devices
to communicate with each other by building common models of communication,
leveraging a no-code visualization tool. A useful analogy to understand the function
of Things Graph is the "translation" services provided during United Nations meetings
and summits. There are multiple countries and languages that participate in UN meetings
and they all need to coordinate with each other. Since not all of them speak the same
language (they all use different protocols, in IoT terms), the translation service ensures
that everyone understands each other. IoT Things Graph does exactly the same by
allowing you to visually connect different devices into cohesive applications.

Now, let's look at Amazon Managed Streaming for Apache Kafka.

Amazon Managed Streaming for Apache Kafka
(MSK)
Amazon MSK is a fully managed service for Apache Kafka. Launched in May 2019,
Amazon MSK removed the difficult setup and management tasks for Apache Kafka.
Apache Kafka is a popular open source, distributed, high-throughput, and low-latency
streaming platform that is used by thousands of companies and is extremely popular.
It is available under the Apache 2.0 license.

Amazon MSK allows you to focus on building applications and simply use Apache Kafka
for stream storage.

Let's dive deeper into Apache Kafka and Amazon MSK in the following sections.

Apache Kafka
Apache Kafka is a distributed system that is typically installed as a cluster on multiple
machines, EC2 instances (in AWS), or containers. The core component of a cluster is
the broker. Multiple brokers form a cluster working together to provide high availability
and durability. The brokers depend on Apache ZooKeeper for cluster management and
coordination, although the Apache Kafka community is progressively moving toward
removing this dependency.

Amazon Managed Streaming for Apache Kafka (MSK) 49

The brokers host topics, which are logical entities representing a category to which
events with similar event types are sent. Producers send messages to topics of interest
and consumers subscribe to topics of interest. Underlying each topic is a commit log,
which is at the heart of Apache Kafka. It is an append-only, ordered sequence of records
with each incoming record appended to the end of the log. Each message in the log gets
a unique offset. When consumers read from a topic, they are read from the commit log
and can start from any point (offset) in the commit log. Consumers can read the earliest
(the start of the log) or the latest (end of the log). The commit log for a topic is distributed
across multiple brokers based on the number of partitions defined for the topic. Partitions
provide scalability and parallelism in Apache Kafka. As partitions for a topic are added,
the overall throughput for the topic increases. Correspondingly, consumers can read from
multiple partitions in parallel to drain the queue faster. Each partition gets its own commit
log, which is a physical file on disk, and the offsets in each partition log file start from 0
and can be the same across multiple partitions.

Figure 2.7 shows a high-level architecture of an Apache Kafka cluster with three broker
nodes, a three-node ZooKeeper ensemble, a producer sending records to all three brokers
of the cluster, and a consumer group with three consumers load balancing incoming
records from the three brokers:

Figure 2.7 – High-level architecture of an Apache Kafka cluster

50 Messaging and Data Streaming in AWS

In order to achieve durability and high availability, Apache Kafka provides the ability
to replicate messages to multiple brokers by setting the replication factor at the cluster
level or the topic level. When set to more than one, Kafka creates the specified number of
copies of the partition log for the topic(s). Each copy is called a replica. If the replication
factor for a topic is set to three, there will be a total of three replicas for every partition
for that topic distributed across the available brokers. One of the replicas is the partition
leader and the others are followers. The leader serves write and read requests while the
followers fetch records from the leader and keep their partition logs in sync (as of Apache
Kafka 2.4.0, KIP-392 (https://cwiki.apache.org/confluence/display/
KAFKA/KIP-392%3A+Allow+consumers+to+fetch+from+closest+replica)
allows consumers to fetch from the closest replica, whereby followers serve read requests).
The partition logs for all follower replicas look identical to the leader, except for the
possibility of some unreplicated messages. This provides the ability to fail over to
a surviving replica if the partition leader becomes unavailable. This happens through
a process called leader election and is automatic.

Producers send messages to topics. The messages are key/value pairs with headers.
Messages may or may not have keys. If keys are not present, then the producer API uses
a default partitioner that round robins the message to all available partitions. If the key is
present, then the default behavior is to create a hash of the key to determine the partition
and send it to that partition. It is also possible to specify a custom partitioner in the
producer to implement a custom partitioning strategy.

On the consumer side, Kafka supports both the publish-subscribe model as well as
the queuing model. On the publish-subscribe side, Kafka can have many independent
consumers consuming from the same topic, all getting the same set of messages and
having the ability to read from different offsets in the commit log. On the queuing side,
consumers are usually deployed in a consumer group consisting of multiple consumers
started with the same group.id consumer property. They work together in concert and
read from all partitions of a topic in parallel, but there is always a 1:1 mapping between
a topic partition and a consumer instance in the consumer group.

A consumer instance can read from multiple partitions depending on the number of
partitions and the number of consumer instances, but one partition can be read by one
and only one consumer instance at a time, thus maintaining queuing semantics where
only one consumer gets a message. The consumer group model utilizes the Kafka group
protocol to coordinate among consumer instances and can identify failed consumer
instances, whereupon the consumer group goes through a "rebalance" and the consumer
instances get a new set of partitions to read from.

https://cwiki.apache.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers+to+fetch+from+closest+replica
https://cwiki.apache.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers+to+fetch+from+closest+replica

Amazon Managed Streaming for Apache Kafka (MSK) 51

In order to do that, consumer instances need to know where the failed consumer instances
left off. By default, Kafka consumers commit the offsets they have read and processed
to an internal topic called __consumer_offsets, which is read by the consumer
instances after rebalancing to start reading their assigned partitions from the committed
offsets.

One of the great advantages of Kafka, and one that provides a great deal of performance,
is the binary protocol used by Kafka over TCP. The binary data format for producers,
on-disk storage at brokers, and consumers is the same and requires no conversion. This
allows Kafka to use zero-copy, in which the data is not copied from the kernel space to
application space.

Amazon MSK
Many Kafka users find it challenging to set up a distributed, fault-tolerant Kafka cluster
and manage, scale, and operate it in production. It requires a lot of expertise on the
DevOps and support side and a lot of time and effort spent on infrastructure, to provision
and replace servers as needed, patch and upgrade servers, perform disk maintenance, and
set up monitoring and alerting. In addition, Apache Kafka has a dependency on Apache
ZooKeeper, which most people do not want to be in the business of maintaining.

With Amazon MSK, it is possible to set up a Kafka cluster with a few clicks on the AWS
console or using the AWS CLI or AWS SDKs in the supported programming languages.
The brokers and the ZooKeeper nodes are set up in a service-managed Virtual Private
Cloud (VPC), which provides an isolated, dedicated virtual network in an AWS account.
The service VPC is a dedicated, independent VPC for every cluster and also has
a dedicated ZooKeeper ensemble for every cluster. The Kafka producers, consumers,
and other tools can access the Amazon MSK Apache Kafka cluster using virtual network
interfaces (Elastic Network Interfaces – ENIs) in the user account VPCs. Amazon
MSK uses the open source Apache Kafka software and is therefore compatible with all
Apache Kafka ecosystem tools and third-party tools that work with open source Apache
Kafka, such as Kafka Connect, Kafka streams, Schema Registry, and REST Proxy.
The only caveat is that tools that upload a custom jar to the Apache Kafka brokers do
not work as Amazon MSK does not allow custom jar uploads. Amazon MSK identifies
broker problems and failures and replaces the brokers as necessary, but it maintains the
same IP addresses and broker DNS endpoints and re-attaches the same disk volumes
(unless the disk volumes have issues) to maintain healthy clusters with minimal
application downtime. The service offers an SLA (https://aws.amazon.com/msk/
sla/) of 99.9%.

https://aws.amazon.com/msk/sla/
https://aws.amazon.com/msk/sla/

52 Messaging and Data Streaming in AWS

Figure 2.8 illustrates how connectivity works between the VPC and the broker and
ZooKeeper nodes in the service-managed VPC:

Figure 2.8 – Connectivity between your VPC and Amazon MSK

The control plane of Amazon MSK provides the ability to create and delete clusters, create
and delete configurations (configurations are mechanisms to provide supported server
properties to Amazon MSK to influence broker and cluster behavior), list and describe
cluster properties, add additional brokers, increase broker storage, and perform a number
of other actions.

When creating an Amazon MSK cluster, the number and type of Amazon EC2 instances
to be used for the Apache Kafka brokers need to be specified. The brokers are spread
across multiple AZs for high availability, fault tolerance, and data durability. Two
topologies are supported: two AZs and three AZs. The three-AZ setup is recommended
for most production setups.

Encryption, authentication, and authorization
The control plane is integrated with AWS IAM and supports authentication via AWS
Signature Version 4, which uses a keyed Hash Message Authentication Code (HMAC)
for authentication and Identity-based IAM policies for authorization. At this time,
resource-based IAM policies are not supported. The data plane uses the Apache Kafka
APIs (the Producer API, Consumer API, and the AdminClient API) and utilizes
supported authentication mechanisms for Apache Kafka.

Amazon Managed Streaming for Apache Kafka (MSK) 53

At the time of writing, TLS certificate-based mutual authentication, using certificates
from AWS Certificate Manager Private Certificate Authority, and SASL/SCRAM
authentication with integration with AWS Secrets Manager are supported. TLS
encryption in transit between clients and brokers and in-cluster between brokers is also
supported. In addition, Apache Kafka authorization using Access Control Lists (ACLs)
at all resource levels is supported with both authentication mechanisms. AWS VPC
security groups and network ACLs can also be used to control access to the Amazon
MSK cluster in addition to the authentication and authorization mechanisms provided
by Apache Kafka. It is recommended that the ZooKeeper nodes be secured by using
a separate security group from the one used for the Apache Kafka broker nodes and
only exposed to a specific security group utilized by an administrative client. While
there is full access provided to the ZooKeeper nodes as port 2181 is open and the
ZooKeeper ensemble can be used for custom applications outside of Amazon MSK, it is
recommended not to do so as it is a fully managed service.

Amazon MSK provides encryption at rest by utilizing symmetric keys from AWS KMS
and supports both service-managed CMKs and customer-managed CMKs. Customer-
managed CMKs should be used where possible, as they provide the advantage of
controlling which principals have access to the keys, the ability to audit key usage via AWS
CloudTrail, and the ability to perform key rotations. Amazon MSK uses Amazon EBS
volumes for storage and utilizes EBS encryption using envelope encryption.

Logging and monitoring
For monitoring, Amazon MSK has integrations with AWS CloudWatch for both metrics
and brokers logs. The broker logs can also be sent directly to Amazon S3 or to Amazon
Kinesis Data. The JMX metrics for the brokers is also exported using a Prometheus JMX
exporter and can be scraped using a Prometheus server or other third-party software
such as Datadog.

With the popularity of Apache Kafka in the industry, Amazon MSK provides a compelling
managed service for Apache Kafka.

Next, let's take a brief look at a serverless event bus offered by AWS.

54 Messaging and Data Streaming in AWS

Amazon EventBridge
Amazon EventBridge is an implementation of the event-driven architecture pattern
that AWS launched in July 2019. EventBridge is a serverless event bus service that
allows you to build event-driven architectures in your applications and integrate with
partners. The key advantage that EventBridge offers is the ability to remove the need for
point-to-point integrations, so you can become more flexible and agile as you connect
to other applications. Since it's a fully managed service, there are no servers for you to
manage, and you pay only for usage, with no minimum fees or upfront commitments.
The service is metered by events published, schema discovery usage, and event replay:

Figure 2.9 – Amazon EventBridge architecture

Amazon EventBridge 55

EventBridge has event buses, events, rules, and targets. The service provides an
out-of-the-box event bus called "default." The event bus is the starting point to using
EventBridge; it is the central hub that receives and distributes events. You can create up to
100 event buses per AWS account. An event is an indication of a change in an application,
system, server, and so on. For example, an event can represent a change in an AWS
service, such as an EC2 instance state change from running to shutting down, or an event
from an application indicating that a customer placed an order with an item needing to be
shipped. In addition to "live" events, EventBridge also allows you to schedule events just
like you would do with a cron job or an application scheduler. Rules perform the filtering
and routing of the events to particular targets. Rules can send an event to multiple targets
and can modify the event itself by adding data or transforming event data. An event
bus has a quota of up to 300 rules, with each rule pattern having up to 2,048 characters.
Targets are the receiving endpoints for an event bus. Popular targets are AWS Lambda
functions, SNS and SQS, and Kinesis. There is a limit of up to five targets per rule. In
Chapter 8, Kinesis Integrations, we will show you how you can use EventBridge and
Kinesis to implement rule-based routing.

The EventBridge Schema Registry is useful for the creation of the code bindings based on
events structure. Schema Registry uses the OpenAPI and JSON Schema Draft4 standards
to discover and manage these event schemas. Schema Registry can automatically generate
a schema by providing the JSON of the event or allowing EventBridge to infer schemas
based on the events in the event bus. Once a schema is created, you can generate code
bindings for several languages, such as Java, Python, and TypeScript.

When it comes to security, Amazon EventBridge uses IAM to control access to other AWS
services and resources. For data in transit, you can use TLS 1.2 or later to communicate
with the event bus. When EventBridge passes data to other services, it is encrypted using
TLS. Data at rest is fully encrypted using 256-bit Advanced Encryption Standard (AES-
256). You can use an AWS-owned CMK, which is provided at no additional charge. The
compliance certifications for Amazon EventBridge include SOC, PCI, FedRAMP, HIPAA,
and several others; a full list can be found at the AWS Services in Scope by Compliance
Program (https://aws.amazon.com/compliance/services-in-scope/).
You can use EventBridge to send events between your AWS accounts. You can do this with
your own AWS organization or accounts belonging to other organizations by controlling
whether an account can send or receive events. When using the AWS Organizations
feature, you can grant access at the organization level.

https://aws.amazon.com/compliance/services-in-scope/

56 Messaging and Data Streaming in AWS

Service comparison summary
Figure 2.10 shows a comparison of the services under the Kinesis umbrella across various
aspects relevant to streaming and messaging:

Figure 2.10 – Service comparison summary of the Kinesis umbrella of services

Figure 2.11 shows a comparison of the messaging and streaming services other than
those under the Kinesis umbrella of services in AWS, across various aspects relevant to
streaming and messaging:

Summary 57

Figure 2.11 – Service comparison summary of other AWS messaging services

The service comparison summaries take into account the most common aspects related
to streaming and messaging and are intended to be a quick lookup when making a choice
between AWS services for streaming and messaging architectures.

Summary
In this chapter, we reviewed the extensive array of services offered by Amazon Web
Services in the messaging and streaming space. We discussed how each of these
services is purpose-built to solve specific use cases and achieve application scalability
and compatibility. These services have several similarities and differences, as described
through the chapter. Now that we have covered all these topics, you should have a good
understanding of the different AWS offerings. It should now be easier for you to pick the
right service for your needs.

In the next chapters, we will focus specifically on each of the Amazon Kinesis services,
with a deep dive into a fictitious use case for SmartCity, USA.

3
The SmartCity

Bike-Sharing Service
Throughout the book, a fictional bike-sharing service, SwipeBike, will be used as an
example to illuminate how Amazon Kinesis can be applied in a variety of different
situations. Bike-sharing services provide city commuters with environmentally friendly
alternatives to traditional personal vehicles and buses. Cities such as New York City, Paris,
London, Hangzhou, and Mumbai have implemented successful bike-sharing programs
with significant commuter adoption and reduced city traffic.

The use case is situated in the fictional municipality of SmartCity, USA. SmartCity wants
to further improve on the success of its recently deployed bike-sharing program. Since
its launch, it has reduced traffic, contributed to significant improvements in the city's air
quality, and has increased the citizens' physical health.

SmartCity conducted a year-long feedback survey and determined that riders
wanted a "more real-time and immersive riding experience," "safer riding conditions,"
and "improved and more efficient operations at the bike stations." Throughout the rest
of this book, we will see how SmartCity developed several new services to address these
new requirements derived from rider feedback.

In this chapter, we will review the data streaming requirements for the fictional
bike-sharing use case.

60 The SmartCity Bike-Sharing Service

The following topics will be covered in the chapter:

•	 The mission for sustainable transportation

•	 SmartCity new mobile features

•	 The AWS Well-Architected Framework

The mission for sustainable transportation
During an average day in SmartCity, commuters pour in from several surrounding areas,
nearly doubling the city's population from 1.6 million to 3.1 million people. For SmartCity
to accommodate this population surge, bicycle usage must be optimized during the
morning and evening commute. Any systems we design will need to be able to handle
these surges in use.

A bicycle-sharing system is a service in which bicycles are made available for shared use
on a short-term usage for a small price or even for free. SmartCity visitors can borrow
a bike from one station and return it to another destination station. Stations are special
bike racks that secure and protect the bike from theft or misuse. The bikes are unlocked
by a cloud-based control system when the riders enter their payment information using
a registered member swipe card. The rider can later return the bike to another station.

SmartCity is the nation's largest bike-share program, with 14,500 bikes and 950 stations
spread throughout the city. Managing a bike-share program at this scale requires
collecting and processing massive amounts of data produced by thousands of sensors
and millions of users. SmartCity will build and deploy the applications on Amazon
Web Services because of its unmatched experience, maturity, reliability, security, and
performance.

In the next section, we will review the SmartCity mobile app and the operational
dashboard features developed for the SmartCity bike-share program. The data pipeline
required to support the following features will be referenced throughout the book. These
new SmartCity features will be used as examples for learning how to build scalable data
streaming solutions with Amazon Kinesis.

SmartCity new mobile features 61

SmartCity new mobile features
SmartCity will be implementing several new real-time data-driven features for the mobile
application (Figure 3.1). These real-time data features will enable riders to have a safer and
more enjoyable experience:

 Figure 3.1 – Mockup for the SmartCity mobile application

SmartCity will implement a streaming and analytics platform that will provide service
operators, riders, financers, and researchers access to the data and services that enable
them to support thousands of riders each day.

SmartCity will need a scalable data pipeline to deliver the volume of data that the millions
of riders produce. In the next section, we will review some of the requirements for the
data pipeline.

62 The SmartCity Bike-Sharing Service

SmartCity data pipeline
SmartCity realized that they need to provide immediate communication on safety and
schedule information to keep riders informed about what is going on in the city. The data
required to provide these services is stored and managed in several independent data
systems throughout the city. These data systems include data from road construction
schedulers, crime alerts, and city events announcements. A data pipeline will collect the
data streaming from several independent city data systems and make the data available
to downstream applications and services such as the mobile app, data lakes, operational
dashboards, and social video sharing applications. SmartCity will utilize Amazon Kinesis
Data Streams (KDS) as the core service to collect and process real-time data so that the
data can be efficiently consumed and processed by other services such as Amazon Kinesis
Data Firehose (KDF).

In addition, to the traditional end-user experience, the following core components are
essential to meeting the requirements:

•	 A data lake for flexible and centralized analytics

•	 Facilities so that the rider can access video to see the context of the bike stand

•	 Dashboard systems for real-time operational analytics

The following architectural diagram (Figure 3.2) shows how the data is collected,
processed, and made available to users on mobile phones and operational dashboards:

Figure 3.2 – Architecture design for the SmartCity data pipeline

SmartCity new mobile features 63

Let's dive a little deeper into the components, starting with the data lake.

SmartCity data lake
SmartCity needs to operationalize all the data consumed and produced by the
bike-sharing service. The data needs to be available for long-term planning and forecast
analytics, collaborative rider mobile services, machine learning data development, and
ongoing research studies. SmartCity will implement a secure, scalable, highly available
data lake that will provide a self-service data culture for the software developers, research
analytics, and program auditors.

SmartCity will be utilizing Amazon Kinesis Data Firehose (KDF) as the core service
to collect and transform data, so the data can be efficiently analyzed, consumed, and
archived into Simple Storage Service (Amazon S3). KDF will perform much of the heavy
lifting required to stream and process data for the data lake.

As discussed in the next section, real-time data metrics will improve the bike-sharing
service team's decision-making process with real-time operational dashboards and
reports.

SmartCity operations and analytics dashboard
Along with the SmartCity app's new mobile features, the operational teams will need
access to data and metrics to help them with budgeting and operation decisions.
Adjustments and decisions often need to be made in near real time to accommodate the
bikes' on-demand usage. SmartCity needs to adjust the operations leveraging the real-time
data, rather than relying on outdated weekly and monthly forecasts.

SmartCity will develop an operations management dashboard to manage the bicycle fleet.
The dashboard can display calculated metrics such as these:

•	 Number of riders at given time intervals

•	 Average distance traveled per ride

•	 Alerts and forecasts regarding bike stations that are empty and full

•	 Environmental metrics such as noise, temperature, and alerts for system closures
due to weather

SmartCity will use Amazon Kinesis Data Analytics (KDA) and Apache Flink to analyze
the streaming data through near real-time windows. KDA integrates with several AWS
services, allowing SmartCity to create a sophisticated management dashboard rapidly.

64 The SmartCity Bike-Sharing Service

The SmartCity bike-sharing service also needs to ingest video data. We will review the
features and how Amazon Kinesis Video Streams (KVS) will be used as the scalable
video streaming service for SmartCity.

SmartCity video
In addition to all the data and sensors available for monitoring the SmartCity
bike-sharing system, there has been interest in using video as a data source. Video
supports two primary use cases, the first allowing the user to get access to a real-time
video feed from the bike stand using Web-RTC. The second allows security to use facial
recognition to identify when known vandals are in the area. SmartCity and the riders
want a safe and predictable experience, and the use of video will help enable that. These
two services will use Amazon Kinesis Video Streams (KVS) and AI machine learning
services to collect and process the video.

In the next section, we will review some best practices for designing and architecting data
analytics services.

The AWS Well-Architected Framework
SmartCity will utilize best practices for delivering applications on the cloud. Amazon Web
Services offers the AWS Well-Architected Framework (https://aws.amazon.com/
architecture/well-architected) for architecting and improving cloud-based
workloads.

The pillars of the AWS Well-Architected Framework include the following:

•	 Operational excellence – Operating the application with insight that enables the
improvement of processes, procedures, and how value is delivered

•	 Security – Protecting the systems and data and utilizing services to support security

•	 Reliability – Maintaining consistent performance through the measurement and
monitoring of the complete system

•	 Efficiency – Leveraging cloud services that scale the system to demand

•	 Cost optimization – Cost optimizing the system for financial efficiency

https://aws.amazon.com/architecture/well-architected
https://aws.amazon.com/architecture/well-architected

Summary 65

The Well-Architected Framework also includes application-specific guidance called
lenses. The lenses extend the guidance of the AWS Well-Architected Framework to
include specific industry and technology domains. For example, SmartCity would utilize
the Analytics Lens (https://docs.aws.amazon.com/wellarchitected/
latest/analytics-lens/general-design-principles.html) guidance.
The Analytics Lens general design principles facilitate good design in the cloud for
analytics applications.

The Well-Architected Framework Analytics Lens includes the following:

•	 Automating the process of ingesting data

•	 Designing for failures, including duplication

•	 Maintaining the original source of data

•	 Visibility of data through its origin to its destination

•	 Selecting the best storage for the data

•	 Securing the data pipeline

•	 Designing for scalability and reliability

Summary
In this chapter, we reviewed the SmartCity bike-sharing program and the features that
SwipeBike will be building. These features will be built with AWS and designed in the
chapters throughout the book.

In the next chapter, we will learn about KDS and how it can collect near real-time data
from many data sources.

https://docs.aws.amazon.com/wellarchitected/latest/analytics-lens/general-design-principles.html
https://docs.aws.amazon.com/wellarchitected/latest/analytics-lens/general-design-principles.html

66 The SmartCity Bike-Sharing Service

Further reading
Please refer to the following for more information:

•	 NYC Bike Share System Data

https://www.citibikenyc.com/system-data

•	 AWS Well-Architected Framework

https://aws.amazon.com/architecture/well-architected

•	 AWS Well-Architected Framework Analytics Lens

https://docs.aws.amazon.com/wellarchitected/latest/
analytics-lens/general-design-principles.html

https://www.citibikenyc.com/system-data
https://aws.amazon.com/architecture/well-architected
https://docs.aws.amazon.com/wellarchitected/latest/analytics-lens/general-design-principles.html
https://docs.aws.amazon.com/wellarchitected/latest/analytics-lens/general-design-principles.html

Section 2:
Deep Dive

into Kinesis

In the next four chapters, you will get a deep dive into the capabilities of each of the
four Kinesis managed services. We will talk about the concepts, common deployment
patterns, monitoring and scaling, and the security of Kinesis Data Streams, Kinesis
Firehose, Kinesis Analytics, and Kinesis Video Streams. We will see how Amazon Kinesis
can be used to meet the SmartCity bike-sharing service requirements.

This section comprises the following chapters:

•	 Chapter 4, Kinesis Data Streams

•	 Chapter 5, Kinesis Firehose

•	 Chapter 6, Kinesis Data Analytics

•	 Chapter 7, Kinesis Video Streams

4
Kinesis Data

Streams
In the previous chapter, you learned about several purpose-built data streaming and
message queueing technologies. When designing a data streaming solution, we select the
best purpose-built technology that meets business requirements. When an application
needs to offer real-time performance from many different sources, Amazon KDS (KDS)
is often the best choice.

Amazon KDS is a managed, massively scalable, durable, and low latency real-time data
streaming service used by many of the largest data pipelines in the cloud. With KDS, you
can collect large volumes of data per second from many sources, including connected
devices, application logs and events, financial transactions, social media, marketing
events, and geolocation tracking feeds. KDS enables you to build custom applications
that process and analyze data from these sources with the most flexibility. You want to
use KDS when you need to deliver near real-time sub-second performance.

When utilizing shards and partition keys, KDS offers a strong guarantee for the
ordering of records and the ability to read and replay records in the same order from
multiple applications. Your applications can also process data from a stream through the
parallelization of consumers.

70 Kinesis Data Streams

In this chapter, you will learn concepts and capabilities, common deployment patterns,
monitoring and scaling, and how to secure KDS. We will step through a data streaming
solution that will ingest, process, and feed data from multiple SmartCity data systems.

The following topics will be covered in the chapter:

•	 Discovering Amazon Kinesis Data Streams

•	 Creating a stream producer application

•	 Creating a stream consumer application

•	 Data pipelines with Amazon Kinesis Data Streams

Technical requirements
There are multiple requirements you need to have ready before you get started with this
chapter. The following are those requirements:

•	 AWS account setup: You will need to get an AWS account to run the examples
included in this chapter. If you do not have an account already, you can go to
https://aws.amazon.com/getting-started/ to create an account. AWS
accounts offer a Free Tier (https://aws.amazon.com/free). The AWS Free
Tier allows you to use many AWS services for free within specified usage limits.
AWS Lambda, AWS Cloud9, AWS CloudWatch, and EC2 are eligible Free Tier
services. Please note that Amazon Kinesis Data Streams is not currently available
as a Free Tier service. Refer to the Kinesis Data Streams pricing for the associated
costs: https://aws.amazon.com/kinesis/data-streams/pricing/.

•	 Using a local development environment: You will need a working Python 3.x
environment. You can install Python 3.x by downloading and running the installer
(https://www.python.org/downloads/) for your environment's operating
system.

https://aws.amazon.com/getting-started/
https://aws.amazon.com/free
https://aws.amazon.com/kinesis/data-streams/pricing/
https://www.python.org/downloads/

Discovering Amazon Kinesis Data Streams 71

•	 You need to set up the AWS Software Development Kit (SDK) for Python
(https://aws.amazon.com/sdk-for-python/). The AWS SDK for Python
includes several tools for developing in AWS with Python and includes libraries
such as boto3.

•	 Using an AWS Cloud9 development environment: As an alternative to setting
these up in your local development environment, you can create an AWS Cloud9
development environment: https://docs.aws.amazon.com/cloud9/
latest/user-guide/setting-up.html.

•	 AWS Cloud9 is a web-based development environment that makes it easy to
develop applications on AWS. AWS Cloud9 supports development languages such
as Python, Go, PHP, and JavaScript. The Integrated Development Environment
(IDE) provides features for building, debugging, and running code. You can use the
built-in terminal to clone the example code Git code repository, execute AWS CLI
commands, and run the Python code examples.

You can use the following guide to set up your Python environment on AWS
Cloud9 (https://docs.aws.amazon.com/cloud9/latest/user-
guide/sample-python.html).

•	 Code examples: The code examples in this book are available on GitHub
at https://github.com/PacktPublishing/Streaming-Data-
Solutions-with-Amazon-Kinesis. You will need a Git client to access them
(https://git-scm.com/).

Discovering Amazon Kinesis Data Streams
Amazon KDS is a service composed of streams, shards, and records. A data stream is
a logical container of shards. A data stream continuously ingests data from many data
sources. Each stream has one or more shards where records are grouped and stored.

https://aws.amazon.com/sdk-for-python/
https://docs.aws.amazon.com/cloud9/latest/user-guide/setting-up.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/setting-up.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/sample-python.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/sample-python.html
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis
https://git-scm.com/

72 Kinesis Data Streams

Sharding allows the stream to handle more records, while record order is preserved
within each shard. Records are the unit of data in the Kinesis data stream, composed
of a sequence number, a partition key, and a data blob. KDS segregates the data records
belonging to a stream into multiple shards. When you have multiple shards, you can use
a partition key to group data on specific shards. Kinesis uses the partition key to assign
records to an individual shard. Records are accessed from the stream with the partition
level sequence number. Data can be ingested and processed from many sources, such as
the listed applications in the diagram:

Figure 4.1 – A stream has shards, and a shard has data records

Discovering Amazon Kinesis Data Streams 73

The records are put into the data stream through a producer application using the KDS
API, the Amazon Kinesis Producer Library (KPL), Amazon Kinesis Agent, and other
open source projects. The KPL is a code library that abstracts much of the complexity
of adding data into a stream. The KPL library is optimized for performance and handling
failures, and simplifies integration with producer applications.

In this chapter, we will be using Kinesis Agent as an example of a producer application.
The agent will send records from the SmartCity notification service.

Records are gathered from the data stream by a consumer application using the KDS
API, the Amazon Kinesis Client Library (KCL), Lambda functions, or other integrated
AWS services. The KCL consumer interface retrieves all records for a given partition key,
starting from a given sequence number. The KCL will transparently track the record's
sequence number in an Amazon DynamoDB table. The KCL uses the sequence number
as a checkpoint, so if the consumer is stopped, it could later restart with the last
unprocessed record.

Now that we've seen how data flows through KDS, we will learn how to create KDS
streams and put data into the streams to be processed. We will design a KDS data pipeline
that enables SmartCity to collect data from several city systems and process the records
with low latency to several SmartCity's bike-sharing applications and services.

Creating streams and shards
Let's get started creating a stream with a shard and configure it for performance and
cost. As described in the previous section, a stream is a logical container in which data is
collected in KDS.

74 Kinesis Data Streams

When you create a Kinesis data stream, you only need to set the stream's name and
the number of shards. Let's create a stream, by first logging into the AWS console at
https://aws.amazon.com/console/. Next, let's head over to the KDS service
console. Once, logged in to AWS, in the Search for Services search box type in Kinesis
and click the service Kinesis: Work with Real-Time Streaming Data. Under Getting Started,
select the KDS option and click Create Data Stream. Create a new stream by specifying the
stream name and the number of shards, as shown in the following screenshot:

Figure 4.2 – Choosing a name and selecting the number of shards in the stream

https://aws.amazon.com/console/

Discovering Amazon Kinesis Data Streams 75

There are no upper limits on the number of streams you can create with a single AWS
account. The minimum number of shards you can have in a stream is one shard. Each
AWS Region has a soft shard number quota limit that can be increased with an AWS
support request.

The number of shards for a stream is one of the primary settings that impacts the scale
and cost. Although AWS fully manages the streams and the shards, the number of shards
required for a workload to perform is not autoscaled by Kinesis. You need to select the
number of shards necessary to scale to your workload's peak performance. The number of
shards configured for your stream can be increased or decreased after a stream is created.

When considering the shard count for a workload, you will need to understand your data
records' properties and requirements, such as the read and write volume and velocity.
A shard provides an ingestion capacity of 1 MB/per second and 1,000 PUT records per
second. The consumption capacity is 2 MB/per second and 2,000 GET records per second.
The number of shards can be specified when creating the stream and modified when
additional capacity is needed.

The following table (Figure 5.3) provides some examples of read and write capacity based
on shard counts:

Figure 4.3 – Read and write capacity examples

76 Kinesis Data Streams

When creating a stream, you can use the shard estimator (Figure 5.4) to obtain a
recommendation for the number of needed shards. The estimator will calculate the
estimated number of required shards based on the maximum records written per second,
the total number of consumers, and the average record size (in KiB). When you open the
shard estimator (Figure 5.4), you can set the average and maximum record sizes to get the
estimated required shards:

Figure 4.4 – Estimating the number of required shards when creating a stream

Discovering Amazon Kinesis Data Streams 77

AWS also provides a service cost calculator (https://calculator.aws/). It
estimates the cost of a stream based on the number of records, average record size, number
of consumer applications, number of Enhanced Fan-Out (EFO) consumers, and the
extended data retention period. The calculator calculates the monthly price of the stream
and consumers based on the specified requirements:

Figure 4.5 – AWS calculator (https://calculator.aws) for Amazon Kinesis Data Streams

Based on the determined scale of records, shards, and consumers, the calculator will
break down the exact costs and calculations associated with each metered component
of the stream.

You can monitor the shard-level metrics discussed later in the chapter to determine
whether you need to add or remove shards from the stream. Shards can be dynamically
added or removed through resharding. The actual sharding process within a stream,
such as the splitting and merging of data, is fully managed by Amazon KDS: https://
docs.aws.amazon.com/streams/latest/dev/kinesis-using-sdk-java-
resharding.html.

https://calculator.aws/
https://docs.aws.amazon.com/streams/latest/dev/kinesis-using-sdk-java-resharding.html
https://docs.aws.amazon.com/streams/latest/dev/kinesis-using-sdk-java-resharding.html
https://docs.aws.amazon.com/streams/latest/dev/kinesis-using-sdk-java-resharding.html

78 Kinesis Data Streams

Note
Scaling in increments of 25% of the current capacity helps the scaling process
operation to complete faster. This approach is not required, but it helps reduce
the number of times the shards need to split or merge. The Amazon Kinesis
Scaling Utility, discussed later in the chapter, helps manage the shard splitting
and merging through an autoscaling approach.

The default data retention duration for a stream is 24 hours. Once you write data into the
stream, it is available to consumers for the specified retention duration. As data cannot
be deleted from a stream, the data retention length is how data is eventually deleted from
the stream. Data retention can be extended for up to 1 year for an additional cost. By
extending the retention period, you can leave data in the stream for other workload tasks
such as machine learning. For example, a machine learning model could be built and
remodeled from a dedicated consumer that continuously trains with 1 years' worth of
retained data.

Now that we have a stream and understand how the number of shards determines the
capacity, we will create a producer that will write records into the stream. We will learn the
different methods for writing records and how to optimize the performance and scale of
ingesting data.

Creating a stream producer application
A producer is an application that adds data records into the data stream. There are several
options to ingest data, including REST APIs, SDKs, agents, and tools that help you create a
stream producer for your application.

Amazon Kinesis application technology options include the following:

•	 The Amazon Kinesis API and AWS Python SDK

•	 The Amazon KPL

•	 The Kinesis Data Generator (KDG) for test data

•	 Third-party connectors/agents

•	 Kinesis Agent

•	 AWS Mobile SDKs

Creating a stream producer application 79

Let's start by looking at how we can write data into the stream using the Amazon KDS
REST APIs. We will walk through an API request and its response. This section will also
demonstrate how we can use Kinesis Agent and the AWS Python SDK to write custom
producer applications. As shown in the following diagram, the REST API, Kinesis Agent,
and the Python SDK are a few of the many options for data ingestion:

Figure 4.6 – Producer options

Using the PutRecord and PutRecords APIs
The available SDKs, agents, and tools simplify the steps to use the Amazon Kinesis Data
Stream's PutRecord and PutRecord APIs. With the PutRecord API, a producer can write
a single record into the stream. With the PutRecords API, a producer can write a batch of
records into the stream.

80 Kinesis Data Streams

When you use the PutRecord API, the payload requires a blob data type parameter
called Data. The Data parameter is Base64-encoded, and the total size of the data (your
data before base64-encoding) must not exceed the maximum record size (1 MiB). Let's
look at the JSON data structure for the PutRecord API:

{

 "Data": blob,

 "ExplicitHashKey": "string",

 "PartitionKey": "string",

 "SequenceNumberForOrdering": "string",

 "StreamName": "string"

}

As example data, we will use a sample JSON record from SmartCity's emergency
notification system. The emergency notification system provides SmartCity weather,
crime, traffic, and other essential notifications through a REST API. We will collect and
write these JSON data messages into a stream. Let's first look at how the message can be
sent to the PutRecord API using the REST API HTTP POST, and then later using the
AWS Python library.

Note
To get more city notification data in the format as used in the examples, you
can use the New York City OpenData project OEM Emergency Notification
API: https://data.cityofnewyork.us/Public-Safety/
OEM-Emergency-Notifications/8vv7-7wx3.

The Notification API provides information about emergency events and
essential city services. The REST API endpoint is available at https://
data.cityofnewyork.us/resource/8vv7-7wx3.JSON.

The following is an example JSON record from the SmartCity services system. This data
includes the record_id, date_time, notificationtype, notification_
title, and email_body message content:

[{

 "record_id": "18742",

 "date_and_time": "2002-07-03T15:53:00.000",

 "notificationtype": "Weather",

 "notification_title": "Coastal Flood Statement (BK)",

 "email_body": "Notification issued 11-15-2020 at 3:53 PM.

https://data.cityofnewyork.us/Public-Safety/OEM-Emergency-Notifications/8vv7-7wx3
https://data.cityofnewyork.us/Public-Safety/OEM-Emergency-Notifications/8vv7-7wx3
https://data.cityofnewyork.us/resource/8vv7-7wx3.JSON
https://data.cityofnewyork.us/resource/8vv7-7wx3.JSON

Creating a stream producer application 81

The National Weather Service has issued the following: What:
Coastal Flood Statement Where: Brooklyn When: 6 AM to10 AM
on 11/15 Hazards: Above normal tidal departures may result in
minor flooding of shore roads and/or properties. Preparedness
Actions: - Avoid driving through or coming in contact with
flood waters. There could be pollutants in the water or other
hazards that you cannot see. - Coastal flood waters could
damage your vehicle. Move your car to higher ground, and wash
your car thoroughly if it makes contact with flood waters.
- New York City residents, please call 311 if you encounter
flooding that makes roads impassable, causes property damage,
or persists for more than 48 hours. Info: www.weather.gov/
okx/."

}]

The StreamName is a required parameter in the PutRecord request and determines
which stream to write the records. This name matches the logical name selected when
creating a stream.

PartitionKey is a key used to route records to different shards within a stream. The
routed records are grouped into the shard maintaining the order in which the records
were received. PartitionKey is used to create an even distribution of records across
shards so that the stream can scale. As can be seen in the following diagram, all the
records with the same PartitionKey go to the same shard:

Figure 4.7 – Partition keys group records with the same partition key to the same shard

82 Kinesis Data Streams

There are a number of strategies when selecting the partition key:

1.	 You can use a logical record data value such as Weather from notificationtype
in the example emergency message. Using a data value can be a natural way to
aggregate and group the data in First In First Out (FIFO) order within a shard.
However, using a logical key can create "hot partition keys," where low cardinality
of records for one partition key creates a situation where one shard could get
a majority of the records.

2.	 You can also use a random partition key when records do not need to be ordered
or aggregated onto the same shard. A random key creates an even distribution
of records across all shards. This ensures that one shard does not get an uneven
distribution (hot partition keys) of records.

Note
The SequenceNumberForOrdering parameter is an optional
parameter that you can use to define your sequence for ordering.
If the SequenceNumberForOrdering parameter is not set,
SequenceNumber will be automatically created for the stream based on
the record arrival time. The SequenceNumberForOrdering parameter
can be used in cases where you want to use pre-existing serial keys for shard
ordering.

ExplicitHashKey is another optional parameter that can be used to
create specific mapping of the record to a shard. This can be used in certain
scenarios where you want greater control of the distribution of records.

The following sample PutRecord API HTTP POST includes the required parameters for
sending our notification message into the smartcity-emergency-system-events
stream. In the following example, PartitionKey is set as a random value, so records are
distributed evenly across the shards. The data parameter in the POST request is the full
contents of the JSON notification message:

POST / HTTP/1.1

Host: kinesis.<region>.<domain>

Content-Length: <PayloadSizeBytes>

User-Agent: <UserAgentString>

Content-Type: application/x-amz-JSON-1.1

Authorization: <AuthParams>

Connection: Keep-Alive

X-Amz-Date: <Date>

Creating a stream producer application 83

X-Amz-Target: Kinesis_20201121.PutRecord

{

 "StreamName": "smartcity-emergency-system-events",

 "Data": "": The full emergency systems JSON message…",…",

 "PartitionKey": "d17a06d5-0f83-40f6-acc5-840e7cd9aa8f"

}

Once the API accepts the PutRecord API POST, a return response will include the
unique SequenceNumber and ShardId for the record.

The following is an example PutRecord response for the data record added to the
emergency events stream. The payload includes ShardId, where the record is stored,
and the stream assigned the SequenceNumber record:

POST / HTTP/1.1

Host: kinesis.<region>.<domain>

Content-Length: <PayloadSizeBytes>

User-Agent: <UserAgentString>

Content-Type: application/x-amz-JSON-1.1

Authorization: <AuthParams>

HTTP/1.1 200 OK

x-amzn-RequestId: <RequestId>

Content-Type: application/x-amz-JSON-1.1

Content-Length: <PayloadSizeBytes>

Date: <Date>

{

 "SequenceNumber": "41269329789653657946712963403768482178",

 "ShardId": "shardId-000000000000"

}

84 Kinesis Data Streams

The PutRecords API performs the same function as PutRecord. However,
PutRecords supports sending up to 500 records in a single request. Each record in
the PutRecords API request can be up to 1 MB and as large as 5 MB for the entire
PutRecords request:

Figure 4.8 – PutRecords POST adds multiple data records to a stream. PutRecord POST adds a single
data record to a stream

The PutRecord and PutRecords API requests have similar capabilities. The
PutRecord API is designed for single records, and the PutRecords API is intended
for a batch. When sending records as a single record or in batch, there are several
considerations for order and error handling, as outlined in the following table:

 Figure 4.9 – PutRecords POST adds multiple data records to a stream. PutRecord POST adds a single
data record to a stream

Creating a stream producer application 85

Note
Once you write a record to a stream, you cannot modify the record or its order.
When a record is written to the stream, the record cannot be altered or deleted.

Producing data with the AWS SDK for Python (Boto3)
Boto3 is the AWS SDK for Python. The Boto3 library allows you to quickly write software
that uses services such as Amazon S3, Amazon EC2, and Amazon KDS. The following
example Python code uses the Boto3 client interface to write the stream's emergency
weather notification record.

Let's create a Python Boto3 producer that will write an emergency message to the stream
we created previously, smartcity-emergency-system-events:

1.	 Let's start by creating a Python script called producer.py with the following
code. In the script, there is a sample notification JSON message that we will write
to the stream. This hardcoded example represents a message that could come from
a file, database, or other data source:

import json

import uuid

import boto3

stream_name = "smartcity-emergency-system-events"

message_json = {

 "record_id": "18742",

 "date_and_time": "2020-11-14T15:53:00.000",

 "notificationtype": "Weather",

 "notification_title": "Coastal Flood Statement (BK)",

 "email_body": "Notification issued 11-15-2020 at
3:53 PM. The National Weather Service has issued the
following: What: Coastal Flood Statement Where: Brooklyn
When: 6 AM to10 AM on 11/15 Hazards: Above normal tidal
departures may result in minor flooding of shore roads
and/or properties. ..."

