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Preface

These days, organizations have gravitated toward data-driven business. Today, data integration across 
various data sources has become a key driver for businesses. In the cloud, data integration services 
such as AWS Glue do the undifferentiated heavy lifting based on serverless infrastructure. AWS Glue 
helps you to integrate data across different sources and build a data lake at scale in a serverless fashion 
without maintaining infrastructure.

This book shows you how AWS Glue can be used to solve real-world problems, along with teaching 
you about data processing, data integration, and building data lakes. It allows you to learn how to 
perform various aspects of data integration techniques such as data ingestion from various sources, 
data layout optimization, data and metadata management, and data pipeline management. Further, 
it covers data analysis use cases such as ad hoc queries, visualization, and real-time analysis using 
AWS Glue. Additional topics such as CI/CD, data quality validation, data sharing, and data security 
aspects, such as access control, encryption, auditing, and networking, are also covered. Toward the 
end, the book focuses on providing various monitoring options and the best practices for tuning, 
debugging, and troubleshooting.

The book takes you through the AWS Glue features such as jobs, the Data Catalog, crawlers, DataBrew, 
Glue Studio, custom connectors, and so on, in addition to AWS Lake Formation. 

By the end of this book, you will be able to integrate data across different sources and build a data 
platform for scalable analysis using AWS Glue.

Who this book is for
This book is designed for data engineers, ETL developers, and data analysts who want to understand 
how AWS Glue can help to solve their business problems. Basic knowledge of AWS data services is 
assumed. Experience with AWS Glue is also preferred but not required. Even without prior knowledge, 
you can start learning AWS Glue with the book. Most of the features are accompanied by a walkthrough 
to help you understand the concepts that are explained in each chapter. 

What this book covers
Chapter 1, Data Management – Introduction and Concepts, introduces basic concepts associated with 
data management.

Chapter 2, Introduction to Important AWS Glue Features, introduces some important AWS Glue features.
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Chapter 3, Data Ingestion, describes how to ingest data across multiple data stores.

Chapter 4, Data Preparation, describes typical data preparation use cases with both a GUI-based 
approach and a source code-based approach using AWS Glue.

Chapter 5, Designing Data Layouts, describes how to optimize data layout on Amazon S3 using  
AWS Glue.

Chapter 6, Data Management, describes how to manage, clean up, and enrich data using AWS Glue.

Chapter 7, Metadata Management, describes how to populate and maintain metadata based on data 
using AWS Glue.

Chapter 8, Data Security, describes how to secure your data by access control, encryption, auditing, 
and network security using AWS Glue.

Chapter 9, Data Sharing, describes how to share your data across multiple accounts to democratize 
your data lake.

Chapter 10, Data Pipeline Management, describes how to build and orchestrate a data-processing 
pipeline using AWS Glue.

Chapter 11, Monitoring, describes how to monitor a data lake and AWS Glue components.

Chapter 12, Tuning, Debugging, and Troubleshooting, describes the best practices to tune, debug, and 
troubleshoot typical use cases.

Chapter 13, Data Analysis, describes common options to analyze data using AWS analytics services.

Chapter 14, Machine Learning Integration, describes how to utilize your data for a machine learning 
workload.

Chapter 15, Architecting Data Lakes for Real-World Scenarios and Edge Cases, describes end-to-end 
examples of architecting data lakes.

To get the most out of this book
All walkthroughs will require a web browser (Google Chrome, Mozilla Firefox, Microsoft Edge, or 
Safari) installed on a computer in order to use AWS Management Console, and you’ll need an AWS 
account to access the AWS Console and utilize AWS resources. Next to that, you’ll need to install the 
AWS Command Line Interface (AWS CLI) on a computer to run commands:



Download the example code files xv

Not all the chapters’ walkthroughs require an AWS CLI installation. You’ll be informed in each chapter 
when you need further requirements.