}

kinesis = boto3.client('kinesis')

 data = json.dumps(message_json)

 partition_key = str(uuid.uuid4())

resp = kinesis.put_record(

 StreamName=stream_name,

86 Kinesis Data Streams

 Data=data,

 PartitionKey=partition_key)

print(json.dumps(resp))

The computer or server running this code may require IAM permissions for
stream actions, including kinesis:PutRecord, kinesis:PutRecords, and
kinesis:DescribeStream. An example IAM policy is available in the book's
GitHub repository for this chapter.

2.	 Run the producer script producer.py:

$ python producer.py

3.	 The producer script will write the record into the stream and print out the return
response with shardID:

{

 "ShardId": "shardId-000000000000",

 "SequenceNumber": "4960090227335754091598993125690150
6243878407835297513618",

 "EncryptionType": "KMS"

}

4.	 You can check that the record is in the stream with the AWS CLI. The
first command will get shard-id, and the second command will get
ShardIterator. Lastly, we will execute get-records with the value of
$SHARD_ITERATOR:

$ SHARD_ID=$(aws kinesis describe-stream --stream-
name smartcity-emergency-system-events | jq
'.StreamDescription.Shards[].ShardId' | tr -d '"')

$ SHARD_ITERATOR=$(aws kinesis get-shard-iterator
--shard-id $SHARD_ID --shard-iterator-type TRIM_HORIZON
--stream-name smartcity-emergency-system-events --query
'ShardIterator')

$ aws kinesis get-records --shard-iterator $SHARD_
ITERATOR

Creating a stream producer application 87

5.	 The response will return an array of records. The array will include the record that
was previously added to the shard. The record data parameter will be Base64
encoded; for example:

{

 "Records":[{

 "Data":"VGhlIGZ1bGwgbWVzc2FnZSBiYXNlNjQgZW5jb2RlZC4=",

 "PartitionKey":"07142004.98660644726",

 "ApproximateArrivalTimestamp": 1.441215410867E9,

 "SequenceNumber":"495449852569073700275708858640
65577703022652638596431874"

 }],

 "MillisBehindLatest":9211972,

 "NextShardIterator":"AAAAAAAAAAEDOW3ugseWPE4503kqN1yN1Ua
odY8unE0sYslMUmC6lX9hlig5+t4RtZM0/
tALfiI4QGjunVgJvQsjxjh2aLyxaAaPr+LaoENQ7eVs4EdYXg
KyThTZGPcca2fVXYJWL3yafv9dsDwsYVedI66dbMZFC8rPMWc79
7zxQkv4pSKvPOZvrUIudb8UkH3VMzx58Is="

}

Note
There are pre-developed SDKs and agents designed to manage the complexity
of producing records and interacting with the PutRecords API with efficiency
and scale. They have several built-in features and efficiencies that help with the
performance, monitoring, and recovery of a producer.

The Amazon KPL performs many tasks common to creating efficient and
reliable producers. When you use the KPL, you do not need to reinvent
the wheel every time you create a new data ingestion application. The KPL,
https://github.com/awslabs/amazon-kinesis-client, is
open source software written in Java and C++ and is supported by Amazon for
production use.

Producing data with Amazon Kinesis Agent
Amazon Kinesis Agent (https://github.com/awslabs/amazon-kinesis-
agent) is a standalone, Java-based application that can write data into KDS and Amazon
Kinesis Firehose without any producer code. The agent can monitor a filesystem directory
for file patterns and send the data to a stream. The agent can handle routine maintenance,
such as file rotation, restart recovery, and monitoring.

https://github.com/awslabs/amazon-kinesis-client
https://github.com/awslabs/amazon-kinesis-agent
https://github.com/awslabs/amazon-kinesis-agent

88 Kinesis Data Streams

In addition to writing records to the stream, the agent also supports the preprocessing of
data. The agent can convert the data from CSV format to JSON, log formats to JSON, and
convert multiline records to a single line. The agent supports installation on Linux-based
operating systems. You can use the AWS Cloud9 environment, described in the Technical
requirements section, to install the Linux-based Kinesis Agent.

We will install, configure, and run Amazon Kinesis Agent on Linux in the following steps:

1.	 Install the agent on Linux with yum:

$ sudo yum install –y aws-kinesis-agent

2.	 Let's now modify the agent configuration. Edit the configuration file in the
following location: /etc/aws-kinesis/agent.json:

{

 "cloudwatch.emitMetrics": true,

 "kinesis.endpoint": "",

 "firehose.endpoint": ""

{

 "flows": [

 { {

 "filePattern": "/tmp/messages/*",

 "kinesisStream": "smartcity-emergency-system-
events", "

 "partitionKeyOption": "RANDOM" }

 }]

}

]

}

3.	 Start the agent manually. Using the following Linux commands, you can set the
agent to start up automatically if the agent system is rebooted:

$ sudo service aws-kinesis-agent start

$ sudo sudo chkconfig aws-kinesis-agent on

$ sudo service aws-kinesis-agent status

Creating a stream producer application 89

4.	 Monitor the agent logs. Lastly, check the logs for the status of the running agent:

$ tail -n 10 /var/log/aws-kinesis-agent/aws-kinesis-
agent.log

2021-02-27 20:21:38.989+0000 (Agent STARTING) com.amazon.
kinesis.streaming.agent.Agent [INFO] Agent: Startup
completed in 22 ms.

5.	 Now, if you can move data into the /tmp/messages/ directory, such as the
example system message, smartcity_system_message.json, using the
following Linux commands, you will be able to move the file:

$ sudo cp smartcity_system_message.json /tmp/messages/

6.	 Monitor the agent logs that record what was parsed and processed:

$ tail -n 10 /var/log/aws-kinesis-agent/aws-kinesis-
agent.log

 2021-02-27 15:24:31.147+0000
(FileTailer[kinesis:smartcity-emergency-system-
events:/tmp/messages/*]) com.amazon.kinesis.
streaming.agent.tailing.KinesisParser [INFO]
KinesisParser[kinesis:smartcity-emergency-system-events:/
tmp/messages/*]: Continuing to parse /tmp/messages/
smartcity_system_message.json.

Optimizing your producer
Record batching, aggregation, and compression are best practices that can increase the
efficiency and capacity of reads and writes to a shard. These optimizations maximize the
number of records in the payload and decrease the overall size of the request. Aggregation
applies when many smaller files need to be written into the stream. Aggregation
groups smaller files into a single record to maximize the number of records in a single
PutRecords batch. Combining batching and aggregation maximizes the number of
records that can be written into the stream at once.

Compressing and encoding records can also reduce the record payload size. As the size
of the payload is reduced, the number of required shards can be reduced. In the example
of SmartCity notification JSON messages, the small JSON messages could be aggregated
and compressed to increase the number of records sent into a single PutRecords batch.
The Amazon KPL has integrated support for aggregating multiple records into a single
record for efficient puts.

90 Kinesis Data Streams

Now that we have learned how to write records into the stream, let's review how records
can be consumed. We will use an AWS Lambda serverless function to read the data
records with sub-second latency.

Creating a stream consumer application
An Amazon Kinesis application is a data consumer that gets data from the stream and
performs additional processing to the data records (data processing). Similar to producer
applications, there are several options to help you get started creating a consumer. These
options include REST APIs, SDKs, and agents that can help you create a stream consumer
for your application.

Amazon Kinesis application options include the following:

•	 Amazon Kinesis Data Analytics

•	 Amazon Kinesis Data Firehose

•	 AWS Lambda

•	 The Amazon Kinesis API

•	 The Amazon KCL

•	 Third-party connectors/agents

•	 AWS Mobile SDKs

•	 Open source data process technologies, such as Apache Spark and Apache Flink

As shown in the following diagram, the Amazon Kinesis REST API, AWS Lambda,
and Amazon Kinesis Firehose are a few of the many options for data ingestion:

Creating a stream consumer application 91

Figure 4.10 – There are several Amazon Kinesis application SDKs and Amazon services
that can process records from a stream

In the next section, we will discuss how consumer applications use the Amazon KDS
REST API to read and process records efficiently.

Using the GetRecords API
The consumer SDKs, agents, and other tools all simplify the steps in terms of using the
Amazon KDS ListShards, GetShardIterator, and GetRecords APIs. With
the GetRecords API, a consumer can request a batch of records of up to 10,000 records
per shard. As you can see in the following diagram, records are pulled from a shard by
a consumer application using the GetRecords API:

Figure 4.11 – With the GetRecords API, records are pulled by the consumer

92 Kinesis Data Streams

The first step to creating a consumer is to use the ListShards API to get the stream's
shards. For each retrieved shard, we will use the GetShardIterator API to obtain
the shard position to start reading data records sequentially for the shard. Its position
is specified using the sequence number of the data record in a shard. As shown in the
diagram, the GetShardIterator API is first called for a given shard, followed by the
retrieval of records with GetRecords:

Figure 4.12 – GetShardIterator request (1) retrieves a ShardIterator (2), while the GetRecords API uses
the returned ShardIterator (3) to request (4) and retrieve the records (5)

There are several different types of iterators:

1.	 AT_TIMESTAMP is used to read records from a specific point in time.

2.	 TRIM_HORIZON will get the oldest unread record in the shard. This iterator will
return the oldest data records that the consumer application has not yet read.

3.	 LATEST will retrieve the most recent data in the shard.

4.	 AT_SEQUENCE_NUMBER and AFTER_SEQUENCE_NUMBER can be used to get
records at specific order sequence positions in the shard.

After using the GetShardIterator API, we will get a ShardIterator value
and use it with the first GetRecords request. With subsequent GetRecords
reads, we will use the NextShardIterator value returned in each GetRecords
response. The following is an example GetShardIterator POST requesting 100
records with the specified ShardIterator:

POST / HTTP/1.1

Host: kinesis.<region>.<domain>

Content-Length: <PayloadSizeBytes>

User-Agent: <UserAgentString>

Creating a stream consumer application 93

Content-Type: application/x-amz-JSON-1.1

Authorization: <AuthParams>

Connection: Keep-Alive

X-Amz-Date: <Date>

X-Amz-Target: Kinesis_20131202.GetRecords

{

 "ShardIterator": "AAAAAAAAAAETYyAYzd665+8e0X7JTsASDM
/Hr2rSwc0X2qz93iuA3udrjTH+ikQvpQk/1ZcMMLzRdAesqwBGPnsth
zU0/CBlM/U8/8oEqGwX3pKw0XyeDNRAAZyXBo3MqkQtCpXhr942B
RTjvWKhFz7OmCb2Ncfr8Tl2cBktooi6kJhr+djN5WYkB38Rr3akR
gCl9qaU4dY=",

 "Limit": 100

}

Once the GetRecords API POST is accepted successfully, a return response
includes a list of the records. The following is an example GetRecords response
for data that will be added to the emergency events stream. The response
includes the ShardId where the record is stored, and the stream assigned to
SequenceNumber for the record:

HTTP/1.1 200 OK

x-amzn-RequestId: <RequestId>

Content-Type: application/x-amz-JSON-1.1

Content-Length: <PayloadSizeBytes>

Date: <Date>

{

 "MillisBehindLatest": 2100,

 "NextShardIterator": "AAAAAAAAAAHsW8zCWf9164uy8Epu
e6WS3w6wmj4a4USt+CNvMd6uXQ+HL5vAJMznqqC0DLKsIj
uoiTi1BpT6nW0LN2M2D56zM5H8anHm30Gbri9ua+qaGgj+
3XTyvbhpERfrezgLHbPB/rIcVpykJbaSj5
tmcXYRmFnqZBEyHwtZYFmh6hvWVFkIwLuMZLMrpWhG5r5hzkE=",

 "Records": [

 {

 "Data": "<base64 encoded data>",

 "PartitionKey": "d17a06d5-0f83-40f6-acc5-
840e7cd9aa8f",

 "ApproximateArrivalTimestamp": 1.441215410867E9,

 "SequenceNumber": "41269329789653657946712963403768482

94 Kinesis Data Streams

178"

 }

]

}

}

Creating an EFO consumer with Lambda
As we reviewed in the previous examples, standard consumer applications can easily
read data from the stream using various agents and SDKs. However, when the number
of standard consumers grows, they can increase record processing latency, as they all
share and compete for the same 2 MB GetRecords API limit. EFO is a KDS feature
that enhances consumers' capabilities by adding dedicated logical throughput between
the consumers and shards. This capability allows you to further scale the number
of applications that can read from the data stream. The following diagram shows
a dedicated pipe connection being established between a shard and a consumer using
the SubscribetoShard API:

Figure 4.13 – With EFO, records are pushed to the consumer rather than pulled

The EFO consumer increases consumers' read capacity from a shared 2 MB/second to
a dedicated 2 MB/second for each consumer. Utilizing an HTTP/2 WebSocket event
stream, the message delivery from producer to consumer can be reduced to as little
as 70 milliseconds. The following diagram shows how a dedicated EFO connection
is established:

Creating a stream consumer application 95

 Figure 4.14 – With EFO, each consumer gets a dedicated connection

In the following steps, we will walk through code for a Lambda-based consumer that
receives the stream record events as an EFO consumer:

1.	 We first write a Lambda-based consumer that reads the records as events. We will
name the function KinesisNotificationApplication:

import boto3

import json

import logging

import base64

logger = logging.getLogger()

logger.setLevel(logging.INFO)

def lambda_handler(event: dict, _context):

 if event and "Records" in event:

 for record in event["Records"]:

 try:

 body = record['kinesis']

 data_in_stream_time =
body['approximateArrivalTimestamp']

 data = body["data"]

 message_JSON = base64.b64decode(data)

96 Kinesis Data Streams

 message_JSON = json.dumps(message_JSON)

 partition_key = {body['partitionKey']}

 logger.info(f"Record consumed with partition key:
{partition_key} with an approximateArrivalTimestamp :
{data_in_stream_time}")

 logger.info(message_JSON)

 except KeyError as err:

 logger.error(err)

 raise err

2.	 Once we have a Lambda function saved, we will add a trigger to the function. The
trigger creates the event source mapping for a Kinesis stream to the function. The
following screenshot shows an added trigger:

Figure 4.15 – Screenshot of a Lambda event trigger

3.	 Using the AWS CLI, register the fan-out consumer (replace with stream-arn
with your stream ARN):

aws kinesis register-stream-consumer \

 --stream-arn <your-stream-arn-here> \

 --consumer-name KinesisConsumerApplication

Creating a stream consumer application 97

4.	 In the Enhanced fan-out section of the console for the specified stream, it will show
as a registered consumer:

Figure 4.16 – Screenshot of the registered fan-out consumer

Performance improvements and batching with parallel Lambda
invocations
When using Lambda as an EFO consumer, you can use ParallelizationFactor
for the EventSourceMapping to have your Lambda function pull from a shard
concurrently with multiple parallel invocations. Each parallelized invocation contains
messages with the same partition key and maintains order. The invocations complete
each record batch before processing the next batch with the following parallel invocation.
Parallelization increases the per-shard read consumption. Through parallelization, it can
process messages with up to 10 parallelized Lambda invocations per Lambda consumer.
As shown in the following screenshot, you can set the concurrent batches per shard:

Figure 4.17 – Screenshot of the batch Lambda parallelization size

98 Kinesis Data Streams

You can also gain performance improvements by setting a larger batch size that consumers
process in each invocation. When setting the EventSourceMapping batch size, you
can select the maximum number of records that Lambda retrieves from the stream when
invoking the function. Lastly, setting maxBatchingWindow can adjust the time to wait
for gathering the batch records before invoking the function. As shown in the following
screenshot, these settings can be applied to the Lambda consumer application:

Figure 4.18 – Screenshot of the Lambda EventSourceMapping configuration

Creating a stream consumer application 99

Each of these performance settings enables you to tune the performance of the processing
of the stream. As we tune the performance with settings such as these, the data becomes
available with more real-time delivery.

Handling failed records in a batch of "poison pills" with parallel Lambda
invocations
Although batching can improve processing performance by handling records in ordered
groups, it can become more challenging to handle failures, such as when one record in
a batch has an issue. These errors can lead to batch retries and duplicate record processing.
For example, a single erroring record can block the processing of other records in the
shard. As the records are being consumed in order, the continuous processing of the
errored record prevents all the records behind it from being processed. The combination
of the order guarantee and the failing record creates a scenario referred to as a poison pill.

Lambda EventSourceMapping has ReportBatchItemFailures, which will
checkpoint the most recent successful processed record. It starts the batch from the point
of the unsuccessful failed record. This continues until the maximum number of retries is
reached. When ReportBatchItemFailures is enabled and a failure occurs, Lambda
will prioritize checkpointing over other set mechanisms to minimize duplicate processing.

In the following diagram, you can see how ReportBatchItemFailures continuously
sets checkpoints to continue processing around erroring records:

Figure 4.19 – The ReportBatchItemFailures feature tracks record level checkpoints to avoid duplicate
processing when processing batches

100 Kinesis Data Streams

Note
The ReportBatchItemFailures checkpointing setting is the most
efficient method to avoid the blocking of processing ("poison pill") and reduce
duplicate record processing.

A Lambda EFO consumer also has built-in support through
EventSourceMapping for sending old or exhausted retries to an
on-failure destination such as a Simple Queue Service (SQS) queue or
a Simple Notification Service (SNS) topic. The Retry Attempts setting sets
the maximum number of times to retry if the function returns an error.

Now that we have learned how to produce and consume stream data, let's review how
we can use producers, consumers, and streams to create a data pipeline for SmartCity's
bike-sharing service.

Data pipelines with Amazon Kinesis Data
Streams
As we have learned how to create streams, producers, and consumers, we will design
a simple data pipeline for SmartCity. A data pipeline is a series of processing steps
applied to data flowing from the source to the target destination. The processing steps
could include automation for copying, transforming, routing, and loading source
data to destinations such as business systems, data lakes, and data warehouses. A data
pipeline should support the requirements for data throughput, reliability, and latency.
A well-architected design will prevent many of the common problems that can occur
when collecting and loading data, such as data corruption, bottlenecks, conflicts between
sources, and the creation of duplicate entries.

Data pipeline design (simple)
With this first design, this demonstrates receiving data from a single source of data.
The data source producer is using Amazon Kinesis Agent deployed in the SmartCity
data center. The data is collected in a single stream with a single shard. The following
design shows the flow of data from the producer to the consumer application, which
pushes the message to the SmartCity rider's mobile devices:

Data pipelines with Amazon Kinesis Data Streams 101

Figure 4.20 – City data system emergency message producer and AWS Lambda consumer

The pipeline has a Lambda function consumer subscribed to the stream data events. The
consumer processes the message and then sends it as a push message to the SmartCity
mobile app.

Data pipeline design (intermediate)
In the last design, we received data from only a single source of data. This design
incorporates the SmartCity mobile app as a second source of data for the pipeline.
The mobile app has a feature called RiderAlert, which enables riders to send emergency
notifications such as excessive bike lane traffic, weather alerts, unsafe road conditions,
and criminal activity. In this design, additional data producers from the rider's devices
were added:

Figure 4.21 – Multiple producers are adding to the stream

102 Kinesis Data Streams

As the KPL SDK is not a compatible platform with SmartCity mobile application, the app
will use a simple HTTPS-based REST API to send data to the pipeline. To support this
requirement, we will set up an HTTPS endpoint for the mobile application to send data
to Amazon API Gateway. Amazon API Gateway allows developers to easily create an
HTTP endpoint to send records to KDS. API Gateway also has support for authentication
to secure access to the endpoint.

As the data rate increases, we will add a shard to the stream. The data from both sources
will use the same JSON message format and a random value partition key to prevent
"hot partition keys." We will use the same subscribed Lambda consumer to process the
stream data events. The consumer processes the records and sends them to the mobile
application as a push message to the SmartCity mobile app.

Data pipeline design (full design)
In the last design, we started receiving data from two different sources of data. In this
next design, we will incorporate several AWS Well-Architected Analytics Lens design
principles: https://docs.aws.amazon.com/wellarchitected/latest/
analytics-lens/welcome.html. The Well-Architected Analytics Lens is
a collection of AWS recommended best practices that facilitate good design with data
applications. We will also introduce additional purpose-built services with strong KDS
integrations:

Figure 4.22 – Monitoring, security auditing, tracing, and error handling added

https://docs.aws.amazon.com/wellarchitected/latest/analytics-lens/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/analytics-lens/welcome.html

Data pipelines with Amazon Kinesis Data Streams 103

To prevent data volume or velocity from impacting the production pipeline, we will
incorporate several design principles. We will preserve the original incoming source data,
design for duplicates and failures, trace the data flow between different data systems, and
monitor and optimize for reliability and scalability. We will use the Amazon CloudWatch
service to monitor and log application events for observability of the pipeline. We will use
AWS X-Ray to trace the application for bugs and application performance bottlenecks.
Amazon SQS will be used as a Dead Letter Queue (DLQ) to collect records that have
failed to process. Amazon Kinesis Data Firehose (KDF) will collect source records and
store them in an Amazon S3 data lake. AWS Identity and Access Management (IAM)
and AWS CloudTrail will govern and secure the data. In the next sections, we will walk
through how these principals can benefit the pipeline.

Designing for scalable and reliable analytics pipelines
Asynchronous messaging has some unique challenges when handling errors. Data streams
require mechanisms for managing the data, while also maintaining the flow and integrity
of processed data. When data fails after repeated attempts, the consumer can move the
erroring records into a DLQ.

Producer and consumer retries are some of the reasons why records may be delivered
more than once. KDS does not automatically remove duplicate records. The destination
endpoint application must anticipate and handle the processing of individual records
multiple times in the most appropriate manner for the destination system. If the
destination requires a strict guarantee, the record should include a primary key. In
most cases, the destination can also mitigate duplicate messages by processing the same
message multiple times in a way that produces the same result (idempotence). For
example, the features that Lambda provides for failures, DLQs, and batching all help with
the heavy lift associated with scalable pipelines.

A typical consumer failure is when a destination endpoint is not performing or
unavailable. With this scenario, the consumer can back off and later retry when the
destination endpoint is available. The failure of a single destination endpoint should not
impact the performance of the entire system.

104 Kinesis Data Streams

Preserving original sources of data
We preserve raw ingested data because having raw data allows us to repeat the processing
in failure situations. We will not perform transformational processing on the original data
files, so original source data is maintained. This enables us to debug issues and, if needed,
reprocess the collected data. We can use Amazon Kinesis Firehose as a stream consumer
to ingest and store data to an Amazon S3 bucket. KDS data retention duration can also
act as storage when records need to be replayed. A new consumer could subscribe to the
stream and process all the records, or from a point in time. The stream data retention
duration can be set for up to 1 year.

Automating data ingestion
When designing data pipelines, we can automate data ingestion through scheduling,
event-based triggers, and change detection. When we automate the ingestion, it allows
data to maintain a consistent flow and reduces errors introduced through manual
processes.

The Kinesis Agent can detect new files and automatically write the records to the stream
as they arrive. The agent will also retry sending to the stream if a record fails. The mobile
application will need to have similar logic to retry Amazon API Gateway endpoint
requests if they fail.

Establishing data lineage
Data pipelines need to be able to trace data from the data source to its destination.
The data pipelines should simplify the time and effort required to trace data latency
and errors as it flows through each stage, including the producers, streams, consumers,
and any transformations. AWS X-Ray is an example of a distributed tracing tool used to
trace and analyze the data's performance throughout the data pipeline. This can include
tracing the data from the producer applications into the stream and through the consumer
applications. For example, you can trace whether issues with a producer are impacting
downstream consumers.

In the X-Ray tracing with Amazon KDS section, we will review how AWS X-Ray can help
to establish data lineage.

Data pipelines with Amazon Kinesis Data Streams 105

Monitoring and scaling with Amazon Kinesis Data
Streams
When we design the data pipelines, we want to make each stage of the pipeline reliable
and scalable. As the volume or velocity of data spikes, the system should adapt and scale,
so data flow is maintained and the changes do not impact the flow of data. For example,
when we use the Kinesis Data Stream Scaling Utility, it will enable the stream to adjust the
shard count with a change in data volume and velocity.

In the next section, we will review the metrics and monitoring capabilities available in
CloudWatch and AWS X-Ray.

CloudWatch metrics for Amazon Kinesis Data Streams
Amazon KDS and Amazon CloudWatch are tightly integrated services. There is
minimal effort to collect, view, and analyze metrics for the data streams, the producers,
and consumers with CloudWatch. Upon the creation of a stream, the stream level
metrics are turned on by default. For example, we can monitor CloudWatch for
IncomingBytes and OutgoingBytes metrics to determine the correct number
of shards required in the stream. We can monitor whether producers and consumers
exceed the stream's capacity with WriteProvisionedThroughputExceeded and
ReadProvisionedThroughputExceeded metrics. The MillisBehindLatest
metric can tell you how far behind the GetRecords response is from the stream's head.
You can also monitor additional shard-level metrics by turning on Enable Enhanced
Metrics for a stream.

Stream metrics are automatically collected and sent to CloudWatch every minute. There
is no additional cost for the default metrics; however, enhanced metrics do entail an
additional cost.

106 Kinesis Data Streams

The stream metrics that CloudWatch can monitor include record throughput, consumer
latency, and failures. You can use these metrics to trigger dynamic scaling processes to
increase write or read capacity through increased shards or other consumer settings,
such as the fan-out consumer Lambda ParallelizationFactor or batch size. The
following screenshot shows the KDS integrated CloudWatch metrics:

Figure 4.23 – Example KDS integrated CloudWatch metric monitoring dashboard

CloudWatch metrics and logs are available for streams, shards, producers, agents, and
consumers.

A summary of these is as follows:

•	 CloudWatch metrics: Kinesis Data Streams sends Amazon CloudWatch metrics
with detailed monitoring for each stream and, optionally, the shard level.

•	 Kinesis Agent: The Kinesis Agent sends custom metric data to CloudWatch so you
can monitor producer performance and stability.

•	 API logging: Kinesis Data Streams sends the API event data to AWS CloudTrail.

Data pipelines with Amazon Kinesis Data Streams 107

•	 The KCL: The KCL sends custom metrics to monitor consumer performance
and stability.

•	 The KPL: The KPL sends custom metrics to monitor the producer application's
performance and stability.

Several metrics are recorded in CloudWatch. These metrics can be used to monitor
healthy stream and scaling needs.

Some of the metrics include the following:

•	 PutRecord.Bytes: The total number of bytes put in to the Amazon Kinesis
stream over the specified time period.

•	 PutRecord.Latency: This metric monitors the performance of the PutRecord
operation, measured over the specified time period.

•	 PutRecord.Success: This metric provides a count of successful PutRecord
operations measured over the specified time period.

•	 WriteProvisionedThroughputExceeded: This metric provides the number
of records rejected due to exceeded write capacity.

•	 GetRecords.IteratorAgeMilliseconds: This metric can be used to
monitor the performance of the flow of data processing. This metric provides the
age of the last read record from the GetRecords API calls to a stream, measured
over the specified time period. When this metric's value is close to zero, this
indicates that consumers have caught up with the stream's data.

108 Kinesis Data Streams

X-Ray tracing with Amazon Kinesis Data Streams
As records flow through multiple devices, producers, the stream, and consumers, it is
essential to have the capability to trace data from its origin to the destination. Data lineage
is tracking the data origin and its flow between different data systems. When applications
use AWS X-Ray, they have greater visibility for tracing errors and can monitor
performance. AWS X-Ray provides the capability to track and view data as it moves from
the source to the processed destination. As demonstrated in the following screenshot,
AWS X-Ray provides a visual map of errors with links to insights that can help find the
root causes of issues:

Figure 4.24 – Example AWS X-Ray service map

AWS X-Ray has several capabilities that can be used to trace both development and
production applications. X-Ray works by adding tracing markers to the requests and logs.
Applications can also use the application code in the AWS X-Ray SDK to include custom
tracing annotations to incorporate custom context data in the tracing analytics.

Data pipelines with Amazon Kinesis Data Streams 109

Scaling up with Amazon Kinesis Data Streams
Kinesis manages much of the scaling and complexity associated with operating a data
stream. This includes data storage, data security, replication across Availablility Zones,
sharding operations, and monitoring. However, KDS does not provide out-of-the-box
shard autoscaling based on data velocity. We want to maintain the pipeline's reliability
and scalability as the flow of data changes. The Kinesis Scaling Utility (https://
github.com/awslabs/amazon-kinesis-scaling-utils) is an open source,
Java-based utility that scales Amazon Kinesis Data Streams shard counts up or down in
a hands-off automated manner. As the stream shards approach capacity intervals, the
utility will automatically increase or decrease the shard count. This utility helps with use
cases such as handling seasonal data spikes for SmartCity weekday morning and evening
peak usage patterns.

Securing Amazon Kinesis Data Streams
When building data pipelines, the data and infrastructure should be secured based on
business requirements. Security begins with fine-grained controlled access for authorized
users. We want to provide each user and service in the pipeline with only the required
privileged access required to perform the designated task or function. The data should be
protected at rest and in-flight as it flows in and out of the data pipeline. Lastly, we want to
maintain and monitor an audit log of user and service access.

Amazon KDS provides several security features that can be used to implement data
pipeline security policies. The following are some of the best practices and general
guidelines.

Implementing least-privilege access
When granting permissions to the data pipeline, we need to decide what permissions
are required for users and integrated services. For example, a producer application may
only need write access to the stream and does not require read access. The consumer
application may require read access to the stream data but does not require write actions.
When implementing data stream security, implement the least-privilege access necessary
for the principal resource granted. When we implement least-privilege access policies, it
helps to reduce risks, such as malicious intent or an erroneous event.

https://github.com/awslabs/amazon-kinesis-scaling-utils
https://github.com/awslabs/amazon-kinesis-scaling-utils

110 Kinesis Data Streams

Using IAM roles
When granting permissions with least-privilege access, we are controlling access through
IAM policies. These policies determine the actions that can be performed on the data
stream.

When developing consumer and producer applications with the KCL and KPL, they
require permissions for services such as CloudWatch, DynamoDB, and KDS. When
granting these permissions, applications should not be granted long-term credentials.
Long-term credentials can lead to compromised access to the data, resulting in a
significant business impact.

Rather than granting long-term credentials, grant IAM roles to the producer and
consumer applications. Roles provide temporary credentials that are short-lived and
automatically rotated. The role can be applied directly to the EC2 instance or Lambda
function.

Implementing server-side encryption in dependent resources
Security best practice suggests always encrypting data when in-transit and at rest. When
data is at rest in a stream, the data requires server-side encryption. Amazon KDS uses the
AWS Key Management Service (AWS KMS) to provide a managed and secure system
for data key management and data encryption. KMS encrypts the KDS when written into
the stream using a Customer-Managed Key (CMK). When a consumer application reads
data from the stream, the data is decrypted from storage.

We have reviewed how least-privileged access, temporary credentials, and data encryption
are essential security practices. These should be implemented to protect the data in KDS.

Summary
As you can see, KDS is a powerful service for collecting and processing data with high
velocity and low latency. KDS is a managed service that handles much of the heavy lifting
associated with maintaining high performance and highly reliable data streams. KDS is
also highly customizable, offering several serverless and customizable tools for ingesting
and processing for almost any source and destination.

Further reading 111

In this chapter, you learned about Amazon KDS and how to design a data pipeline
solution with multiple producers and consumers. You learned how to monitor, scale,
and secure KDS utilizing well-architected best practices and integrated AWS tools and
services.

In the next chapter, you will learn to consume and process data with other KDS services.
You will learn how to ingest, transform, and process data with another purpose-built
streaming technology. Amazon KDF has built-in capabilities to automatically ingest
data from sources such as KDS, AWS IoT, Amazon CloudWatch Logs, and Amazon
CloudWatch Events. KDF can apply Extract, Transform, Load (ETL) transformations
and deliver the data to several preconfigured destinations such as AWS S3, Redshift,
Amazon Elasticsearch, and other third-party destinations.

Further reading
•	 Amazon Kinesis Data Streams: https://aws.amazon.com/kinesis/data-

streams/

•	 Amazon Kinesis Data Streams API reference: https://docs.aws.amazon.
com/kinesis/latest/APIReference/Welcome.html

•	 Amazon Kinesis Data Streams developer guide: https://docs.aws.amazon.
com/streams/latest/dev/introduction.html

•	 Using AWS Lambda with Amazon Kinesis: https://docs.aws.amazon.com/
lambda/latest/dg/with-kinesis.html

•	 Writing to Amazon Kinesis Data Streams Using Kinesis Agent: https://docs.
aws.amazon.com/streams/latest/dev/writing-with-agents.html

•	 Security Best Practices for Kinesis Data Streams: https://docs.aws.amazon.
com/streams/latest/dev/security-best-practices.html

https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/kinesis/data-streams/
https://docs.aws.amazon.com/kinesis/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/streams/latest/dev/introduction.html
https://docs.aws.amazon.com/streams/latest/dev/introduction.html
https://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html
https://docs.aws.amazon.com/lambda/latest/dg/with-kinesis.html
https://docs.aws.amazon.com/streams/latest/dev/writing-with-agents.html
https://docs.aws.amazon.com/streams/latest/dev/writing-with-agents.html
https://docs.aws.amazon.com/streams/latest/dev/security-best-practices.html
https://docs.aws.amazon.com/streams/latest/dev/security-best-practices.html

5
Kinesis Firehose

In this chapter, we take an in-depth look at Amazon Kinesis Data Firehose (KDF).
This is a fully managed serverless service for the ingestion of large volumes of data from
a number of sources and delivery to an ever-increasing number of integrated destinations.
It provides an easy way to enable a number of big-data use cases by delivering data
(without any coding requirements) to a data lake; a high-capacity and high-performance
parallel data warehouse service; a search-and-analytics service; HyperText Transfer
Protocol (HTTP) endpoints; and a number of third-party providers. It also allows
a number of inline Extract-Transform-Load (ETL) transformations that enable
high-velocity and high-throughput transformations, enabling near-real-time use cases.
We also take a look at how KDF can be used in the data pipeline described in the chapter
on Kinesis Data Streams (KDS), with the SmartCity use case.

The following topics will be covered in this chapter:

•	 Discovering Amazon KDF
•	 Understanding encryption in KDF
•	 Using data transformation in KDF with a Lambda function
•	 Understanding delivery stream destinations
•	 Understanding data format conversion in KDF
•	 Understanding monitoring in KDF
•	 Use-case example – Bikeshare station data pipeline with KDF

Let's get started!

114 Kinesis Firehose

Technical requirements
First, let's take a quick look at the technical requirements for running the examples in
this book.

Setting up the AWS account
You will need to get an Amazon Web Services (AWS) account to run the examples
included in this chapter. If you do not have an account already, you can go to https://
aws.amazon.com/getting-started/ to create an account. AWS accounts offer
a Free Tier (https://aws.amazon.com/free). The AWS Free Tier allows you
to use many AWS services for free within specified usage limits. Some of the services'
examples in this chapter are outside of the AWS Free Tier and will incur some charges
for service usage.

Using a local development environment
You will need a working Python 3.x environment. You can install Python 3.x by
downloading and running the installer (https://www.python.org/downloads/)
for your environment's operating system. Be careful not to use Python 2.7 as it is no
longer maintained.

You can set up the AWS software development kit (SDK) for Python using the following
link: https://aws.amazon.com/sdk-for-python/. The AWS SDK for Python
includes several of the tools for developing in AWS with Python and includes libraries
such as boto3.

You can also install the AWS Command-Line Interface (AWS CLI) version 2 on your
computer using the following link: https://docs.aws.amazon.com/cli/
latest/userguide/install-cliv2.html.

Using an AWS Cloud9 development environment
As an alternative to setting the aforementioned packages up in your local development
environment, you can also set up and create an AWS Cloud9 development environment
with the help of this link: https://docs.aws.amazon.com/cloud9/latest/
user-guide/setting-up.html.

AWS Cloud9 is an integrated development environment (IDE). The AWS Cloud9 IDE
has rich code-editing capabilities, with support for several programming languages and
runtime debuggers. It also has a built-in terminal and tools to code, build, run, test, and
debug code examples.

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free
https://www.python.org/downloads/
https://aws.amazon.com/sdk-for-python/
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/setting-up.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/setting-up.html

Discovering Amazon Kinesis Firehose 115

You can use the following guide to set up your Python environment on AWS Cloud9:

https://docs.aws.amazon.com/cloud9/latest/user-guide/sample-
python.html

Code examples
Code examples for this book are available on GitHub at https://github.com/
PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis.
You will need a Git client to access them (https://git-scm.com/).

Discovering Amazon Kinesis Firehose
The core construct in KDF is a delivery stream. Data is ingested into a delivery
stream from a source, and data is then delivered by the delivery stream to a configured
destination.

The following diagram illustrates producers sending data to Amazon KDF and the
delivery destinations it supports:

Figure 5.1 – Producers sending data to Amazon KDF and the delivery destinations it supports

https://docs.aws.amazon.com/cloud9/latest/user-guide/sample-python.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/sample-python.html
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis
https://git-scm.com/

116 Kinesis Firehose

Let's talk about the delivery stream itself first, and then we will talk about each of the
supported destinations in detail, followed by the various mechanisms to send data to KDF.

Understanding KDF delivery streams
The purpose of using a KDF delivery stream is to deliver streaming data to one of the
supported destinations. Each delivery stream supports a single destination, so if the
requirement is to send the same streaming data to multiple destinations, you need to
create multiple delivery streams, each pointing to a single destination you need to send
the data to. A delivery stream buffers incoming records as per the configuration provided,
which differs by the type of destination, performs the configured transformations and
compressions, and then delivers to the configured destination. Each delivery stream is
associated with a certain amount of capacity based on the ingestion method. There are
two ingestion methods available. Let's have a look at these methods in detail.

Direct PUT
In this mode, the service provides the PutRecord and PutRecordBatch application
programming interfaces (APIs) to send records one by one and in batches, respectively.
The PutRecordBatch API can take up to 500 records or 4 mebibytes (MiB) per call,
whichever is smaller. This is a hard limit and cannot be changed.

The default delivery stream capacity is based on the choice of the AWS Region. For US
East (N. Virginia), US West (Oregon), and Europe (Ireland), it is 5,000 records/second,
2,000 requests/second, and 5 MiB/second. For many other regions, it is 1,000 records/
second, 1,000 requests/second, and 1 MiB/second. The important thing to note here is
that these are soft limits, and if the throughput for a particular use case is higher than the
specified limits, a limit increase support ticket needs to be submitted and the service raises
the limit for the delivery stream. The three dimensions scale proportionally. In addition,
the service is able to auto-scale up to the delivery stream capacity limit. There is one other
important limit that deserves a mention here. The maximum size of an individual record
before Base64 encoding is 1,000 kibibytes (KiB). However, there are some strategies that
can be employed to handle messages larger than the maximum size.

Strategies to handle messages larger than 1,000 KiB
The first and obvious strategy is to compress the message. KDF can handle binary
payloads, and it does not need to inspect or read the actual message payload unless certain
transformations are specified. A side effect of this strategy is that messages delivered to the
destination are also compressed and need to be decompressed during read.

Discovering Amazon Kinesis Firehose 117

The second method is to break up the message into multiple parts and have an ID
that groups the messages together so that these messages can be reassembled at the
destination.

Both these strategies require some postprocessing of messages after KDF delivers the
messages to the configured destination.

Rounding up the size of ingested records
From a pricing standpoint, you pay for the volume of data ingested into the delivery
stream, which is the number of records/second * the size of each record. However, the
size of each record is rounded up to the nearest 5 kilobyte (KB) boundary. So, if the
record size is 23 KB, it will be rounded up to 25 KB, and if the record size is 497 KB,
it will be rounded up to 500 KB. So, the volume of data ingested is really the number
of records/second * the size of each record, rounded up to the nearest 5 KB.

So, what does this mean for you? It means that you pay more than you expect to pay
if the size of your records is not close to or equal to a 5 KB boundary. If the volume of
data flowing through is large, this could become quite significant. To address this on
the producer side, you can concatenate records with a record separator such as \n and
create larger records to be sent to KDF, or use some other method or format to pack the
user records into bigger records to be sent to KDF, which are less than or equal to the
nearest 5 KB boundary. Concatenating the records with a \n separator has the advantage
of not requiring any postprocessing. KDF delivers the records to the destination as is.
Using some other method or format to pack records may require postprocessing in the
destination.

Concatenation is the method used by the Kinesis Agent for Linux, which is a tool that
can be installed and used on Linux platforms to tail files and send data to Amazon KDS
and Amazon KDF.

Amazon KDS as a source
There is tight integration between Amazon KDS and Amazon KDF, which allows you to
specify an Amazon KDS stream as a source. The delivery stream capacity is the capacity
of the source Amazon KDS stream and the service can auto-scale up to that limit.
Since the capacity of an Amazon KDS stream in shards is known, it is possible for the
service to create a KDF stream supporting that capacity. When this mode is chosen, the
PutRecord and PutRecordBatch APIs are disabled. Data or messages in the KDS
stream are sent to the configured destination. The KDF service reads from the KDS stream
approximately once per second for each shard in the KDS stream.

118 Kinesis Firehose

KDF reading from the KDS stream
The KDF service starts reading the KDS stream from the latest position in the
stream, which means the end of the stream. Any existing data or messages in
the KDS stream present before the creation of the KDF delivery stream are not
sent to the configured destination.

Currently, when reading from an Amazon KDS stream, KDF employs a standard
consumer. Given that a KDS stream can support up to five standard consumers and if
the KDF service determines that it is falling behind in reading from the stream, it can
catch up by starting additional consumers. It is important not to overload the KDS stream
with standard consumers if a KDF delivery stream is configured to use the KDS stream
as a source. Typically, it is recommended not to have more than one or two standard
consumers in addition to a KDF delivery stream reading from the KDS stream.

Rounding up the size of ingested records
As mentioned for the Direct PUT method, records ingested into a KDF delivery stream
are rounded up to the nearest 5 KB boundary for pricing purposes. Correspondingly, for
a KDS stream, there is a pricing component called PUT payload unit. This is a 25 KB
payload chunk that comprises a record. If the size of a record is less than or equal to 25
KB, it contains 1 PUT payload unit. If the size of a record is greater than 25 KB, the size is
rounded up to the next 25 KB boundary and divided by 25 KB to get the number of PUT
payload units. For KDS, PUT payload units are charged per million.

So, how does this affect the cost of a KDS stream? It means that you pay more than you
expect to pay if the size of your records is not close to or equal to a 25 KB boundary as
you're paying more for PUT payload units for the volume of ingested data. To address this,
you need to pack more user records into a record sent to KDS. This is implemented in the
Kinesis Producer Library (KPL). If the KPL is used to send messages to the KDS stream
and the AggregationEnabled configuration parameter is set to true, multiple user
records are packed into a single KinesisDataStream record, thus increasing the size
of an ingested record to a number close to a multiple of 25 KB.

Since 25 KB is a multiple of 5 KB, which is the boundary that KDF rounds up a record
to, reading records sent to a KDS stream using the KPL with aggregation turned on
provides good utilization of the round-up. At its end, the KDF service upon ingesting
the aggregated records automatically de-aggregates the records before they're sent to the
destination, so the records are delivered to the destination as they're sent to the KPL.

Understanding encryption in KDF 119

Understanding encryption in KDF
KDF supports both encryption in transit and encryption at rest. KDF has a REST API
that supports secure HTTP (that is, HTTPS). For encryption at rest, the method employed
depends on the data ingestion mechanism. As explained in the Understanding KDF
delivery streams section, there are two ways to ingest data into KDF: Direct PUT and
a KDS stream as a source. In addition, KDF has integrations with a number of other AWS
services, such as Amazon CloudWatch Logs, Amazon CloudWatch Events, AWS Internet
of Things (IoT), or Amazon Simple Notification Service (SNS), which allows those
services to send data to KDF.

For Direct PUT using either PutRecord or PutRecordBatch APIs and for other
AWS services sending data to KDF, you can enable encryption at rest (or server-side
encryption) using an AWS Key Management Service (KMS) customer master key
(CMK). The CMK can be either an AWS-owned CMK or a customer-managed CMK.
AWS-owned CMKs are not in your account. They are a collection of CMKs owned
by a service and are used to encrypt resources in your account. You don't create
or manage these CMKs and cannot view, track, or audit them. You also don't pay for
them. Customer-managed CMKs are in your account, and you create and manage them.
You can also use, view, audit, and rotate them, and can control who has access to them and
pays for them.

You can enable or disable server-side encryption through the
StartDeliveryStreamEncryption and StopDeliveryStreamEncryption
APIs respectively. An example of enabling it using the AWS CLI for a delivery stream with
the name of KDFS3DeliverLogs is shown here:

aws firehose start-delivery-stream-encryption --delivery-
stream-name KDFS3DeliverLogs

Server-side encryption can also enabled at the time of delivery stream creation by
specifying the DeliveryStreamEncryptionConfigurationInput configuration,
shown in the following code block:

"DeliveryStreamEncryptionConfigurationInput": {

 "KeyARN": "",

 "KeyType": "CUSTOMER_MANAGED_CMK"

 }

120 Kinesis Firehose

The KeyARN value is the Amazon Resource Name (ARN) of the AWS CMK, and the
KeyType value can be either CUSTOMER_MANAGED_CMK for a CMK managed and
provided by you or AWS_OWNED_CMK for an AWS-owned CMK.

The AWS Console also provides the ability to enable server-side encryption at the time of
delivery stream creation. The following screenshot shows server-side encryption enabled
for source records in the delivery stream:

Figure 5.2 – Configuration of server-side encryption for a delivery stream during creation
via the AWS Console

When a KDF delivery stream uses a KDS stream as a source, it does not employ
server-side encryption but rather depends on server-side encryption being enabled for the
KDS stream. When KDF reads data from the KDS stream, the KDS service first decrypts
the data and then sends it to KDF. KDF buffers the data in memory and delivers it to the
configured destination without storing the data at rest.

Using data transformation in KDF with
a Lambda function
KDF provides the ability to transform ingested records inline through integration with
the AWS Lambda service, which allows KDF to invoke a Lambda function (called
a Lambda transform) to do custom processing as long as the code adheres to a data
transformation and status model. By default, data transformation is disabled and needs
to be enabled in the delivery stream configuration. The following diagram illustrates how
data transformation works in KDF:

Using data transformation in KDF with a Lambda function 121

Figure 5.3 – Data transformation with Lambda invocations

Once enabled, the incoming records are buffered up to 3 megabytes (MB) by default.
The buffering size can be adjusted using the ProcessingConfiguration API using
the BufferSizeInMBs processor parameter (the AWS Console only supports the
BufferSizeInMBs and BufferIntervalInSeconds parameters) available as
textboxes and lets you choose from a drop-down list of Lambda functions available in
the same account that you have access to, but you cannot set the NumberOfRetries
function, which is the number of times KDF tries to retry invoking the Lambda function
with the same payload of records if it either encounters an error in invoking the Lambda
function or receives an error from the code in the Lambda function that was not handled
in the Lambda function. The NumberOfRetries function can be set using the CLI and
a JavaScript Object Notation (JSON) configuration. An example of JSON configuration
is included in the code examples available with this book at https://github.com/
PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis.
Once a buffer is full, KDF invokes the specified Lambda function with the payload of
incoming records. This Lambda function invocation is synchronous, which means it is in
a request/response mode, and KDF waits for the Lambda function to execute and return
a response. However, KDF keeps ingesting additional records and filling additional buffers
sequentially, and invokes a new instance of the Lambda function when those buffers are
full. The maximum amount of time that KDF waits for a Lambda function to execute is
5 minutes, after which you get an error.

https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis

122 Kinesis Firehose

The following diagram shows the transformation model and the data transformation:

Figure 5.4 – Data transformation model and data transformation

The payload that KDF invokes the Lambda function with has some metadata in addition
to the Base64-encoded data records. The metadata includes a recordId, which is
generated by KDF for each ingested record. After the Lambda function processes the
payload, KDF expects the function to return an array of records, each with the following
fields:

•	 recordId—This is the same recordId that KDF passed to the Lambda function.
Every recordId that was included in the payload needs to be in the returned array
of records. Any recordId not included in the returned array is treated as a data
transformation failure, having a status of ProcessingFailed.

•	 result—This represents the status of data transformation for the record. The
possible values are these:

a) �Ok, which means data transformation was successful and needs to necessarily
include the Base64-encoded transformed data in the data field.

b) �Dropped, which means the record was intentionally dropped, providing
a mechanism for filtering incoming records so that only relevant records are
delivered to the destination, and may or may not include data in the data field.

c) �ProcessingFailed, which means data transformation was unsuccessful
for this record and may or may not include data in the data field. The Lambda
function can log records with a ProcessingFailed status to CloudWatch
Logs.

•	 data—The Base64-encoded data after data transformation.

Understanding delivery stream destinations 123

If KDF encounters an error invoking the Lambda function due to a network timeout
or the Lambda invocation limit being reached, or the Lambda service is not available.
And, if there is an error from the Lambda function or the Lambda service, it by default
retries the Lambda function thrice (unless a different number of retries is set, as
mentioned earlier) with the same payload, and if there is an error for all of the retries,
it skips data transformation and data delivery to the configured destination for the batch.
KDF allows you to enable CloudWatch Logs error logging for the delivery stream to log
these errors in CloudWatch Logs. It treats the records in the failed batch as having the
transformation status of ProcessingFailed. KDF then delivers all the records with
a status of ProcessingFailed for the various types of failures to the specified Simple
Storage Service (S3) bucket with the prefix provided under the S3 error prefix. This
provides you with the ability to inspect the issue with the batch and to re-process the
records later.

In addition, KDF provides the ability to enable source-record S3 backup in the delivery
stream configuration, which delivers the source records (before transformation) to the
backup S3 bucket with the specified backup S3 bucket prefix.

The AWS Lambda console provides a number of blueprints that can be used as a starting
point for creating the Lambda function for data transformation, which provides the
necessary bootstrapping code to read the payload and return the output. The blueprints
include kinesis-firehose-syslog-to-json in Node.js; kinesis-firehose-
cloudwatch-logs-processor-python in Python 2.7 (since Python 2.7 has
been deprecated, you can copy the code and use it as a starting point with Python 3.8);
kinesis-firehose-cloudwatch-logs-processor in Node.js; and generic
blueprints to process records in kinesis-firehose-process-record in Node.js
and kinesis-firehose-process-record-python in Python 2.7 (as before, it is
recommended to copy the code and use it with Python 3.8).

A number of features and configurations of KDF are specific to a destination. So, let's take
a look at those features and configurations in the context of destinations.

Understanding delivery stream destinations
Delivery stream destinations are where KDF has the ability to land or send the ingested
data. This is how KDF packages stream storage, data processing, and delivery into one
neat tool that requires no code. KDF supports a number of destinations, and the KDF
service has been adding additional destinations over time. Now, let's take a detailed look
at the supported destinations.

124 Kinesis Firehose

Amazon S3
The first—and most popular—destination is Amazon S3. S3 is a serverless object-storage
service that is highly scalable, highly durable, and highly available, and provides
industry-leading performance and security features. It is designed for 99.999999999%
(or 11 9s) of durability and provides storage for almost any amount of data. It provides
the ideal storage at an affordable price point for use cases such as a data lake, and hence
is an ideal destination for KDF. The most popular use case for using KDF is to populate
a data lake that uses S3 as a destination.

Buffering
KDF buffers the incoming records based on the buffering configuration and concatenates
the buffered records before delivering them to S3 as an S3 object. It is therefore advisable
to append a record separator (usually a \n separator) to a record before sending the
record to KDF. Doing that allows you to differentiate the records in the S3 object.

The number of records to buffer and, correspondingly, the frequency of delivery of the
S3 object to S3 are determined by the Buffer size and Buffer interval values configured
for the delivery stream. Note that these are referred to as buffering hints, and while KDF
tries to adhere to it, the resulting object sizes in S3 may not be exactly the size specified.
For the S3 destination, Buffer size can be between 1 and 128 MB, and Buffer interval
can be between 60 and 900 seconds (or 1 minute and 15 minutes). Whichever configured
value is hit first triggers the delivery of the S3 object. However, if the service determines
that it is falling behind in delivering data to the destination in comparison to the rate of
data ingestion, it automatically raises the buffer size to catch up and deliver data to the
destination. For the purposes of a data lake, it is recommended that the S3 object sizes
be greater than 100 MB.

In the AWS KDF console, the buffering hints can be configured for the S3 destination after
selecting the destination type, under Configure settings.

Understanding delivery stream destinations 125

The following screenshot shows the buffering hints with the default values populated:

Figure 5.5 – Screenshot of the S3 destination buffering hints

The ExtendedS3DestinationConfiguration configuration can be used with the
AWS CLI to configure the S3 destination. The BufferingHints configuration appears
under the ExtendedS3DestinationConfiguration configuration and is presented
as follows:

"BufferingHints": {

 "IntervalInSeconds": 5,

 "SizeInMBs": 300

 }

As the name suggests, the buffering hints act as hints. While KDF makes the best effort
to adhere to the hints, KDF can raise the buffer size if the rate at which records are being
ingested exceeds the rate at which records are delivered.

126 Kinesis Firehose

S3 encryption of delivered objects
KDF supports delivering objects to S3 with server-side encryption at rest, using
a KMS key. The key can be either a service-managed CMK key such as aws/s3, which
is the default key for the service for your account, or a customer-managed CMK that
you specify. In the console, you can pick the key from a drop-down list, while in the
configuration file, you have to specify the ARN of the key. You also need to provide access
to this key to the Identity and Access Management (IAM) role that KDF assumes to
deliver data to the S3 destination.

The following screenshot shows the S3 destination encryption configuration in the AWS
KDF console:

Figure 5.6 – S3 encryption setting for the S3 destination in the AWS Console

It is recommended that you use a customer-managed CMK as there are a number of
advantages to using it, including the ability to control key rotation, use or upload your
own key material, and control access and permissions on the key.

Compression
KDF provides the ability to compress S3 objects before delivery to S3. The supported
compression formats are Gzip, Snappy, Hadoop-Compatible Snappy, and ZIP.

Understanding default and custom S3 prefixes with KDF
When storing data in S3, it is a common practice to group data in folders, especially
by time, commonly known as data partitioning. This allows for better performance
and cost optimization when querying data stored in S3 by filtering data by date and by
eliminating the scanning of data in folders that are not being queried, a practice called
partition pruning.

Understanding delivery stream destinations 127

In the specified S3 bucket, KDF by default delivers S3 objects in a Coordinated
Universal Time (UTC)-based folder structure in the YYYY/MM/DD/HH format. The
UTC time used for this is the time records ingested into KDF, and the time is made
available in a metadata field called ApproximateArrivalTimestamp. This creates
a hierarchical folder structure. However, this folder structure is not compatible with
Apache Hive naming conventions, which require the folder structure to be in a /
partitionkey=partitionvalue format. The Apache Hive naming format allows
the easy addition of new partitions to a table with data stored in an S3 folder through
a single command such as MSCK REPAIR TABLE, as opposed to adding partitions one
by one. It also enables partition-naming schemes such as /date=20201-01-02/ that
are helpful in reducing the number of partitions as more data is added. In order to achieve
this in KDF, you need to use custom S3 prefixes.

As the name suggests, custom S3 prefixes allow you to specify S3 prefixes to alter the
virtual folder structure of the objects delivered to S3. Here are two types of prefixes that
can be specified:

•	 S3 prefix—This refers to the prefixes for objects delivered by KDF to S3.

•	 S3 error prefix—This refers to the prefixes of objects delivered to S3 by KDF
when it encounters an error. This error could be related to a data transformation
error when trying to invoke a Lambda function to perform inline ETL or a data
format conversion error when trying to convert the incoming records from a JSON
format to either Parquet or Optimized Row Columnar (ORC) format. When KDF
encounters those error conditions and is unable to deliver the records after retries,
it delivers the records together with some metadata to the specified S3 bucket using
the folder structure specified for the S3 error prefix. It is recommended to use an
error prefix that makes it easy to identify and re-process failed records, such as a
date format similar to the one used for the S3 prefix except under a separate folder.

Custom prefixes utilize expressions of the form !{namespace:value}, where the
namespace is either a timestamp or a firehose object. The Firehose namespace provides
the ability to specify folder names that are not timestamp related and can have values that
are either a random string or an error-output type. The error-output-type value can only
be used in the ErrorOutputPrefix and depends on the configuration of the delivery
stream, type of destination, and reason for failure. It can have the following values:

•	 processing-failed: Denotes processing failed for a Lambda transformation

•	 elasticsearch-failed: Denotes a failure in delivering records to an AWS
Elasticsearch destination

•	 splunk-failed: Denotes a failure in delivering records to a Splunk destination

128 Kinesis Firehose

•	 http-endpoint-failed: Denotes a failure in delivering records to an HTTP
endpoint destination

•	 format-conversion-failed: Denotes a failure in converting the format of
incoming records from JSON to Parquet or ORC

The timestamp namespace can have a date pattern in the Java DateTimeFormatter
pattern (https://docs.oracle.com/javase/8/docs/api/java/time/
format/DateTimeFormatter.html). The two namespaces can be combined in
a single expression to create a complex pattern for the prefix.

It is important to understand the origin of the timestamp used for the expression.
The timestamp is not the timestamp when the incoming record was generated at
the source (called the Event timestamp), and it is not any arbitrary timestamp
value in the incoming record. It is an internal timestamp used by KDF called
ApproximateArrivalTimestamp, which is a UTC timestamp associated with
every record when it is ingested into KDF.

KDF S3 custom prefix expressions use ingestion time
The only timestamp available for expressions in S3 custom prefixes is the
ingestion-time timestamp or ApproximateArrivalTimestamp.
Further, since KDF buffers multiple records and delivers them together in
a single object to S3, it is possible that individual records could have different
ingestion timestamps. KDF uses the ingestion timestamp of the oldest record in
the S3 object being written, to evaluate the prefix expression.

Assuming that you want to store log data in S3 objects in hourly folders (partitions),
here is an example of an S3 prefix:

logs/year=!{timestamp:yyyy}/month=!{timestamp:MM}/
day=!{timestamp:dd}/hour=!{timestamp:HH}/

So, if you have an ingestion time of 1609808228 in Epoch time (https://
en.wikipedia.org/wiki/Unix_time), which is Tuesday, January 5, 2021 12:57:08
A.M. in UTC, the preceding expression evaluates to a prefix, as shown here:

logs/year=2021/month=01/day=05/hour=00/

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time

Understanding delivery stream destinations 129

Similarly, assuming that you want to store the data with errors, by error type in hourly
folders, here is an example of an S3 error-output prefix:

logs/!{firehose:error-output-type}/!{timestamp:yyyy/MM/dd/HH}/

So, if you have an ingestion time of 1609808228 in Epoch time, which is Tuesday,
January 5, 2021 12:57:08 A.M. in UTC, and assuming the error was due to a Lambda
transform failure, the preceding expression evaluates to an error prefix, as shown here:

logs/processing-failed/2021/01/05/00/

Even though custom S3 prefixes cannot use fields in the incoming data in expressions to
create custom partitioning schemes, it does provide an easy way to query the delivered
data in time-based partitions using ingestion time.

Next, let's take a look at how S3 delivery failures are handled in KDF.

S3 delivery failures
KDF stores incoming records for 24 hours in case it is unable to deliver the data to the
destination. For S3, there can be multiple reasons why KDF may be unable to deliver S3
objects, including a change to the permissions preventing access to S3, deletion of the
configured S3 location, unavailability of the S3 service (which is highly unlikely), or some
other networking issue. In those situations, KDF continues to try to deliver the objects
every 5 seconds, up to 24 hours. It also logs the error in Amazon CloudWatch Logs,
if it is enabled in the configuration of the delivery stream. If it is unable to deliver the
records beyond 24 hours, the data is lost. So, it is important to keep an eye on the
KDF metrics available in Amazon CloudWatch for the S3 destination, particularly
DeliveryToS3.Success, which is a ratio of the sum of successful Amazon S3 PUT
commands over the sum of all Amazon S3 PUT commands and should be close to 1.
If it consistently starts falling, this indicates a problem with the destination. Similarly,
the DeliveryToS3.DataFreshness metric indicates in seconds the age of the
oldest record in KDF not delivered to S3. If this number starts going up consistently,
this indicates an issue. Further, if this number starts approaching 86,400 seconds
(or 24 hours), there is a potential for data loss. It is advisable to set an alarm on this
metric in Amazon CloudWatch to get notified if this value crosses a threshold, to give
you adequate time to investigate and fix the issue.

130 Kinesis Firehose

S3 backup
KDF provides the ability to back up the source records to a different S3 location if either
data transformation or data format conversion is enabled. This allows you to preserve
the source data as ingested into KDF for debugging or other business use cases. The S3
location can be a completely different bucket and prefix from the one specified for the
delivery destination.

Security
KDF needs an IAM role with a permissions policy that allows it to perform actions on
behalf of your AWS account. It needs permissions to access the S3 locations specified
for the delivery of the data as well as the backup location, if data transformation or data
format conversion is enabled and S3 backup is also enabled. If S3 server-side encryption
is enabled using an AWS KMS customer-managed CMK key, access to the KMS key is
also required. If CloudWatch logging of data delivery failures is enabled, it also needs
access to CloudWatch Logs. In addition, if data transformation is enabled, it needs access
to the Lambda function specified for data transformation and access to the AWS Glue
Data Catalog, if data format conversion is enabled. Further, if the source of data is a
KDS stream, then access to the KDS stream also needs to be included in the permissions
policy. In order to enable cross-account access, additional permissions—as described in
the Understanding cross-account delivery deployment patterns with KDF section of this
chapter—also need to be included.

A sample policy is included in the code samples associated with this book
and available on GitHub at https://github.com/PacktPublishing/
Streaming-Data-Solutions-with-Amazon-Kinesis in the
KDFSmartCityDeliveryStreamPolicy.json file.

https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis

Understanding delivery stream destinations 131

Understanding cross-account delivery deployment patterns
with KDF
It is common for enterprises to have a multiple-AWS-accounts set up for data
management. An AWS account provides security and billing isolation from other
accounts, though mechanisms exist to manage the accounts, their security, and their
billing as a whole through the use of AWS Organizations, consolidated billing, and
management using AWS Control Tower. An example strategy could be to have a central
AWS account to host the data lake, which includes the S3 bucket to hold data and multiple
client accounts either writing data to the central account or reading data from the central
account. With KDF, you need to be aware of a few key aspects to set up a multi-account
strategy properly.

The following screenshot illustrates such a scenario:

Figure 5.7 – Multi-account data-lake scenario

With this account structure, you have one or more S3 buckets in Account B holding
the data in the data lake. Account A hosts the KDF delivery stream that delivers data to
the S3 buckets in Account B, and Account C hosts the processes that read the data from
the S3 buckets in Account B.

132 Kinesis Firehose

The delivery stream configuration for an S3 destination requires you to specify a bucket
for delivering the S3 objects. If the bucket is in the same AWS account as the KDF delivery
stream, it is available to select in the AWS KDF console. If it is in a different AWS account,
you need to use the AWS CLI to create the delivery stream as the console does not allow
you to specify an S3 bucket in a different account. If using the AWS CLI, the bucket
ARN—whether in the same account or in a remote account—needs to be specified. In
addition, the delivery stream configuration needs to specify an IAM role the KDF service
can assume that allows the service to access resources in the account the KDF delivery
stream is running in—in this case, Account A. For the purpose of writing to an S3 bucket
in Account B, the specified IAM role needs to have access to the S3 bucket. It is important
to understand the mechanism by which this access is provided and its side effects.

bucket-owner-full-control
It is important to understand the ownership of objects in S3. While objects
written to S3 buckets in Account B by a user or role in Account B are owned
by Account B, objects written to S3 buckets in Account B by a user or role in
Account A are owned by Account A. Account B has no object permissions on
those objects and has to be explicitly granted access by the owner of the objects.

The object owner can grant the bucket owner full control of the object by
specifying an updated access-control list (ACL) with bucket-owner-
full-control. Once the bucket owner gets access to the objects, it can
then delegate access to other identities in the same account. However, the
bucket owner is still unable to delegate access to identities outside of the
account. So, in order to enable clients in Account C to read the objects, the
bucket owner can create an IAM role in Account B with permissions to access
the objects and grant Account C permissions to assume the role to access the
S3 objects. This is illustrated in Figure 5.8.

Let's take a look at the steps involved in providing KDF with cross-account access to an
S3 bucket in Account B:

1.	 Create an IAM role in Account A that can be assumed by the KDF service. This is
the IAM role specified when a delivery stream is created. However, this is just the
role without any permissions policy attached.

Understanding delivery stream destinations 133

2.	 Attach a bucket policy to the S3 buckets in Account B, which provides access to
the S3 buckets, to the IAM role created in Step 1 with a condition to check that the
bucket-owner-full-control ACL is specified. This will ensure that only
objects with that ACL set are allowed to be written to the S3 buckets. An example
policy is shown as follows:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "KDF-test-bucket",

 "Effect": "Allow",

 "Action": [

 "s3:AbortMultipartUpload",

 "s3:GetBucketLocation",

 "s3:ListBucket",

 "s3:ListBucketMultipartUploads",

 "s3:GetObject"

],

 "Resource": [

 "arn:aws:s3:::s3-datadelivery-1",

 "arn:aws:s3:::s3-datadelivery-1/*"

],

 "Principal": {

 "AWS": "arn:aws:iam::123456789012:role/KDF_
delivery_role"

 }

 },

 {

 "Sid": "KDF-test-object",

 "Effect": "Allow",

 "Action": [

 "s3:PutObject",

 "s3:PutObjectAcl"

],

 "Resource": [

 "arn:aws:s3:::s3-datadelivery-1",

134 Kinesis Firehose

 "arn:aws:s3:::s3-datadelivery-1/*"

],

 "Condition": {

 "StringEquals": {

 "s3:x-amz-acl": "bucket-owner-full-
control"

 }

 },

 "Principal": {

 "AWS": "arn:aws:iam::123456789012:role/KDF_
delivery_role"

 }

 }

]

}

3.	 In Account A, delegate permissions to the role to access the S3 buckets in Account
B in an IAM policy. KDF, when writing to the remote bucket in Account B,
automatically adds the bucket-owner-full-control ACL.

In order to do that, it needs an additional permission, s3:PutObjectAcl, on the
destination bucket. A sample policy with the additional permission is shown in the
following code block:

{

 "Version": "2012-10-17",

 "Statement":

 [

 {

 "Effect": "Allow",

 "Action": [

 "s3:AbortMultipartUpload",

 "s3:GetBucketLocation",

 "s3:GetObject",

 "s3:ListBucket",

 "s3:ListBucketMultipartUploads",

 "s3:PutObject",

 "s3:PutObjectAcl"

],

Understanding delivery stream destinations 135

 "Resource": [

 "arn:aws:s3:::s3-datadelivery-1",

 "arn:aws:s3:::s3-datadelivery-1/*"

]

 }

]

}

4.	 Create an IAM policy and IAM role in Account B that provides permissions to read
the S3 objects, and grant access to Account C to assume the role. This role is not for
KDF to be able to deliver the objects but for consumers in Account C to be able to
assume to read the objects in the S3 bucket delivered by KDF.

The following screenshot shows the setup as described:

Figure 5.8 – S3 cross-account delivery setup

An alternate mechanism to achieve the same outcome could be to run the KDF delivery
stream in Account B and create an IAM role in Account B with permissions to access
the KDF delivery stream, and grant Account A permissions to assume the role. Then,
producers in Account A sending data to the KDF delivery stream in Account B would
first need to assume the role before sending data to the KDF delivery stream. In this
case, since Account B owns the delivered objects in S3, it can then use a bucket policy
to provide permissions to Account C, which can then delegate permissions to identities
(for consumers) in Account C.

136 Kinesis Firehose

Amazon Redshift
Amazon Redshift (Redshift) is a fully managed, petabyte (PB)-scale, massively parallel
processing (MPP) data warehouse service from AWS. It was launched in February 2013
and is an extremely popular service. It is a relational database that is based on PostgreSQL
but has some important differences from PostgreSQL as it is specifically designed for
online analytical processing (OLAP) workloads and is extensively used for data analysis
and business intelligence applications, as opposed to transactional workloads.

It employs a distributed and shared-nothing architecture with a leader node that
fields client connections and Structured Query Language (SQL) statements, creates
a distributed query execution plan, and sends them to a number of compute nodes, each
with independent memory, central processing unit (CPU), and storage to process the
query on its own subset of data, ideally collocated with the node in its own storage. This
parallelizes the query execution and data scanning and processing of large volumes of data
across a number of nodes, vastly improving the performance of queries over symmetric
multiprocessing (SMP) systems.

On the ingest side, when data needs to be inserted into tables in Redshift, Redshift
provides a COPY command. The COPY command is able to do parallel loading of files
or data directly into the compute nodes, making the ingestion process extremely fast.
KDF uses the COPY command to load data into Redshift, but in order to do that, it first
needs to stage the files in a temporary S3 location. It then issues the COPY command
to load the data in those S3 objects into a table in Redshift. Each delivery stream is able
to load data into a single Redshift table. So, if you have a requirement to load multiple
tables, multiple KDF delivery streams need to be created, one for each Redshift table to
be loaded. There are some other patterns that can be employed when you need to load
multiple tables, as discussed in the Security section of this chapter.

Connecting to Redshift
In order to deliver data to a Redshift cluster, KDF needs to know the connection
information for the Redshift cluster. In the AWS KDF console, there is a drop-down list
that populates all the available Redshift clusters in the same account in the same AWS
Region, and you can pick one cluster in the list and provide the User name and Password
of a user that has insert privileges into the table and database that you specify.

The following screenshot shows the AWS Console with the Redshift cluster information
filled out:

Understanding delivery stream destinations 137

Figure 5.9 – Screenshot of KDF connection information for Redshift

In the RedshiftDestinationConfiguration configuration, you can specify the
Redshift cluster information in the ClusterJDBCURL configuration parameter under
RedshiftDestinationConfiguration. The Java Database Connectivity (JDBC)
URL is in the following format:

jdbc:redshift://Redshift Cluster endpoint:configured port for
the Redshift cluster/database name

138 Kinesis Firehose

You can get the Redshift cluster JDBC URL from the AWS Redshift console from the
CLUSTERS menu in the Properties tab, when you view Connection Details and then
click View all connection details.

Buffering
As mentioned earlier, KDF delivers data to Redshift in two steps, first to an intermediate
S3 bucket and prefix to stage the files and then to Redshift, utilizing the COPY command.
A lot of the configuration options available for S3, explained in this chapter for the S3
destination, apply to the intermediate S3 location as well.

However, the S3 configuration for the Redshift destination uses the
S3DestinationConfiguration property configuration as opposed to
the Extended S3DestinationConfiguration property configuration
for the S3 destination. The S3DestinationConfiguration property
configuration supports a smaller subset of options and does not include
the DataFormatConversionConfiguration property configuration
for data format conversion, the ProcessingConfiguration property
for specifying a Lambda transform, and the S3BackupConfiguration
property for backing up the source data records to a different S3 location
before any transformation. The ProcessingConfiguration and
S3BackupConfiguration property configurations are instead directly
available as part of the RedshiftDestinationConfiguration property
configuration, which is the configuration for the Redshift destination. However, the
DataFormatConversionConfiguration property configuration—and, hence,
the ability to convert incoming records from JSON format to Apache Parquet or Apache
ORC—is only available for the S3 destination and not for any other destination.

The S3DestinationConfiguration property configuration does provide the ability
to specify the buffering hints related to the volume of data to buffer before delivering an
object to the intermediate S3 location. This is available as Buffer size and Buffer interval
values. The Buffer size value can be between 1 and 128 MB and the Buffer interval value
can be between 60 and 900 seconds (or 1 minute and 15 minutes). KDF concatenates the
buffered incoming records before delivering the records to an S3 object, so you need to
make sure that the COPY command works on the concatenated records.

The Redshift COPY command provides a number of options to load various data formats,
and the RedshiftDestinationConfiguration property configuration allows
you to specify the COPY command options (https://docs.aws.amazon.com/
firehose/latest/APIReference/API_CopyCommand.html).

https://docs.aws.amazon.com/firehose/latest/APIReference/API_CopyCommand.html
https://docs.aws.amazon.com/firehose/latest/APIReference/API_CopyCommand.html

Understanding delivery stream destinations 139

KDF runs one COPY command at a time, since it is always loading the same table.
If after one COPY command finishes there are more S3 objects containing data in the
intermediate S3 bucket that remains to be loaded, it issues further COPY commands.
It creates a Redshift manifest file for each load and puts it in the S3 location, under
a manifests folder underneath the specified prefix (if specified), and uses it in the COPY
command. Under the manifests folder, KDF always appends the YYYY/MM/dd/HH
prefix using the UTC time for the delivered files.

In the RedshiftDestinationConfiguration property configuration, assuming
the S3 bucket is example-redshift-bucket-1 and the prefix is logs/, the COPY
command is specified under RedshiftDestinationConfiguration, as follows:

"CopyCommand": {

 "DataTableName": "Sample",

 "DataTableColumns": "Col1,Col2",

 "CopyOptions": "JSON 's3:// example-redshift-
bucket-1/jsonpathsfile.txt region us-east-1'

"

 },

The table in the Redshift cluster (where the delivery stream needs to insert
data) is specified in DataTableName, the columns to load are specified in
DataTableColumns, and the COPY command options are specified in CopyOptions.
The DataTableColumns and CopyOptions parameters are optional. The
JSONPaths file is a JSON file providing information on how to interpret nested JSON
fields and map the JSON keys to column names in the Redshift database tables.

Delivery failure
Since KDF delivers data to Redshift in two steps—first to a specified S3 bucket and prefix
and then to Redshift—delivery failures can occur in either step. For delivery failures to
the intermediate S3 location, the same retry behavior exists as for the S3 destination,
and since KDF stores the ingested data for 24 hours, if KDF is unable to deliver the data
to S3 for more than 24 hours, data loss can occur. For the second step, for the Redshift
destination you can set a retry duration between 0 and 7200 seconds in the delivery
stream configuration.

140 Kinesis Firehose

The default is 3600 seconds, or 1 hour. If KDF is unable to deliver the data to Redshift
due to permissions issues, network problems, cluster unavailability, or any other reason,
it retries the COPY command up to the configured retry duration. If all the retries fail,
it skips the batch of records and delivers a manifest file with information on all the
skipped objects to an errors folder. This enables you to easily load the skipped data
using the manifest file later, after fixing whatever error was causing the load to fail.
If CloudWatch logging is enabled for the Redshift destination, the error is also logged to
CloudWatch Log. The retry configuration is illustrated in the following code snippet:

"RetryOptions": {

 "DurationInSeconds": 6000

 }

In the RedshiftDestinationConfiguration configuration, the retry duration is
specified under RedshiftDestinationConfiguration under RetryOptions.

Security
When you create a Redshift cluster, you have to provide virtual private cloud (VPC)
information and the subnet group (you can create a subnet group in the AWS Redshift
console or using the AWS CLI), which is a group of subnets in the VPC where Redshift
can create a cluster. Redshift chooses one of the subnets in the subnet group to create
the cluster nodes. The subnets specified can either be private subnets or public subnets.
If they are private subnets, the cluster endpoint is not accessible from the internet. If
the subnets are public subnets and you configure the cluster to be publicly available,
the cluster endpoint is accessible from the internet. In that case, you can also optionally
specify an Elastic Internet Protocol (Elastic IP) address to connect to the cluster from
the internet. In order to protect the cluster from a networking standpoint, you need to
associate a security group (which is like a firewall) to the cluster and only grant inbound
access to the IP addresses or security groups that you deem necessary. The inbound access
rules should allow access to the database port configured for the cluster so that SQL
client tools such as MySQL Workbench can connect to the cluster. There can be up to
five security groups associated with a cluster. It is recommended that to provide inbound
access to the cluster, you create an additional security group and associate it with the
cluster in addition to the initial security group associated with the cluster, which provides
minimal access.

Elastic IP address
An Elastic IP address is a public IPv4 address reachable from the internet that
can be allocated to an AWS account and associated with an Elastic Compute
Cloud (EC2) instance or an Elastic Network Interface (ENI).

Understanding delivery stream destinations 141

For KDF to be able to deliver data to your Redshift cluster, it has to be accessible from
the internet since KDF is unable to access a private cluster. Consequently, you need to
configure your Redshift cluster to be publicly accessible and optionally associate an Elastic
IP address with it. In addition, create another security group that provides access to the IP
addresses KDF uses for the region your KDF delivery stream is running in and associate
it with your Redshift cluster. The list of IP addresses to allow for each region is specified
at this link: https://docs.aws.amazon.com/firehose/latest/dev/
controlling-access.html#using-iam-rs.

If it is against your security policy to have publicly accessible Redshift clusters, you can
instead use the S3 destination and deliver the data to S3 and then use COPY commands in
an EC2 instance (virtual machine (VM) in AWS) in the same VPC as the Redshift cluster
(with access to the S3 bucket) to run the COPY command, or use a Lambda function
with VPC access to run the COPY command. This architecture can also be used if you
want to load multiple different Redshift tables, which KDF doesn't support with a single
delivery stream. Note that the architecture mentioned here needs to be augmented with
a management framework with retries, failure management, and making sure S3
objects are only loaded once. A good example is available at https://github.com/
awslabs/aws-Lambda-redshift-loader.

In addition to securing the network, you need to provide a Redshift database username
and password for KDF to use to connect to the specified database in the Redshift cluster
and insert the data in the specified table. The user also needs to have an INSERT privilege
on the specified table.

KDF also needs access to the S3 bucket to write and read the intermediate files, to
CloudWatch Logs if error logging is enabled, to the Lambda function if the Lambda
transform is enabled, and to the KMS key specified if encryption is enabled for S3. As with
the S3 destination, this access is provided via an IAM role that needs to be specified when
creating a delivery stream. The AWS Console provides an option to create the IAM role
during creation of the delivery stream. The IAM policy looks similar to the one for the S3
destination.

Compression

The Redshift destination configuration provides the option to compress the objects
delivered to the intermediate S3 location. However, the Snappy and ZIP compression
formats supported by the S3Configuration are not supported. This option is not available
in the AWS Console.

https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-rs
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-rs
https://github.com/awslabs/aws-lambda-redshift-loader
https://github.com/awslabs/aws-lambda-redshift-loader

142 Kinesis Firehose

Amazon Elasticsearch Service
Amazon Elasticsearch Service (AES) is a fully managed service that offers Elasticsearch
as a service and makes creating, managing, securing, and scaling Elasticsearch clusters
easy and cost-effective. AES was launched in October 2015. Elasticsearch is a RESTful
(where REST stands for REpresentational State Transfer), distributed, scalable, and fast
search-and-analytics engine based on Apache Lucene. AES supports the Elasticsearch
APIs, provides integration with other AWS services as well as Logstash, offers managed
Kibana, and supports alerting and SQL querying. It is possible to set up an AES cluster in
minutes using the AWS AES console, or the AWS CLI, or AES APIs.

Elasticsearch is a distributed document store and it stores JSON documents. The
documents are indexed to make them searchable. Elasticsearch uses an inverted index
wherein every word in a document is indexed to all documents that have them. The
key/value pairs in the JSON documents are fields within the documents, and they have
datatypes and are searchable. Each document has an _id field that can be used to
uniquely identify it, and the field is indexed for fast lookups.

Traditionally, each document was also assigned a mapping type in a _type field.
The mapping type was meant to identify the type of document based on content or
classification—for example, a JSON document with customer information could have
a mapping type of customers. Each document could only be assigned to a single
type and a single index. If we compare to relational databases, the index is a database,
the mapping type is loosely a table (although this analogy is problematic due to which
mapping types are deprecated in Elasticsearch 7.0, but is useful for a person new to
Elasticsearch to understand the correlation between the different Elasticsearch entity
types), the JSON document is a row in the table, and the fields are columns.

The integration between KDF and AES provides a very easy mechanism to provide search
and analytics on large volumes of data without writing code, whether the data is coming
from external sources or the log data is coming from other AWS services integrated
with KDF.

In AES, the first step to provision an Elasticsearch cluster is to create a domain, which
is the same thing as a cluster and includes the associated instances (nodes), storage, and
configuration settings. The following information is needed for the AES destination:

•	 Domain—In the AWS Console, you can pick from a drop-down list that populates
all the AES domains in the same AWS account and the same region. In the
ElasticsearchDestinationConfiguration configuration used with the
AWS CLI, you need to provide either the ARN of the AES domain or the domain
endpoint. For cross-account delivery of data to an AES domain in a different AWS
account, see the section on cross-account delivery to an AES destination.

Understanding delivery stream destinations 143

•	 Index—The name of the index to be used when indexing data. KDF creates
a new index if an index with the specified name does not exist. In the
ElasticsearchDestinationConfiguration configuration, this appears
as IndexName.

•	 Type—The mapping type name of the documents indexed. If the AES domain
is for Elasticsearch 6.x, there can only be one type per index, so if a new type
name is provided here for an existing index, KDF can return a runtime error.
For Elasticsearch 7.x, since mapping types are deprecated, you should not specify
a value for Type. In the ElasticsearchDestinationConfiguration
configuration, this appears as TypeName.

•	 Index rotation—The frequency with which the indexes should be rotated.
This is provided so as to expire data, making it easier to manage storage in
AES. The valid values are NoRotation, OneHour, OneDay, OneWeek, and
OneMonth. KDF appends a portion of the UTC KDF ingestion timestamp
(approximateArrivalTimestamp) to the index name and rotates it.

AES document IDs
KDF does not support providing AES document IDs, which are generated by
KDF on the fly. This means that updates to existing documents in the index are
not possible, and everything is an insert.

Once a domain is created, you can retrieve the domain ARN and use it configure the
AES destination in KDF.

Understanding the KDF deployment pattern of delivering to AES
in a VPC
AES can be configured to run both as a publicly accessible cluster in a service-managed
VPC and as a non-public cluster in your own VPC. KDF has the ability to deliver data
to an AES cluster in both modes. In order to deliver to a publicly accessible AES cluster,
the KDF delivery stream needs to know either the AES domain ARN or the public
cluster endpoint. It also needs IAM permissions to be able to access the cluster, which
is described in the next section. For an AES cluster inside a VPC, there is an additional
configuration that needs to be supplied for the delivery stream, which includes the VPC
information. Specifically, you need to provide the VPC subnets you want KDF to access.
KDF drops an ENI in each of the specified subnets. You can specify a single subnet or
multiple subnets across multiple Availability Zones (AZs), to have resilience for AZ
failures. These ENIs get a private IP address from the Classless Inter-Domain Routing
(CIDR) block of the associated subnets.

144 Kinesis Firehose

Since the AES domain in the VPC also drops ENIs in one or more subnets specified for
the AES domain, KDF is able to communicate with the AES cluster. It is important that
the required subnet routing tables are appropriately set up to allow network traffic to flow
from the subnets specified for KDF to the subnets specified for AES. In general, by default,
each routing table has a default route that allows traffic to the entire VPC CIDR block.
In addition, the VPC configuration for the delivery stream needs to specify one or more
security groups to be applied to the ENIs to restrict traffic. They should allow outbound
HTTPS traffic to the security group for the AES domain.

The following diagram shows the architecture for KDF delivering data to an AES domain
in a VPC:

Figure 5.10 – The architecture for KDF delivering data to an AES domain in a VPC

The ElasticsearchDestinationConfiguration configuration can be used with
the AWS CLI to configure the AES destination, as illustrated in the following code snippet:

"VpcConfiguration": {

 "SubnetIds": [

 ""

],

 "RoleARN": "",

 "SecurityGroupIds": [

 ""

]

 }

Understanding delivery stream destinations 145

The VpcConfiguration configuration appears under the
ElasticsearchDestinationConfiguration configuration and allows the
specification of subnets, security groups, and an IAM role.

Buffering
For the AES destination, KDF buffers incoming records according to the buffering hints
provided in the delivery stream configuration. The Buffer size parameter can have values
between 1 and 100 MB and the Buffer interval parameter can have values between 60 and
900 seconds (or 1 minute and 15 minutes). Whichever value is hit first triggers sending
the batch of records to AES. It is required that the incoming records are in JSON format,
flattened to single-line JSON objects, and UTF-8 encoded. After buffering, KDF generates
an Elasticsearch bulk index request to send and index the records in AES. Bulk indexing
(_bulk API) greatly reduces indexing overhead and increases the speed of indexing.
Also, the rest.action.multi.allow_explicit_index option on the AES cluster
needs to be set to true to allow AES to accept bulk indexing requests with an explicit
index specified. This is set to true, by default, for an AES domain.

In the AWS KDF console, the buffering hints can be configured for the AES destination
after selecting the destination type under Configure settings.

The following screenshot shows the buffering hints with the default values populated:

Figure 5.11 – Screenshot of the AES destination buffering hints

146 Kinesis Firehose

In the ElasticsearchDestinationConfiguration
configuration, the BufferingHints configuration appears under
ElasticsearchDestinationConfiguration and is presented as follows:

"BufferingHints": {

 "IntervalInSeconds": 5,

 "SizeInMBs": 300

 }

As the name suggests, the buffering hints act as hints, and KDF tries to adhere to the hints
as much as possible but can increase the size of the buffer if the rate of data delivery is
falling behind the rate of data received.

Data transformation and data format conversion
Data transformation using a Lambda transform is supported with the AES destination.
However, data format conversion is not supported. The configuration for data
transformation is similar to what was described earlier in this chapter.

Delivery failure
Data delivery to the AES destination can fail for a number of reasons, such as network
issues, unavailability of the AES domain, or permissions issues. In addition, there could be
issues with having multiple types for a single index, or having fields with the same name
specified for multiple mapping types having different field data types. On encountering
an error, KDF retries the bulk indexing request for a configurable duration between 0 and
7,200 seconds (or 0 to 2 hours). If all the retries fail, it skips the bulk indexing request
and moves forward. However, it delivers the skipped documents, together with some
metadata, including the error code and error message, to an elasticsearch_failed
folder (prefix) in the S3 bucket configured under S3 backups. This enables you to inspect
the documents and the error codes and messages, fix the problem, and retry sending the
documents.