If you are using the digital version of this book, we advise you to type the code yourself or access 
the code from the book’s GitHub repository (a link is available in the next section). Doing so will 
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue. If there’s 
an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at  
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book. 
You can download it here: https://packt.link/fTqGe.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “We 
used the glueContext.write_dynamic_frame.from_options() method to write 
the data to Amazon S3.”

A block of code is set as follows:

root

 |-- ColumnA: string (nullable = true)

 |-- ColumnB: string (nullable = true)

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words 
in menus or dialog boxes appear in bold. Here is an example: “This can be done by navigating to 
AWS Glue Studio console | Connectors | Marketplace Connectors and subscribing to Cloudwatch 
Metrics connector for AWS Glue.”

Tips or Important Notes
Appear like this.

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue
https://github.com/PacktPublishing/
https://packt.link/fTqGe
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Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Serverless ETL and Analytics with AWS Glue, we’d love to hear your thoughts! Please 
click here to go straight to the Amazon review page for this book and 
share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1-800-56498-8


Section 1 –   
Introduction, Concepts,  

and the Basics  
of AWS Glue

In this section, you will learn about the basics of AWS Glue and the general trends in data management. 
You will be introduced to the important AWS Glue features and ways to ingest data using AWS Glue 
from heterogeneous sources.

This section includes the following chapters:

• Chapter 1, Data Management – Introduction and Concepts

• Chapter 2, Introduction to Important AWS Glue Features

• Chapter 3, Data Ingestion





1
Data Management – 

Introduction and Concepts

A vast amount of data is being generated by people, organizations, devices, and software applications, 
and the volume of data being generated is growing rapidly. The numbers vary significantly, depending 
on the source, but it is estimated that approximately 60% to 80% of data gathered by organizations is 
dark data. Essentially, data is being collected, processed, and stored for a long time by organizations 
for compliance reasons, but the data is not used for any other purposes, such as analytics or 
direct monetization. In most cases, storing and securing this data can be more expensive than the  
value extracted. 

In today’s digital economy, organizations are striving to be data-driven by basing their strategic 
business decisions on intelligence that’s been obtained from data gathered from various sources. Until 
recently, organizations thought of data purely in the context of transactions and locked it away in 
heavily siloed databases that were built for transaction processing; however, this was not suitable for 
open-ended analysis. All this changed with advancements in data processing techniques and drops 
in the costs involved in processing and analyzing data. Organizations are now adopting data-driven 
approaches for key business decisions.

In this chapter, we will cover the following topics:

• Types of data processing – OLTP and OLAP

• Data warehouses and data marts

• Data lakes

• Data lakehouse

• Data mesh

• Apache Spark on the AWS cloud
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• AWS Glue

• Querying data using AWS 

The topics in this chapter will introduce us to different data management techniques and different 
tools and services offered by the AWS cloud. These concepts will help you understand the different 
design approaches you can take to build effective data integration and management setups that are 
suitable to your use cases when using AWS Glue.

Types of data processing – OLTP and OLAP
Traditionally, data storage systems have been classified as Online Transaction Processing (OLTP) 
and Online Analytical Processing (OLAP). OLTP systems are responsible for day-to-day business 
executions. For instance, when you call your phone carrier’s customer service to add a new value pack 
to your phone plan, the customer service agent quickly pulls up the account information for your 
phone number and adds your desired value pack. The system that’s used by the customer service agent 
is designed to be fast so that the customer wait time can be minimized, which allows the customer 
service agent to be more efficient and serve customers faster. The system is also designed so that it 
updates the data quickly so that a large number of concurrent transactions can be processed. This 
allows the customer service agent to confirm that the value pack has been successfully applied to the 
account. Other examples include banking and shopping applications.

These faster updates are achieved by using a normalized data model. Normalization is the process of 
structuring the dataset as per a set of normal-forms to reduce redundancy and enhance data integrity. 
The normalized data model ensures that you don’t update multiple tables with the same information for 
a user operation. This is done by reducing the redundancy of the data in these systems. For example, 
if a customer updates their preferred_name, we can make this change in one table; the rest of 
the dependent tables will use customer_id to fetch updated information. So, a typical SQL query 
for the CRM application that’s used by the customer service agent contains the customer_id = 
'xxxxxx' expression or data_plan_id = 'xxxxxx' in the WHERE clause.