S3 backup
For the AES destination, KDF offers two modes of backing up incoming data, as follows:

•	 Failed Documents Only—In case of delivery failures and after exhausting all
retries, KDF delivers the failed records to the specified S3 bucket prepended
with the elasticsearch_failed/ prefix (essentially delivering to an
elasticsearch_failed folder).

Understanding delivery stream destinations 147

•	 All Documents—KDF delivers all incoming records to the specified S3 bucket.
In case there are delivery failures, the failed records are also delivered to the S3
bucket prepended with the elasticsearch_failed/ prefix. The ability to
deliver all incoming records to the S3 bucket is important as, unlike with the
Redshift destination, the incoming records are not staged in S3 before delivering
to AES, and this allows you to maintain a copy of the incoming records for later
analysis and reconciliation with the data loaded into AES.

If data transformation is enabled using a Lambda transform, any records for which
processing failed are also delivered to the S3 bucket specified for the backup S3
configuration.

The following screenshot shows the S3 backup configuration for the AES destination
using the AWS Console:

Figure 5.12 – Screenshot showing the S3 backup configuration for the
AES destination using the AWS Console

S3 backup provides an important safety feature to store a copy of all incoming records as
they were at the time of ingestion. The backed-up records can also be used as an input to
development or test environments.

148 Kinesis Firehose

Security
For the AES destination, KDF needs access to the AES domain. In addition, it needs access
to the S3 bucket to write and read all or failed records depending on how the delivery
stream is configured, to CloudWatch Logs if error logging is enabled, to the Lambda
function if the Lambda transform is enabled, and to the KMS key specified if encryption
is enabled for S3. This access is provided via an IAM role that needs to be specified when
creating a delivery stream. The AWS Console provides an option to create the IAM role
during creation of the delivery stream. The IAM policy looks like the one for the S3
destination, with the addition of the policy for access to the AES domain. For an AWS
account with account ID 123456789012 and an AES domain of loganalytics in the
us-east-1 AWS Region, the policy looks like this for a publicly accessible domain:

{

 "Version": "2012-10-17",

 "Statement": [{

 "Effect": "Allow",

 "Action": [

 "es:DescribeElasticsearchDomain",

 "es:DescribeElasticsearchDomains",

 "es:DescribeElasticsearchDomainConfig",

 "es:ESHttpPost",

 "es:ESHttpPut"

],

 "Resource": [

 "arn:aws:es:us-east-1:123456789012:domain/
loganalytics",

 "arn:aws:es:us-east-1:123456789012:domain/
loganalytics/*"

]

 }, {

 "Effect": "Allow",

 "Action": [

 "es:ESHttpGet"

],

 "Resource": [

 "arn:aws:es:us-east-1:123456789012:domain/
loganalytics/_all/_settings",

 "arn:aws:es:us-east-1:123456789012:domain/

Understanding delivery stream destinations 149

loganalytics/_cluster/stats",

 "arn:aws:es:us-east-1:123456789012:domain/
loganalytics/index-name*/_mapping/type-name",

 "arn:aws:es:us-east-1:123456789012:domain/
loganalytics/_nodes",

 "arn:aws:es:us-east-1:123456789012:domain/
loganalytics/_nodes/stats",

 "arn:aws:es:us-east-1:123456789012:domain/
loganalytics/_nodes/*/stats",

 "arn:aws:es:us-east-1:123456789012:domain/
loganalytics/_stats",

 "arn:aws:es:us-east-1:123456789012:domain/
loganalytics/index-name*/_stats"

]

 }]

}

If the AES domain is in a VPC, the following permissions need to be added to the policy.
They provide access to the VPC and the ability to create and manage ENIs in the VPC:

{

 "Effect": "Allow",

 "Action": [

 "ec2:DescribeVpcs",

"ec2:DescribeVpcAttribute",

"ec2:DescribeSubnets",

"ec2:DescribeSecurityGroups",

"ec2:DescribeNetworkInterfaces",

"ec2:CreateNetworkInterface",

"ec2:CreateNetworkInterfacePermission",

"ec2:DeleteNetworkInterface"

],

 "Resource": [

 "*"

]

}

150 Kinesis Firehose

KDF is also able to deliver data to an AES domain that is in a different AWS account
from the KDF delivery stream. However, the AES domain needs to be publicly accessible.
In order for KDF to be able to do cross-account delivery of data to an AES destination,
the IAM role that is supplied in the delivery stream configuration (and that KDF assumes)
needs to have access to the AES domain in the remote account. Just as with the
cross-account access described for S3 earlier, there are a few steps that need to be followed.

The following diagram shows cross-account delivery of records from KDF to AES:

Figure 5.13 – Cross-account delivery of records from KDF to AES

Assuming the account that has the KDF delivery stream is Account K and the account
that hosts the loganalytics AES domain is Account E, proceed as follows:

1.	 Create an IAM role in Account K to be used by the KDF delivery stream and
associate an IAM policy, as described previously. Make sure the account ID
specified (123456789012 in the example) is the account ID for Account E
and the domain name is the domain for the AES domain in Account E.

2.	 AES supports resource-based IAM policies, which are IAM policies that can be
associated with resources as opposed to identities such as users, groups, and roles.
The resource-based policies allow you to specify the actions that can be performed
on that resource by the identities that you specify in the policy. In Account E,
specify a resource-based policy for the AES domain. In the AWS Console for AES,
click on Actions then Modify Access policy, and put the access policy in the
textbox provided. The access policy should look like this:

{

 "Version": "2012-10-17",

Understanding delivery stream destinations 151

 "Statement": [

 {

 "Effect": "Allow",

 "Principal": {

 "AWS": "arn:aws:iam::Account-K:role/firehose_
delivery_role"

 },

 "Action": "es:ESHttpGet",

 "Resource": [

 "arn:aws:es:us-east-1:Account-E:domain/
loganalytics/_all/_settings",

 "arn:aws:es:us-east-1:Account-E:domain/
loganalytics/_cluster/stats",

 "arn:aws:es:us-east-1:Account-E:domain/
loganalytics/roletest*/_mapping/roletest",

 "arn:aws:es:us-east-1:Account-E:domain/
loganalytics/_nodes",

 "arn:aws:es:us-east-1:Account-E:domain/
loganalytics/_nodes/stats",

 "arn:aws:es:us-east-1:Account-E:domain/
loganalytics/_nodes/*/stats",

 "arn:aws:es:us-east-1:Account-E:domain/
loganalytics/_stats",

 "arn:aws:es:us-east-1:Account-E:domain/
loganalytics/roletest*/_stats"

]

 },

 {

 "Effect": "Allow",

 "Principal": {

 "AWS": "arn:aws:iam::Account-K:role/firehose_
delivery_role"

 },

 "Action": [

 "es:DescribeElasticsearchDomain",

 "es:DescribeElasticsearchDomains",

 "es:DescribeElasticsearchDomainConfig",

 "es:ESHttpPost",

152 Kinesis Firehose

 "es:ESHttpPut"

],

 "Resource": [

 "arn:aws:es:us-east-1:Account-E:domain/
loganalytics",

 "arn:aws:es:us-east-1:Account-E:domain/
loganalytics/*"

]

 }

]

 }

3.	 Use the AWS CLI or KDF APIs to create the delivery stream and specify the
AES cluster endpoint instead of the AES domain ARN. It is not possible to do this
using the AWS Console, which only allows you to choose from a pre-populated
drop-down list of domains in the same account and the same region.

Cross-account delivery of records to an AES domain is very beneficial if you have
a multi-AWS account set up to centralize search and data analysis using AES in one
account, and data ingestion and delivery with KDF in multiple other accounts.

Splunk destination
Splunk is a software platform commonly used by many large and small enterprises to
collect, search, analyze, and visualize large volumes of data from myriad data sources
such as websites, machines, logs, devices, sensors, and business applications. KDF offers
Splunk as a destination to make it easier for enterprises that have standardized their
search-and-analytics platform on Splunk to be able to send data from all of those sources,
as well as many AWS services integrated with KDF, to Splunk for easy analysis.

Splunk is available as a destination in KDF under Third-party service provider, which
has a number of other third-party providers listed.

The following screenshot shows a screenshot of the Splunk destination available under
Third-party service provider:

Understanding delivery stream destinations 153

Figure 5.14 – Screenshot of the Splunk destination available under Third-party service provider
in the AWS Console

In order to use Splunk as a destination, you need to have Splunk already set up with an
active and available Splunk index. KDF supports both Splunk Enterprise and Splunk
Cloud. There are a few prerequisites on the Splunk side before the integration works.
The Splunk add-on for Amazon Kinesis Firehose needs to be installed, the HTTP
Event Collector (HEC) needs to be set up and enabled, and an HEC token with indexer
acknowledgments enabled needs to be created. The HEC provides a mechanism to send
events and data to Splunk over HTTP or HTTPS (secure HTTP) protocols and makes it
easy to send events to Splunk by removing the need to set up Splunk forwarders.

The HEC token is a means to authenticate clients connecting to Splunk and delivering
data. Each token is a 128-bit, 32-character globally unique identifier (GUID), which
is presented by clients to HEC, which when authenticated allows clients to send data to
Splunk in text
or JSON format. The token configuration has the source, source type, and index, which
the Splunk indexers then use to index the incoming data.

Buffering
KDF concatenates the incoming records and buffers them.

Buffering hints
The Buffer size and Buffer interval values for the Splunk destination are set to
5 MB and 60 seconds respectively and are not configurable.

154 Kinesis Firehose

If you need any record separators in the data, you have to add them to the record sent to
KDF and make sure Splunk understands how to parse the data.

Data transformation and data format conversion
Data transformation using a Lambda transform is supported with the Splunk destination.
However, data format conversion is not supported. The configuration for data
transformation is similar to what was described earlier in this chapter.

Understanding KDF deployment patterns for Splunk
In order for KDF to deliver data to Splunk, it needs access to the Splunk environment.
KDF can deliver to any publicly accessible endpoint. For Splunk installations running in
a VPC, Splunk recommends having an Elastic Load Balancer (ELB) fronting the indexers
that is exposed to the internet to proxy traffic to the indexers. KDF only supports the
Classic Load Balancer (CLB) with duration-based sticky sessions enabled and cookie
expiration disabled. In that case, the ELB Domain Name System (DNS) name is the
Splunk cluster endpoint. If you don't have an ELB and are directly exposing one or more
HEC endpoints to KDF from within your VPC, you need to make sure there is a public
IP address attached and that they're in a public subnet so that they can be accessed
from the internet. In addition, the security group attached should have inbound rules
to provide access to the KDF IP addresses. The CIDR block to provide access to the IP
addresses is available at this link: https://docs.aws.amazon.com/firehose/
latest/dev/controlling-access.html#using-iam-splunk-vpc.

Delivery failure
As explained earlier, the HEC set up on the Splunk side needs to have an HTTP event
collector token with indexer acknowledgments enabled. This allows Splunk to send
back acknowledgments to KDF on successful delivery of data. KDF depends on these
acknowledgments to deal with delivery failure. When KDF sends data to Splunk, it starts
an acknowledgment timer. If KDF receives a delivery error or the acknowledgment does
not arrive within the acknowledgment timeout period, KDF retries the request and starts
a retry duration counter.

https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-splunk-vpc
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html#using-iam-splunk-vpc

Understanding delivery stream destinations 155

The retry and HEC acknowledgment timeout durations can be configured in the Splunk
destination configuration and can be between 0 and 7,200 seconds (or 0 and 2 hours)
for the retry duration and between 180 and 600 seconds (or 3 minutes and 10 minutes)
for the HEC acknowledgement timeout duration. KDF keeps retrying, resetting the
acknowledgment timeout period before each retry, and waiting for the acknowledgment
until the retry duration expires. Even if the retry duration expires while KDF is still
waiting for an acknowledgment, it still waits until the acknowledgment timeout period
expires and then checks to see if there is any time left in the retry duration.

If it is unable to deliver after the retry duration expires, it sends the data to the configured
backup S3 bucket in a splunk-failed folder. The S3 backup configuration can be
configured to either just back up the failed events or all events. Just as with the AES
destination, since the incoming records are not staged by KDF in a S3 bucket, backing
up all the incoming data to a S3 bucket is useful to inspect the data or reload the data,
if needed.

Splunk destination configuration
In order to setup the Splunk destination in KDF, you need the following:

•	 Splunk cluster endpoint—This is the endpoint to connect to. This endpoint needs
to be publicly accessible. For further information on configuring and retrieving
the endpoint, see https://docs.splunk.com/Documentation/AddOns/
released/Firehose/ConfigureFirehose.

•	 Splunk endpoint type—The available values are RAW, which is the most common
format and can parse most formats, or Event, which requires a specific JSON
format. When using Event, you need to use a Lambda transform to properly
format the incoming events in the proper JSON format.

•	 Authentication token—This is the HEC token that KDF needs to authenticate with
the HEC.

•	 HEC acknowledgement timeout—The timeout period for the HEC
acknowledgment.

•	 Retry duration—The time period in seconds that KDF retries sending data in case
there is a delivery failure or there is no acknowledgment from the Splunk HEC.

https://docs.splunk.com/Documentation/AddOns/released/Firehose/ConfigureFirehose
https://docs.splunk.com/Documentation/AddOns/released/Firehose/ConfigureFirehose

156 Kinesis Firehose

The following screenshot shows the Splunk destination configuration in the AWS Console:

Figure 5.15 – Screenshot of the Splunk destination configuration in the AWS Console

You need to have the Splunk cluster information handy before you set up the KDF
delivery stream for the Splunk destination.

Security
For the Splunk destination, KDF needs access to the HEC, as explained earlier.
In addition, it needs access to the S3 bucket to write and read all or failed records
(depending on how the delivery stream is configured), to CloudWatch Logs if error
logging is enabled, to the Lambda function if the Lambda transform is enabled, and
to the KMS key specified if encryption is enabled for S3. This access is provided via an
IAM role that needs to be specified when creating the delivery stream. The IAM policy
looks similar to the one for the S3 destination.

Understanding delivery stream destinations 157

HTTP endpoint destination
The HTTP endpoint destination enables KDF to send data to any HTTP endpoint
over HTTPS over the internet. The destination endpoint can be in a different AWS
account or in a different AWS Region, or it can be in your own enterprise data center or
anywhere else as long as it is accessible. This is an extremely powerful feature that opens
up possibilities for data ingestion and processing. You don't have to wait for additional
destinations for software platforms that you use, and KDF doesn't need support to come
online. You can now expose an HTTP endpoint and get KDF to send data to the endpoint,
and you can receive the data and send it to any software platform you want. AWS provides
a service called Amazon API Gateway, which is a serverless, fully managed service that
allows you to build and deploy secure and scalable APIs.

Since the data sent to the APIs you deploy can be either proxied (for some supported
AWS services) or processed by a Lambda function and then sent to other AWS services,
this opens up integration with a number of other AWS services with KDF, such as
Amazon DynamoDB, which is a serverless, highly scalable NoSQL database, and
Amazon Relational Database Service (Amazon RDS), which is a fully managed
relational database service that offers multiple different database engines. In addition,
since you can send data to endpoints in other AWS Regions, you can have a managed,
configuration-based way to replicate data to multiple AWS Regions across the globe.

The HTTP endpoint destination also forms the basis for a number of third-party vendors
to be able to integrate with KDF and make it easy to consume data, to then offer their
own processing, analyzing, and visualization capabilities. A number of vendors already
have integrations with KDF, including Datadog, New Relic, and MongoDB, and can be
considered to be special cases of the HTTP endpoint destination. In the AWS Console,
these integrations are available under Third-party service provider, together with Splunk.

Buffering
Similar to other destinations, KDF buffers the incoming data before delivering it to
the destination. For the HTTP endpoint destination and the third-party destinations
mentioned, the Buffer size hint can be between 1 and 64 MiB and the Buffer interval
value can be between 60 and 900 seconds (or 1 minute and 15 minutes). KDF
concatenates the incoming records before delivering, and you need to make sure the
data format being delivered is acceptable to the HTTP endpoint or to the third-party
endpoints. If needed, you can use a Lambda transform to transform incoming records
to the format needed.

158 Kinesis Firehose

Data transformation and data format conversion
Data transformation using a Lambda transform is supported with the HTTP endpoint
destination. However, data format conversion is not supported. The configuration for data
transformation is similar to what was described earlier in this chapter.

Delivery failure
The delivery failure behavior for the HTTP endpoint is similar to the Splunk destination.
When KDF sends data to an HTTP endpoint, it expects an acknowledgment and starts
an acknowledgment timer. If it encounters an error or the acknowledgment doesn't
come within the acknowledgment timeout period, it retries the request and starts a retry
duration counter. It keeps retrying until it succeeds or the retry duration (this can be
between 0 and 7,200 seconds) expires. If all retries fail, it sends the data to the specified S3
backup bucket, to a http-endpoint-failed folder. When configuring the backup S3
bucket, you can choose if you want to send all data to the S3 backup location or only the
failed data. The S3 backup configuration is similar to other destinations.

Security
The KDF integration with an HTTP endpoint includes the option of providing an access
key or an API key that KDF sends to the endpoint and that can be utilized by the endpoint
for authentication. For example, the Datadog destination enables you to specify an API
key. In addition, it needs access to the S3 bucket to write and read all or failed records,
depending on how the delivery stream is configured, to CloudWatch Logs if error logging
is enabled, to the Lambda function if the Lambda transform is enabled, and to the KMS
key specified if encryption is enabled for S3. This access is provided via an IAM role that
needs to be specified when creating the delivery stream. The IAM policy looks similar to
the one for the S3 destination.

Understanding delivery stream destinations 159

The following screenshot shows the HTTP endpoint configuration in the AWS Console:

Figure 5.16 – Screenshot of the HTTP endpoint configuration in the AWS Console

160 Kinesis Firehose

It is important to note that KDF can only send data to a publicly accessible endpoint
and not in an AWS VPC. For example, using a public API Gateway endpoint as a proxy
or with Lambda integration can provide a serverless option to expose your own services
or send data to other AWS services using KDF HTTP endpoints. The third-party provider
destinations based on the HTTP endpoint have similar configurations.

That wraps up the destinations supported by KDF. Now, let's take a brief look at how data
format conversion works in KDF.

Understanding data format conversion in KDF
KDF allows the conversion of incoming data from JSON to either Apache Parquet
(Parquet) or Apache ORC (ORC) format. Parquet and ORC are popular columnar
formats as opposed to JSON or Comma Separated Values (CSV), which are row formats.
Columnar formats provide several advantages for storage and faster querying compared
to row formats, especially in big-data use cases. In row formats, data for all columns in
a row is stored together, which means that when querying a subset of columns, the data
for all columns needs to be read and the unneeded columns filtered out. In columnar
formats, data is stored by columns. This provides the ability to only retrieve data for the
columns specified. This results in less data scanned for returning query results, and more
sequential reads, resulting in better performance. In addition, since data in a column
tends to be similar, columnar formats allow for better compression as well. This results in
space saving in storage and also more data read in each input/output (I/O), resulting in
better performance and cost savings in storage. The decision on whether to use Parquet
or ORC is use-case specific, and specific to the tools being used to read and query the
data. Certain tools perform better with Parquet, and others with ORC. A thorough
discussion on the merits of each is beyond the scope of this book.

Data format conversion is not enabled by default in the configuration of the delivery
stream and is only available for the S3 destination. If you enable it, S3 compression
configuration for the delivery stream is disabled. By default, the Parquet objects being
delivered to S3 are compressed using Snappy compression (https://github.
com/google/snappy), which is an open source compression/decompression library
from Google that targets faster compression and decompression and offers reasonable
compression performance that can result in compressed files being 20% to 100%
bigger than other compression libraries such as zlib. In addition, the SizeInMBs
configuration in the buffering hints, specifying the amount of data to be buffered in KDF
before delivering an object to S3, cannot be set to a value less than 64 MB. This is done to
ensure that the size of Parquet objects delivered to S3 (after compression) is not too small,
as that leads to higher cost and lower performance when AWS services such as Amazon
Athena are used to query the records.

https://github.com/google/snappy
https://github.com/google/snappy

Understanding data format conversion in KDF 161

KDF only supports JSON as the format for incoming records for data format conversion.
If the incoming records have any other format, then a Lambda transform can be used to
first convert the data to JSON before the data format conversion. Lambda transforms are
applied to the incoming records before data format conversion, which means that any
filtering, transformation, or decorating of records needed can be combined with data
format conversion.

There are three steps in data format conversion, listed as follows:

1.	 Deserialization—This is the conversion of bytes to an object in memory. In the
context of KDF data format conversion, which uses Apache Hive compatible
deserializers, this reads the JSON of the incoming data.

2.	 Schema to interpret the data—A schema is needed to provide information to KDF
on how to interpret the incoming JSON record.

3.	 Serialization to Parquet or ORC—Conversion of the data to the specified
columnar data format.

SerDe
SerDe stands for Serializer-Deserializer. A serializer converts objects in
memory or, in the case of Apache Hive, a row into bytes to be stored in a file
or sent over a network. A deserializer does the reverse—it converts bytes into
objects in memory or, in the case of Apache Hive, a row.

Deserialization
KDF supports the following two types of deserializers:

•	 OpenX JSON SerDe

•	 Apache Hive JSON SerDe

OpenX JSON SerDe
This is the recommended SerDe deserializer to be used with data format conversion in
KDF, with some caveats. It only handles date fields that are in Epoch seconds, Epoch
milliseconds, Epoch floating-point seconds, the yyyy-MM-dd'T'HH:mm:ss[.S]'Z'
format, where the fractional seconds can have up to nine digits, or the yyyy-[M]M-[d]
d HH:mm:ss[.S] format, where the fractional seconds can have up to nine digits. If the
timestamps are in any other format, then Apache Hive JSON SerDe should be used.

162 Kinesis Firehose

This SerDe also provides options to convert dots (".") in JSON keys to underscores,
which can be important since Apache Hive does not allow dots in column names, and
also to convert JSON keys to lowercase before deserialization, which can be important
if you have a naming standard to only have lowercase column names. One other import
option is to be able to map column names to JSON keys. This is a very useful feature to
circumvent Apache Hive limitations. For example, if the incoming data has JSON keys
that are Apache Hive-reserved keywords, they cannot be column names. So, if the schema
definition for the table specifies a different column name, there has to be a mechanism to
map the incoming JSON key to the column name.

These options are only available when the KDF delivery stream is created using the AWS
CLI and not in the AWS Console.

For more information, see https://github.com/rcongiu/Hive-JSON-Serde.

Hyphens in the JSON key of a complex data type
If the incoming JSON record has a JSON key in a struct that has a hyphen,
Apache Hive throws an error. Since KDF uses AWS Glue for schema
information and AWS Glue is an Apache Hive-compatible metastore, KDF
throws an error as well when it encounters a hyphen in the key of a nested
struct during data format conversion. However, you can get past this error
by modifying the schema in AWS Glue and either removing the hyphens or
converting them to underscores, and then utilizing the column name to the
JSON Keys mapping feature of the OpenX JSON SerDe.

Apache Hive JSON SerDe
This SerDe is a part of Apache Hive and supports timestamps in formats other than the
ones listed for the OpenX JSON SerDe. It provides an option to specify the timestamp
format in the pattern syntax of Joda-Time's DateTimeFormat format strings
(https://www.joda.org/joda-time/apidocs/org/joda/time/format/
DateTimeFormat.html). If no format is specified, then by default KDF uses java.
sql.Timestamp::valueOf, which converts the String object (incoming string
representing the timestamp) to a java.sql.Timestamp value.

For more information, see https://cwiki.apache.org/confluence/display/
Hive/LanguageManual+DDL#LanguageManualDDL-JSON.

https://github.com/rcongiu/Hive-JSON-Serde
https://www.joda.org/joda-time/apidocs/org/joda/time/format/DateTimeFormat.html
https://www.joda.org/joda-time/apidocs/org/joda/time/format/DateTimeFormat.html
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-JSON
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-JSON

Understanding data format conversion in KDF 163

Schema
KDF needs to be provided the location of a schema in the AWS Glue Data Catalog. The
schema can either be created manually using the AWS Glue console or using the CLI
or SDK, or by first creating a delivery stream that delivers a small number of sample
records to an S3 location in JSON format and then using AWS Glue crawlers to crawl the
data, infer the schema, and create a table with the inferred schema in the AWS Glue Data
Catalog in a specified database. You can then create a new delivery stream or update
an existing delivery stream with data format conversion enabled, with the AWS Glue
crawler-created schema. If the S3 location specified for the crawler (which is the same
location where the sample records were delivered) is used as the destination for the
delivery stream, you can easily use the AWS Glue Data Catalog table to query the data
(delete the objects with the sample records first). The crawler can also be run on
a schedule, and it can identify and add additional partitions to the AWS Glue Data
Catalog table as more data and partitions are added over time.

Serializer
There are two supported serializers, Apache ORC and Apache Parquet.

Data format conversion errors
As mentioned earlier in the chapter under S3 prefixes, the KDF delivery stream
configuration provides an option to specify an S3 error prefix where KDF delivers
records that failed transformation or data format conversion. If KDF encounters
a data format conversion error, such as being unable to read and parse a record
or being unable to successfully deserialize a record, or encounters schema errors or Hive
errors due to unsupported structures in the schema, it writes the records together with
some metadata in S3 objects in the S3 prefix (folder) specified in the S3 error prefix
configuration. If the S3 bucket or the prefix location is unavailable due to permission
issues or networking issues, KDF continues to retry indefinitely and stops making any
progress in delivering subsequent records. Since KDF stores incoming records for
a period of 24 hours, if it blocks for more than 24 hours, there could be data loss. In
order to prevent data loss and to get notified of the issue and take corrective measures
well in time, it is imperative to monitor the KDF CloudWatch SucceedConversion.
Records, SucceedConversion.Bytes, FailedConversion.Records, and
FailedConversion.Bytes metrics and create an alarm on FailedConversion.
Records.

Next, let's take a deeper look at monitoring KDF.

164 Kinesis Firehose

Understanding monitoring in KDF
KDF is tightly integrated with Amazon CloudWatch. We have seen how KDF sends
error messages to CloudWatch Logs when enabled. In addition, KDF sends metrics to
CloudWatch as well. These help with monitoring different aspects of KDF, depending on
the feature enabled and destination configured. You can also set alarms on these metrics
to either get notified when the alarms trigger or take some automated action using
Lambda functions. Some metrics are common for all destinations and some are specific to
each destination. I called out some metrics that are relevant to some destinations earlier.
In addition, here are some metrics that KDF supports, to keep an eye on:

•	 IncomingBytes—The number of bytes ingested successfully into the delivery
stream over the specified time period. Compare this with what you expect the
producer to be sending to KDF for reconciliation.

•	 IncomingRecords—The number of records ingested successfully into the
delivery stream over the specified time period. Compare this with what you expect
the producer to be sending to KDF for reconciliation.

•	 IncomingPutRequests—The number of successful PutRecord and
PutRecordBatch requests over the specified period of time.

•	 KinesisMillisBehindLatest—This is relevant when the ingestion is from
a KDS stream as a source and indicates the number of milliseconds that the last
read record is behind the newest record in the Kinesis data stream. This metric is
important to monitor and put an alarm on, to see if KDF is falling behind in reading
from the KDS stream. If it falls behind more than the retention period of the KDS
stream (the default is 24 hours), there can be missing data in the KDF destination.

•	 RecordsPerSecondLimit—This indicates the current limit set for KDF for
records per second, beyond which there could be throttling, and is relevant for
ingestion via Direct PUT and is good to compare with the IncomingRecords
metric to figure out when to request a limit increase for the KDF delivery stream.

•	 BytesPerSecondLimit—This indicates the current limit set for KDF for bytes
per second, beyond which there could be throttling, and is relevant for ingestion via
Direct PUT and is good to compare with the IncomingBytes metric to figure
out when to request a limit increase for the KDF delivery stream.

Use-case example – Bikeshare station data pipeline with KDF 165

•	 PutRequestsPerSecondLimit—This indicates the current limit set for KDF
for PUT requests (PutRecord and PutRecordBatch) per second, beyond which
there could be throttling, and is relevant for ingestion via Direct PUT and is
good to compare with the IncomingPutRequests metric to figure out when to
request a limit increase for the KDF delivery stream.

•	 ThrottledRecords—The number of records that were throttled because
data ingestion exceeded one of the delivery stream limits. A steadily increasing
number of throttled records indicates that you need to request a limit increase.
It is recommended to create an alarm for this metric.

•	 DeliveryTo<Destination>.Success—This is available for all destinations
and indicates the ratio of successful deliveries over unsuccessful deliveries. It needs
to be monitored to identify failures.

•	 DeliveryTo<Destination>.DataFreshness—The age of the oldest record
in KDF. Any record older than this age has been delivered to the destination. This
indicates the latency in delivery to the destination. It is recommended to create an
alarm for this metric and notify when it goes over the specified buffering limit in the
destination configuration.

KDF is also integrated with AWS CloudTrail, which when enabled logs all the API
calls made against the KDF APIs and can deliver those events to an S3 bucket. It logs
all control-plane API calls and includes what request was made, who made it, and from
where, it can be used to audit access and actions made against the KDF APIs.

Use-case example – Bikeshare station data
pipeline with KDF
The use case is to take streaming data coming from bike stations spread across multiple
New York locations, decorate it with address information stored in an Amazon
DynamoDB table, buffer and aggregate the data, and land it in an S3 bucket that forms
a data lake for historical analysis and insights utilizing big-data query tools such as
Apache Hive and Amazon Athena, which is a serverless Apache Presto service.

166 Kinesis Firehose

The architecture for delivering data to S3 in Parquet format using KDF for analysis with
big-data tools is depicted in the following diagram:

Figure 5.17 – Architecture for delivering data to S3 in Parquet format

This architecture is a part of the architecture described in Chapter 4, Kinesis Data Streams,
under the Data Pipelines with Amazon Kinesis Data Streams section, and is a blow-up of
the Amazon KDF part of the architecture.

The code and configuration files referenced here are available in the code examples
available on GitHub at https://github.com/PacktPublishing/Streaming-
Data-Solutions-with-Amazon-Kinesis. You will need a Git client to access them
(https://git-scm.com/). It is important for you to replace the AWS account ID and
the region with your own before you use those.

The KDF delivery stream is configured to ingest data using a KDS stream as a source.
It uses a Lambda transform to add address information to the incoming records, and then
uses KDF data format conversion to convert the incoming records to Parquet using
a schema defined in the AWS Glue Data Catalog. It buffers records for 15 minutes or 128
MB (whichever comes earlier), and then delivers the S3 objects to the specified S3 bucket
using a custom prefix in a Hive-style partitioning format.

https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis
https://git-scm.com/

Use-case example – Bikeshare station data pipeline with KDF 167

Steps to recreate the example
Let's look at the steps to recreate the example, as follows:

1.	 The first step is to create an Amazon DynamoDB table to hold the SmartCity
bike-station addresses. The following AWS CLI command accomplishes that:

aws dynamodb create-table \

 --table-name BikeStationAddress \

 --attribute-definitions \

 AttributeName=StationId,AttributeType=N \

 --key-schema \

 AttributeName=StationId,KeyType=HASH \

--provisioned-throughput \

 ReadCapacityUnits=10,WriteCapacityUnits=10

2.	 The address data is in a file called station_addresses.csv in CSV format and
looks like this:

100,7033 Summerhouse Ave. Staten Island NY 10306

110,68 Oak Ave. Staten Island NY 10312

3.	 This data needs to be loaded into the Amazon DynamoDB table. To do that, you can
run the following command:

python3 loadDynamoDBStationAddresses.py

4.	 The next step is to create an Amazon KDS stream that will receive the streaming
bike-station data, as follows:

aws kinesis create-stream --stream-name
KDSSmartCityBikesStream --shard-count 1

168 Kinesis Firehose

5.	 Next, we need to create a number of resources that will be used with the KDF
delivery stream. First, we create a role and policy for the Lambda transform
that will look up the address information and decorate the data coming from the
KDS stream, as follows:

aws iam create-role --role-name KDFSmartCityLambdaRole
--assume-role-policy-document file://
TrustPolicyForLambda.json

aws iam create-policy --policy-name
KDFSmartCityLambdaPolicy --policy-document file://
KDFSmartCityLambdaPolicy.json

aws iam attach-role-policy --role-name
KDFSmartCityLambdaRole --policy-arn arn:aws:iam::<your-
aws-account-id>:policy/KDFSmartCityLambdaPolicy

6.	 Next, zip up and create the Lambda function, like this:

zip -r Lambda_function.zip KDFLookupAddressTransform.py

aws Lambda create-function --zip-file "fileb://
Lambda_function.zip" --cli-input-json file://
CreateLambdaKDFLookupAddressTransform.json

7.	 Now, it is time to create the S3 bucket that will hold the data deposited by KDF. The
bucket name needs to be unique across all AWS accounts across the board. You
can add a prefix to the bucket name to make it unique. Make sure you update the
bucket name in other JSON configuration files as well. The code is illustrated in the
following snippet:

aws s3 mb s3://<prefix>-kdf-smartcitybikes-data --region
<your-aws-region>

8.	 You also need to create the AWS Glue database and table that KDF can use to
convert the incoming JSON data to Parquet, as follows:

aws glue create-database --database-input
"{\"Name\":\"smartcitybikes\"}"

aws glue create-table --database-name smartcitybikes
--table-input file://SmartCityGlueTable.json

Use-case example – Bikeshare station data pipeline with KDF 169

9.	 At this point, we need to create the IAM role and policy for KDF to call the
Lambda transform, access the Glue schema, and land the data in S3. This can be
achieved by running the following code:

aws iam create-role --role-name KDFSmartCityDeliveryRole
--path /service-role/ --assume-role-policy-document
file://TrustPolicyForFirehose.json

aws iam create-policy --policy-name
KDFSmartCityDeliveryStreamPolicy --policy-document
file://KDFSmartCityDeliveryStreamPolicy.json

aws iam attach-role-policy --role-name
KDFSmartCityDeliveryRole --policy-arn arn:aws:iam::<your-
aws-account-id>:policy/KDFSmartCityDeliveryStreamPolicy

10.	 Finally, we're ready to create the KDF delivery stream, as follows:

aws firehose create-delivery-stream --cli-input-json
file://KDFCreateDeliveryStreamSmartCityBikes.json

Now, all that is left to do is send data to the KDS stream and observe the data in Parquet
format, with the station address information landing in S3. Then, we can perform queries
using Amazon Athena. To do this, we will use a Java producer included in the GitHub
repository, which you can find at https://github.com/PacktPublishing/
Streaming-Data-Solutions-with-Amazon-Kinesis. Clone the repository
and go to the chapter6/producer-app/ride-producer directory, then build the
application using Gradle. The build process can take a few minutes. Here is the code
for this:

cd chapter6/producer-app/ride-producer

./gradlew build

The producer application uses the value of a KINESIS_STREAM environment
variable to determine which Kinesis stream to send records to. Make sure to set the
KINESIS_STREAM environment variable to KDSSmartCityBikesStream, as
illustrated in the following code snippet:

export KINESIS_STREAM=KDSSmartCityBikesStream

https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis

170 Kinesis Firehose

Now, we're ready to start the producer application, as follows:

./gradlew run

The producer application will send data in the following format:

{

 "stationId":420,

 "action":"DOCKED",

 "tripDuration":145,

 "price":19.14,

 "eventUTCTime":"2020-12-25T13:19:31.000589",

 "bikeDetail":

 {

 "bikeNum":"a33492a7-d59f-4484-bb37-7431252d8099",

 "bikeType":"ADVANCED"

 }

}

There are few things to note about the producer application's event to KDS. If the action
is "RENTED", this indicates that someone has just taken a bike for a ride, and conversely,
"DOCKED" indicates the bicycle being returned to the station. When the action is
"RENTED", the tripDuration and price fields will be empty.

After the Lambda transform runs, it will add the address information and transform it to
the following:

{

 "stationId":420,

 --

 --

 "bikeDetail":

 {

 "bikeNum":"a33492a7-d59f-4484-bb37-7431252d8099",

 "bikeType":"ADVANCED"

 }

 "stationAddress": "101 Ridgewood Road New York NY 10020"

}

Summary 171

It might take a while for the data to show up in the S3 bucket you created since the
buffering hints for the KDF delivery stream are set to 15 minutes or 128 MB. You can go
to the S3 bucket and see the data that has landed.

Once landed, some sample analysis you can do on the data could include the following:

•	 The average price of all bike rentals, as illustrated in the following code snippet:

SELECT avg(price) FROM
"smartcitybikes"."bikestationsdata";

•	 The average duration bikes are docked per hour, to identify the peak hours and the
non-peak hours so that prices can be assigned appropriately, as illustrated in the
following code snippet:

SELECT hour, avg(tripduration) FROM
"smartcitybikes"."bikestationsdata" where action =
'DOCKED' group by hour order by hour;

•	 You can also identify the duration bikes are docked per hour per location, to
identify inactive locations. Then, you can target promotions or relocate the stations.

Summary
In this chapter, we reviewed the features of Amazon KDF and how it can be used in
data pipelines in common multi-account enterprise architectures. We saw how to do
encryption, networking, authentication, and authorization with multiple Amazon and
third-party services and software. We saw how Amazon KDF can be an integral part
of any data analytics pipeline or data-lake architecture with its ability to easily ingest
data from other AWS services including AWS IoT, Amazon CloudWatch Logs, Amazon
CloudWatch Events, and KDS, do inline transformations using Lambda functions, and
deliver to Amazon S3, Amazon Redshift, Amazon Elasticsearch, HTTP endpoints, and
other third-party destinations. We also looked at the SmartCity bikes example and saw
how to deliver records to Amazon S3 in a columnar Parquet format. It should now be clear
how you can configure Amazon KDF for your use cases.

In the next chapter, we will look at other services under the Kinesis umbrella of services.

172 Kinesis Firehose

Further reading
You can use the following links for further reference:

•	 Amazon KDF Developer Guide:

https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/
what-is-kinesis-video.html

•	 Amazon KDF API reference:

https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/
API_Reference.html

•	 Analyze logs with Datadog using Amazon KDF HTTP endpoint delivery:

https://aws.amazon.com/blogs/big-data/analyze-logs-with-
datadog-using-amazon-kinesis-data-firehose-http-endpoint-
delivery/

•	 Ingest streaming data into Amazon Elasticsearch Service within the privacy of your
VPC with Amazon KDF:

https://aws.amazon.com/blogs/big-data/ingest-streaming-
data-into-amazon-elasticsearch-service-within-the-privacy-
of-your-vpc-with-amazon-kinesis-data-firehose/

•	 Amazon KDF custom prefixes for Amazon S3 objects:

https://aws.amazon.com/blogs/big-data/amazon-kinesis-data-
firehose-custom-prefixes-for-amazon-s3-objects/

https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/what-is-kinesis-video.html
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/what-is-kinesis-video.html
https://aws.amazon.com/blogs/big-data/amazon-kinesis-data-firehose-custom-prefixes-for-amazon-s3-objects/
https://aws.amazon.com/blogs/big-data/amazon-kinesis-data-firehose-custom-prefixes-for-amazon-s3-objects/

6
Kinesis Data

Analytics
Amazon Kinesis Data Analytics (KDA) is a service we use to analyze streaming data,
gain actionable insights, and create customer insights in near real time. KDA provides
two types of analytics engines, SQL and Apache Flink. KDA is a fully managed serverless
service that reduces the complexity of building, managing, and operating analytical
streaming applications. In other words, we don't have to stand up, patch, or maintain any
servers. Amazon Web Services also handles the scaling of underlying compute resources
based on our KDA application needs.

Data has become the blood of every company, regardless of the industry. Lately, hot data
usually has much more value than data at rest; cold data. Keeping competitive nowadays
means being able to process large amounts of hot data in seconds. For example, if an
online retailer has a promotion for some of its items, it's more valuable to know what's
in shoppers' carts while they are actively shopping than 10 or 15 days after purchasing.
While we are shopping, those online retailers can suggest items based on what is already
in our shopping cart and increase their sales. Cold data isn't useless, however, as we can
derive value from it when we, the shoppers, return next time.

174 Kinesis Data Analytics

Streaming applications commonly carry the latest data, and in this chapter, you will learn
how to use KDA to derive insights from streaming data. Using KDA, we will analyze,
summarize, filter, aggregate, and enhance streaming data using reference data. While
building the KDA stream processing application in this chapter, we will define input
sources, reference data, in-application tables (streams), windows for aggregation and
transformation code, and then send KDA output to be consumed by visualization tools.

In this chapter, we're going to cover the following main topics:

•	 Discovering Amazon Kinesis Data Analytics
•	 Working on SmartCity bike share analytics use cases
•	 Creating operational insights using SQL Engine
•	 Creating operational insights using Apache Flink
•	 Building bike ride analytic applications
•	 Monitoring KDA applications

Technical requirements
There are a few things that you will need to set up and configure before we start exploring
KDA. If you have already set these up in previous chapters, please skip ahead to the
next section.

AWS account setup
You will need to get an AWS account to run the examples included in this chapter.
If you do not have an account already, you can go to https://aws.amazon.com/
getting-started/ to create an account. AWS accounts offer a Free Tier
(https://aws.amazon.com/free). The AWS Free Tier allows you to use many
AWS services for free within specified usage limits. Some of the service examples in this
chapter are outside the AWS Free Tier and incur some service usage charges.

AWS CDK
You will need an AWS Cloud Deployment Kit (CDK) to create cloud application
resources required for the setup of the exercises we will perform in this chapter. You can
install a CDK by executing the following on your command prompt:

npm install -g aws-cdk

For a detailed walkthrough, refer to the following link: https://docs.aws.amazon.
com/cdk/latest/guide/getting_started.html.

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free
https://docs.aws.amazon.com/cdk/latest/guide/getting_started.html
https://docs.aws.amazon.com/cdk/latest/guide/getting_started.html

Discovering Amazon KDA 175

Java and Java IDE
You will need the Java Development Kit (JDK) version 11 (https://www.oracle.
com/java/technologies/javase-jdk11-downloads.html). We recommend
using a development environment (IntelliJ Idea is what we used) to develop and compile
the Apache Flink application.

You will need Apache Maven (https://maven.apache.org/plugins/maven-
compiler-plugin/) to compile the Apache Flink application, and it must be in your
working path. KDA for Apache Flink only supports Java applications that are built with
Apache Maven.

Code examples
Code examples in this book are available on GitHub at https://github.com/
PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis.
You will need a Git client to access them (https://git-scm.com/).

Discovering Amazon KDA
Why do we need analytics, and what can we do with KDA? KDA allows us to understand
and analyze the data flowing through our data streams. Before we dive into KDA, we
recommend you take a look at how Zynga is utilizing KDA. Please watch this video
(it starts around 20 minutes in): https://www.youtube.com/watch?v=PvxlF3A-
Res. You will learn how Zynga uses KDA to extract various metrics to run their business
efficiently and offer an excellent customer experience that we want to replicate for our
SmartCity's bicycle fleet.

 "Zynga is a leading developer of the world's most popular social games that
are played by millions of people around the world each day."

– Zynga.
Given that KDA is a managed service, AWS provides a monthly uptime percentage of at
least 99.9%. For us, this means we have the platform we can start working with right away.
More importantly, if we determine that we no longer require KDA, we simply remove the
application, and charges stop. AWS uses what they call a Kinesis Processing Unit (KPU)
to measure our application's resource utilization. KPU is equivalent to 1 vCPU and 4 GB
of memory. You can find further details here: https://aws.amazon.com/kinesis/
data-analytics/pricing/.

https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
https://www.oracle.com/java/technologies/javase-jdk11-downloads.html
https://maven.apache.org/plugins/maven-compiler-plugin/
https://maven.apache.org/plugins/maven-compiler-plugin/
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis
https://git-scm.com/
https://www.youtube.com/watch?v=PvxlF3A-Res
https://www.youtube.com/watch?v=PvxlF3A-Res
https://aws.amazon.com/kinesis/data-analytics/pricing/
https://aws.amazon.com/kinesis/data-analytics/pricing/

176 Kinesis Data Analytics

Based on the memory and compute needs of our application, KDA will scale up or down.
KDA imposes a soft limit of a maximum of 8 KPUs for SQL applications, which we can
increase by contacting AWS or submitting a limit increase through the AWS Console.
We can see how many KPUs our application is consuming using CloudWatch. We will go
into details later in this chapter as we build our KDA application.

Once you complete this chapter, you will create your KDA applications and derive insights
and value from your real-time data.

Working on SmartCity bike share analytics
use cases
In this chapter, we will be using KDA to analyze SmartCity's bicycle fleet's telemetry
to improve customer experience. Using a producer application, we will simulate 40
bicycle stations, and each bicycle rental or return to the station will generate an event.
The producer application will then put events into our Kinesis data stream. Our KDA
application will process data by aggregating multiple events over time so that we can get
the following analytics:

•	 We will use KDA to determine whether a station that is running low on available
bikes can move bicycles from other stations where there is an abundance of them.

•	 Management wants to know how much revenue we are generating from bicycle
rentals every 30 minutes. It's not sustainable that we produce those reports
manually, so we will use KDA to determine revenue generated every 30 minutes.

Producer application
You will not create a producer application as we have already created a
producer application that you will use. We will focus on creating a KDA
analytics application.

Chapter 3, Introduction to SmartCity Bike-Sharing Service, mentioned that there are
two primary engines in KDA: SQL-based and Apache Flink-based. We will design an
analytics solution for SmartCity using both of these engines. We will simulate real-time
data produced by the users interacting with a fleet of bicycles, and then we will create
actionable insights using KDA. The architecture of the solution that we will build is
shown in Figure 6.1:

Working on SmartCity bike share analytics use cases 177

Figure 6.1 – SwipeBike streaming analytics architecture

Let's step through the SwipeBike streaming analytics pipeline:

1.	 The producer application will simulate bicycle rentals and returns to the bike
stations.

2.	 We will run a producer application on an EC2 instance. The producer application
will send rental events' data to a Kinesis data stream.

3.	 The data stream will send the data to a KDA application for processing.

4.	 The KDA application will perform analytics using streaming and reference data that
we are storing in the S3 bucket.

5.	 The output of the KDA application will be sent to Firehose to be used by
downstream consumers.

An example of an event created by the producer application sent to KDS is shown
as follows:

{

 "stationId":420,

 "action":"DOCKED",

 "tripDuration":145,

 "price":19.14,

 "eventUTCTime":"2020-12-25T13:19:31.000589",

 "bikeDetail":

 {

 "bikeNum":"a33492a7-d59f-4484-bb37-7431252d8099",

178 Kinesis Data Analytics

 "bikeType":"ADVANCED"

 }

}

There are a few things to note regarding the producer's event in the Kinesis data stream.
If the action is "RENTED", this indicates that someone has just taken a bike for a ride,
and conversely, "DOCKED" indicates that the bicycle has been returned to the station.
When the action is "RENTED", the tripDuration and price fields will be empty.

Creating operational insights using SQL Engine
Streaming SQL builds on the concepts of Structured Query Language (SQL) commonly
used in various relational databases. Building on top of SQL means that SQL streaming
generally has a lower learning curve for those familiar with databases. While there is no
standard streaming SQL syntax, KDA uses the ANSI 2008 SQL standard with extensions
that allow us to create real-time stream processing solutions. The key difference compared
with the SQL database is that streaming SQL operates on a continuous data flow
(stream). The following are the crucial advantages of streaming SQL:

•	 It's easy to learn for those who have worked with a SQL database.

•	 Its behavior is well understood as it uses the concepts of tables, joins, and aggregate
functions.

•	 There is a rich ecosystem of SQL tools and code generators.

If you are thinking, "this is great, I'm going to replace my database," that's not the case.
Databases are intended to process and store immense amounts of data. KDA SQL
streaming can process vast volumes of data, but it does it in small chunks of data. Use
cases for KDA revolve around obtaining insights or analytics on the latest data, be it
data in the last few minutes or few hours.

SQL and streaming SQL
If you are familiar with databases and database SQL, you can think of
streaming SQL as analogous to using database triggers to process the data.
Streaming SQL adds WINDOW concepts to operate on a collection of events
(rows), whereas database triggers work on a single row (event).

Creating operational insights using SQL Engine 179

Core concepts and capabilities
We are first going to cover some of the core concepts of KDA SQL. To start with the KDA
SQL application, we first define the input or source, either Kinesis Data Streams or Kinesis
Data Firehose. The following diagram shows the general architecture and flow for KDA
SQL's engine architecture:

Figure 6.2 – KDA for SQL architecture

There are two possible sources for the KDA SQL engine: a Kinesis data stream or
a Firehose delivery stream. Once either of these two are plugged into KDA for SQL,
we process the data received as follows:

1.	 We map the KDA application source to an in-application stream
(SOURCE_SQL_STREAM), which behaves like a table.

2.	 We can also add any reference data that we need. Adding reference data is optional.

3.	 In-application STREAM and PUMP is the code that we write to do the actual processing
of the data. In-application STREAM is like a database table, and it holds data. PUMP
is analogous to a database's SELECT * FROM … INSERT INTO statement. PUMP
operates on in-application STREAM (tables) and joins it with reference data or other
in-application stream data to perform our desired business logic.

4.	 The outcome of PUMP is then inserted into another in-application stream,
TARGET_SQL_STREAM.

We can then use TARGET_SQL_STREAM for additional analysis or send it downstream
to continue processing.

180 Kinesis Data Analytics

Defining inputs
The KDA application takes a single input, a Kinesis data stream, or a Kinesis Firehose
delivery stream. You can think of your KDA application as one of the Kinesis data stream
consumers. That, in turn, means that KDA doesn't alter the data in the Kinesis data
stream, and we can have another consumer reading the data from that same Kinesis
data stream. When multiple KDA applications are reading from the same Kinesis data
stream, please know that Kinesis data stream quotas and throughput are still applicable.
For example, let's assume that we have five KDA applications reading from a single-shard
Kinesis stream. Since a Kinesis shard can support up to five read transactions, assuming
we even have read distribution across five KDA applications, this means that each
application gets a single read per second:

Figure 6.3 – Example of the single stream used by two KDA applications

Another input to our KDA application can be Reference Data. If you are familiar with SQL
and databases, you can think of reference data as lookup tables. An example of reference
would be a table containing postal codes and their association with cities and states. Let's
assume that the Kinesis data stream only has customer-id and postal-code. We
can use reference data to join it with postal-code and output city and state for that
customer-id.

Note
We must store KDA reference data in the Amazon S3 bucket as CVS or JSON
files. The maximum file size is 1 GB.

Creating operational insights using SQL Engine 181

Defining a SQL schema
Just like in the case of standard SQL, the KDA SQL application relies on a static schema.
Input mapping is very much analogous to the database table schema definition. Input
mapping informs our KDA application of the structure and data types of the streaming
data. KDA can perform auto-discovery of the streaming data schema by reading sample
data from the stream and then attempting to detect the data's format. If KDA can
determine the structure, it will suggest a schema along with columns and data types. We
can change the schema in case KDA has not detected the correct data type or column.
Since schema discovery is only sampling data, there is a possibility that the schema will
not match all the records in our stream. When KDA detects records that don't match the
schema, it will send those records to an in-application error stream.

In the same way as relational databases have the maximum number of columns per table,
there are limits associated with KDA SQL. The maximum size of the row (event) is 512
KB, which also includes KDA metadata. Typically, KDA metadata is under 1 KB.

Suppose you have use cases where your input data stream has new fields added after
you defined the KDA schema or newly formatted messages added by the producer. In
that case, KDA will not auto-discover the schema change, and KDA will not read new
fields/messages. If our producers are adding new fields or message formats, that likely
means there is a code change. We will need to coordinate the changes of producers
and changes to the KDA SQL application. You can then infer the schema using the
DiscoverInputSchema API.

Note
In order for KDA to process our streaming data, it must use either CSV or
JSON format. In our examples in this chapter, we are using JSON formatted
data.

Besides using Kinesis Schema Discovery or the DiscoverInputSchema API, we can
also use the KDA API to specify the streaming data's schema. While creating a KDA
application using API, we can use the CreateApplication API and then set the
following three properties:

•	 InputSchema, which is a collection of RecordColumns

•	 RecordEncoding

•	 RecordFormatType as CSV or JSON

182 Kinesis Data Analytics

Here is an abbreviated example of how we could define the schema for our bike-rental
JSON message. When we define mappings for JSON documents, we use JSONPath,
which is a standardized way to query JSON document elements. In the following example,
we use $.stationId JSONPath markup to map data to our schema:

"InputSchema": {

 "RecordColumns": [

 {

 "SqlType": "INTEGER"

 "Name": "stationId",

 "Mapping": "$.stationId"

 }

],

 "RecordFormat" :{

 "RecordFormatType": "JSON"

 },

 "RecordEncoding": "UTF-8"

}

Earlier in this chapter, we had example of an event created by the producer application.
Here is a snippet:

"bikeDetail":

 {

 "bikeNum":"a33492a7-d59f-4484-bb37-7431252d8099",

 "bikeType":"ADVANCED"

 }

To get to bikeNum, which is nested under bikeDetail, we would use the JSONPath
markup $.bikeDetail.bikeNum.

KDA SQL key constructs
Once we create a KDA SQL streaming application, and define the input and schema, KDA
will create two in-application streams. In-application streams are not like Kinesis data
streams or Firehose delivery streams; you can think of in-application streams as tables that
exist and hold data for our KDA SQL application. When we stop, our KDA in-application
stream is no longer available, but the input Kinesis data stream or Firehose delivery
stream is unaffected. In-application stream source_sql_stream_001 contains data
received from the input Kinesis data stream. If our input data stream has multiple shards,
in-application stream source_sql_stream_001 will include data from all shards.

Creating operational insights using SQL Engine 183

KDA SQL will try to scale our in-application streams so that it matches the amount
of data being sent to it by input streams, such as the data stream of Firehose. There will
be instances where we will want to set the in-application streams explicitly. We can do
that by using the InputParallelism parameter. Assuming that the input source is
a Kinesis data stream with 20 shards and we set InputParallelism to 4, KDA for
SQL will have 4 in-application streams, each receiving data from 5 shards.

The second stream that KDA creates is error_stream, which will hold any records
that KDA reads from the input data stream but couldn't convert using a schema that
we have defined. Errors usually occur when we have different record types in our input
stream. If we encounter this situation, one of the workarounds is to define our schema as
a single VARCHAR field, read the whole record into it, and then perform parsing of that
record in our code. Another alternative is to use AWS Lambda for pre-processing and
standardizing the records in the same format.

We can also create our in-application streams for intermediary processing, and we will
do that when we build our KDA SQL application for SmartCity. We use CREATE OR
REPLACE STREAM syntax to create an in-application stream, and then we define the
column names, data types, and precision:

CREATE OR REPLACE STREAM completed_bike_rides (

 stationId INTEGER,

 tripDuration BIGINT,

 price REAL

);

Once the in-application stream is defined, we can insert data into that stream using the
PUMP operation. PUMP selects data from one or more in-application streams and then
inserts it into the in-application stream:

CREATE OR REPLACE PUMP completed_rides_pump AS

 INSERT INTO completed_bike_rides

 SELECT STREAM

 "stationId",

 "tripDuration",

 "price"

 FROM source_sql_stream_001

 WHERE "action" LIKE 'DOCKED'

 AND ("tripDuration" > 0 AND "price" > 0) ;

184 Kinesis Data Analytics

Query for completed_rides_pump executes continuously over the in-application
stream, source_sql_stream_001. The query filters events, indicating that the bicycle
is DOCKED, trip duration, and price are greater than zero. The pump will insert results into
the completed_rides_pump in-application stream.

Reference data
Besides using streaming data, we can also define reference data that our KDA application
can then utilize. Reference data allows us to enrich or further filter the data by joining data
from the data stream with reference data. To use reference data in the KDA application,
we must store it in S3 in JSON or CSV format. The maximum size of the S3 file that
contains reference data cannot be larger than 1 GB.

Modifying input using AWS Lambda
Often in data processing pipelines, we need to transform the raw data received. When we
use KDA, this is pretty easy to achieve by creating an inline AWS Lambda function that
will either convert or transform it. When we use AWS Lambda for pre-processing, we
need to make sure that we conform to the record response model, shown as follows:

{

 "records": [

 {

 "recordId": "363636362576780473701237608934523",

 "result": "Ok",

 "data": "ewoic3RhdGlvbklkIjo0MjAsCiJhY3Rpb24iO=="

 }

]

}

If the Lambda put back into the data stream doesn't match the record response model,
we will get an error. You can find detailed requirements pertaining to the Kinesis record
response model here: https://docs.aws.amazon.com/kinesisanalytics/
latest/dev/lambda-preprocessing.html.

AWS Lambda
If you are not familiar with AWS Lambda, think of it as code that you write
to perform a specific function, while AWS provides all the underlying
infrastructure. Our only job is to write code.

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/lambda-preprocessing.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/lambda-preprocessing.html

Creating operational insights using SQL Engine 185

Let's now take a look at a brief example of how Lambda can be useful in transformation.
The following diagram shows a simple transformation:

Figure 6.4 – Inline transformation using AWS Lambda

In the preceding example, we put a record into Kinesis and we send a state value as code,
"NY" (1). In order to make the output readable to our users, we use Lambda to map that
state code to the actual state name, "New York" (2). Once mapping is complete, we put
the record back into the data stream (3).

Streaming SQL code
When it comes to SQL code that we write to perform streaming data processing, a few
key concepts are essential. The maximum size of the SQL code for our application is
100 KB. By default, KDA will create SOURCE_SQL_STREAM_XXX, which represents the
data flowing through the stream. If you are familiar with SQL and databases, think of
SOURCE_SQL_STREAM as a database table populated by ongoing data inserts. We then
simply write our SQL to process data from the source stream table.

KDA SQL reference
For further information regarding KDA SQL, you can visit the following link:

https://docs.aws.amazon.com/kinesisanalytics/
latest/sqlref/analytics-sql-reference.html.

https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html
https://docs.aws.amazon.com/kinesisanalytics/latest/sqlref/analytics-sql-reference.html

186 Kinesis Data Analytics

Windows
For SmartCity use cases, we need to look at the events that happened over a certain
period. The following are the events and time periods we are going to use in this example:

•	 Average ride duration over the last 15 minutes

•	 Average amount earned by rentals over the previous 10 minutes

•	 Count of bicycles that have been rented or returned to the station in the last
5 minutes

How do we do that, given that this is streaming data and events come and go? We will
be using windows. Windows in streaming applications act like a memory cache that
accumulates events over a specified period. A windows streaming application will
gather individual events in this memory cache, and then we can apply various analytical
functions over that collection of the events.

If our data has event time, then we can use that timestamp when performing time-based
windowing operations. In the absence of the event timestamp, we have the following
two options:

•	 Use KDA's ROWTIME timestamp

•	 Use the Kinesis APPROXIMATE_ARRIVAL_TIME

KDA's ROWTIME value will be the time when KDA inserted the row into our
in-application stream. The Kinesis APPROXIMATE_ARRIVAL_TIME data stream
is the approximate time when a record is inserted into the data stream.

Exploring the types of windows – staggering, sliding, and tumbling
Our producer application will randomly generate and insert data into the Kinesis data
stream for all 40 bicycle stations. We will have records from all stations intermingled
and out of order. In order for us to perform analysis or aggregation over the specific time
horizon, we use windows. KDA SQL supports three types of windows, which we are going
to discuss next:

•	 Sliding windows: Sliding windows keep moving with new records detected in the
data stream. Sliding windows are the right choice for calculating moving averages.
A fixed time INTERVAL defines the duration of the window. Depending on the
velocity of records and the interval defined, sliding windows can overlap, and
records can be considered for aggregation across multiple windows; there is a 1-to-n
relationship between the record and window.

Creating operational insights using SQL Engine 187

For example, if the interval is 5 minutes and a new record arrived at 14:20, records
considered in a sliding window would be from 14:15 to 14:20. Assuming that
another record arrives at 14:21, the second sliding window would be from 14:16
to 14:21, and records from 14:16 to 14:20 would be considered in both windows'
aggregations as seen in the following figure:

Figure 6.5 – Sliding window

188 Kinesis Data Analytics

•	 Tumbling windows: When we want to process streaming records over a set period
in a contiguous manner, we use tumbling windows. The tumbling window will
start aggregating records, and when the specified interval is over, a new tumbling
window begins at that time. The tumbling window ensures that no record will be
considered across two windows. There is a 1-to-1 relationship between the record
and the window:

Figure 6.6 – Tumbling window

•	 Staggering windows: These are useful for aggregating records that come at varying
times. The staggering window starts once KDA detects a record that matches the
key defined in PARTITION BY (not to be confused with a Kinesis data stream
partition). A fixed time interval establishes the duration of the window. If we
wanted to count rentals at the bicycle station for 1 minute from the time the first
bicycle is rented out, the tumbling window wouldn't work because the events might
fall into separate windows. We could combine multiple tumbling windows to group
the related events or use a staggering window. The staggering window is initiated
as our KDA application receives the first event (with a RIDE_TIME of 14:06:05)
for station 120 (with a ROWTIME of 14:06:30). The staggering window will expire
after 1 minute, at ROWTIME 14:07:30). KDA will output results captured during the
staggering window (based on ROWTIME and RIDE_TIME):

Creating operational insights using SQL Engine 189

Figure 6.7 – Staggering window

Looking at the preceding diagram, our staggering window would pump the results
as shown in the following table:

Figure 6.8 – Results of the staggering window

In this section, we have learned about SQL Engine core concepts, such as ingesting data
into in-application streams. In order to analyze data, we used three different types of
windows, along with aggregation functions to achieve the desired output results. We then
used data pumps to send the output from our analytics for further processing or reporting.
In the following section, we are going to learn how do the same with KDA Flink engine.

190 Kinesis Data Analytics

Creating operational insights using Apache
Flink
Amazon Kinesis Data Analytics for Apache Flink allows us to go beyond SQL and use
Java or Scala as programming languages and a data stream API to build our analytics
applications. In this section, we are going to focus on KDA for Flink.

Note
If you are not familiar with Apache Flink, we recommend you first go through
the Flink overview: https://ci.apache.org/projects/flink/
flink-docs-release-1.11/learn-flink/.

Apache Flink deserves a book in itself, and we are going to cover how to run Flink
applications on KDA specifically.

When we create applications with KDA for Flink, we follow the same pattern as we did
with KDA SQL, with a number of differences outlined in the following table:

Figure 6.9 – KDA SQL and KDA Flink comparison

https://ci.apache.org/projects/flink/flink-docs-release-1.11/learn-flink/
https://ci.apache.org/projects/flink/flink-docs-release-1.11/learn-flink/

Creating operational insights using Apache Flink 191

KDA Flink applications come with more options and flexibility, which can be
a determining factor in selecting which engine to use. For example, it is common for
companies to have multiple AWS accounts where data pipelines span across those
accounts. When it comes to AWS cross-account sharing and data stream consumption,
that functionality currently isn't supported by Kinesis Data Analytics SQL-based
applications. Assuming we have two AWS accounts, Account01 and Account2,
there are three options when it comes to achieving cross-account capabilities:

•	 The first workaround is to set up a Java application that reads from the Kinesis
data stream in Account01 and then writes to the Kinesis data stream in
Account02. The SQL KDA application would then operate in Account02 and
process data from the Kinesis data stream in that account. Examples of using
two streams can be found at the AWS site: https://docs.aws.amazon.
com/kinesisanalytics/latest/java/get-started-exercise.
html#get-started-exercise-5.

•	 Another way to move data from the Account01 data stream to the Account02
data stream is to use AWS Lambda. This solution is similar to the first one,
with the critical difference being that you are using Lambda instead of writing
a Java KDA application. The solution can be found at this link: https://
github.com/awslabs/kinesis-aggregation/blob/master/java/
KinesisLambdaForwarder/README.md.

•	 The third option, instead of using SQL KDA, is to switch to a Flink-based
application: https://docs.aws.amazon.com/kinesisanalytics/
latest/java/examples-cross.html.

KDA Flink processing non-AWS sources
A KDA for Flink application can make calls to Kafka or other sources
supported by Flink connectors that aren't deployed on AWS; it could be
on-premises or with a different cloud provider. These resources have to be
accessible to KDA; we need to configure firewalls and security properly.

Kinesis data streams don't provide exactly-once semantics as an out-of-the-box feature.
There are a few workarounds, such as using DynamoDB, S3, or ElasticCache in our
consumer application to check for duplicates and avoid them. We can use KDA for Flink
to achieve exactly-once semantics as Flink supports it out of the box. KDA turns on
Flink's exactly-once checkpoint configuration, ensuring that checkpoints are persisted
to durable storage such as S3. Exactly-once processing incurs overhead, whether we run
Flink on EKS or KDA. Before you start using the exactly-once delivery feature, make sure
you understand the impacts on your application. You can find details on Flink's exactly-
once semantics here: https://flink.apache.org/features/2018/03/01/
end-to-end-exactly-once-apache-flink.html.

https://docs.aws.amazon.com/kinesisanalytics/latest/java/get-started-exercise.html#get-started-exercise-5
https://docs.aws.amazon.com/kinesisanalytics/latest/java/get-started-exercise.html#get-started-exercise-5
https://docs.aws.amazon.com/kinesisanalytics/latest/java/get-started-exercise.html#get-started-exercise-5
https://github.com/awslabs/kinesis-aggregation/blob/master/java/KinesisLambdaForwarder/README.md
https://github.com/awslabs/kinesis-aggregation/blob/master/java/KinesisLambdaForwarder/README.md
https://github.com/awslabs/kinesis-aggregation/blob/master/java/KinesisLambdaForwarder/README.md
https://docs.aws.amazon.com/kinesisanalytics/latest/java/examples-cross.html
https://docs.aws.amazon.com/kinesisanalytics/latest/java/examples-cross.html
https://flink.apache.org/features/2018/03/01/end-to-end-exactly-once-apache-flink.html
https://flink.apache.org/features/2018/03/01/end-to-end-exactly-once-apache-flink.html

192 Kinesis Data Analytics

Options for running Flink applications in AWS Cloud
Besides being able to run Flink applications on KDA, we have a few other options with
AWS Cloud. It all comes down to the level of flexibility that we want to have. Figure 6.10
shows the responsibilities of running a Flink application using different approaches:

Figure 6.10 – Options for running Flink on AWS Cloud

Running our own EC2 instances with our own runtime for the Flink application provides
the most significant level of flexibility, but it also requires the most effort on our side. For
EC2 instances, we have classified scaling as something that we have to do ourselves. We
are referring to autoscaling as it relates to our Flink application, and not autoscaling the
EC2 feature. We can implement autoscaling with EC2 instances, but we have to output
Flink metrics, and create a threshold and scaling policies ourselves. On the other hand,
both Amazon EKS and Amazon EMR have autoscaling built in for underlying resources,
and we can set up thresholds through the CLI or console.

EMR with EKS
EMR recently announced the ability to run big data jobs on EKS. We can now
use EMR without having to worry about managing the underlying Kubernetes
cluster(s).

Creating operational insights using Apache Flink 193

KDA for Flink, on the other hand, is fully managed by AWS and, from our perspective,
fully serverless (we don't have to worry about servers or storage). Since AWS is doing the
heavy lifting to manage the Flink cluster, we can't use Flink's REST API to manage our
jobs directly.

Flink applications on KDA
Earlier in the chapter, we explored KDA for the SQL Engine architecture. Let's now look
at KDA Flink engine architecture shown in the following diagram:

Figure 6.11 – KDA Flink engine architecture

What should stand out is that KDA Flink engine architecture is different to that of KDA
SQL. There are quite a few differences, the most notable being that KDA Flink actually
runs as a Kubernetes cluster. Let's now step through the data flow and examine the core
components:

1.	 We interact with KDA for Flink using the API layer.

AWS Console and AWS CLI use the same API; you can see this in AWSCloudTrail.
The API layer receives our request, for example, CreateApplication, along
with parameters, and persists that as metadata in the DynamoDB table. The
architecture of the control plane is shared by both KDA engines, Flink and SQL.

194 Kinesis Data Analytics

2.	 Life cycle management takes over and orchestrates the next steps. Once KDA has
metadata, it will create the IAM role (2b) that our KDA application can assume.
We can also pre-create this role and just provide it as part of the metadata.

3.	 When we call the StartApplication API, the life cycle manager will instantiate
our Flink application's infrastructure by creating an EKS cluster and worker nodes.

Our Flink application gets its own EKS cluster, and this configuration provides
network separation of the KDA application at a Kubernetes networking level. We
can choose between two templates (development and production). The template
defines settings, such as whether snapshots are auto-enabled, parallelism per KPU,
and logging levels. KDA will load our Flink application from S3; our application
JAR file's maximum size is 512 MB.

Flink and Maven dependency
At the time of writing this book, KDA was supporting Flink 1.11.1. To deploy
our Flink JAR, we have to build it using Maven 3.1.

Based on template settings, KDA will size up the EKS cluster for our Flink
application. KDA uses the Kinesis Processing Unit (KPU), 1vCPU, 4 GB of memory,
and 50 GB of storage. The basic application will start with 1 KPU. KDA will use a
separate core for other components of KDA needed to run our application. KDA will
load all related Flink libraries for us. Each KDA KPU receives 3 GiB of JVM heap,
and the remaining memory is allocated to KDA management components. KDA
encrypts data at rest as well as in transit using KMS. KMS keys are generated for
each application.

KDA manages the full life cycle of our Flink application on our behalf. It will
take automatic savepoints (the KDA term is snapshot) as we perform updates
of our Flink application. KDA maintains up to 1,000 savepoints in case we
need to restore from one of them. KDA applications often require us to keep
the track of the state, an example being when we use windows. KDA will have
to aggregate data somewhere and retain the state of that window. When we
activate checkpointing, KDA will keep track of the state. Flink itself comes with
three state stores: MemoryStateBackend, which maintains the state in the
Java heap; FsStateBackend, which maintains the state in the filesystem; and
RocksDBStateBackend, which stores the state in the RocksDB database.

Creating operational insights using Apache Flink 195

KDA state backend is RocksDB and S3, and KDA manages it fully. You can learn
more about RocksDBStateBackend here: https://ci.apache.org/
projects/flink/flink-docs-stable/ops/state/state_backends.
html#the-rocksdbstatebackend. To learn about RocksDB, please navigate
to this link: https://rocksdb.org/. If you want to use a different state
backend, use EKS to run your Flink application.

Savepoints in Flink are used when we want to pause processing, for example,
updating our application, and they contain the state of our entire application.
In that sense, you can think of them as being heavy backup. Savepoints are
intended to provide lots of durability, and KDA stores them in S3. When we
configure KDA to take automatic snapshots (SnapshotsEnabled=true),
KDA will create a snapshot each time our application is updated, scaled,
or stopped.

Scope of the savepoint (snapshot)
The scope of the savepoint is a KDA application. We can't take a
savepoint created by application A and start it with application B. KDA
doesn't automatically delete snapshots. We need to create our own
housekeeping routine to delete old snapshots. One of the options is to
create an EventBridge scheduled rule that runs on a daily basis. Set the
AWS Lambda as the target. Lambda code should then invoke KDA's
ListApplicationSnapshots API and, in the case of snapshots more
than 7 days old (using the SnapshotCreationTimestap value), invoke
the DeleteApplicationSnapshot API.

Checkpointing is how Flink manages recovery when something goes wrong
(that is, a Java thread dies) so that we can go back to that checkpoint and continue
processing. We use checkpoints to recover quickly from the failure, and in KDA,
they are persisted in RocksDB. In Flink on KDA, we can only control three settings:

a. CheckpointingEnabled: True or False.

b. CheckpointInterval: The default is 60000.

c. MinPauseBetweenCheckpoints: The default is 5000.

https://ci.apache.org/projects/flink/flink-docs-stable/ops/state/state_backends.html#the-rocksdbstatebackend
https://ci.apache.org/projects/flink/flink-docs-stable/ops/state/state_backends.html#the-rocksdbstatebackend
https://ci.apache.org/projects/flink/flink-docs-stable/ops/state/state_backends.html#the-rocksdbstatebackend
https://rocksdb.org/

196 Kinesis Data Analytics

4.	 Monitoring and scaling components will observe our applications for any signs of
trouble or if an application requires more compute and memory resources. KDA
will then scale the underlying resources by moving our application to different
clusters or different instance types. Autoscaling is configurable, and we can
delegate autoscaling. Automatic scaling overwrites some parallelism; for example, if
operator-level parallelism is set in our application, KDA will override it. Autoscaling
is the right choice when our Flink operators perform about the same amount of
work and require similar resources. KDA will monitor CloudWatch for things such
as CPU utilization of our KDA cluster, and it will aggressively scale up at about
5-minute intervals as required. Scale down works in a more conservative way, and
KDA will look for multiple CPU utilization intervals before it scales down our KDA
Flink cluster. When operators require a different level of resources, we can turn off
autoscaling and set parallelism at the operator level.

We set parallelism at two levels as follows:
•	 The number of KPUs, which can range between 1 and 8.

•	 Overall parallelism, with a maximum of 256. In a nutshell, each KPU can have up
to 32 with a maximum of 8 KPUs, which gives us 256.

KDU scaling
If we want to have 64 parallel tasks per application, we will set the KPUs to two
(64/32). We can increase the limit of 8 KPUs by contacting AWS or by opening
the limit increase case.

Unlike with KDA for SQL, with Flink, we can use connectors to read and write data from
inputs and sources. When our KDA Flink application uses Kinesis Data Streams as the
source, we can use Enhanced Fan-Out (EFO). We covered EFO in Chapter 5, Kinesis
Data Streams, in detail. The advantage of using EFO with our Flink application is that we
are getting dedicated bandwidth. EFO is useful if we have multiple consumers besides our
Flink application, or multiple Flink applications consuming from the same stream. To
enable EFO, we need to set RECORD_PUBLISHER_TYPE and EFO_CONSUMER_NAME
in our Flink application configuration. The following is a code snippet concerning how
to configure an EFO consumer, and you can get a working example of an EFO consumer
here: https://docs.aws.amazon.com/kinesisanalytics/latest/java/
examples-efo.html:

consumerConfig.putIfAbsent(RECORD_PUBLISHER_TYPE, "EFO");

consumerConfig.putIfAbsent(EFO_CONSUMER_NAME, "efo-flink");

https://docs.aws.amazon.com/kinesisanalytics/latest/java/examples-efo.html
https://docs.aws.amazon.com/kinesisanalytics/latest/java/examples-efo.html

Building bike ride analytic applications 197

To write the output of the KDA SQL application, we use destinations. With KDA for Flink,
we do it by using Sink. Kinesis Firehose and S3 are the most widespread sink connectors.

A KDA SQL application has a limit of three destinations, but in the case of KDA for Flink,
we have multiple options. You can find the list of available Flink connectors here:

https://ci.apache.org/projects/flink/flink-docs-release-1.12/
dev/connectors/.

To decouple our Flink application code from the configuration settings, we use runtime
properties. For example, we can configure checkpointing using runtime properties, so
when we are in development, we can turn checkpointing off, and then turn it on when in
production. The following code snippet is an example of checkpointing being turned on:

"FlinkApplicationConfiguration": {

 "CheckpointConfiguration": {

 "CheckpointingEnabled": "true"

 }

}

You can find the full list of configurable items in the AWS documentation located at
https://docs.aws.amazon.com/kinesisanalytics/latest/java/
how-properties.html.

Building bike ride analytic applications
Let's put the described SwipeBike and KDA into action. As a first step, we will simulate
bike trips; bikes being rented and returned. We have provided code that will do this for
you. We will then build analytics applications using KDA SQL and KDA Flink. These
applications will functionally be the same and will analyze the data for bike trips.

Setting up a producer application
If you haven't installed prerequisites, please go to the Technical requirements section of
this chapter and install the prerequisites. Using AWS Cloud Deployment Toolkit (CDK),
we will create the infrastructure required, including deploying the producer application
that we will use in this chapter. If you haven't done so already, go ahead and pull down
the required CDK code from the GitHub repository:

git clone https://github.com/tmakota/kinesis-book.git

https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/connectors/
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/connectors/
https://docs.aws.amazon.com/kinesisanalytics/latest/java/how-properties.html
https://docs.aws.amazon.com/kinesisanalytics/latest/java/how-properties.html

198 Kinesis Data Analytics

Cost
If you chose to do the exercises in this chapter, please note that you will incur
AWS charges for the resources created in your AWS account.

In order to set up the producer application, perform the following steps:

1.	 Open up the command prompt or terminal and navigate to the directory where you
cloned the code from Github. Navigate to chapter6, then to the producer-cdk
directory, and then create and start the Python virtual environment:

python3 -m venv .venv

source .venv/bin/activate

2.	 Once you have the virtual environment running, install all the dependencies
required by the CDK project:

pip install -r requirements.txt

Make sure that the CDK project synthesizes correctly before you attempt to run it:
cdk synth

Deploy the CDK application to create the infrastructure. Change the parameters
accordingly. S3 bucket names are globally unique. If you don't change the names
of S3 buckets (kdasrcbucketname and kdaoutputbucketname), the
deployment will probably fail. You can leave the names of the Kinesis and Firehose
streams as they are:

cdk deploy --parameters kdasrcbucketname=kda-upload-tmak
\

 --parameters kdaoutputbucketname=kda-output-tmak \

 --parameters sourceStreamName=ProducerStream \

 --parmeters deliveryStreamName=AnalyticsOutput

Note
By deploying the CDK application, it will create resources such as a VPC,
IGW, subnets, a t3.small EC2 instance, IAM roles, a Kinesis data stream, and
a Firehose delivery stream, which will incur charges from AWS for which you
will be responsible.

Building bike ride analytic applications 199

3.	 Navigate to AWS Console, go to the EC2 section, and then click on the Instances
tab/link. If everything is deployed properly, we should see an EC2 instance with the
name producer-cdk/Instance. Click the checkbox next to the instance and
then click the Connect button. Click on the Session Manager tab and then click
the Connect button again. Once you are connected, let's change the directory to
ssm-user by using the following command:

cd /home/ssm-user

4.	 The next step is to pull the Java producer-app code from Git to simulate bicycle
rentals. You can clone the entire Git repository, but in this example, we will pull
just the producer application directory using sparsecheckout:

git init

git remote add origin -f https://github.com/tmakota/
kinesis-book.git

git config core.sparsecheckout true

echo "chapter6/producer-app/*" >> .git/info/sparse-
checkout

git pull --depth=2 origin master

5.	 Navigate to Producer application code under ride-producer and then build
the application using Gradle. The build process may take a minute or two:

cd chapter6/producer-app/ride-producer

./gradlew build

A producer application uses the value of the system variable KINESIS_STREAM to
determine the Kinesis stream in which to send the records. CDK installation will
set the value of KINESIS_STREAM to the stream that we created previously. Before
running the producer application, make sure that KINESIS_STREAM has your
Kinesis data stream's value:

echo $KINESIS_STREAM

If the output doesn't have your stream name, execute the following command:
source /etc/profile

200 Kinesis Data Analytics

6.	 Run the echo command again, and once it does have the value of your Kinesis data
stream, run the producer application itself to start sending data to your stream:

./gradlew run

7.	 Stop the producer application for now (Ctrl+C). We will use it once we start building
KDA applications in the Building a KDA SQL application section in this chapter.

In this section, we have established the prerequisites for building KDA SQL and Flink
applications. Setting up a producer application will simulate bike rides and place the records
in a Kinesis data stream, which we will then use as input for our analytics applications.

Building a KDA SQL application
Let's create our KDA SQL application by performing the following steps:

1.	 Log in to your AWS account and navigate to the Amazon Kinesis console. The
dashboard will show your existing Kinesis streams and applications.

2.	 Under the Data Analytics section, click on the Create Application button. Give
your application a name; we will be using kda-sql-app to refer to this application
throughout this chapter.

3.	 Set Runtime environment to be SQL. Although not required, you should get into
the habit of using tags. Tags help with many things, including cost allocations,
access controls through IAM policies, or other specific usages that your company
may have in place.

4.	 Once you are ready, go ahead and click Create Application. You should get
a message that says Successfully created Application kda-sql-app.

If you prefer to use the Command-Line Interface (CLI), use the following code:

aws kinesisanalytics create-application \

--application-name kda-sql-app \

--application-description "First KDA Application" \

--tags Key=Name,Value=KDASQLApplication

Building bike ride analytic applications 201

We used a shorthand version of the create-application API to create the KDA
application. Please note that you can specify all the application details with the CLI
command, such as source, input, and destinations, in a single command. At this point,
you should be able to see your newly created KDA SQL application in AWS Kinesis
Console, as shown in Figure 6.5:

Figure 6.12 – Example of a KDA SQL application in AWS Console

There are a few other ways to create KDA applications, such as using AWS Console or
using CloudFormation or AWS CDK. We recommend that you use the latter two, and in
this chapter, in the Deploying a Flink app section, we are going to show you how to use
AWS CDK to deploy a Flink application.

Defining inputs for a SQL application
To define inputs for our application, perform the following steps:

1.	 Navigate to the AWS Kinesis console and select kda-sql-app from the list of
available applications. We are now going to connect our KDA application to the
ProducerStream Kinesis data stream. We will use the stream that was created
by CDK and that we insert data into using the producer application.

I don't see the ProducerStream
If you don't see the RideGenerator stream in your Kinesis dashboard, please
go back earlier in this chapter and make sure you have completed the Setting up
a producer application section. It will walk you through a producer application
setup, which we require in order to proceed with the exercises.

2.	 Click on the Connect streaming data button, and then from the list of data streams,
select ProducerStream. In our use case, we aren't going to perform any record
pre-processing, and we will leave it as disabled.

202 Kinesis Data Analytics

In order for kda-sql-app to access data from the ProducerStream data
stream, it needs to have permission. Permissions in AWS are handled using
Identity Access Management (IAM) services. KDA will, by default, offer to
create the IAM role on our behalf so that our KDA application can access the
data from the ProducerStream data stream. The IAM role name format is
kinesis-analytics-{name-of-kda-application}-{region}.

3.	 Now is the time to start your producer application. Navigate to EC2 Console, log in
to the producer-cdk/Instance instance, and run the producer application:

./gradlew run

Once the producer application is running, we can proceed with Discover Schema.
KDA offers an automated way to infer the data types of the data flowing through the
ProducerStream source data stream. We are going to use AWS Kinesis Console
to discover the schema automatically. If you click the Discover Schema button, KDA
will connect to the ProducerStream data stream using the IAM we specified in the
previous step and read the records. After reading the data records, KDA will try to infer
the column names, their data types, and sizes:

Figure 6.13 – KDA schema discovery tool

Sometimes, KDA will not detect the data types. In our case, KDA has discovered
eventUTCTime as VARCHAR(32). Click on the Edit schema button, which will allow
us to change the names of the columns and their types, as well as size or precision. Change
Column Type from eventUTCTime to TIMESTAMP, and price to DOUBLE. Click Save
schema and update the stream samples:

Building bike ride analytic applications 203

Figure 6.14 – Modifying the KDA schema using the schema discovery tool

In this example, we aren't using reference data, but we could have files in the S3 bucket.
When using reference data, we specify the filename and give the reference table a name.
Just like with Schema Discovery, KDA can infer the data schema of our reference data.

Reference data isn't refreshed automatically
Sometimes, reference data needs to be updated, and in order to do so, we
would update the S3 file containing reference data. KDA will not automatically
recognize that data has changed, and AWS Console doesn't have a way to
refresh reference data. To update the reference data, we need to use the
update-application CLI or the UpdateApplication API call.

204 Kinesis Data Analytics

Creating SQL code for real-time analytics
We will build SQL code to determine whether the bicycle station is running low on
available bikes so that we can move bicycles around:

SQL code
You can find SQL code in the GitHub repository here: https://github.
com/PacktPublishing/Streaming-Data-Solutions-with-
Amazon-Kinesis/tree/main/chapter6/sql-app.

1.	 From the kda-sql-app console, click on the Go to SQL editor button.

2.	 In SQL Editor, enter SQL listed in the section below, and then click the Save and
Run SQL button. We are using a tumbling window of 1 minute to summarize bikes
that have left and arrived at each station. The CASE statement inspects the action
field, and we translate the output into the bikeCount field:

CREATE OR REPLACE STREAM RENTAL_COUNT (

 STATIONID INTEGER,

 BIKECOUNT INTEGER,

 ASOFTIME TIMESTAMP

);

CREATE OR REPLACE PUMP RENTAL_COUNT_PUMP AS

 INSERT INTO RENTAL_COUNT

 SELECT STREAM

 "stationId",

 SUM(CASE "action"

 WHEN 'RENTED' THEN -1

 WHEN 'DOCKED' THEN 1

 ELSE 0

 END) "bikeCount",

 ROWTIME AS asOfTime

FROM "SOURCE_SQL_STREAM_001"

GROUP BY "stationId",

 STEP("SOURCE_SQL_STREAM_001".ROWTIME BY INTERVAL '1'
MINUTE);

https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis/tree/main/chapter6/sql-app
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis/tree/main/chapter6/sql-app
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis/tree/main/chapter6/sql-app

Building bike ride analytic applications 205

In SQL code, we set the interval to be 1 minute so as to see the results for the
RENTAL_COUNT in-application stream quickly. In a typical application, the interval
would probably be longer than 1 minute. Please note that AWS recommends that
windowed intervals do not exceed 1 hour due to the nature of underlying storage for
in-application streams (result tables). Since we need to track our stations continuously,
how do we work around this limit? We will send the output of our KDA application to
Firehose and persist the results in S3 for more durable storage. In a real-world application,
we could keep running totals in the database and send KDA windowed operation results
to update that database:

Figure 6.15 – KDA analytics in action, producing aggregation

To send data from our RENTAL_COUNT in-application stream to S3, click on the
Connect to a destination button. When prompted for the Firehose delivery stream,
select the BikeAnalyticsOutput delivery stream created by the CDK application,
which is configured to send data to the S3 bucket. For in-application streams, select
RENTAL_COUNT and then select CSV as the output format. Click Save and then
Continue.

Building a KDA Flink application
In the previous section, we created a SQL application using the AWS console. In this
section, we will set up the Flink KDA application in a repeatable manner using AWS
CDK. Before we start, make sure that you have completed the Setting up a producer
application section.

206 Kinesis Data Analytics

Note
If you haven't already pulled the source code from GitHub, please go ahead and
do that now.

CDK: https://github.com/PacktPublishing/Streaming-
Data-Solutions-with-Amazon-Kinesis/tree/main/
chapter6/flink-cdk.

Flink code: https://github.com/PacktPublishing/
Streaming-Data-Solutions-with-Amazon-Kinesis/tree/
main/chapter6/flink-app.

We will primarily use code from the CDK section. Flink code contains the actual Java
application code that uses the Flink framework to count a number of bikes that have been
rented or returned, just like we did in the SQL application.