These OLTP systems are not designed for obtaining or analyzing trends – for example, a query 
for gathering the mobile data usage (volume) of all customers over the last 2 years. Such queries 
involve joining a lot of tables on the OLTP side because of normalizations and usually results in poor 
performance as the amount of data scales up.

This problem can be solved by using OLAP systems. OLAP systems typically use the data warehouse 
of an organization, where they are utilized for executing complex queries over a large amount of data. 
They generally store historical datasets.
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So, while both OLAP and OLTP have different ways of storing data and are designed for different use 
cases, the data on which they operate can be the same – the data is just modeled differently. Since both 
systems work on the same data, the data must be moved from one system to another. OLTP systems 
support live business transactions, so data generally originates there. This data is then brought into 
a data warehouse through an Extract, Transform, Load (ETL) or Extract, Load, Transform (ELT) 
tool so that it can then be consumed by OLAP systems. The following table explains the differences 
between OLTP and OLAP:

Table 1.1 – Differences between OLTP and OLAP

Now that we understand the fundamentals of the OLTP and OLAP models, let’s explore different data 
management systems, such as data warehouses, data marts, data lakes, data lakehouses, and data meshes.

Data warehouses and data marts
In an organization, it is not uncommon for day-to-day operations to be performed and stored in 
several transactional operating systems. However, when higher-level business decisions are to be 
made using data gathered from these systems, it would be easier to collate necessary information 
from these sources and build a centralized repository for datasets to gather actionable intelligence. 

A data warehouse is a centralized repository of data that’s been gathered from various sources within 
an organization. The collated data within this repository is analyzed and can be used to make business 
decisions. A data mart, on the other hand, is a subset of a data warehouse aligned toward a specific 
business unit within an organization. 
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The concept of data warehouses was introduced in the late 1980s. Data warehouses are subject-oriented, 
integrated, time-variant, and non-volatile. This means that data warehouses are designed to be able to 
make sense of the data in a specific subject rather than ongoing operations, such as sales, marketing, 
and HR. Data warehouses are also designed to integrate data for several different source systems, 
such as Enterprise Resource Planning (ERP), Human Resource Management Systems (HRMSs), 
Customer Relationship Management (CRM), Financial Management Systems (FMSs), and any other 
operational systems within an organization. The data within a data warehouse is usually structured, 
but it can be unstructured as well. Data warehouses also allow users to analyze the data at different 
grains of time, such as year, month, and day. The data in data warehouses is non-volatile and 
maintains history. So, changes in the source systems result in newer entries in the data warehouses 
where the new state of the data is used while preserving the old state of the data. 

In Inmon’s top-down data warehousing approach, data architects and modelers start by looking at the 
holistic data landscape of an organization and identifying the main subject areas and entities under 
it. Inmon’s data warehouse is normalized and avoids redundancy. This simplifies the data ingestion 
process but is not optimized for queries. Hence, data marts are built on top of data warehouses and 
users access these data marts for their queries. 

While data marts can be based on a star or snowflake schema, the star schema is generally preferred 
because it results in faster queries due to fewer joins. In 1996, Ralph Kimball introduced the star 
schema methodology to the data management world. This follows the bottom-up approach and creates 
data marts based on the business requirements instead of starting with an enterprise data warehouse.

In a data mart, data is stored at multiple levels and the table at the correct level is picked for processing 
the data. The atomic level by which the facts may be defined is known as the grain or granularity of 
the table. 

For example, let’s consider a retail sales dataset for a retail store chain operating in different countries.  
A customer could buy several products in a single sale and the same customer could buy higher quantities 
of the same product within the same sale. We can have a table that contains region information that 
can be linked to sales and product tables.

So, while selecting a grain, it is beneficial to have the fact table populated with the most atomic grain. 
This allows us to be as granular as we want with the information we query. If we define the grain at 
the sales transaction level, we can query individual sales transactions and get information such as the 
amount per sale, payment method, and so on. However, we won’t be able to get the product information 
in a particular sale. To mitigate this, let’s say we define the grain at the product in a sales transaction 
level. We can query product-related information along with sales information. 

These different levels of pre-computation help us avoid heavy computations at query time. For example, 
if a user is querying for sales_amount at the region level, it might be far easier to select the data 
from the table that contains the sales_amount and region columns. 
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As we can see, data marts are helpful for working with datasets related to a specific context or a business 
line. However, a centralized data warehouse is beneficial when our analysis needs data to be aggregated 
from a variety of sources across the organization to extract actionable intelligence from the dataset.

A fresh approach to data warehousing came with the introduction of data vaults. This is a hybrid 
approach that incorporates the best-normalized model and a denormalized star schema. This approach 
to data modeling can be quite helpful when working with multi-source systems or data sources that 
have constantly changing relationships. This makes it easier to ingest data from multiple sources. Also, 
because of the way the data is modeled, data vaults make it easier to audit and track data.

Data transformation is a requirement for the data to be loaded into a data warehouse. This creates entry 
barriers and lags in delivering value to customers. Generally, organizations have multiple sources of 
data and they must be imported into a data warehouse to make business decisions or even to know if 
it adds value. Later, if the user discovers that combining the data from certain sources is not delivering 
the value that was initially expected, then this results in time and resources being wasted. Also, it is not 
always possible to forecast the analytical requirements in a world where businesses have to constantly 
evolve to stay relevant. What happens if a business user needs historical data that isn’t available in the 
data warehouse? Around 2015, data lakes were created to solve these problems. 

Data lakes
A data lake can be defined as a centralized repository that allows you to store all structured and 
unstructured data at any scale. With today’s hyper scalers providing cheap and durable storage, it is now 
possible for organizations to store all of their data in the cloud without significant cost implications. 
Data lakes are broken down into layers or zones. 

In the first layer of the data lake, data is generally stored as-is. This reduces the entry barrier and enables 
organizations to move all of their data to the “lake” without significantly increasing development or 
maintenance costs. Because the first layer of the data lake is an as-is copy of the data, organizations 
can use an automated configuration-based pipeline to create newer sources. 

Organizations usually pick a replication tool such as AWS Data Migration Service (AWS DMS) to bring 
the data into the data lake. While AWS DMS involves taking care of the replication infrastructure, it is 
mostly a hands-off mechanism for hydrating the lake. Organizations may also use a push mechanism 
to FTP to transfer the files to an AWS Simple Storage Service (S3)-based data lake using AWS 
Transfer Family. 

Data from the first layer is compressed and partitioned, and audited columns are added during data 
preparation so that they can be used by downstream systems more effectively. Having all the data 
in the data lake enables data analysts to do the initial discovery to find out the value of combining 
data from various sources. If the value is discovered, then necessary transformations are applied in 
an ETL pipeline so that the target is hydrated with newer data periodically or through a streaming 
arrangement. These automated transformations are then loaded into the final layer of a data lake and 
used for user consumption.
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Data lakehouse
Challenged by the newer demands to derive value from the vast and ever-increasing unstructured data, 
it became important to come up with a new arrangement that does not try to force unstructured data 
into the strict models of a data warehouse. The data lakehouse blurs the lines between data lakes and 
data warehouses by enabling the atomicity, consistency, isolation, and durability (ACID) properties 
on the data in the data lake and enabling multiple processes to concurrently read and write data. 

With this, transformed data in open formats such as Apache Parquet can be consumed for feature 
engineering and machine learning (ML) workloads and can also be used for analytics.

Data mesh
While cheap, durable storage helped in storing vast volumes of data, this data had to be secured 
properly. Since data from a vast variety of sources is stored in the lake, it becomes difficult to define 
the ownership and management of this data. This requirement resulted in a paradigm of serving data 
as a product and setting the ownership of the product. This thought process led to the creation of 
the data mesh. 