We included the JAR file in the distribution, and this is available in the flink-app/
jar directory. If you want to build your JAR file, this is how you would do it. Open up
your Java IDE and import the project from the flink-app directory. If you don't use the
Java IDE, navigate to the flink-app directory using the command prompt or terminal.
Execute the Maven package using the following command:

mvn package

Once mvn package completes, it will create a JAR file with our application. We are
going to use that JAR file in the next section.

Copying a JAR file to an S3 bucket
Navigate to the directory where the JAR file is and copy it into the S3 bucket you
created while setting up the producer application. This is a bucket that we defined as
a kdasrcbucket parameter. You can also find the name of the S3 bucket from the
CloudFormation console by navigating to the flink-cdk stack and then, under the
Outputs tab, the S3 bucket name will be listed under the KDASourceBucketName key.
In the following example, that bucket name is kda-upload-tmak; your bucket name
will be different:

--parameters kdasrcbucketname=kda-upload-tmak

To upload a JAR file to an S3 bucket, you can use AWS Console and copy or use the
AWS CLI:

aws s3 cp kda-flink-app-1.0-SNAPSHOOT.jar s3://{bucket-name}

https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis/tree/main/chapter6/flink-cdk
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis/tree/main/chapter6/flink-cdk
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis/tree/main/chapter6/flink-cdk
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis/tree/main/chapter6/flink-app
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis/tree/main/chapter6/flink-app
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis/tree/main/chapter6/flink-app

Building bike ride analytic applications 207

Deploying a Flink app
We are now ready to deploy our Flink application using CDK. We will use nested stacks,
which will show you how to set up your AWS Cloud infrastructure orchestration and
deployment in a modular manner to achieve reuse and repeatability. We will use two
CDK stacks; under the flink-cdk directory, you should see two additional directories:
main_cdk and kda_app. Those two directories hold our stacks. Under main_cdk, there
is the main stack, the main_cdk_stack.py Python file, which will create IAM roles and
permissions, as well as log groups and streams. We created Flink application properties in
the main stack so that we can show how to pass arguments to the KDA App stack. This, in
turn, would make the KDA App stack reusable for any other KDA Flink application:

Figure 6.16 – CDK nested stacks for the flexible organization of deployments

Tip
Treat stacks as you would treat microservices or object-oriented code. Make
them the smallest unit of deployment to maximize reuse.

To deploy our Flink application, let's first deploy the stack:

1.	 Replace kda-upload-tmak with the name of the S3 bucket where you uploaded
the JAR file:

cdk deploy –parameters bucketNameParm=kda-upload-tmak

2.	 Once the deployment is finished, let's navigate the AWS Console and examine the
newly created Flink application:

Figure 6.17 – Flink KDA application

208 Kinesis Data Analytics

3.	 Click on the application to bring up the details. Under IAM Role, you should see
flink-cdk-kdaIAMRoleXXXXXX. This is the IAM role that KDA will assume
as it makes a call to other AWS resources, such as reading from a Kinesis stream or
sinking to a Firehose stream. Click on Role, and this will bring up IAM Summary,
and then expand the kdaIAMRoleDefaultPolicyXXXX policy. You'll notice
that policy only grants permissions required by our Flink application.

4.	 Under Properties, you will see two groups: CustomerConfigProperties and
OutputConfigProperties. Our Flink application code uses Key-value pairs
defined under these two groups to read from and sink to specific resources. We have
externalized these values to minimize changes to our Flink code. In case we need
to read from a different stream to the one defined as the INPUT_STREAM key, we
would simply change the value of that key and would not need to recompile and
redeploy our Flink application.

5.	 Start the KDA Flink application by clicking the Run button and start the producer
application. Navigate to the Flink dashboard to see details regarding running jobs.

The following screenshot is an example of what you should be able to see in your own
Flink dashboard:

Figure 6.18 – Flink dashboard

The Flink dashboard is a useful tool for monitoring the health of our KDA
applications. The Flink dashboard is accessible through the KDA console or by invoking
an API to obtain the URL. The dashboard allows us to see task managers as well as see the
state (running, completed, canceled, and failed) of our jobs.

Building bike ride analytic applications 209

Securing KDA applications
Since KDA is a managed service, one of the advantages is that the shared responsibility
model for KDA means that AWS assumes a greater responsibility for security. When it
comes to encryption, KDA takes care of encryption at rest and in transit. Our application's
code is encrypted at rest. KDA, by default, encrypts the storage of running applications,
both ephemeral and durable storage, including our application code. We can't use our
encryption keys; KDA uses its keys to encrypt the data. Internal in-transit data is also
encrypted, including communication with other Kinesis services. KDA will not manage
in-transit encryption between KDA and our Kafka cluster or other non-Kinesis sources.

As is the case with all other AWS services, KDA uses the IAM service to manage
permissions. When we created our KDA application, we had to create an IAM role for
KDA to assume. That IAM role has IAM policies that specify resources and permissions
for those resources. The IAM role name is in the following format: kinesis-
analytics-{name-of-kda-application}-{region}. We need to make sure
that the IAM role we assign to KDA only has permissions to perform the actions required
by the KDA application. For example, our KDA application will need to read data from
the Kinesis ProducerStream data stream and output/sink data to the Firehose delivery
stream, BikeAnalyticsOutput. IAM policy for the KDA IAM role will then specify
these two as resources so that our KDA application doesn't mistakenly read/write from/to
incorrect streams.

We can tighten security further by making our KDA for Flink application be VPC bound.
Let's assume that the KDA application needs access to the database residing in our VPC.
Commonly, databases are set up so that they are in the private subnet of our VPC so that
they aren't exposed to the internet. KDA applications are unable to access our database
unless we establish connectivity, and making the database accessible to the internet is
a terrible idea. In this case, we can configure KDA VPC connectivity, which will allow us
to specify a VPC and a private subnet that we want KDA to have access to. KDA will then
deploy an elastic network interface into this subnet to communicate with other resources
like a database. ENIs are deployed and visible once we start our KDA Flink application.
We can further control access to the database by having KDA ENIs belong to the security
group, kda-sec-group. Then, in the case of the database security group, we allow traffic
originating from kda-sec-group.

VPC connectivity for KDA
VPC connectivity is only available for KDA Flink applications. It is not an
option for KDA SQL applications.

210 Kinesis Data Analytics

Monitoring KDA applications
CloudWatch is a service used to monitor applications in AWS. In addition to CloudWatch,
we can also use the Flink dashboard when we use KDA for Flink CloudWatch groups
metrics in what's known as a namespace, and for KDA, that namespace is AWS/
KinesisAnalytics. When it comes to KDA Flink applications, we can choose
to have KDA emit metrics at the Application, Task, or Operator level. The two most
interesting metrics are KPU, the amount of KPUs our application is consuming, and
MillisBehindLatest, which tells us how backed up we are (the difference between
the timestamp of the record we are processing and the record in the stream under the
LATEST position).

For in-depth guidance on how to use CloudWatch with KDA for Flink, please refer
to the Enhanced monitoring and automatic scaling for Apache Flink blog in the Further
reading section:

Figure 6.19 – CloudWatch metrics dashboard

Summary 211

Please note that we can also emit our custom metrics into CloudWatch. For example,
instead of sending bike station summary data every minute to S3, we could deliver that
data to AWS Lambda and then emit it as a customer metric. Using this approach is
a convenient way to have our users use data and create their CloudWatch dashboards
based on data we emit.

Summary
In this chapter, we learned about the core concepts and capabilities, as well as approaches,
regarding common deployment patterns, monitoring and scaling, and the KDA
application's security. We built real-time streaming applications using both SQL and
Apache Flink.

KDA has many applications, but it's most commonly used for clickstream and big data
analytics. When used with other AWS services, it enables us to build sophisticated and
scalable solutions. It is easy for those of you with a SQL skillset to translate those and
create your KDA SQL applications. On the other hand, if you are coming from a Java or
Scala background, using KDA for Flink should be a breeze.

212 Kinesis Data Analytics

In the next chapter, you will learn to consume and process stream video with Kinesis
Video Streams (KVS). KVS allows us to build applications that stream video from
connected devices to use it for other processing, such as machine learning (ML) or
simply for the purposes of playback. As is the case with other Kinesis services, KVS
is a managed service, and it scales the underlying infrastructure for us, which enables
us to focus on processing video streams.

Further reading
•	 KDA SQL Developer Guide:

•	 https://docs.aws.amazon.com/kinesisanalytics/latest/dev/
what-is.html

•	 KDA Apache Flink Developer Guide:

•	 https://docs.aws.amazon.com/kinesisanalytics/latest/java/
what-is.html

Blogs
•	 Extract Transform Load pipeline that also uses KDA:

•	 https://aws.amazon.com/blogs/big-data/unified-serverless-
streaming-etl-architecture-with-amazon-kinesis-data-
analytics/

•	 Deep dive into setting up your autoscaling for KDA Flink: https://aws.
amazon.com/blogs/big-data/enhanced-monitoring-and-
automatic-scaling-for-apache-flink/

•	 Similar to the use case we covered in this chapter; NYC Taxi rides:

•	 https://aws.amazon.com/blogs/big-data/streaming-etl-with-
apache-flink-and-amazon-kinesis-data-analytics/

Workshops
•	 Flink KDA workshop:

•	 https://streaming-analytics.workshop.aws/flink-on-kda/

•	 SQL KDA workshop:

•	 https://real-time-streaming-with-kinesis.workshop.aws/
kda-sql-lab3.html

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/what-is.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/what-is.html
https://docs.aws.amazon.com/kinesisanalytics/latest/java/what-is.html
https://docs.aws.amazon.com/kinesisanalytics/latest/java/what-is.html
https://aws.amazon.com/blogs/big-data/unified-serverless-streaming-etl-architecture-with-amazon-kinesis-data-analytics/
https://aws.amazon.com/blogs/big-data/unified-serverless-streaming-etl-architecture-with-amazon-kinesis-data-analytics/
https://aws.amazon.com/blogs/big-data/unified-serverless-streaming-etl-architecture-with-amazon-kinesis-data-analytics/
https://aws.amazon.com/blogs/big-data/enhanced-monitoring-and-automatic-scaling-for-apache-flink/
https://aws.amazon.com/blogs/big-data/enhanced-monitoring-and-automatic-scaling-for-apache-flink/
https://aws.amazon.com/blogs/big-data/enhanced-monitoring-and-automatic-scaling-for-apache-flink/
https://aws.amazon.com/blogs/big-data/streaming-etl-with-apache-flink-and-amazon-kinesis-data-analytics/
https://aws.amazon.com/blogs/big-data/streaming-etl-with-apache-flink-and-amazon-kinesis-data-analytics/
https://streaming-analytics.workshop.aws/flink-on-kda/
https://real-time-streaming-with-kinesis.workshop.aws/kda-sql-lab3.html
https://real-time-streaming-with-kinesis.workshop.aws/kda-sql-lab3.html

7
Amazon Kinesis

Video Streams
Kinesis Video Streams (KVS) is different than the other Kinesis services you've learned
about in the previous chapters. Whereas those services primarily processed independent
records in JSON or CSV, KVS is designed to handle time-encoded data. When an
application needs to support real-time two-way communications or support the ingestion
of video from devices, KVS is the best choice.

Amazon KVS is a managed, secure, durable, low-latency service that can scale to support
video ingestion from millions of devices for processing, including analytics and machine
learning.

Throughout this chapter, we will refer to the real-time functionality as KVS-WebRTC
and the ingestion for further processing or storage as KVS. Together, these two capabilities
enable you to build systems that support IoT devices and applications for connected
homes, enterprise security, connected vehicles, and manufacturing. You want to use KVS
when you need computer vision across multiple cameras, and KVS-WebRTC if you want
to allow users to access a remote camera.

In this chapter, you will learn about the concepts and capabilities, monitoring and scaling,
security, and deployment patterns for real-time communication and data ingestion. We
will step through a data streaming solution that will set up real-time access and ingest
video data for the SmartCity data system.

214 Amazon Kinesis Video Streams

The following topics will be covered in this chapter:

•	 Understanding video fundamentals

•	 Discovering Amazon KVS WebRTC

•	 Discovering KVS

•	 Building video-enabled applications with KVS

Technical requirements
There are a few things that you will need to set up and configure before we start exploring
KVS. These are mentioned in the following sections.

AWS account setup
You will need to get an AWS account to run the examples included in this chapter.
If you do not have an account already, you can go to https://aws.amazon.com/
getting-started/ to create an account. AWS accounts offer a Free Tier
(https://aws.amazon.com/free).

The AWS Free Tier allows you to use many AWS services for free within specified usage
limits. Some of the services examples in this chapter are outside of the AWS Free Tier
and will incur some charges for service usage.

Using a local development environment
You will need a working AWS CLI v2 environment. You can install the AWS CLI by
downloading and running the installer (https://aws.amazon.com/cli/) for
your environment's operating system. Some of the examples will require that you install
the jq command-line JSON processor (https://stedolan.github.io/jq/).

You will also need Android Studio for editing and compiling the sample Android
application. You can install it by downloading and running the installer (https://
developer.android.com/studio/index.html). The VLC media player
(https://www.videolan.org/) will also be used to display video.

Docker will be used to help stream video data into KVS. If you do not already have
Docker installed, you can go to https://www.docker.com/products/
container-runtime#/download.

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free
https://aws.amazon.com/cli/
https://stedolan.github.io/jq/
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://www.videolan.org/
https://www.docker.com/products/container-runtime#/download
https://www.docker.com/products/container-runtime#/download

Understanding video fundamentals 215

Code examples
The code examples in this book are available on GitHub at https://github.com/
PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis.
You will need a Git client to access them (https://git-scm.com/).

Now that the technical requirements are out of the way, let's get started by getting a deep
understanding of video fundamentals.

Understanding video fundamentals
Even though KVS can handle any form of time-encoded data, its primary use case is for
video and audio media. To better understand how to use KVS, we need to cover the basics
of video. The two main attributes of a video are its resolution and its bitrate.

The resolution is the pixel size of the video, normally presented as horizontal x vertical
– for example, 1,920 x 1,080 – and its bitrate is the amount of data that's encoded in the
video per second, measured in Mbps. In general, the higher the bitrate and the higher the
resolution, the higher the quality of the video.

The following diagram shows a high-level overview of how video is captured, compressed
using a codec, put into a container, decompressed, and then played:

Figure 7.1 – Overview of codecs and containers

Audio and video technology is incredibly complicated, so we'll generally stay at a high
level and focus on the aspects that are important to KVS and KVS-WebRTC. First, we
will cover containers, and then we will cover codecs since they are how the video data
is structured.

https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis
https://git-scm.com/

216 Amazon Kinesis Video Streams

Containers
A container is a file format that contains multiple data streams and metadata in a single
file. It contains the video stream, the audio stream, and metadata, including bitrate,
resolution, and codecs. MKV and MP4 are the two containers relevant to KVS. Let's take
a further look at each of these containers:

•	 MKV: The Matroska Multimedia Container (MKV) is an open standard that
is designed to contain an unlimited number of audio and video tracks. Its file
extension is .mkv. The KVS Producer and Consumer libraries send or receive
data in MKV format. A fragment in KVS represents a segment of video and it maps
directly to the MKV cluster.

•	 MP4: MP4 container (MPEG-4 Part 14) is an extension of the QuickTime file
format, is the most commonly used container, and supports an unlimited number
of audio and video tracks. Its file extension is .mp4. MP4 is only supported via the
KVS GetClip API call.

Now that we've reviewed the containers that KVS works with, let's dive into how the data
that is stored in them is encoded.

Codecs
A codec is a standard that describes how to compress and decompress audio and video
files. We will be concerned with inter-frame compression codecs, which use multiple
frames in a sequence to compress the video. They are based on keyframes, a full frame
of the video, and subsequent frames that contain only information that has changed.
The goal is to create the highest quality video that plays back smoothly, and there are
trade-offs based on computational requirements, file size, and network performance.

There is a large number of codecs for audio and video files, but with regards to KVS and
KVS WebRTC, we will only concern ourselves with a few important ones. For video, we
will focus on H.264 and VP8, while for audio, we will focus on OPUS, G.711, and AAC:

•	 H.264/Advanced Video Coding (AVC): H.264 is the most widely supported video
codec and has excellent performance, but it is encumbered by patents.

H.265/High Efficiency Video Coding (HEVC), the successor to H.264, has
a compression rate that is twice as good that reduces the file size by 50% for the
same quality; however, it requires significantly more processing power to encode
and decode and has royalties associated with it.

Discovering Amazon Kinesis video streams WebRTC 217

•	 VP8: VP8 is an open and royalty-free video codec that is mainly used with
WebRTC. It has a successor, VP9, that is comparable to H.265.

•	 Opus: Opus is an open audio codec and is used with WebRTC.

•	 G.711: G.711 is a widely supported lowest common denominator codec. It's also
unfortunately very inefficient, so it should be used as a last resort.

•	 Advanced Audio Coding (AAC): AAC is the successor to MP3 and provides
higher quality sound at the same bitrate. It is extremely widely supported; however,
it is not part of the WebRTC standard.

Now that we've covered the basics of video containers and codecs, let's jump into
peer-to-peer streaming with WebRTC.

Discovering Amazon Kinesis video streams
WebRTC
Kinesis video streams with WebRTC (KVS WebRTC) is a fully managed service that
is a standards-based implementation of the web real-time communication (WebRTC)
standard. KVS WebRTC provides two-way low-latency live media streaming, enabling the
development of video and voice applications.

It is not like any of the streaming technologies discussed in this book. Instead of using
producers to send messages to a stream and then using consumers to retrieve them, it
creates a peer-to-peer connection that allows you to directly send data from one system
to another. This allows applications to get sub-second video playback end to end.

KVS WebRTC provides four core capabilities:

1.	 Signaling, which allows clients to exchange connection metadata.

2.	 Peer-to-peer connections are then established using that connection metadata.

3.	 Media can then be streamed between the clients over the low-latency peer-to-peer
connection.

4.	 End-to-end encryption ensures that all of this is done in a secure manner.

The details of how all this happens will be discussed further in the next section.

218 Amazon Kinesis Video Streams

Core concepts and connection patterns
The WebRTC specification defines lower-level primitives to access media devices
(cameras and microphones), to create the direct peering connection between peers,
and to send data over a UDP-based data channel. It doesn't define the signaling channel,
which is necessary for peers to connect and learn about the network capabilities of each
peer. These network capabilities are used to establish the direct peer-to-peer connection.

WebRTC takes advantage of the IETF protocols – Interactive Connectivity
Establishment (ICE), Traversal Using Relays around NAT (TURN), and Session
Traversal Utilities for NAT (STUN) – to understand the client's network capabilities
and establish the connection. Since this is a peer-to-peer streaming mechanism, AWS
only manages the signaling channels, TURN services, and STUN services. In this section,
we will go over the core concepts necessary to understand how WebRTC connections are
created and how to use the open source AWS WebRTC SDK in JavaScript to stream video.

WebRTC is strict about the media formats it supports, which can make interoperability
difficult. It supports H264 and VP8 for video, and Opus and G.711 for audio, which can
cause problems when you're integrating WebRTC with HLS since HLS doesn't support
Opus.

Now, let's review how what these components are and how they interact.

Signaling channel
Signaling is the fundamental resource in KVS WebRTC and is what enables applications
to establish a peer-to-peer connection. It facilitates a many-to-few model, where one
master peer can stream video to up to 10 viewer peers. It is the only AWS resource that
needs to be created to enable WebRTC communication, since each signal channel receives
its own AWS Resource Name (ARN).

The master peer usually maintains a persistent secure WebSocket connection to the
signaling channel. When another client wants to connect to the master, it connects to the
signaling channel and sends a Session Description Protocol (SDP) offer.

The signaling channel is essential to establishing a peer-to-peer connection because it
allows the peers to communicate all the information that they need to connect to each
other. Signaling channels are Amazon resources that run in a specific region.

Discovering Amazon Kinesis video streams WebRTC 219

To achieve sub-second latency between clients, it is important to create the signaling
channel in a region as close to the users as possible. This is because each signaling channel
has a corresponding TURN server in the same region. The TURN server relays packets
when a direct peer-to-peer connection between clients cannot be established. The farther
a client is from the region, the more latency the client will experience.

Session Traversal Utilities for NAT (STUN)
STUN is a protocol defined in IETF RFC5289 that is used to determine the public IP
address and port of a client assigned by NAT. The STUN server returns information about
the connectivity of the client. STUN works by having the client send multiple messages
and responding with the public IP addresses and ports used by the client. This allows the
client to discover what IP address and port NAT is assigning to it. This is a key way to
generate ICE candidates.

Traversal Using Relays around NAT (TURN)
TURN is a protocol defined in IETF RFC5766 that allows clients to communicate with
each other when NAT prevents the peers from communicating directly. When they cannot
establish a peer-to-peer connection, each client connects to the TURN server, and it relays
the packets between the peers. Multiple clients can connect to the same relay address.
The TURN server is a fallback mechanism so that your application will still work, even
when a client's network makes peer-to-peer streaming unviable.

Session Description Protocol (SDP)
SDP is a data format defined in RFC4566 that is used to enable two peers to communicate
effectively. It consists of an SDP offer and an SDP answer. These both contain metadata
that describes the multimedia content of the connection that the data passed over, so that
the connection can be understood by the peer.

It includes information about the resolution, formats, codecs, and encryption. It also
includes connection information as a set of ICE candidates that the peer can use to
attempt to establish a connection.

220 Amazon Kinesis Video Streams

SDP users the offer/answer model:

•	 SDP offer: This is the message that's sent by a client and initiates the peer-to-peer
session. It includes media metadata and ICE candidates.

•	 SDP answer: This is the message that's sent by the peer as a response to the SDP
offer. It also includes media metadata and ICE candidates.

Interactive Connectivity Establishment (ICE)
ICE is a protocol defined in IETF RFC5245 that facilitates a connection between
two clients that are unaware of their own topologies and may be behind one or more
NAT gateways. ICE uses STUN, TURN, and the local interfaces to create a set of ICE
candidates.

ICE candidate
An ICE candidate is a potential transport address; that is, it is an IP address and port pair.
It can include a directly attached network device, a translated address on the public side
of a NAT gateway, and the transport address of the TURN server. The following diagram
shows the core components necessary to establish a WebRTC connection:

Figure 7.2 – WebRTC architecture and workflow

Discovering Amazon Kinesis video streams WebRTC 221

Each number in the preceding diagram corresponds to one of the following steps:

1.	 Each client sends multiple requests to the STUN server and creates a list of ICE
candidates (IP/port pairs).

2.	 The clients then connect to the TURN server and get an ICE candidate. This can be
used if the clients are unable to establish a direct connection.

3.	 Client A establishes a connection to the signaling server.

4.	 Client B connects to the channel to get the SDP offer, and then Client A responds
with the SDP answer.

5.	 Each client now iterates through the ICE candidates, sending STUN requests to
each other and keeping track of the successful results. Once they've evaluated all
the ICE candidates, they establish a peer-to-peer connection and can stream data.

6.	 In the case that the clients are unable to successfully create a peer-to-peer
connection, they fall back to the TURN relay server's ICE candidate, which was
acquired in Step 2.

Now that we understand the core concepts of how a peer-to-peer connection is
established with WebRTC, let's dive deeper into actually creating a stream and looking
at the API calls.

Network Address Translation (NAT)
There are a limited number IPv4 addresses, 232 or 4,294,967,296 to be exact,
and while that is a big number, it is not sufficient for the number of devices
and networks in the world. IP addresses are divided into public IPs and private
IPs. A private IP address will look like 10.*.*.*, 172.16.*.* -
172.31.*.*, or 192.168.*.* . These addresses are not routable on the
internet and use Network Address Translation (NAT) to communicate over
the internet to public IPs.

When the router receives the packet, it rewrites the from address to the router's
public IP and assigns it a port. The NAT router keeps track of the port number
in a NAT forwarding table, and when the server responds, it will forward the
packet to the appropriate private IP address. Eventually, when IPv6 is fully
deployed with its 2128 addresses, it will make NAT obsolete as every device will
be able to have its own routable address.

222 Amazon Kinesis Video Streams

Creating a signaling channel
Let's get started by creating a new signaling channel. The console is displayed in the
following screenshot. When creating a signaling channel, the only required parameter is
the channel name, and it must be unique for the account and region. You can optionally
change the default amount of time that the signaling channel will retain undelivered
messages, and this can range from 4 seconds to 2 minutes. You should always tag your
resources so that you can keep track of your workloads with regards to resource usage
and cost:

Figure 7.3 – Creating a signaling channel

Discovering Amazon Kinesis video streams WebRTC 223

Once you have entered the appropriate information, all that's left to do is click Create
signaling channel. The console will then redirect you to that signaling channel's page.
On this page, you can quickly test the channel by clicking Webcam demo; it will connect
to the stream from your browser. You can also connect to the stream as a Viewer by
clicking on Media playback viewer, as shown in the following screenshot:

Figure 7.4 – Viewing content of the WebRTC signaling channel in the AWS console

224 Amazon Kinesis Video Streams

There is a soft limit of 1,000 signaling channels per account per region, and it is important
to remember that you are billed based on the number of signaling channels that are active
per month. A channel is considered active if a device or application connects to it. You are
also charged per signaling message and for TURN streaming minutes.

A signaling channel can also be created using the AWS CLI by specifying its name:

aws kinesisvideo create-signaling-channel --channel-name
"myChannel"

Now that we've created the channel, let's connect to it and send data.

Establishing a connection
In this section, you will learn how to create a WebRTC connection and receive data
using the Amazon KVS WebRTC JavaScript SDK, but first, we'll connect to our signaling
channel as both a master and viewer peer using the WebRTC Test Page. Then, we'll go
over the SDKS before creating a JavaScript client to connect to the stream going over the
individual API calls.

AWS KVS WebRTC Test Page
AWS provides a WebRTC test page, as shown in the following screenshot, that fully
exercises KVS WebRTC's functionality. It allows you to connect to the signaling channel
as a master or a viewer peer and send audio, data, and video at two different resolutions.
It also allows you to force the client through the TURN server or use the STUN/TURN
setup we created earlier.

It can be found at https://awslabs.github.io/amazon-kinesis-video-
streams-webrtc-sdk-js/examples/index.html:

https://awslabs.github.io/amazon-kinesis-video-streams-webrtc-sdk-js/examples/index.html
https://awslabs.github.io/amazon-kinesis-video-streams-webrtc-sdk-js/examples/index.html

Discovering Amazon Kinesis video streams WebRTC 225

Figure 7.5 – KVS WebRTC Test Page

226 Amazon Kinesis Video Streams

You can also run it locally by running the following commands and then visiting the site
in your web browser at http://localhost:3001:

git clone https://github.com/awslabs/amazon-kinesis-video-
streams-webrtc-sdk-js.git

cd amazon-kinesis-video-streams-webrtc-sdk-js/

npm install

npm run develop

Now, let's see how we can use the SDKs and API to create our own viewer.

WebRTC SDKs
AWS provides client WebRTC SDKs for Android, iOS, and JavaScript to make it easy to
stream live audio and video from one platform to another. These SDKs are different than
the traditional AWS SDK and need to be installed separately.

In addition to the client SDKs, AWS provides an open source C SDK for embedded
devices, which enables manufacturers to easily integrate audio and video access to their
devices using the same standard interfaces found in the client SDKs. It is designed to
run on limited hardware with a memory footprint of about 4 MB and is designed for
fast connectivity by supporting the Trickle ICE protocol, a modification of the ICE
protocol described earlier, that connects and starts sending when the first valid candidate
is discovered. It supports H.264 and VP8 for video codecs and Opus and G.711 for audio
codecs.

Using the JavaScript WebRTC SDK
In this example, we will use the KVS JavaScript WebRTC SDK to build a web that
connects as a view to the WebRTC stream:

1.	 First, create an HTML file called viewer.html and include the AWS JavaScript
SDK and the KVS JavaScript WebRTC SDK inside it:

<script src="https://sdk.amazonaws.com/js/aws-sdk-
2.585.0.min.js"></script>

<script src="https://unpkg.com/amazon-kinesis-video-
streams-webrtc/dist/kvs-webrtc.min.js"></script>

2.	 Then, create a Kinesis Video client with the values from a config:

const kvs = new AWS.KinesisVideo({

 region: config.region,

 accessKeyId: config.credentials.accessKeyId,

http://localhost:3001

Discovering Amazon Kinesis video streams WebRTC 227

 secretAccessKey: config.credentials.secretAccessKey,

});

3.	 We can use the client to get the signaling channel's endpoints (WSS and HTTP),
where we specify that Role is KVSWebRTC.Role.VIEWER and that the signaling
channels are ARN. The getSignalingChannelEndpoint method will return
both HTTPS and WSS endpoints:

const endpoint = await kvs.getSignalingChannelEndpoint({

 ChannelARN: config.channelARN,

 SingleMasterChannelEndpointConfiguration: {

 Protocols: ['WSS', 'HTTPS'],

 Role: KVSWebRTC.Role.VIEWER,

 }}).promise();

4.	 Next, we need to get the ICE server configurations. GetIceServerConfig can
be used to get the TURN servers, but to simplify this example, we'll hard code the
STUN server for our region. This is done to instantiate RTCPeerConnection,
which will be used for WebRTC communication between the two peers:

const peerConn = new RTCPeerConnection([

{ urls:

 'stun:stun.kinesisvideo.us-east-1.amazonaws.com:443'
}]);

5.	 The last client we need to create is the client that will actually communicate with the
KVS signaling channel:

let client = new KVSWebRTC.SignalingClient(config);

6.	 The client has event listeners that need to be set. The first one is executed when the
signal channel is open and needs to send an SDP offer to the master. The second is
for when the SDP answer is received, while the last is for when ICE candidates are
sent from the master:

client.on('open', async() => {

 localStream = await navigator.mediaDevices.
getUserMedia(

 {video:{ width: { ideal: 640 },

 height: { ideal: 480 } }, audio:true});

228 Amazon Kinesis Video Streams

 localStream.getTracks().forEach(track =>

 peerConnection.addTrack(track, localStream));

 const offer = await peerConnection.createOffer({

 offerToReceiveAudio: true, offerToReceiveVideo:
true})

 await peerConnection.setLocalDescription(offer);

 signalClient.sendSdpOffer(peerConnection.
localDescription);

});

signalClient.on('sdpAnswer', async answer => {

 await peerConnection.setRemoteDescription(answer)

});

signalClient.on('iceCandidate', candidate => {

 peerConnection.addIceCandidate(candidate);

})

7.	 The peer connection will also need an event listener for when tracks are added so
that it can play the media:

conn.addEventListener('track', event => {

 video.srcObject= event.streams[0]);

});

8.	 Open the client:

signalingClient.open();

This starts the connection process. When the peer-to-peer connection is established,
it will fire the event to play the media stream we set in the preceding callback.

Now that we've learned how to do real-time two-way streaming between devices with
KVS WebRTC, let's learn how those same devices can use KVS to ingest media into the
AWS cloud for further processing and storage.

Discovering Amazon KVS 229

Discovering Amazon KVS
KVS is a fully managed service that helps devices stream live video data into AWS for
further processing and storage. It is durable and time indexed both when the media is
captured by the camera and when it is received on the server. The AWS KVS console
can play back the media stream if it's encoded in H.264 format. It can scale to handle
millions of devices and it integrates with AWS machine learning resources such as
Amazon Rekognition.

There are costs for data ingestion, storage, and consumption. Fortunately, the storage
cost is the same cost as S3, so there is no penalty for using Kinesis for long-term storage.
It also facilitates video workloads by allowing you to access data through time-based
queries. The API also makes it easy to generate HLS streams, Dash streams, and MP4
clips from data in the stream.

KVS is finding use in the surveillance space to store information for retrieval so that it
can be automatically analyzed by machine learning algorithms. When latency matters,
it is better to use WebRTC as KVS can have seconds of lag. It does not do any transcoding
– that is, converting from one encoding to another – but it does do transmuxing, which
is repackaging from one container format to another without altering the encoding of the
contents, to create HLS streams.

Now, let's start reviewing the key components of KVS.

Key components of KVS
As with the other Kinesis services, there are three main components:

•	 Producers

•	 Consumers

•	 Streams

These components, however, are quite different in KVS. Time-encoded data, such as video,
is much more difficult to work with since it is large and produced at a fast rate. The best
way to interact with KVS is through the SDK and CLI; writing custom code that interfaces
with the raw API is only required for truly unique use cases.

The fundamental construct in KVS for messages is the fragment, which represents a
segment of video or other time-delimited data. It is a self-contained sequence of frames;
that is, no frame in a fragment should have a dependency on a frame in another fragment.

230 Amazon Kinesis Video Streams

Fragments must have a timecode span of less than 10 seconds; they cannot contain more
than 50 MB of data, they must contain at least one frame for each track, and they cannot
have more than three tracks. Kinesis takes the following steps when a fragment arrives:

1.	 Each fragment is automatically assigned a unique number in ascending order.

2.	 The fragment is joined together with a copy of the media metadata and the Kinesis
metadata, which includes the fragment number, the server-side timestamp, and the
producer-side timestamp.

3.	 The chunks are indexed, and the stream is quarriable by the fragment number, the
producer timestamp, and the server timestamp.

The process of ingestion and retrieval is shown in the following diagram:

Figure 7.6 – Producing fragments and consuming chunks

Due to the complexity of the PutMedia and GetMedia APIs, we will not be using them
directly; we'll be using various SDKs that wrap them.

Stream
The stream is the fundamental AWS resource that ingests, stores, and serves time-encoded
data. Each stream can support multiple consumers, but unlike other Kinesis services, each
stream in general has only one producer. The maximum data retention period is 10 years.

Discovering Amazon KVS 231

Kinesis producer
The PutMedia API accepts data in MKV container format and can be used to send data
in real time or in batches. Since KVS doesn't do transcoding, it will only return what you
put in. To take advantage of the higher-level APIs that support playback, the video needs
to be encoded in H.264. The API can read media data at a rate of 12.5 MB per second or
100 Mbps.

There is an entire ecosystem of SDKs that enable developers to build applications at the
right level of abstraction and get the performance they require. The producer SDK layers
are shown in the following diagram:

Figure 7.7 – Producer SDK

We'll now quickly review the different SDKs. Later, we will use the Android producer to
send data to KVS from an Android phone.

Low-level SDKs
The base of the SDKs is written in a platform-independent manner using the C
programming language. This low-level API focuses on state management, buffer
management, network management, and video chunking. This is a high-performance,
low-level library designed for hardware manufactures to develop custom firmware. It is
wrapped and presented in an object-oriented wrapper to provide access in C++ and Java.

232 Amazon Kinesis Video Streams

Platform SDK
These lower-level functionalities are then packaged into the GStreamer plugin, which
allows you to use Gstreamer's managed media pipeline. It makes it easy to capture
video from a webcam or IoT camera and send it to KVS. The KVS Producer SDK uses
a GStreamer sink element, kvssink, to send the data to KVS. The Android producer
library provides a Java interface that connects to the camera and sends the data to KVS.

Docker images
AWS provides a preconfigured Docker image that is already configured with the
GStreamer pipeline to help you get up and running quickly. The Docker image is a private
ECR registry, and the instructions for accessing and executing it are located here:

https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/
examples-gstreamer-plugin.html.

Now that we've covered how data gets into KVS, let's see how we can get it out.

Consuming
There are four main ways to view video in the KVS: GetMedia, MPEG-DASH Streaming
URL, HLS Streaming URL, and GetClip. Each of these will be discussed further. The
KVS Parser Library provides a Java wrapper to the GetMedia API. In this section, we'll
focus on the kinesis-video-archived-media CLI.

The GetClip CLI makes it easy for users to export a video clip for machine learning
purposes, as well as for supporting current business processes. For instance, if you have
a surveillance camera and you need to send a video clip to the police, it only takes a few
keystrokes to retrieve it from the KVS stream.

GetDashStreamingSessionURL and GetHLSStreamingSessionURL generate
URLs that can be used to view the video contents in a web browser or in a media player.
Since they are very similar and differ only in their distribution method, we will only cover
GetDashStreamingSessionURL.

Now, let's see them in action.

GetClip
The GetClip API will download an MP4 file containing the data from the specified
time range. In the following command-line example, you can see that we first call
GetDataEndpoint and specify the stream name and the type of endpoint.

https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/examples-gstreamer-plugin.html
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/examples-gstreamer-plugin.html

Discovering Amazon KVS 233

In this case, we need to provide an api-name parameter value called "GET_CLIP". The
GetClip API requires that the media in the stream be encoded in H.264 or H.265 and that
the data retention for the stream be longer than 0.

The jq utility is used to extract the endpoint URL from the JSON returned by the
get-data-endpoint command. FragmentSelectorType accepts two
timestamps: one for the start of the fragment and one for the end. There is a limit to how
big the MP4 file can be; the clip will only contain the first 100 MB or first 200 fragments
from the starting timestamp:

STREAM_NAME="<STREAM NAME>"

API_NAME="GET_CLIP"

ENDPOINT_JSON=$(aws kinesisvideo get-data-endpoint --stream-
name $STREAM_NAME --api-name $API_NAME)

ENDPOINT=$(jq -r '.DataEndpoint' <<< $ENDPOINT_JSON)

FRAGMENT="FragmentSelectorType=SERVER_TIMESTAMP,TimestampRan
ge={StartTimestamp=2021-01-01T05:58:00,EndTimestamp=2021-01-
01T05:59:00}"

aws kinesis-video-archived-media get-clip --stream-name
$STREAM_NAME --clip-fragment-selector $FRAGMENT --endpoint-url
$ENDPOINT myvideo.mp4

When the get-clip command is executed, it will create a file named myvideo.mp4
that can then be opened in a media player, such as VLC. Next, we'll learn how to open up
the same fragment as a stream.

GetDASHStreamingSessionURL
The GetDASHStreamingSessionURL API creates an authenticated URL that includes
an encrypted session token so that a media player can steam the data from the KVS
stream. Just as with GetClip, we need to get an endpoint. This time, we must specify
api-name as GET_DASH_STREAMING_SESSION_URL. There are three types of
playback mode:

•	 LIVE is used to get the latest fragments as they become available.

•	 LIVE_REPLAY is similar to LIVE, except that it allows you to specify the start
time. For example, you can start the feed from 2 minutes ago and it will be
continually updated.

•	 ON_DEMAND allows you to specify the start and end time for a clip and be able
to scrub forward and backward in the video.

234 Amazon Kinesis Video Streams

In this case, we will select ON_DEMAND and specify a 1-minute interval:

STREAM_NAME="<STREAM NAME>"

API_NAME="GET_DASH_STREAMING_SESSION_URL"

ENDPOINT_JSON=$(aws kinesisvideo get-data-endpoint --stream-
name $STREAM_NAME --api-name $API_NAME)

ENDPOINT=$(jq -r '.DataEndpoint' <<< $ENDPOINT_JSON)

EXPIRES=4000

PLAYBACK_MODE="ON_DEMAND"

FRAGMENT="FragmentSelectorType=SERVER_TIMESTAMP,TimestampRan
ge={StartTimestamp=2021-01-01T05:58:00,EndTimestamp=2021-01-
01T05:59:00}"

aws kinesis-video-archived-media get-dash-streaming-session-
url --stream-name $STREAM_NAME --playback-mode $PLAYBACK_MODE
--expires $EXPIRES --endpoint-url $ENDPOINT --dash-fragment-
selector $FRAGMENT

When get-dash-streaming-session-url is executed, it returns a JSON object
with the following authenticated URL:

{

 "DASHStreamingSessionURL": "https://XXXXXXXXX.
kinesisvideo.us-east-1.amazonaws.com/dash/v1/getDASHManifest.
mpd?SessionToken=CiCSKbC-1CylV2GEK6g8VRdo9HBWNbANgq891D63VAAgsh
IQV1S0hbQmlEQM5nr2NFaMoRoZzVImpdI4gvqY4suc5QeqvIDjahO_40qITiIgV
e9cBGFzcsJnLYobfxnvoAk0YQfzpAhfeXe7N2Ji-2w~"

}

The DASH stream can then be opened in VLC, which will allow the user to use the slider
to scrub the video forward and backward for the given time span.

Now that we've covered how to use the CLI to consume data from the stream, let's create
a stream, a producer, and a consumer.

Creating a stream
When creating a stream, all you need is a unique name for the account and region.
The main option, as shown in the following screenshot, is to change the data retention
configuration from the default of 1 day to up to 10 years:

Discovering Amazon KVS 235

Figure 7.8 – Creating a new video stream

A KVS stream can also be created using the AWS CLI, by specifying its name and
retention period. In this example, they are "myStream" and "24" hours, respectively:

aws kinesisvideo create-stream --stream-name "myStream" --data-
retention-in-hours "24"

Now that the stream has been configured, it's time to start putting data into it.

236 Amazon Kinesis Video Streams

Producing
There are a wide variety of KVS Producer SDKs, as we covered earlier Figure 7.7, and in
this section, we'll focus on the AWS Docker images and the Android SDK. With these
Docker images, we'll show you how to use GStreamer to stream video from a static file
and live video from an IP camera. For Android, we'll go over the API at a high level so
that an Android device can stream data directly to KVS.

Producing with Docker
The AWS Docker container comes preconfigured with GStreamer and the KVS Producer
SDK element as a sink. The AWS Docker images are in a private registry, so you will have
to authenticate the Docker client with the registry, as shown here:

Aws ecr get-login-password –region us-west-2 | docker login –
username AWS –password-stdin 546150905175.dkr.ecr.us-west-2.
amazonaws.com

Once you are logged into Amazon Elastic Container Registry (ECR), the Docker image
can be downloaded into your Docker environment with the following command:

sudo docker pull 546150905175.dkr.ecr.us-west-2.amazonaws.com/
kinesis-video-producer-sdk-cpp-amazon-linux:latest

The following command will launch the Docker image and provide it with access to the
local filesystem path, /Users/$USER/data, at /mnt/data. This can be useful if you
want to stream a large video file from your system:

sudo docker run -v /Users/$USER/data:/mnt/data -it
--network="host" 546150905175.dkr.ecr.us-west-2.amazonaws.com/
kinesis-video-producer-sdk-cpp-amazon-linux /bin/bash

Now that we are logged into the Docker environment, we can do a quick test to make sure
that GStreamer is configured with KVS. This can easily be tested by running GStreamer
with the kvssink command, which should return a list of command options. It will say
"No such element or plugin 'kvssink'' if it has not been configured correctly:

gst-inspect-1.0 kvssink

Now that the Docker image is set up, let's stream a file.

Discovering Amazon KVS 237

Streaming a static file
KVS can accept any time-encoded data, but for us to be able to play the media in the
console, it must be in the MKV container, with track 1 encoded with the H.264 codec;
track 2 should contain AAC encoded audio. To make sure that a sample file that will play,
we'll use the following command to download a test video into our Docker container:

wget https://github.com/Matroska-Org/matroska-test-files/blob/
master/test_files/test2.mkv

GStreamer commands are long and need to be all one line. In this command, we'll send
the test2.mkv file we downloaded to the KVS stream that we created earlier; that is,
myStream. We will also need to set Access Key Id and Secret Access Key to
access KVS and the region where the stream is. It is important to set the region; many
users encounter difficulties because it will automatically create the stream in us-west-2
if one is not provided:

STREAMNAME="myStream"

ACCESSKEY="********************"

SECRETKEY="**"

REGION="us-east-1"

gst-launch-1.0 -v filesrc location="/mnt/mydata/test2.mkv"
! matroskademux name=demux ! queue ! h264parse ! kvssink
name=sink aws-region=$REGION stream-name=$STREAMNAME access-
key=$ACCESSKEY secret-key=$SECRETKEY streaming-type=offline
demux. ! queue ! aacparse ! sink.