Data meshes ensure that data lakes don’t become another monolith that the organization’s IT teams 
now have to manage. This decentralization leads to the democratization of data, which fuels innovation 
without hindering access to the data. Although data is decentralized and offered as a service, the 
permission model that’s applied to create a data lake ensures interoperability to reduce the barriers 
to accessing data products for users that have the right permissions.

Distributed computing for big data
Before the advent of big data, ELT and ETL tools usually had a server and an orchestrator that was 
responsible for reading the data from the OLTP systems and populating the data warehouse. Some 
of these tools used the compute of these intermediate servers, while others used the compute of the 
target to process the data. Traditionally, these ETL/ELT systems were used to pull data once a day 
and during off-business hours. This was done to reduce the impact of the data being pulled from the 
OLTP systems. When a system required higher data processing capabilities, organizations would scale 
up the ETL/ELT servers.

This arrangement worked fine for a few years but the volume of data kept increasing, and scaling the 
ETL/ELT systems became cost prohibitive. With the world increasingly becoming more data-centric, 
the amount of data produced continued to grow. It is estimated that 90% of the data today has been 
generated in the last 2 years.

Not only has the volume of data increased, but organizations also want to get the data faster for 
quicker decision-making. 
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In a connected world, the number of variables that impact a business decision has increased, so there is 
a need to get data from multiple different sources to make a decision. For example, for a retail company 
to find out the discount to be applied to a certain product, it can no longer just rely on the cost price 
of the product and the profit that it expects from the sale. It would be beneficial to know the cost of 
keeping the product on the shelf before it is sold, along with knowing the approximate time for which 
the product is expected to stay on the shelf. The retail company may also want to know the price of the 
same product on competitor websites, along with the price of similar products with better features.

Here, the cost price can be obtained from the company’s ERP data. The percentage of expected profit 
might be a business transformation logic that uses their “secret sauce.” The cost of keeping the product 
on the shelf will be based on the cumulative sum of all the costs of the store. The approximate duration 
for which the product will be on the shelf might come from an ML model. The price of the same 
product sold by the competitors can be scraped from their websites and the cost of similar products 
with better features can be obtained from third-party market research. So, modern decision-making 
involves making sense of data from a variety of sources.

Big data is a collection of data derived from various sources and is characterized by the volume, 
velocity, variety, veracity, and value of the data. These are known as the 5 V’s of big data. While we 
collect the data from a variety of sources at a certain velocity and volume like never before, we also 
want to make sure that the collected data is accurate and can be trusted. This can be achieved using 
a series of validation steps based on the data being collected. Finally, once we have the trusted data, 
we want to be able to derive value from it.

When importing the data into a data lake or a data warehouse, the old arrangements of scaling up 
do not work, so we must deal with the 5 V’s of big data. The solution to these challenges came in the 
form of distributed computing. 

Distributed computing systems distribute the workload of any given query to multiple workers 
instead of a single worker. The workloads being distributed across multiple worker nodes meant that 
organizations could now add nodes to increase the computing power rather than vertically scaling the 
node. The advantage of this approach is that we can process data on multiple nodes in parallel. This 
allows us to keep up with the high velocity of incoming data where one single node may not be enough. 

With the advent of distributed computing in big data processing and analytics, several engines and 
frameworks were developed to handle different aspects of data processing and analysis. One of the 
most popular processing and analytics engines is Apache Spark. 
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Apache Spark

Apache Spark is an open source unified analytics engine that was originally developed in 2009 at UC 
Berkeley. It became a top-level Apache project in February 2014. It has over 1.7K contributors and 
over 30K star gazers on GitHub. The following is a quote from the Spark documentation (https://
spark.apache.org/docs/latest/index.html):

“Apache Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs 
in Java, Scala, Python, and R, and an optimized engine that supports general execution graphs. It also 
supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing, 
MLlib for machine learning, GraphX for graph processing, and Structured Streaming for incremental 
computation and stream processing.”