While this command is executing, you should see a lot of data scrolling across the
terminal. This is GStreamer sending the data to KVS. If you launch the AWS console and
go to KVS's Media Playback for myStream, you will see the video playing.

Now that we've streamed a static video file, let's see how we can do the same for live video.

238 Amazon Kinesis Video Streams

Live streaming with RTSP
Internet Protocol (IP) cameras are primarily used for surveillance and transmit data
over the network using the Real-Time Streaming Protocol (RTSP). GStreamer makes it
easy to access the camera, usually on a local network, and send the data to KVS. For this
example, you'll need to have an IP camera and get its URI. Notice that this URI contains
a username and password for the stream:

STREAMNAME="kvstream"

ACCESSKEY="********************"

SECRETKEY="**"

REGION="us-east-1"

URI="rtsp://username:pass@192.168.1.22/live"

gst-launch-1.0 rtspsrc location=$URI short-header=TRUE !
rtph264depay ! video/x-h264, format=avc,alignment=au ! kvssink
storage-size=512 aws-region=$REGION stream-name=$STREAMNAME
access-key=$ACCESSKEY secret-key=$SECRETKEY

You should now be able to see the live video feed in the KVS console. Now, let's quickly
look at the Android SDK.

Producing with Android
Building an Android application takes a significant amount of work. Luckily, the
Android Producer Library provides a skeleton that is quite easy to build on. It's available
at https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/
producer-sdk-android.html. There is some configuration required, but we'll focus
on the three main essential actions: creating an instance of KinesisVideoClient,
creating an instance of MediaSource, and starting the stream. Let's get started:

1.	 KinesisVideoClient reads the credentials that have been set in a config file
to connect to AWS Cognito. When the application starts up, it will allow the user
to log in:

KVSlient =. KinesisVideoAndroidClientFactory.
createKinesisVideoClient(

 getActivity(),

 KinesisVideoDemoApp.KINESIS_VIDEO_REGION,

 KinesisVideoDemoApp.getCredentialsProvider());

https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/producer-sdk-android.html
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/producer-sdk-android.html

Discovering Amazon KVS 239

2.	 Now that we have a client, we need to use the KVS
MediaSourceConfiguration to connect to the camera and set the video
encoding, as well as other settings.

3.	 The configuration is then used to create a MediaSource instance:

mediaSource = (AndroidCameraMediaSource)

 KVSClient.createMediaSource(streamName, configuration);

4.	 Once the media source has been created, it can start to capture data and send it to
the stream:

mediaSource.start();

Now that we have data being sent into KVS, we can connect the KVS stream to
Rekognition to detect if any faces in the stream match ones in our collection. Let's see how
that's done.

Integration with Rekognition
Amazon Rekognition is a fully managed service that offers advanced machine learning
models for analyzing images and video. It can be used to detect objects, scenes, text,
inappropriate content, and, in our case, faces. Rekognition can detect faces and provides
highly accurate facial analysis and search capabilities.

In this section, we will assume that Rekognition has already been configured with a
collection of images containing the faces of known vandals, called "faces". Over the
past few months, we have collected images of people who have damaged bike stations,
and now, we want to be alerted if they are detected in any of our KVS streams.

We also had to configure the appropriate IAM role for Rekognition to grant access
to the KVS stream, and then created a Kinesis data stream to receive notifications
of face matches.

240 Amazon Kinesis Video Streams

We will use the AWS CLI to have Rekognition consume the KVS stream by executing
the create-stream-processor command. This passes in the video stream ARN,
the destination data stream ARN, the role ARN for Rekognition to assume, the faces
collection, and its name; that is, kvsprocessor:

aws rekognition create-stream-processor --name kvsprocessor \

 --input '{"KinesisVideoStream":{"Arn":"arn:aws:kinesisvideo
:us-east-1:XXXXXXXXXXXX:stream/demo-stream/1609995253290"}}' \

 --stream-processor-output '{"KinesisDataStream":{"Arn":"arn:aw
s:kinesis:us-east-1:XXXXXXXXXXX5:stream/kvs-ml"}}'\

 --role-arn arn:aws:iam::XXXXXXXXXXXX:role/test-kvs \

 --settings '{"FaceSearch":{"CollectionId":"faces",
"FaceMatchThreshold":85.5}}' \

This stream processor can then be started by calling the start-stream-processor
command and providing its name, which in this case is kvsprocessor:

aws rekognition start-stream-processor --name kvsprocessor

The stream processor can be stopped by executing the stop-stream-processor
command and passing in its name:

aws rekognition stop-stream-processor --name kvsprocessor

At this point, we've created a KVS stream, created producers using Docker and Android
that can stream video data into the stream, and set up Rekognition as a consumer to
detect faces and send the matches to a Kinesis data stream.

Next, let's learn how to take the functionality we've described in the preceding sections
and use it as part of our SmartCity application.

Building video-enabled applications with KVS
Now that we have learned the fundamentals of KVS and KVS-WebRTC, they can be
combined to enable video functionality in the SmartCity use case. The architecture shown
in the following diagram fully exercises the video capabilities of KVS:

Building video-enabled applications with KVS 241

Figure 7.9 – SmartCity monitoring architecture

Throughout this chapter, we have built the component pieces of this architecture. The full
solution is available in this book's GitHub repository. The application provides security
and situational awareness for the users of the SmartCity bike system. It all starts with
a camera pointed at the bike stands and supports the following three capabilities:

•	 Real-time access to the camera via a browser using WebRTC

•	 The ability to pull archival clips based on a timeframe using the AWS CLI to get
a media file and using the CLI and VLC to view a stream

•	 Automatic detection of known vandals via facial recognition using Amazon
Rekognition, and placing the event into Amazon KDS so that it can be integrated
into other systems

By using KVS, we are able to quickly stand up functionality that can scale and securely
ingest, store, and distribute video.

242 Amazon Kinesis Video Streams

Summary
In this chapter, we reviewed the fundamentals of video encoding, how KVS can be used
to build systems to process and store video, and how KVS WebRTC can be used for
low-latency real-time streaming. We went into detail on how to work with the APIs, and
then designed a smart city system that leveraged KVS to add video capabilities to improve
monitoring and the security of the bike stations.

This is the last chapter on the Kinesis set of services. In the next chapter, you will learn
more about how Kinesis can integrate with other Amazon and third-party services.

Further reading
For more information on the topics that were covered in this chapter, you can refer to the
following links:

•	 Amazon KVS API Reference: https://docs.aws.amazon.com/
kinesisvideostreams/latest/dg/API_Reference.html

•	 Amazon KVS Developer Guide: https://docs.aws.amazon.com/
kinesisvideostreams/latest/dg/kinesisvideo-dg.pdf

•	 Android Producer Library:

https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/
producer-sdk-android.html

•	 IETF RFC 5766 (TURN), RFC 5389 (STUN), RFC 5245 (ICE):

https://www.ietf.org/rfc/rfc5766.txt, https://www.ietf.org/
rfc/rfc5389.txt, and https://www.ietf.org/rfc/rfc5245.txt,
respectively

https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/API_Reference.html
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/API_Reference.html
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/kinesisvideo-dg.pdf
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/kinesisvideo-dg.pdf
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/producer-sdk-android.html
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/producer-sdk-android.html
https://www.ietf.org/rfc/rfc5766.txt
https://www.ietf.org/rfc/rfc5389.txt
https://www.ietf.org/rfc/rfc5389.txt
https://www.ietf.org/rfc/rfc5245.txt

Section 3:
Integrations

In this section, you will gain a better understanding of how the Kinesis services can be
integrated with other AWS services and third-party applications.

This section comprises the following chapters:

•	 Chapter 8, Kinesis Integrations

8
Kinesis Integrations

In the previous chapters, we covered the four Kinesis services: Kinesis Data Streams
(KDS), Kinesis Firehose, Kinesis Data Analytics (KDA), and Kinesis Video Streams
(KVS). When we looked at their core concepts, usage patterns, and examples, each service
was shown in isolation or in combination with other Kinesis services. In this chapter,
we will explore how the Kinesis family of services integrates with other AWS services to
create applications or end-to-end solutions.

We will cover a wide variety of services, including Amazon Connect, Amazon Aurora,
Amazon DynamoDB, Amazon Athena, AWS Glue, and third-party services such as
Splunk. This chapter will serve as a good primer on these services, if you are unfamiliar
with them. We will start by covering the basics of the services, and then focus on using
them in conjunction with Kinesis. This book was written in the middle of the COVID-19
pandemic, and if there is one thing that's clear, it is that technology has made it possible
for us to stay connected. Without the use of Amazon Chime, Slack, or GitHub, we would
not have been able to complete this book.

We believe that the Amazon Kinesis family of services represents a connecting tissue
for other AWS (and non-AWS) services. When used appropriately, the cloud allows us
to quickly create new solutions and applications. In this chapter, we will integrate Kinesis
with a wide variety of services and create a serverless data lake.

246 Kinesis Integrations

In this chapter, we're going to cover the following main topics:

•	 Amazon services that can produce data to send to Kinesis

•	 Amazon services that consume data from Kinesis

•	 Amazon services that transform Kinesis data

•	 Third-party integrations with Kinesis

Technical requirements
In this chapter, we will touch upon multiple services and technologies. The core technical
requirements are listed in this section. There are numerous Git repositories that you will
use for the integrations; we will call those out in their pertinent sections.

AWS account setup
You will need to get an AWS account to run the examples included in this chapter.
If you do not have an account already, you can go to https://aws.amazon.com/
getting-started/ to create an account. AWS accounts offer a Free Tier
(https://aws.amazon.com/free).

The AWS Free Tier allows you to use many AWS services for free within specified usage
limits. Some of the service examples in this chapter are outside the AWS Free Tier and
incur some service usage charges.

AWS CLI
You will need the AWS Command-Line Interface (CLI) to execute the commands
for multiple AWS services that will be used throughout this chapter. We recommend
that you use AWS CLI v2 as it offers more interactive features.

For Windows, you can download and run the Windows installer here: https://
awscli.amazonaws.com/AWSCLIV2.msi.

For MacOS, you can download and run the MacOS PKG installer here: https://
awscli.amazonaws.com/AWSCLIV2.pkg.

https://aws.amazon.com/getting-started/
https://aws.amazon.com/getting-started/
https://aws.amazon.com/free
https://awscli.amazonaws.com/AWSCLIV2.msi
https://awscli.amazonaws.com/AWSCLIV2.msi
https://awscli.amazonaws.com/AWSCLIV2.pkg
https://awscli.amazonaws.com/AWSCLIV2.pkg

Amazon services that can produce data to send to Kinesis 247

Kinesis Data Generator
To create streaming data, we will use Kinesis Data Generator (KDG). If you haven't
set up KDG already, please navigate to https://awslabs.github.io/amazon-
kinesis-data-generator/web/producer.html and complete the setup portion.

Code examples
The code examples in this chapter are listed throughout multiple GitHub repositories; you
will need a Git client to access them (https://git-scm.com/).

Amazon services that can produce data to
send to Kinesis
In this section, we will cover services that produce data and then utilize Kinesis to deliver
that data to its intended location(s). We will learn how to use Kinesis with those services
to get faster insight from data. As is the case with any new technology, integration may
present some challenges. It's impossible to cover all the possible integration scenarios,
so we will focus on some examples where Kinesis integrates with Amazon Connect,
DynamoDB, Aurora, and Spark Streaming.

Amazon Connect
One of Amazon's leadership principles is customer obsession (https://www.
amazon.jobs/en/principles). Any company that wants to have satisfied long-term
customers, in addition to having great products, requires excellent customer service. Most
businesses need some sort of customer contact center, where a customer can call and talk
to a customer service agent, to address customer questions or problems.

Amazon Connect is a service that allows us to run a serverless contact center. Using
Amazon Connect, we can set up our customer service center in a matter of hours, and our
agents can be virtually located anywhere in the world.

https://awslabs.github.io/amazon-kinesis-data-generator/web/producer.html
https://awslabs.github.io/amazon-kinesis-data-generator/web/producer.html
https://git-scm.com/
https://www.amazon.jobs/en/principles
https://www.amazon.jobs/en/principles

248 Kinesis Integrations

More importantly, AWS has designed Amazon Connect so that it can integrate with
other platforms and services. If you are thinking, "that's where the Kinesis comes in,"
you are correct. If we want to track Connect Agent Events, we can send those to the
desired destination using Kinesis Data Streams.The following diagram shows a reference
architecture for Amazon Connect data streaming, with the consumers of that data being
AWS services or third-party software solutions:

Figure 8.1 – Amazon Connect data streaming flow

One good example of an integration with AWS services would be sending AWS Connect
agent events to AWS Redshift or a data lake to perform analysis on how well our agents
are doing. AWS Connect generates agent events such as the following (this is a partial list):

•	 CONNECTED: The agent has accepted the contact.

•	 MISSED: The contact was missed by the agent.

As agent events are generated, we can have AWS Connect send those to Kinesis and then
deposit them into the data lake. This will allow us to analyze how many missed calls there
are, so that we can have additional agents made available and monitor the depth of our
customer waiting queue. Similarly, instead of sending records to the data lake, we could
send them to third-party systems such as Salesforce or Verint Workforce Management
and Optimization.

At the time of writing this book, Amazon Connect doesn't offer support for
CloudFormation, so to set up data streaming, we must use the AWS Console or
AWS Cloud Development Kit (CDK).

Amazon services that can produce data to send to Kinesis 249

Amazon Connect with CDK
To use CDK with Amazon Connect, we need to create a CDK custom resource
and then utilize the APIs that are exposed via the Connect service. When we
use custom resources with CDK, we need to use the Node.js API as a guide.

Let's explore how to set up data streaming with AWS Connect. If you don't have an AWS
Connect Instance configured and running, you will need to do that first. Please follow the
following guide to complete the Connect instance configuration: https://docs.aws.
amazon.com/connect/latest/adminguide/amazon-connect-instances.
html.

Once you have a Connect instance up and running, navigate to Amazon Connect in the
AWS console. You will see your instances on that page. The instance name is a link you
can use to get into the configuration; click on it. Click on the Data streaming link and
then select Enable data streaming.

At this point, you can set up either a Kinesis Data Stream or Firehose Stream for Contact
Trace Records. Agent Events can only flow through the Kinesis Stream. We can either
select existing streams or create new ones. An example setup for data streaming for
Amazon Connect is shown in the following screenshot:

Figure 8.2 – Streaming data from Amazon Connect

https://docs.aws.amazon.com/connect/latest/adminguide/amazon-connect-instances.html
https://docs.aws.amazon.com/connect/latest/adminguide/amazon-connect-instances.html
https://docs.aws.amazon.com/connect/latest/adminguide/amazon-connect-instances.html

250 Kinesis Integrations

In this section, we learned how to export Contact Trace Records (CTRs) and agent
events from Amazon Connect and then send them to Amazon Kinesis. If you have use
cases that require Amazon Connect, then here is a real-world example of how PwC
used Kinesis to create unified customer solutions with SalesForce: https://aws.
amazon.com/blogs/apn/intelligent-case-management-using-amazon-
connect-and-amazon-kinesis-data-streams/.

Amazon Aurora database activity
Amazon Aurora is an AWS Database-as-a-Service (DbaaS) that's offered through
a MySQL or PostgreSQL engine. Being a managed service means that we can use the
database without doing standard Database Administrator (DBA) tasks such as setting
up actual hardware, establishing related networking and infrastructure, and installing
database software. Aurora's most considerable appeal is that it is highly available
out-of-the-box, because it replicates data to six storage nodes across multiple availability
zones (built into the base price). As Aurora is a managed service, our visibility into
the internals of the database's operations is limited, and that's where Activity Streams
come in.

Aurora database activity streams allow us to extract those behind the scenes operations
into the Kinesis data stream. Once our Aurora activity is in the Kinesis data stream, we
can use it to trigger specific actions and observe usage and database activity. Let's see how
we can set this up and get Aurora's activity into Kinesis.

We created the kinesisbook database using the Aurora PostgreSQL database with
the db.r5.large instance. If you aren't familiar with Aurora and need further
assistance with creating the database, please follow the following AWS guide: https://
docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.
CreateInstance.html.

Creating a database will incur a cost
If you create a database, please be aware that your AWS account will be charged
for using that database.

https://aws.amazon.com/blogs/apn/intelligent-case-management-using-amazon-connect-and-amazon-kinesis-data-streams/
https://aws.amazon.com/blogs/apn/intelligent-case-management-using-amazon-connect-and-amazon-kinesis-data-streams/
https://aws.amazon.com/blogs/apn/intelligent-case-management-using-amazon-connect-and-amazon-kinesis-data-streams/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.CreateInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.CreateInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.CreateInstance.html

Amazon services that can produce data to send to Kinesis 251

We made the database publicly available (don't do this with your production database
unless there is an exact requirement). The following screenshot shows our Aurora
PostgreSQL database:

Figure 8.3 – Aurora PostgreSQL database example

Before we start streaming Aurora's activity into Kinesis, we need to create an AWS
Key Management System (KMS) key. Aurora's activity will be encrypted using the key
that we provide. We can initiate sending database activity using the AWS console or CLI.

There are two modes of database activity streaming that are supported: synchronous and
asynchronous. In synchronous mode, the database session blocks until it can write an
event to the event stream. If there is an error, the database session continues the process
and then creates a second event once the stream has recovered. With synchronous mode,
we get the activity stream's accuracy, but that may impact database performance.

In asynchronous mode, the database writes first and returns control. The activity stream
event is written separately and then sent. If an error occurs while writing the event to the
stream, RDS sends the error itself and not the event. Asynchronous mode is better for
database performance, but we may lose some accuracy regarding the activity stream.

252 Kinesis Integrations

To start Aurora streaming from the console, we must select our database cluster, then click
on the Actions button and select Start activity stream. Another way we can do this is by
using the CLI, as shown in the following screenshot:

Figure 8.4 – Starting RDS data streaming

Once Aurora streaming is active, we can connect to our database and generate some
activity so that data is generated and sent to the Kinesis stream. An example of generating
database activity would be creating or altering tables. Once there is some activity in
our Aurora database, we can use the CLI to fetch records that Aurora has sent to Kinesis.
In the following screenshot, we can see how to retrieve the Kinesis record that was
inserted by the Aurora DB seen in Using the GetRecords API section in Chapter 5,
Kinesis Firehose:

Figure 8.5 – Example of database activity being retrieved from Kinesis

Amazon services that can produce data to send to Kinesis 253

The Kinesis record we retrieved is base64 encoded. Using an online base64 decoding
tool (https://www.base64decode.org/), we can decode the Kinesis data record.
The resulting output of base64 decoding will look similar to the following:

{

"type":"DatabaseActivityMonitoringRecords",

"version":"1.1",

"databaseActivityEvents":"AYADe<ABBREVIATED>/Q=",
"key":"AQIDAHhIKW8loWteYVqlyNhV8cpwWkF6X0PLmiWBsD51+
GYtrAFyxdnoY8TMt7oD8S7n8cl+AAAAfjB8BgkqhkiG9w0BBwagbzBtAgEAMGg
GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMV2vbuf4HMEouImBtAgEQgDur4d
+efHMtSdcP9czoNUIGCp566cfOuyJkX7kjznliB665iNBXPj9cLsa
7NPH815ev1oIriyVdda4SMg=="}

The databaseActivityEvents field is encrypted with the KMS key that we specified,
and to use it further, we would need to decrypt it. We aren't going to cover the details of
decrypting the record here. You can find a full-fledged example in the following GitHub
repository: https://github.com/iann0036/aurora-activity-streams-
sechub.

In this section, we learned how to set up Aurora data streaming and how to fetch
generated records from the Kinesis data stream.

DynamoDB activity
In the preceding section, we talked about integrating Kinesis with Aurora. We did
this to obtain changes from the Aurora database and then process them as a stream
of events using Kinesis. Another top-rated database service is DynamoDB, a fully
managed NoSQL database.

DynamoDB is a key-value data store that can automatically scale as our workload grows
or shrinks. DynamoDB provides a change data capture feature through DynamoDB
Streams, which provides us with a time-ordered sequence of row modifications
(in DynamoDB, a row is also referred to as an item). Please note that during
re:Invent2020, AWS introduced the ability to stream data from DynamoDB directly
into Kinesis. Full details can be found here: https://docs.aws.amazon.com/
amazondynamodb/latest/developerguide/kds.html.

https://www.base64decode.org/
https://github.com/iann0036/aurora-activity-streams-sechub
https://github.com/iann0036/aurora-activity-streams-sechub
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/kds.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/kds.html

254 Kinesis Integrations

Now, we will explore how DynamoDB streams data into Kinesis. We will start by storing
the SmartCity bike station address in DynamoDB, as shown in the following code:

{

 "stationId": "100",

 "address": {

 "street": "1 Wall Street",

 "postalCode": "10003",

 "city": "New York",

 "countryCode": "USA"

 },

 "active": "YES"

}

We will then create a DynamoDB Stream stream to notify us if any new stations are being
added or removed. Whenever we add, modify, or delete (set "active" to NO) in the
DynamoDB table, we will receive a record in our DynamoDB Stream with rows (items)
that were modified.

Unlike with Aurora, we can set up a DynamoDB stream so that it includes the "before"
and "after" information for the modified rows. Another difference between Aurora and
DynamoDB streams is that DynamoDB streams are at the table level, and in Aurora, they
are database-wide.

You may be wondering why we are discussing DynamoDB streams; shouldn't they just
work like Aurora streams? The fact is that DynamoDB uses its own streaming technology,
and although it is similar to Kinesis data streams, DynamoDB streams are not the same as
Kinesis streams.

 Like Kinesis but not Kinesis
"Although these DynamoDB Streams actions are similar to their counterparts in
Kinesis Data Streams, they are not 100 percent identical." AWS documentation:
https://docs.aws.amazon.com/amazondynamodb/latest/
developerguide/Streams.KCLAdapter.html.

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.KCLAdapter.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.KCLAdapter.html

Amazon services that can produce data to send to Kinesis 255

If you want to try out DynamoDB streaming, here are the steps:

1.	 Navigate to the AWS console and then go to DynamoDB.

2.	 Create a table called bike-stations.

3.	 Once the table has been created, make sure that a stream has been enabled for
the table.

4.	 Using JSON from this section as a template, create a few rows (items).

5.	 Once you have created a few items, modify some of them by updating items.
The activity will trigger DynamoDB to write that data to the DynamoDB
stream. To read from the DynamoDB stream, you can use the following code,
provided by AWS: https://docs.aws.amazon.com/amazondynamodb/
latest/developerguide/Streams.KCLAdapter.Walkthrough.
CompleteProgram.html.

This section taught us how to set up DynamoDB Streams and then use Amazon Kinesis
Adapter to consume data from the stream.

Processing Kinesis data with Apache Spark
"Apache Spark is a unified analytics engine for large-scale data processing."

 - https://spark.apache.org/
In simple terms, Spark is an improved version of Hadoop MapReduce. The most
significant difference is that Spark uses an in-memory engine, so it outperforms
MapReduce in several use cases. The key concept with Spark is its immutable Resilient
Distributed Dataset (RDD), which allows Spark to balance its workload across multiple
compute nodes (executors) to achieve parallel processing (improved map and reduce
functionality).

We can create RDDs out of many sources, such as databases and files such as those
stored in S3 or from our Kinesis data stream. Spark also has SQL support, which allows
us to perform functions similar to those in Kinesis Data Analytics, such as joining or
aggregating data.

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.KCLAdapter.Walkthrough.CompleteProgram.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.KCLAdapter.Walkthrough.CompleteProgram.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.KCLAdapter.Walkthrough.CompleteProgram.html
https://spark.apache.org/

256 Kinesis Integrations

We can deploy Spark on EC2, Amazon EMR, or use AWS Glue services to run Spark
applications. Spark provides support for multiple programming languages, such as Java,
Scala, and Python. It also supports streaming data, so in this section, we are going to learn
how to integrate Kinesis and Spark. An example architecture is shown in the following
diagram:

Figure 8.6 – Kinesis as a producer for Apache Spark

To create streaming data, as depicted in preceding diagram under (1), we will use KDG.
If you haven't set up KDG already, please navigate to https://awslabs.github.
io/amazon-kinesis-data-generator/web/producer.html and complete the
setup portion.

KDG Setup
KDG requires you to set up Cognito to create authorized users so that it can
put data into the Kinesis data stream in your AWS account.

Once we have configured KDG, we need to create a KDS. We will create a simple stream
with one shard named sparky-stream. We can create a stream from the AWS console
or using the AWS CLI, as shown here:

aws kinesis create-stream \

--stream-name sparky-stream \

--shard-count 1

https://awslabs.github.io/amazon-kinesis-data-generator/web/producer.html
https://awslabs.github.io/amazon-kinesis-data-generator/web/producer.html

Amazon services that can produce data to send to Kinesis 257

To set up our Spark consumer application (3), we will leverage an existing example that
does a word count; we can get the word count code from this repository: https://
spark.apache.org/docs/2.3.0/streaming-kinesis-integration.html.
Once you've navigated to this link, go straight to the Running the Example section to set
up a Spark consumer application. For this example, we downloaded Spark 2.4.7.

Spark Random Data Generator
Spark can also produce random data and put it into the Kinesis stream. We will
not be using it in this example as we have already set up KDG.

Since the Spark application is doing a word count, we will instruct KDG to send Lorem
Ipsum lines. Navigate to the KDG console. You will find a link to your personalized KDG
console in the CloudFormation output section of the KDG stack.

In KDG, under Region, select your region. For the data stream, select sparky-stream,
and then configure Template 1 so that it matches the template shown in the following
screenshot. Click the Send Data button to start sending data to sparky-stream:

Figure 8.7 – KDG template setup details

https://spark.apache.org/docs/2.3.0/streaming-kinesis-integration.html
https://spark.apache.org/docs/2.3.0/streaming-kinesis-integration.html

258 Kinesis Integrations

Now that KDG is generating data and sending it to sparky-stream, we need to consume
it. To run the Spark consumer application, navigate to the location where you downloaded
Spark and execute the example application. Change the parameters so that they match
your environment and configuration, as depicted in following code block:

bin/run-example --packages org.apache.spark:spark-streaming-
kinesis-asl_2.11:2.3.0 streaming.KinesisWordCountASL
SparkKinesisTest sparky-stream https://kinesis.us-east-1.
amazonaws.com

After our Spark word count application starts, you should see the Spark application
outputting word counts, as shown in the following screenshot:

Figure 8.8 – Spark word count application with Kinesis data

Amazon services that can produce data to send to Kinesis 259

In this section, we learned how to configure Spark as a data consumer for the Kinesis
data stream. The example that we walked through was simple, but Spark also comes with
a collection of algorithms that can help us process graph constructs and do basic machine
learning.

Amazon services that consume data from Kinesis
We have spent a lot of time on streaming data, but the question remains: how do we
aggregate all that data at scale? This is where data lakes come into the picture. The term
data lake doesn't describe any single technology or AWS service; it is a pattern that's used
to store and analyze massive volumes of mixed data. Using a data lake, we can keep all of
our data, be it unstructured, semi-structured, or structured, in a single place for later use.

In this section, we will build a serverless data lake with multiple service integrations.
The integration examples in this chapter will follow the persona of the SmartCity AWS
technical vendor known as SwipeBike. SwipeBike is responsible for doing the integrations
for modernizing SmartCity's bike-sharing capabilities.

Serverless data lake
Why a serverless data lake? It's pretty simple. As the SmartCity technical vendor
SwipeBike, we have finite resources, and we prefer to focus on what matters to our
business (improving our bike service through analytics). Managing servers takes us away
from our core focus and diverts precious resources to server maintenance, which doesn't
distinguish our SwipeBike from any other bike-sharing service.

Obtaining telemetry and analytics so that we know that our bikes may need a service
before they break down, or that any station is running low on bikes, improves our
customer's experience and, in turn, pays for our salaries. So, it's a simple choice; instead
of managing servers, we will build a fully serverless data lake.

To build our SwipeBike serverless data lake, we will use the following services:

•	 Kinesis Firehose will stream source data and deposit it into a data lake.

•	 Amazon S3 will be the data storage repository for our data lake.

•	 AWS Glue will be used for extractions, transformation, and data processing.

•	 Amazon Athena will perform searches (SQL queries).

260 Kinesis Integrations

Let's take a look at our overall architecture for the serverless data lake:

Figure 8.9 – Serverless data lake architecture for SwipeBike

Let's step through the serverless lake architecture and see what's going on here:

1.	 In this chapter, in the Processing Kinesis data with Apache Spark section, we used
the KDG tool to send data to Kinesis. It's an easy way to produce some random
data and send it over to Firehose, so we will use KDG again and simulate the data
producer.

2.	 We will use S3 for serverless data lake data storage. S3 is affordable storage for
petabytes, and along with it, we get a high availability of 99.99% and a durability
of 99.999999999%.

3.	 We will learn how to use AWS Glue, which is a serverless Extract Transform Load
(ETL) service that allows us to discover, arrange, and integrate data for analytics.
We will use Glue crawlers to create metadata that describes the structure of the data
in S3 buckets:

a) �Glue crawler will inspect our raw data and create metadata in a Glue Data
Catalog. A Data Catalog is a Hive compatible data store.

4.	 With Glue, we will also handle data transformations such as relationalizing data
and converting it into more optimized formats such as Parquet.

Amazon services that can produce data to send to Kinesis 261

5.	 The output of our Glue data transformations will be stored in S3 in a curated
directory. This directory will contain an optimized data format and structure for
improved query performance at a lower cost.

6.	 As with step 3, we will use Glue crawlers to extract the metadata from the files
stored in the curated directory of the S3 bucket:

a) �Glue crawler will inspect curated data and create metadata in the Glue data
catalog.

7.	 To create our reports and gain insight from our data, we will use Athena by creating
SQL queries:

a) �Athena will look up the Glue data catalog to obtain information about the
locations of files in S3, their format, and their structure.

b) �Using the information provided by the Glue data catalog (7a), Athena will
execute the query.

Creating serverless data storage using S3
Let's start building our serverless data lake.

First, we will create an S3 bucket that will be used as the storage layer. S3 is a Simple
Storage Service (Amazon S3) that focuses on simplicity and robustness. We are using
S3 because it is a versatile yet cheap storage option that is protected by 99.999999999%
(11 9s) of durability. S3's durability ensures the data is protected in the case of outages
or failures.

With S3, there are no servers to manage, and we can scale up storage without having
to purchase any additional hardware. We will start by creating an S3 bucket with the
<yourname>-dl-bucket naming convention. Navigate to your command tool and
execute S3's create-bucket API, as shown in the following code:

aws s3api create-bucket --bucket tarik-dl-bucket --region
us-east-1

If you are using an AWS region other than us-east-1, you will need to add create-
bucket configuration, as shown in following code snippet:

aws s3api create-bucket --bucket tarik-dl-bucket2 --region
us-west-2 --create-bucket-configuration LocationConstraint=us-
west-2

262 Kinesis Integrations

After you execute create-bucket, you will get confirmation that the bucket was
created. If you receive an error, it's likely because someone else has created a bucket with
the same name. S3 bucket names are global, so there can't be two buckets with the same
name. Try adding digits to your name until you get a unique name.

As a next step, we will create a Firehose delivery stream that the KDG data producer will
use. Firehose will deliver the data into the S3 bucket's rawdata directory. We covered
Firehose destination delivery in depth in Chapter 5, Kinesis Firehose, so we will skip those
details here and jump right into creating a Firehose stream and configuring destination
delivery to the S3 bucket RAW directory.

Landing data into S3 using Firehose
Before we can use Firehose to write data to the S3 bucket, we need to create an IAM
role with permissions that give Firehose privilege to write, read, and list files in the
<yourname>-dl-bucket S3 bucket.

Open up the AWS Console, navigate to IAM, and click Create Role. When you're
prompted to select a trusted entity, select AWS Service and then choose Kinesis from
the available services list. You will be prompted to Select your use case. Choose Kinesis
Firehose and click the Next: Permissions button. Click the Create policy button, which
will open up a new window or tab in your browser, then click the JSON tab and copy
and paste the policy from the chapter8/FHSwipeBikeDataLakepolicy.json
GitHub repository (https://github.com/PacktPublishing/Streaming-
Data-Solutions-with-Amazon-Kinesis/tree/main/chapter8/
FHSwipeBikeDataLakePolicy.json).

Creating your IAM policy
Make sure you use the appropriate bucket name and replace AWS-REGION
and AWS-ACCOUNT-NUMBER with your values.

Click Next: Tags; you can leave tags blank for now and click the Next: Review button.
Call your policy FHSwipeBikeDataLakePolicy, and then click the Create policy
button. Go back to the browser window where you had started creating a role and select
FHSwipeBikeDataLakePolicy (you may need to hit the refresh button for the newly
created policy to show up). Click the Next: Tags button, then the Next: Review button,
call the role FHSwipeBikeDLRole, and then click the Create Role button.

https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis/tree/main/chapter8/FHSwipeBikeDataLakePolicy.json
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis/tree/main/chapter8/FHSwipeBikeDataLakePolicy.json
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis/tree/main/chapter8/FHSwipeBikeDataLakePolicy.json

Amazon services that can produce data to send to Kinesis 263

We are now ready to create our Firehose delivery stream. You will need to provide a
cli-input-json file, which you can download from the Git repository. Download the
fhCreateFile.json file, modify the parameters accordingly, and save the file locally.
Open up your command-line tool and execute the following code:

aws firehose create-delivery-stream --delivery-stream-name
dl-delivery-stream --cli-input-json file://fhCreateFile.json

If everything worked correctly, you should receive a Firehose delivery stream
ARN in the following format: arn:aws:firehose:[REGION]:[AWS-ACCT-
NUM]:deliverystream/dl-delivery-stream.

AWS CLI trick
If you are like us and can't remember all the CLI options and parameters,
https://awsclibuilder.com/home/services/firehose
can help you.

For the next step, we are going to set up KDG. If you haven't already set up KDG,
please navigate to https://awslabs.github.io/amazon-kinesis-data-
generator/web/producer.html and complete the setup portion.

Using KDG to produce random data
Let's begin!

First, navigate to KDG; a link will be available in the CloudFormation console. Select
an appropriate Region, then select dl-delivery-stream from the delivery stream
dropdown. Scroll down to the template section and enter the template. You can download
the template from GitHub under the chapter8 folder, kdgTemplate.json. Click the
Send Data button to initiate data generation for KDG. After a minute or two or roughly
around 10,000 records, click the Stop Sending Data to Kinesis button.

At this point, we should have data in our S3 bucket under the rawdata directory. Open
the AWS console and navigate to <yourname>-dl-bucket/rawdata. You should
have data files that have been produced by the KDG under the rawdata directory that
are structured like so: {rides}/{YEAR}/{MONTH NUMBER}/{DAY NUMBER}/
{HOUR NUMBER}.

https://awsclibuilder.com/home/services/firehose
https://awslabs.github.io/amazon-kinesis-data-generator/web/producer.html
https://awslabs.github.io/amazon-kinesis-data-generator/web/producer.html

264 Kinesis Integrations

While we are still in the S3 console, let's upload the bikeStations.csv file
(available in the chapter8 GitHub repository folder). This file contains detailed station
information, such as the address of the bike station and its longitude and latitude. We will
use this file's information in our Athena SQL queries to join it with information about our
bike rentals (KDG-produced data) to produce more rich information for our customers.

Create a new stations directory in your S3 bucket; that is, <yourname>-dl-
bucket/rawdata. Once the directory has been created, upload the bikeStations.
csv file into the stations directory. Your S3 bucket hierarchy should, at this point,
look like this:

<yourname>-dl-bucket

 rawdata

 rides

 stations

We are now ready to inspect our raw data using Glue so that we can catalog it for usage
by Athena. Using Glue crawlers, we will go through our bucket's rawdata directory and
create corresponding metadata in the Glue data catalog.

AWS Lake Formation
You may need to turn off Lake Formation in Lake Formation Console, under
the Settings section. You may need to manage the IAM permissions yourself
beyond the scope of this chapter: https://docs.aws.amazon.com/
lake-formation/latest/dg/change-settings.html.

Using Glue for ETL
Glue crawlers are like forensic inspectors that will look at the data structures in our
rides and stations directories, and then create information about the data structure
of those files as if it's a database table. Glue crawlers will enable us to query the data using
Athena and deal with changes and additions to schema changes in our raw files. Let's set
up a Glue crawler.

In the AWS console, navigate to Glue, click on the Crawlers link, and click the Add
crawler button. Enter the following values when prompted:

1.	 In the Crawler name field, enter rawdata-crawler, then click Next.

2.	 Leave the defaults as Data Stores and Crawl all folders and click Next.

3.	 Select S3 as the data store, select <yourname>-dl-bucket/rawdata as the
include path, and then click Next.

https://docs.aws.amazon.com/lake-formation/latest/dg/change-settings.html
https://docs.aws.amazon.com/lake-formation/latest/dg/change-settings.html

Amazon services that can produce data to send to Kinesis 265

4.	 Select No for Add another data store and click Next.

5.	 Select Create an IAM role and give it a name; ours is AWSGlueServiceRole-
GlueSwipeBikeRaw. Click Next.

6.	 For Frequency, select Run on Demand and click Next.

7.	 Click Add Database; for the database name, enter swipebike, click Create, and
then click Next.

8.	 Finally, click the Finish button.

Once rawdata-crawler has been created, click the checkbox next to it and click the
Run crawler button. It will take about 1 to 2 minutes for the crawler to finish.

Let's see what the crawler created. In the Glue console, click on the Databases link on
the left-hand side menu. Then, click on the swipebike database. If the database isn't
showing, try hitting the refresh icon in the Glue console. Click on the swipebike
database and then click on Tables in the swipebike link; you should see two tables,
as shown in the following screenshot:

Figure 8.10 – Glue data catalog for Swipebike

The Glue crawler created an inventory of data in our datastore (S3 bucket). The crawler
examined the schema of the data files in our S3 bucket and, using a classifier, inferred
the structure of that data; that is, metadata. The crawler then wrote the metadata into the
Glue data catalog (the swipebike database and its corresponding tables).

We can now try and query the swipebike database using Athena. Navigate to the
Athena console and select swipebike from the database dropdown.

Athena setup
If you are opening up Athena for the first time, you will have to go through
the initial setup to configure the S3 bucket so that Athena can output query
results: https://docs.aws.amazon.com/athena/latest/ug/
getting-started.html.

https://docs.aws.amazon.com/athena/latest/ug/getting-started.html
https://docs.aws.amazon.com/athena/latest/ug/getting-started.html

266 Kinesis Integrations

Query data with Athena
We will begin by opening the New query tab in Athena and entering the query
shown in the following screenshot (you can copy the query from chapter8/sql/
stationIncome.sql):

Figure 8.11 – An Athena query to summarize income by station using raw data

Once the query completes, you should be able to see the result. Our query took 1.5
seconds, and it scanned 5.17 MB of data. This isn't bad so far; we can query rawdata
and get results, so why bother with curating data any further? There are several reasons,
but the primary ones are as follows:

•	 We want to expose data to business users so that they can get results swiftly without
having a granular understanding of the underlying raw data and its relationships.
Queries that use rawdata could get gnarly!

•	 If you expand the rides table in Athena, you will notice that the bikedetail
field is defined as struct<>. It's not easily consumed, so we want to transform it
into a more functional structure. We are going to use Glue jobs to do this.

•	 Security: We may not want everyone to swim all over our data lake, so exposing
a subset of data is preferred.

Amazon services that can produce data to send to Kinesis 267

•	 Cost: For the query to find data that matches our search, it has to traverse (scan)
the data storage in S3. We scanned 5.17 MBs, but imagine if we had a data lake fully
loaded with petabytes of data. This approach can get expensive if we are scanning
massive amounts of data (kind of like a cartesian product query in a relational
database).

Optimizing a serverless data lake
To curate our data further, we will use Glue jobs. Glue jobs come pre-packaged with
several ETL routines, which we can use with minimal configuration. We are going to do
two things to produce a curated dataset:

•	 Create a station-income dataset that only contains data users need in Parquet
optimized format. Parquet format and removing unused columns should lead to
scanning less data; hence, it should be less expensive.

•	 Relationalize the bikedetail field so that values from struct<> become their
own dataset (table) and are easier to query.

Glue – Relationalize
Athena can relationalize data using CROSS JOIN UNNEST, but at some
point, that operation will become costly, and relationalizing as part of your
ETL pipeline is better: https://docs.aws.amazon.com/glue/
latest/dg/aws-glue-programming-python-samples-
legislators.html.

Curating data in the data lake using Glue jobs
Navigate to the S3 console and create a new directory called curated in the
<yourname>-dl-bucket S3 bucket.

Before we create a Glue job, we will need to modify the IAM role we created for the
crawlers (AWSGlueServiceRole-GlueSwipeBikeRaw) so that it also has the
privilege to write to and delete from S3.

Navigate to IAM, find the relevant role under the Policies tab, and click to edit the policy
with the same name as the AWSGlueServiceRole-GlueSwipeBikeRaw role. We
need to add a curated bucket to the resources list, as shown in the following code:

{

 "Version": "2012-10-17",

 "Statement": [

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-samples-legislators.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-samples-legislators.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python-samples-legislators.html

268 Kinesis Integrations

 {

 "Effect": "Allow",

 "Action": [

 "s3:GetObject",

 "s3:PutObject",

 "s3:Delete*"

],

 "Resource": [

 "arn:aws:s3:::tarik-dl-bucket/rawdata*",

 "arn:aws:s3:::tarik-dl-bucket/curated*"

]

 }

]

}

Navigate back to the Glue console and click the Jobs link on the left-hand side. We will
create a Glue job script as a template, and then we will edit that script to achieve the
two goals we set out. Click the Add Job button and call it SwipeBikeCurateETL.
Select the IAM role from the list of dropdown roles (AWSGlueServiceRole-
GlueSwipeBikeRaw). We are using the same IAM role that we created while we were
setting up the rawdata-crawler Glue crawler. Leave the other settings as their defaults
and click the Next button.

Select the rides table as the data source and click the Next button. For transform type,
leave the default as Change schema and click the Next button. Select Create tables in
your data target, select S3 as the data store, format it as Parquet, set the target path to
s3://<yourname>-dl-bucket/curated, and click the Next button. Leave the
defaults for Output Schema Definition as-is and click the Save job and edit script button.

From GitHub, download the chapter8/glue/curationScript.py Glue script.
Replace the {YOUR-S3-BUCKET} occurrences with your actual bucket name. This is
the same bucket name we have been using thus far. Save the Glue script and run the job.
Depending on how much data you created using KDG, the job may take a minute or two
to run. Let's walk through some of the pertinent code in the Glue job script.

On line 25, we call Glue's built-in relationalize transformation:

25 relationalized = Relationalize.apply(

 frame = ds_rides,

 staging_path = args["TempDir"],

Amazon services that can produce data to send to Kinesis 269

 name = "rides",

 transformation_ctx = "relationalized")

We then proceed to write the relationalized data to the S3 bucket on line 28. Glue will
produce two distinct structures: "rides" and "bikeDetail.bikeAttributes".
If you look into your S3 bucket under the curated directory, you should see these two
directories. We will learn how to use these later in this section, when we create Athena
queries:

28 relationalize_datasink =

 glueContext.write_dynamic_frame.from_options(

 frame = relationalized,

 connection_type = "s3",

 connection_options = {

 "path": "s3://{S3-PATH}/curated/rides-relat.."},

 format = "json",

 transformation_ctx = "relationalize_datasink"

)

We then proceed to create a summarized version of the income by each station. We loaded
the station data into ds_station_min on line 31. Then, on line 34, we dropped the
columns that we didn't need in the summarized dataset:

34 ds_station_min =

 ds_stations.drop_fields(

 ['latitude','longitude']

).rename_field(

 'stationid', 'station-st-id'

)

On line 37, we did something similar with the ds_rides_min DataFrame. We then
joined the two DataFrames on line 43:

43 ds_joined = Join.apply(

 ds_station_min, ds_rides_min,

 'station-st-id', 'ride-st-id'

)

Then, on line 47, we exported the income by station data into the s3://{YOUR-S3-
BUCKET}/curated/stationincome S3 bucket.

270 Kinesis Integrations

Before we can start using data stored under the curated directory, we need to crawl it.
Navigate to the Glue console and create a new crawler, as we did for rawdata.

We named our crawler CuratedSwipeBike and set it up to crawl data under the
curated directory. The crawler's path is s3://{your-bucket-name}/curated.
You can use the same IAM role we have been using thus far: AWSGlueServiceRole-
GlueSwipeBikeRaw. You can create a new database for a curated crawler or use the
existing database and prefix the table names with c_. We used the existing swipebike
database, and we used the c_ prefix for curated tables.

Once you have finished creating the crawler, run it. Once the crawler finishes inspecting
the data in the curated directory, you should have three newly created tables in the
Glue data catalog (the swipebike database). Let's navigate to the Athena console and
see if we have achieved the two desired goals by curating the data.

We will start by examining the station income summary table (ours is named
c_stationincome). In Athena, create and run the query, as depicted in the
following screenshot (you can get the SQL code from https://github.com/
PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis/
tree/main/chapter8/sql/stationIncomeCurated.sql):

Figure 8.12 – An Athena query to summarize income by the station using curated data

https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis/tree/main/chapter8/sql/stationIncomeCurated.sql
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis/tree/main/chapter8/sql/stationIncomeCurated.sql
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis/tree/main/chapter8/sql/stationIncomeCurated.sql

Amazon services that can produce data to send to Kinesis 271

With the curated dataset, the query time dropped to 0.56 seconds, and the amount
of data that was scanned was only 44.15 KB. When we ran the query that relied on
rawdata, it took 1.5 seconds for the query to finish, and 5.17 MB of data was scanned.
Goal one achieved! It's faster, cheaper, and the query is simpler to create as we are going
only after one table.

Now, let's see what happened with the data that was relationalized. With rawdata, we
had a single table, rides, that contained a nested structure for bike details. Now that our
Glue job has rationalized the data, we have two tables; in our case, they are c_rides and
c_rides_bikedetail_bikeattributes.

As we examine c_rides_bikedetail_bikeattributes, we can see that Glue
has kept referential integrity between the two tables. A newly created column named id
corresponds to the bikedetail.bikeattributes column in the c_rides table.
This looks a lot like a relational database at this point.

Let's put this to the test and see if it was done correctly. Open up any raw files under
rawdata/rides in S3 (hint: you can use S3 Select to peek into files) and pick one of the
records. We selected the following record:

Figure 8.13 – Raw record to validate the relationalize function

272 Kinesis Integrations

Let's create an Athena query that will join the two relationalized tables and search for
the same record and see if referential integrity is still intact. Navigate to Athena and
create a query, as shown in the following screenshot (since the data was randomly
generated, we had to narrow down the record using few attributes). You can find
the query at https://github.com/PacktPublishing/Streaming-
Data-Solutions-with-Amazon-Kinesis/tree/main/chapter8/sql/
relationilizedQuery.sql:

Figure 8.14 – Athena query using relationalized data

Glue didn't disappoint when it came to referential integrity. We joined the two tables
using c_rides.bikedetail.bikeattribute and c_rides_bikedetail_
bikeattributes.id. We validated the values from rawdata files that match the
relationalized data (split files).

In this section, we learned how to use many services to build a serverless data lake. We
used Kinesis Firehose to ingest the data into S3 buckets. From there, we created a data
pipeline that ingests raw data. We learned how to use Glue to index the data with crawlers
and then transformed and curated the data, which allows our business users to consume
it in a performant and frugal manner. Lastly, we used Athena to query the data and gain
insights.

In the next section, we are going to learn how to use other AWS services, along with
Kinesis, to transform and enhance data.

https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis/tree/main/chapter8/sql/relationilizedQuery.sql
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis/tree/main/chapter8/sql/relationilizedQuery.sql
https://github.com/PacktPublishing/Streaming-Data-Solutions-with-Amazon-Kinesis/tree/main/chapter8/sql/relationilizedQuery.sql

Amazon services that transform Kinesis data 273

Amazon services that transform Kinesis data
In this section, we are going to learn about how to use EventBridge to add additional
capabilities that aren't present in Kinesis. We will use EventBridge to help us add
rule-based routing to our SwipeBike solution.

Routing events with EventBridge
One of the coolest things about AWS services is that they are building blocks. We
like to think of AWS services as a set of microservices that enable us to build rapidly,
or prototype, working applications. The downside is that with such a large number
of services at our disposal, there is an overlap between those services, and often,
analysis-paralysis can set in when we have to select a service to use.

Two-way door
The most significant advantage of the cloud is that it doesn't punish us for
making a mistake when selecting a service; it's pretty forgiving. Two-way door
decisions imply that if we pick the wrong door, we can quickly walk back and
go through another door available to us. On the other hand, one-way door
decisions are hard to reverse as we can't go back, so a considerable amount
of time has to be allocated to deciding when to select the door. An example
of a one-way door would be buying brand new servers; there's not much we
can do after that. As you adopt the cloud, we encourage you to treat service
selection as a two-way door. You are better off picking a service quickly and
experiment with your use case, instead of endlessly discussing which service
is better!

If you are familiar with Enterprise Service Bus (ESB) concepts, skip to the next
paragraph. Wikipedia describes ESB as follows: "An enterprise service bus (ESB)
implements a communication system between mutually interacting software applications
in a service-oriented architecture (SOA)."

We can think of the postal office (mail service) being an ESB. Each of us can send or
receive a postcard, so we are both message producers and message consumers. As
consumers or producers, we don't need to know anything about the internals of mail
sorting and routing. All we need to do is use a postal API, which lets us basically specify
a receiving address and deposit our letter (message) in the mailbox. From that point on,
the postal service takes over and routes and delivers our letter to the recipient. If we want
to obtain confirmation that the recipient received our message, that's also possible. We
would provide our address and when our letter is delivered, the postal service will send us
back delivery confirmation.

274 Kinesis Integrations

Let's see how we can implement some of the ESB principles using Kinesis and
EventBridge. Before we get into the solution, let's learn what EventBridge is.

EventBridge is a serverless event bus that allows us to connect applications/services, yet
keep them decoupled from each other (two-way door, anybody?). Using EventBridge, we
can set up routing rules so that events can be sent to the appropriate service/application
to be processed. Why would we want to use Kinesis at all with EventBridge when Kinesis
itself can send events? Because Kinesis can't route events.

For example, in our SmartCity bike fleet example, we were ingesting data from each
station (our producer simulates 40 bike stations). What if we wanted to send data to
those stations? Let's assume the bike docking station is malfunctioning and we need to
send it an unlock code. If we just drop it into the Kinesis stream, then each station would
have to filter its events and discard events intended for other stations; this sounds like
a lot of work!

In short, when we use EventBridge with Kinesis, we can route messages/events based on
a rule or set of rules. Our architecture looks as follows:

Figure 8.15 – Rule-based architecture with EventBridge and Kinesis

So, let's see how we can do this. Navigate to the AWS console and create two Kinesis
data streams, station100stream and station200stream. These two streams will
receive events from EventBridge for their corresponding stations.

Amazon services that transform Kinesis data 275

The event that we will send to EventBridge has the following structure:

[

 {

 "Source": "com.smartbike.maintenance",

 "Detail": "{\"stationId\":\"200\"}",

 "Resources": [

 "unlock-key-34534"

],

 "DetailType": "unlockDockingStation",

 "EventBusName": "bike-ride-unlock"

 }

]

Navigate to the EventBridge console. Under Events, click on Event busses, then click the
Create event bus button. When prompted for the name, enter bike-ride-unlock,
leave Resource-based policy empty, and click the Create button. Your console should
display a newly created event bus, as shown in the following screenshot:

Figure 8.16 – Custom EventBridge event bus

To route maintenance events to the appropriate bike station Kinesis data stream, we will
set up two event rules: station 100 and station 200. Navigate to Rules and click
the Create rule button. Name your event station100Rule. Under Event matching
pattern, select Custom Pattern. Under Event pattern, enter the pattern shown in the
following code:

{

 "source": ["com.smartbike.maintenance"],

 "detail-type": ["unlockDockingStation"],

 "detail": { "stationId": ["100"] }

}

276 Kinesis Integrations

Under Select event bus, click on Custom or Partner event bus, and from the dropdown,
select the bike-ride-unlock event bus. Under Select targets in the first dropdown,
select your first Kinesis stream; that is, station100stream. EventBridge will need
IAM privileges to put records into Kinesis and will create the specific role; please leave the
defaults as-is. Click the Create button.

Repeat rule creation for station200Rule and select station200stream as the
corresponding stream. Make sure that your station200Rule for stationId has
a value of 200 and not 100.

Once we have created both rules, we should see both rules as Enabled, as shown in the
following screenshot:

Figure 8.17 – EventBridge event bus rules summary

Let's see if our rules work correctly. Using the AWS CLI, we will send a few events to
the bike-ride-unlock event bus and then fetch the records from two Kinesis data
streams.

We will start by creating two files. You can find the sample content under chapter8/
eventbridge/sampleEvent.json:

•	 For the event100.json file, we will set stationId to 100.

•	 For the event200.json file, will set stationId to 200.

The AWS CLI isn't where we set the bus name
If you haven't named your bus event bike-ride-unlock, then you will
have to change the value of EventBusName in both files.

Amazon services that transform Kinesis data 277

Open your command prompt and navigate to the directory where you saved the two
JSON files. Then, execute put-event (the following code is for Mac or Unix) for
both files. This will put two events into the bike-ride-unlock EventBridge bus.
EventBridge will respond with an EventId for each successful entry as we
execute the commands. We are inputting single events, so we should get zero for
FailedEntryCount and a single EventID:

aws events put-events --entries file://{filename}.json

Once we have input the events into EventBridge, they should be routed to the appropriate
Kinesis data stream. The following screenshot shows an example of fetching records from
station100stream:

Figure 8.18 – Rule-based routing in action

278 Kinesis Integrations

Once you have gathered data from the Kinesis stream, shown under (4) in the previous
screenshot, you can go to the online base64 decoder (https://www.base64decode.
org/) and make sure your data in each of the streams has been routed correctly. You can
find the appropriate Kinesis CLI commands here: https://docs.aws.amazon.com/
streams/latest/dev/fundamental-stream.html#get-records.

In this section, we implemented simple routing using Amazon EventBridge and Kinesis.
The key takeaway is that AWS services are like LEGO and that we were able to create this
solution in approximately 30 minutes. Experiment and fail often!

Third-party integrations with Kinesis
In this section, we are going to learn how to integrate Kinesis with third-party software
provider Splunk. Although we are using Splunk to show how we can work around some
of the integration intricacies, this approach is applicable to other third-party integrations.

Firehose delivery is possible for generic HTTP endpoints. This enables us to use Firehose,
a fully managed service, to send data to HTTP endpoints, and it opens doors for other
integration points, including our own applications.

Splunk
If you are not familiar with Splunk, you should still read this section as we will cover
some of the nuances of Lambda processing that are applicable, regardless of whether the
delivery endpoint is for Splunk or not. We covered Firehose and Splunk integration in
depth in Chapter 5, Kinesis Firehose, in the Amazon Kinesis Data Firehose Destinations/
Splunk destination section.

Splunk's website defines the software as follows: "Splunk makes it simple to collect, analyze,
and act upon the untapped value of the big data generated by your technology infrastructure,
security systems, and business applications – giving you the insights to drive operational
performance and business results."

A simplified version would be stating that Splunk is how we make sense of data in logs.
While building our SmartCity cloud infrastructure, we have primarily focused on Kinesis
services and how to extract the data around our bicycle fleet. But we haven't paid any
attention to our overall cloud infrastructure, which includes things such as the following:

•	 How we analyze if someone is trying to get into our VPC and how to block those
IP addresses (flow logs)

•	 The performance of our EC2 instances or AWS Lambdas (CloudWatch logs)

https://www.base64decode.org/
https://www.base64decode.org/
https://docs.aws.amazon.com/streams/latest/dev/fundamental-stream.html#get-records
https://docs.aws.amazon.com/streams/latest/dev/fundamental-stream.html#get-records

Third-party integrations with Kinesis 279

In this section, we will discuss how to ingest CloudWatch Logs into Kinesis Firehose and
deliver those logs to Splunk. Our overall architecture is depicted in the following diagram:

Figure 8.19 – Log delivery with Kinesis Firehose

We use CloudWatch subscriptions (1) to send CloudWatch Logs events to the Firehose
delivery stream (2). To optimize throughput, CloudWatch will encode the logs to base64
and compressed them into GZIP format. Splunk HEC (4) can't accept compressed format,
so we will use AWS Lambda (3) to decompress the logs before sending them to Splunk
HEC.

AWS Lambda quota
Lambda's request invocation has a limit of 6 MB for synchronous and 256
KB asynchronous. This defines how much data can be passed back by AWS
Lambda: https://docts.amazonaws.cn/en_us/lambda/
latest/dg/lambda-invocation.html.

https://docts.amazonaws.cn/en_us/lambda/latest/dg/lambda-invocation.html
https://docts.amazonaws.cn/en_us/lambda/latest/dg/lambda-invocation.html

280 Kinesis Integrations

What will inevitably happen is that the amount of compressed data in the Firehose buffer,
when uncompressed by Lambda, will exceed the 6 MB quota allowed for invocation.
Commonly, GZIP compression is at a 1:9 ratio (1 MB compressed results in 9 MB
uncompressed data). At this point, an exception will be thrown by Lambda. Lambda's
request invocation quota is not something that we can call AWS to extend for us, so we
need an alternative solution. Let's see how we can do that.

AWS offers a Serverless Application Template called kinesis-firehose-
cloudwatch-logs-processor that we can use to work around this issue. We
are only going to examine the pertinent code blocks of the solution. You can find the
source code for the full solution here: https://github.com/tmakota/amazon-
kinesis-firehose-cloudwatch-logs-processor/blob/master/index.
js.

Open the GitHub link to the code, and let's step through it. The serverless function will be
invoked by Firehose and sent a batch of compressed data. In Chapter 5, Kinesis Firehose,
we discussed how Firehose sends data, so we are assuming you have familiarized yourself
with it. The following diagram describes what happens when Kinesis sends compressed
data to AWS Lambda, how that data is chunked, and how it is sent back to Kinesis to avoid
the 6 MB quota imposed by AWS Lambda:

Figure 8.20 – Handling more than 6 MB of data with Lambda

https://github.com/tmakota/amazon-kinesis-firehose-cloudwatch-logs-processor/blob/master/index.js
https://github.com/tmakota/amazon-kinesis-firehose-cloudwatch-logs-processor/blob/master/index.js
https://github.com/tmakota/amazon-kinesis-firehose-cloudwatch-logs-processor/blob/master/index.js

Summary 281

Invocation of the serverless function by Firehose (2) starts on line 104 with exports.
handler = (event, context, callback). On line 107, the batch of
data that Firehose sent will be decompressed (3) with decompressed = zlib.
gunzipSync(buffer). If the amount of compressed data being sent by Firehose was,
let's say, 3 MB and the compression ratio is 1:3, then the resulting decompressed data
would be 9 MB, which is well above Lambda's request quota of 6 MB.

Lines 140 through 148 take decompressed data and compose recordsToReingest,
which is roughly 4 MBs in size (4). Line 153 will invoke the function to send
uncompressed data back to Firehose using putRecords(streamName,
recordsToReingest, firehose, resolve, reject, 0, 20). You can set
up the maxAttampts parameter, which is hardcoded as 20, to be a parameter to the
Lambda function.

In turn, the putRecords function will send the decompressed data to Firehose by
invoking client.putRecordBatch() on line 70. Lines 91 through 100 will handle
any retries needed while incrementing maxAttempts; this is the code on line 94;
that is, putRecords(streamName, failed, client, resolve, reject,
attemptsMade + 1, maxAttempts).

In this section, we learned about ingesting large amounts of compressed data, how to
decompress that data using AWS Lambda, and how to work around the AWS Lambda 6
MB request limit using data chunking.

Summary
In this chapter, we learned about the different ways that Kinesis services can work with
other AWS services and non-AWS services. We built a few integrations ourselves, which
exemplified how easy it is to compose solutions using various services that work with
Kinesis.

In addition to what we showed you in this chapter, there are several different ways that
Kinesis services can be used. With additional features being added by AWS on an almost
daily basis, the only limitation is our creativity. We discussed a two-way door approach
for you to adopt as you advance through your AWS cloud journey. AWS services are like
LEGO blocks that we can quickly put together, and if we make a mistake, we can quickly
take them apart to try again. Embrace two-way doors over analysis paralysis.

We are looking forward to you creating new solutions and letting us know about the
unique ways you solved your business problems using Kinesis and AWS Cloud.

282 Kinesis Integrations

Further reading
We covered many different services in this chapter and explained how to integrate them
with Kinesis. Covering these topics in-depth would require another book. Please take
a look at the following links for further references:

•	 How to Stream Data from Amazon DynamoDB to Amazon Aurora using AWS
Lambda and Amazon Kinesis Firehose:

https://aws.amazon.com/blogs/database/how-to-stream-data-
from-amazon-dynamodb-to-amazon-aurora-using-aws-lambda-
and-amazon-kinesis-firehose/

•	 Top 10 performance tuning tips for Amazon Athena:

https://aws.amazon.com/blogs/big-data/top-10-performance-
tuning-tips-for-amazon-athena/

•	 Build a data lake foundation with AWS Glue and Amazon S3:

https://aws.amazon.com/blogs/big-data/build-a-data-lake-
foundation-with-aws-glue-and-amazon-s3/

https://aws.amazon.com/blogs/database/how-to-stream-data-from-amazon-dynamodb-to-amazon-aurora-using-aws-lambda-and-amazon-kinesis-firehose/
https://aws.amazon.com/blogs/database/how-to-stream-data-from-amazon-dynamodb-to-amazon-aurora-using-aws-lambda-and-amazon-kinesis-firehose/
https://aws.amazon.com/blogs/database/how-to-stream-data-from-amazon-dynamodb-to-amazon-aurora-using-aws-lambda-and-amazon-kinesis-firehose/
https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/
https://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/
https://aws.amazon.com/blogs/big-data/build-a-data-lake-foundation-with-aws-glue-and-amazon-s3/
https://aws.amazon.com/blogs/big-data/build-a-data-lake-foundation-with-aws-glue-and-amazon-s3/

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

284 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Machine Learning on AWS

Dr. Saket S.R. Mengle, Maximo Gurmendez

ISBN: 978-1-78934-979-5

•	 Manage AI workflows by using AWS cloud to deploy services that feed smart data
products

•	 Use SageMaker services to create recommendation models

•	 Scale model training and deployment using Apache Spark on EMR

•	 Understand how to cluster big data through EMR and seamlessly integrate it with
SageMaker

https://www.packtpub.com/product/mastering-machine-learning-on-aws/9781789349795

Why subscribe? 285

•	 Build deep learning models on AWS using TensorFlow and deploy them as services

•	 Enhance your apps by combining Apache Spark and Amazon SageMaker

Learn Amazon SageMaker

Julien Simon

ISBN: 978-1-80020-891-9

•	 Create and automate end-to-end machine learning workflows on Amazon Web
Services (AWS)

•	 Become well-versed with data annotation and preparation techniques

•	 Use AutoML features to build and train machine learning models with AutoPilot

•	 Create models using built-in algorithms and frameworks and your own code

•	 Train computer vision and NLP models using real-world examples

•	 Cover training techniques for scaling, model optimization, model debugging, and
cost optimization

•	 Automate deployment tasks in a variety of configurations using SDK and several
automation tools

https://www.packtpub.com/product/learn-amazon-sagemaker/9781800208919

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

http://authors.packtpub.com
http://authors.packtpub.com

Index

A
Access Control Lists (ACLs) 53, 132
AI machine learning services 64
Amazon API Gateway 157
Amazon Aurora

database activity 250-253
Amazon CloudWatch 26
Amazon CloudWatch Events 30
Amazon Connect

about 247
customer obsession principle 247
data streaming flow 248-250
using, with AWS Cloud

Development Kit (CDK) 249
Amazon DynamoDB 157
Amazon Elastic Container

Registry (ECR) 236
Amazon Elastic File System (EFS) 44, 45
Amazon Elasticsearch Service (AES)

about 30, 142, 143
backup 146, 147
buffering 145, 146
data format conversion 146
data transformation 146

delivery failure 146
KDF deployment pattern, of delivering

to AES in VPC 143, 144
security 148-152

Amazon Elasticsearch Service
(AES) destination, information
pre-requisites

about 142
Domain 142
Index 143
Index rotation 143
Type 143

Amazon EventBridge 54, 55
Amazon Identity and Access

Management (IAM) 38
Amazon KDA, for SQL

authentication 34
authorization 34
data delivery guarantees 35
encryption 34
monitoring 34

Amazon Kinesis Agent
data, producing with 87-89

Amazon Kinesis application
options 90

288 Index

Amazon Kinesis Data Analytics for
Apache Flink (KDA Flink) 35, 36

 Amazon Kinesis Data Analytics (KDA)
about 32, 63
discovering 175, 176
for SQL 32-34

Amazon Kinesis Data Firehose (KDF)
about 27-29, 62, 63
authentication 29
authorization 29
delivery destinations 30
encryption 29
monitoring 30
producers 30
transformations 30, 31

Amazon Kinesis Data Streams (KDS)
about 23-25, 62
authentication 25
authorization 25
CloudWatch metrics 107
core requisites 23
data delivery guarantees 26
discovering 71-73
encryption 25
IAM roles, using 110
integrating, with AWS services 26
least-privilege access, implementing 109
monitoring 26
records, consuming 26
records, producing 26
scaling up with 109
securing 109
server-side encryption, implementing

with dependent resources 110
streams, creating with shards 73-78
using, for monitoring 105
using, for scaling 105
X-Ray, tracing with 108

Amazon Kinesis Producer
Library (KPL) 89

Amazon Kinesis Video Streams (KVS)
about 37, 38, 64, 229
consumers 232
key components 229, 230
producers 231
stream 230
video enabled applications,

creating with 240, 241
Amazon Managed Streaming for

Apache Kafka (MSK)
about 48-52
authentication 52
authorization 52
encryption 52
logging 53
monitoring 53

Amazon MQ, for Apache Active MQ
about 44
active/standby brokers 45
cluster deployment 46
network of brokers 45
single-instance brokers 45
single-instance standalone 45
types 44

Amazon MSK 30
Amazon Redshift

about 27, 30, 136
buffering 138, 139
compression 141
connecting to 136, 137
delivery failure 139, 140
security 140, 141

Amazon Rekognition 239, 240
Amazon Relational Database

Service (Amazon RDS) 157
Amazon Resource Name (ARN) 120

Index 289

Amazon S3
about 27, 30, 124
backup 130
buffering 124, 125
compression 126
cross account delivery deployment

patterns, with Kinesis Data
Firehose (KDF) 131-135

delivered objects, S3 encryption 126
delivery failures 129
S3 prefixes, with Kinesis Data

Firehose (KDF) 126-128
security 130

Amazon services
Kinesis data, transforming with 273
used, for producing data to

send to Kinesis 247
Amazon Simple Notification Service (SNS)

about 40-42
application-to-application messaging 43
encryption at rest 43, 44
integrating, with AWS services 43

Amazon Simple Queue Service (SQS)
about 38-40
First-In-First-Out (FIFO) 39
standard 39
types 39

Amazon Web Services (AWS) 85
analytics

value, of real-time data 6-8
Apache Combined Log 5
Apache Common Log 5
Apache Error Log 5
Apache Flink

about 63
URL 190
using, to create operational insights 190

Apache Flink connectors
URL 197

Apache Flink, in AWS Cloud
applications, on KDA 193-197
running, options 192, 193

Apache Hive JSON SerDe 162
Apache Kafka 48
Apache Log 30
Apache ORC 31, 160
Apache Parquet 31, 160
Apache Spark

Kinesis data, processing with 255-259
Apache ZooKeeper 48
application log processing 17
application programming

interfaces (APIs) 116
application-to-application messaging 43
application-to-person messaging 43
Athena

data, querying with 266, 267
setup link 265

audio, codecs
Advanced Audio Coding (AAC) 217
G.711 217
Opus 217

Availability Zone (AZ) 39, 143
AWS CloudTrail 165
AWS Console 237
AWS Greengrass 46
AWS IoT 30
AWS IoT Device Defender 47
AWS IoT SiteWise 47
AWS IoT Things Graph 48
AWS Key Management Service (KMS) 43
AWS/KinesisAnalytics 34
AWS KVS WebRTC Test Page 224-226

290 Index

AWS Lambda
about 39, 184
using to modify input 184, 185

AWS Lambda serverless 90
AWS messaging services

service comparison 57
AWS region 116
AWS Resource Name (ARN) 218
AWS SDK

used, for producing data for
Python (Boto3) 85-87

AWS services
Amazon KDS, integrating with 26
Amazon Simple Notification Service

(SNS), integrating with 43
AWS Web Application Firewall (WAF) 30
AWS Well-Architected Framework

about 64, 65
pillars 64
reference link 64

B
backlog 12, 15
backpressure 10
bicycle-sharing system 60
bike ride analytic applications, building

about 197
KDA Flink application, building 205
KDA SQL application, building 200
producer application, setting up 197-200

bikeshare station data pipeline, with
Kinesis Data Firehose (KDF)

creating 167-171
use-case example 165, 166

Boto3 85
buffering hints 124

C
capacity 9
central processing unit (CPU) 136
Classic Load Balancer (CLB) 154
Classless Inter-Domain

Routing (CIDR) 143
CloudWatch 17
CloudWatch Logs 30
CloudWatch metrics

about 30
for Amazon Kinesis Data

Streams (KDS) 105-107
codecs 216, 217
Command-Line Interface (CLI) 200
Comma Separated Values (CSV) 31, 160
compute node 136
concatenation 117
Connect Agent Events 248
consumers 13
consumer latency 11
consumers, Amazon Kinesis video streams

about 232
GetClip API 232
GetDASHStreamingSessionURL

233, 234
contact trace records (CTRs) 250
container 216
Conway's Law 8
Coordinated Universal Time (UTC) 127
core messaging components

consumers 13
messages (record) 12
overview 12
producers 13
real-time analytics 13
streams 12

Index 291

CROSS JOIN UNNEST 267
customer master key (CMK) 119

D
database activity modes, Amazon Aurora

asynchronous 251
synchronous 251

Datadog 30, 157
data format conversion

deserialization 161
deserializer 161
errors 163
in Kinesis Data Firehose (KDF) 160, 161
schema 163
schema, to interpret data 161
serialization to Parquet or ORC 161
serializer 163

data lake
about 259
data, curating with Glue jobs 267-272

data partitioning 126
data pipelines, with Amazon Kinesis

Data Streams (KDS)
about 100
data pipeline design (full

design) 102, 103
data pipeline design

(intermediate) 101, 102
data pipeline design (simple) 100

data streaming, examples
application log processing 17
Internet of Things 18
real-time recommendations 18
video streams 18

data streams 4

data streams, sources
JSON streams 5
log file streams 5
time-encoded binary streams 6

data transformation, in Kinesis
Data Firehose (KDF)

using, with Lambda function 120-123
dead letter queues (DLQs) 15, 40, 103
delivery stream 115
delivery stream destinations

about 123
Amazon Elasticsearch

Service (AES) 142
Amazon Redshift 136
Amazon S3 124
HTTP endpoint 157
Splunk 152, 153

dependent resources
server-side encryption,

implementing with 110
deserializer

about 161
Apache Hive JSON SerDe 162
OpenX JSON SerDe 161

distributed systems, fundamental
challenges

about 9
fault tolerance 11
high availability 11
latency 11
scaling 10
transactions per second 9, 10

Docker image 232
Domain Name System (DNS) 154
DynamoDB

about 253
data, streaming into Kinesis 254, 255

DynamoDB Streams 253

292 Index

E
EFO consumer

creating, with Lambda 94-96
Elastic Block Store (EBS) 44
Elastic Compute Cloud (EC2) 140
Elastic Internet Protocol (Elastic IP) 140
Elastic IP address 140
Elastic Load Balancer (ELB) 154
Elastic Network Interface (ENI) 51, 140
EMR

using, with EKS 192
Enhanced Fan-Out (EFO) 24, 196
events

routing, with EventBridge 273-278
extract-transform-load (ETL) 13, 27

F
Firehose

data, landing with S3 262, 263
First-In-First-Out (FIFO) 39
fragment 37, 229
frame 37
FreeRTOS 46

G
GetClip API 232
GetClip CLI 232
GetDASHStreamingSessionURL 233, 234
GetMedia 232
GetRecords API 91-93
globally unique identifier (GUID) 153
Glue

using, for ETL 264, 265

Glue jobs
used, for curating data in

data lake 267-272
GStreamer plugin 232
Gzip 126

H
Hadoop-Compatible Snappy 126
Hash Message Authentication

Code (HMAC) 52
hash table 5
HLS Streaming URL 232
HTTP endpoint destination

about 157
buffering 157
data format conversion 158
data transformation 158
delivery failure 158
security 158-160

HTTP Event Collector (HEC) 153
HTTP Live Streaming (HLS) 38

I
IAM roles

using 110
Identity and Access Management

(IAM) 103, 126, 202
ingested records, size

rounding up 117, 118
input mapping 181
Interactive Connectivity

Establishment (ICE) 220
Interactive Connectivity Establishment

(ICE) candidate 220, 221

Index 293

Internet of Things (IoT) 18, 119
Internet Protocol (IP) 238
IoT Core

about 46
analytics services 47, 48
control services 47
device software 46

iterators
types 92

J
Java Database Connectivity (JDBC) 137
JavaScript Object Notation (JSON) 5, 121
JavaScript WebRTC SDK

using 226-228
JMX metrics 53
JSON streams 5

K
Kafka Connect 51
Kafka streams 51
KDA Flink application, building

about 205
JAR file, copying to S3 bucket 206

KDA Flink applications
deploying 207, 208
monitoring 210
securing 209

KDA SQL application, building
about 200, 201
inputs, defining 201-203
SQL for real-time analytics,

creating 204, 205
Key Management Service (KMS) 119
kibibytes (KiB) 116

kilobyte (KB) 117
Kinesis

integrating, with Splunk 278-281
integrating, with third-party 278

Kinesis Consumer Library (KCL) 26
Kinesis data

processing, with Apache Spark 255-259
Kinesis Data Firehose (KDF)

about 103, 115
data format conversion 160
encryption 119, 120
monitoring 164, 165

Kinesis Data Firehose (KDF),
delivery streams

about 116
Direct PUT 116
Kinesis Data Streams (KDS),

as source 117
Kinesis Data Firehose (KDF), metrics

about 164
BytesPerSecondLimit 164
IncomingBytes 164
IncomingPutRequests 164
IncomingRecords 164
KinesisMillisBehindLatest 164
PutRequestsPerSecondLimit 165
RecordsPerSecondLimit 164
ThrottledRecords 165

Kinesis Data Generator (KDG)
setup link 263
using, to produce random data 263, 264

Kinesis Data Streams 248
Kinesis Processing Unit

(KPU) 34, 36, 175, 194
Kinesis Producer Library (KPL) 26, 118
Kinesis umbrella of services

service comparison 56

294 Index

Kinesis video streams with
WebRTC (KVS WebRTC)

about 217
core capabilities 217
core concepts 218
core patterns 218
Interactive Connectivity

Establishment (ICE) 220
Session Description Protocol (SDP) 219
Session Traversal Utilities for

NAT (STUN) 219
signaling channel 218
Traversal Using Relays around

NAT (TURN) 219
KVS Parser Library 232

L
Lambda

EFO consumer, creating 94-96
Lambda function

data transformation, using
in KDF 120-123

Lambda transform 120
leader node 136
least-privilege access

implementing 109
lenses 65
Light Detection and Ranging (LIDAR) 37
lists 5
log file streams 5

M
massively parallel processing (MPP) 136
Matroska Multimedia Container

(MKV) 37, 216
mebibytes (MiB) 116
megabytes (MB) 121
messages

about 12
handling, strategies 116

messaging concepts
about 13, 14
backlogs 15
dead letter queues 15
filtering 16
overview 12
record, processing 16
replay 15
retries 14, 15
timeouts 14

MongoDB 30, 157
MP4 container (MPEG-4 Part 14) 216
MPEG-DASH Streaming URL 232

N
Network Address Translation

(NAT) 38, 221
network file system (NFS) 44
network load balancers (NLB) 46
New Relic 30, 157

Index 295

O
Observe, Orient, Decide, Act

(OODA Loop) 6
online analytical processing (OLAP) 136
OpenX JSON SerDe 161
operational insights, creating with

Apache Flink 190, 191
operational insights, creating

with SQL Engine
about 178, 179
input, modifying with AWS

Lambda 184, 185
inputs, defining 180
KDA SQL key constructs 182, 183
reference data, defining 184
SQL code, streaming 185
SQL schema, defining 181, 182
windows 186
windows type, exploring 186

Optimized Row Columnar (ORC) 127
out of memory (OOM) 36

P
parallel Lambda invocations

batching 97-99
failed records, handling in

batch of 99, 100
performance improvements 97-99

partition key
selecting, strategies 82

partition pruning 126
petabyte (PB) 136
private subnets 140
producer latency 11
producers 13

producers, Amazon Kinesis video streams
about 231, 236
creating, with Android 238
creating, with Docker 236
Docker image 232
integrating, with Amazon

Rekognition 239, 240
low-level SDKs 231
platform SDK 232

Prometheus server 53
propagation delay 11
public subnets 140
PUT payload unit 118
PutRecord APIs

using 79-85
PutRecords APIs

using 79-85
Python (Boto3)

data, producing with AWS
SDK for 85-87

Q
QuickTime file format 216

R
Radio Detection and Ranging

(RADAR) 37
Raspberry PI Raspian 46
real-time analytics 13
real-time data

value, in analytics 6-8
Real-Time Streaming Protocol (RTSP)

live streaming 238
replay 15

296 Index

REpresentational State Transfer
(REST) 142

Resilient Distributed Dataset (RDD) 255
REST Proxy 51
retention period 12
retries 14, 15
RFC3164 Syslog 5
RiderAlert 101
RocksDB 35
runtime properties 35

S
S3 error prefix 127
S3 prefix 127
scalable and reliable analytics pipelines

data ingestion, automating 104
data lineage, establishing 104
designing 103
original sources, preserving of data 104

schema 163
Schema Registry 51
SDP answer 220
SDP offer 220
serializer 163
serializer-deserializer 161
serverless data lake

about 259
architecture 260, 261
optimizing 267

server-side encryption
implementing, in dependent

resources 110
server-side encryption (SSE) 40
Session Description Protocol

(SDP) 218, 219
Session Traversal Utilities for

NAT (STUN) 219

sharding 72
shards

streams, creating with 73-78
signaling channel

about 218
creating 222-224

Simple Notification Service
(SNS) 100, 119

Simple Queue Service (SQS) 100, 103
Simple Storage Service (Amazon S3)

about 63
data, landing with Firehose 262, 263
serverless data storage, creating with 261

SmartCity
about 60
analytics dashboard 63
data lake 63
data pipeline 62
mobile features 61
operations 63
video 64

SmartCity bike share analytics
use cases, working on 176-178

Snappy 126
Snappy compression

reference link 160
snapshot 194
Software Development Kit (SDK) 85
Splunk

about 30
Kinesis, integrating with 278-281

Splunk Cloud 153
Splunk destination

about 152, 153
buffering 153
configuring 155, 156
data format conversion 154
data transformation 154

Index 297

delivery failure 154
Kinesis Data Firehose (KDF)

deployment patterns 154
security 156

Splunk Enterprise 153
SQL Engine

using, to create operational insights 178
standard queues 39
static file

streaming 237
stream, Amazon Kinesis

video streams 230
stream consumer application

batching, with parallel Lambda
invocations 97-99

creating 90, 91
EFO consumer, creating

with Lambda 94-97
GetRecords API, using 91-93
performance, improving with parallel

Lambda invocations 97-99
streaming SQL

about 178
advantages 178

stream producer application
creating 78, 79
producer, optimizing 89

streams
about 12
creating 234, 235
creating, with shards 73-78

Structured Query Language
(SQL) 136, 178

sustainable transportation
mission 60

symmetric multiprocessing (SMP) 136
systems

decoupling 8, 9

T
time-encoded binary streams 6
timeouts 14
Transactions Per Second (TPS) 9, 10
Traversal Using Relays around

NAT (TURN) 38, 219
Trickle ICE protocol 226

V
video

bitrate attribute 215
codecs 216, 217
container 216
fundamentals 215
resolution attribute 215

video, codecs
H.264/Advanced Video

Coding (AVC) 216
H.265/High Efficiency Video

Coding (HEVC) 216
VP8 217

video enabled applications
creating, with Amazon Kinesis

video streams 240, 241
video streams 18
virtual machine (VM) 141
Virtual Private Cloud (VPC) 51, 140

W
Web Real-Time Communication

(Web-RTC) 37, 217
WebRTC connection

creating 224
WebRTC SDKs 226

298 Index

Well-Architected Analytics Lens 102
Well-Architected Framework

Analytics Lens 65
windows

sliding windows 186
staggering windows 188, 189
tumbling windows 188

X
X-Ray

tracing, with Amazon Kinesis
Data Streams (KDS) 108

Z
Zip 126

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Section 1:
Introduction to Data Streaming and Amazon Kinesis
	Chapter 1: What Are Data Streams?
	Introducing data streams
	Sources of data

	The value of real-time data in analytics
	Decoupling systems
	Challenges associated with distributed systems
	Transactions per second
	Scaling
	Latency
	Fault tolerance/high availability

	Overview of messaging concepts
	Overview of core messaging components
	Messaging concepts

	Examples of data streaming
	Application log processing
	Internet of Things
	Real-time recommendations
	Video streams

	Summary
	Further reading

	Chapter 2: Messaging and Data Streaming in AWS
	Amazon Kinesis Data Streams (KDS)
	Encryption, authentication, and authorization
	Producing and consuming records
	Data delivery guarantees
	Integration with other AWS services
	Monitoring

	Amazon Kinesis Data Firehose (KDF)
	Encryption, authentication, and authorization
	Monitoring
	Producers
	Delivery destinations
	Transformations

	Amazon Kinesis Data Analytics (KDA)
	Amazon KDA for SQL
	Amazon Kinesis Data Analytics for Apache Flink (KDA Flink)

	Amazon Kinesis Video Streams (KVS)
	Amazon Simple Queue Service (SQS)
	Amazon Simple Notification Service (SNS)
	Amazon SNS integrations with other AWS services
	Encryption at rest

	Amazon MQ for Apache ActiveMQ
	IoT Core
	Device software
	Control services
	Analytics services

	Amazon Managed Streaming for Apache Kafka (MSK)
	Apache Kafka
	Amazon MSK

	Amazon EventBridge
	Service comparison summary
	Summary

	Chapter 3: The SmartCity
Bike-Sharing Service
	The mission for sustainable transportation
	SmartCity new mobile features
	SmartCity data pipeline
	SmartCity data lake
	SmartCity operations and analytics dashboard
	SmartCity video

	The AWS Well-Architected Framework
	Summary
	Further reading

	Section 2:
Deep Dive
into Kinesis
	Chapter 4: Kinesis Data Streams
	Technical requirements
	Discovering Amazon Kinesis Data Streams
	Creating streams and shards

	Creating a stream producer application
	Creating a stream consumer application
	Data pipelines with Amazon Kinesis Data Streams
	Data pipeline design (simple)
	Data pipeline design (intermediate)
	Data pipeline design (full design)
	Designing for scalable and reliable analytics pipelines
	Monitoring and scaling with Amazon Kinesis Data Streams
	X-Ray tracing with Amazon Kinesis Data Streams
	Scaling up with Amazon Kinesis Data Streams
	Securing Amazon Kinesis Data Streams
	Implementing least-privilege access

	Summary
	Further reading

	Chapter 5: Kinesis Firehose
	Technical requirements
	Setting up the AWS account
	Using a local development environment
	Using an AWS Cloud9 development environment
	Code examples

	Discovering Amazon Kinesis Firehose
	Understanding KDF delivery streams

	Understanding encryption in KDF
	Using data transformation in KDF with
a Lambda function
	Understanding delivery stream destinations
	Amazon S3
	Amazon Redshift
	Amazon Elasticsearch Service
	Splunk destination
	HTTP endpoint destination

	Understanding data format conversion in KDF
	Deserialization
	Schema
	Serializer
	Data format conversion errors

	Understanding monitoring in KDF
	Use-case example – Bikeshare station data pipeline with KDF
	Steps to recreate the example

	Summary
	Further reading

	Chapter 6: Kinesis Data Analytics
	Technical requirements
	AWS account setup
	AWS CDK
	Java and Java IDE
	Code examples

	Discovering Amazon KDA
	Working on SmartCity bike share analytics
use cases
	Creating operational insights using SQL Engine
	Core concepts and capabilities

	Creating operational insights using Apache Flink
	Options for running Flink applications in AWS Cloud
	Flink applications on KDA

	Building bike ride analytic applications
	Setting up a producer application
	Building a KDA SQL application
	Building a KDA Flink application

	Monitoring KDA applications
	Summary
	Further reading
	Blogs
	Workshops

	Chapter 7: Amazon Kinesis Video Streams
	Technical requirements
	AWS account setup
	Using a local development environment
	Code examples

	Understanding video fundamentals
	Containers
	Codecs

	Discovering Amazon Kinesis video streams WebRTC
	Core concepts and connection patterns
	Creating a signaling channel
	Establishing a connection

	Discovering Amazon KVS
	Key components of KVS
	Stream
	Kinesis producer
	Consuming
	Creating a stream
	Producing
	Integration with Rekognition

	Building video-enabled applications with KVS
	Summary
	Further reading

	Section 3:
Integrations
	Chapter 8: Kinesis Integrations
	Technical requirements
	AWS account setup
	AWS CLI
	Kinesis Data Generator
	Code examples

	Amazon services that can produce data to send to Kinesis
	Amazon Connect
	Amazon Aurora database activity
	DynamoDB activity
	Processing Kinesis data with Apache Spark
	Amazon services that consume data from Kinesis
	Serverless data lake

	Amazon services that transform Kinesis data
	Routing events with EventBridge

	Third-party integrations with Kinesis
	Splunk

	Summary
	Further reading
	Why subscribe?

	Other Books You May Enjoy
	Index