At a high level, a Spark cluster consists of a set of executors running a Java Virtual Machine (JVM). 
One of these executors runs the Driver program. This driver program is responsible for creating a 
SparkContext. A SparkContext is the entry point for Spark features. Spark applications are instances 
of this SparkContext, which connects to a Cluster Manager. 

The following diagram shows the workflow that’s used by Apache Spark to execute the workload. 
Here, the user submits the workload using the spark-submit command; then the Spark driver 
coordinates with the Cluster Manager to execute the workload within the executors on the worker nodes:

 

Figure 1.1 – Overview of Apache Spark’s workload execution

A Cluster Manager can be Spark’s standalone cluster manager, Mesos, Apache Hadoop Yet Another 
Resource Negotiator (YARN), or Kubernetes. Cluster Managers are responsible for allocating 
containers to various Spark applications running on the cluster. With YARN, Spark can run in either 
cluster mode or client mode. 

https://spark.apache.org/docs/latest/index.html
https://spark.apache.org/docs/latest/index.html
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In client mode, the driver program runs on the machine that submitted the Spark Job. In cluster mode, 
the driver program runs on one of the executors. Executors are responsible for executing the tasks 
that are sent through SparkContext and run in YARN’s JVMs containers. When we invoke an 
action in a Spark application, a Spark Job is created. A list of actions available in Spark can be found 
in the Apache Spark documentation (https://spark.apache.org/docs/latest/
rdd-programming-guide.html#actions). To execute a Job, an execution plan must be 
created based on a Directed Acyclic Graph (DAG). 

A DAG scheduler converts the logical execution plan into a physical execution plan. A DAG consists 
of stages. A Spark stage is a set of independent tasks all computing the same function that is needed 
as part of a Spark Job. Each stage is further divided into tasks. All of these tasks can be run in parallel 
on the CPU cores of the executors. Once Spark acquires the executors, SparkContext sends the 
tasks to the executors to perform.

Spark also has a component called SparkSQL which allows users to write SQL queries for data 
transformation. SparkSQL is enabled by the Catalyst and Tungsten engines. 

Catalyst is responsible for creating a physical plan from a logical plan, while Tungsten is responsible 
for generating the byte code that will be executed on the cluster.

This new architecture of data processing came with challenges. Organizations now had to quickly 
develop a new skill set to manage clusters of nodes that were used for data processing. Also, what do 
you do with all these ETL compute nodes when they are not used for processing?

Apache Spark on the AWS cloud

The problem of unused compute resources was solved by the hyperscalers of the world. One of the 
leading hyperscalers is AWS. AWS has two offerings for managed Spark: Amazon EMR and AWS 
Glue. With Amazon EMR, customers get higher control of the underlying compute and can run 
Spark workloads on Amazon EC2 instances, on Amazon Elastic Kubernetes Service (EKS) clusters, 
or on-premises using EMR on AWS Outposts. Customers can also work with other open source 
tools such as Apache Spark, Apache Hive, Apache HBase, Apache Flink, Apache Hudi, and Presto 
on Amazon EMR.

AWS Glue 
On August 14, 2017, AWS released a new service called AWS Glue. AWS Glue is a serverless data 
integration service. AWS Glue also provides some easy-to-use features that almost eliminate the 
administrative overhead of infrastructure management and simplify how common data integration 
tasks can be integrated. 

https://spark.apache.org/docs/latest/rdd-programming-guide.html#actions
https://spark.apache.org/docs/latest/rdd-programming-guide.html#actions
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Let’s look at some of the notable components of the AWS Glue feature set: 

• AWS Glue DataBrew: Glue DataBrew is used for data cleansing and enrichment through 
another GUI. Creating AWS Glue DataBrew Jobs does not require the user to write any source 
code and the Jobs are created with the help of a GUI. 

• AWS Glue Data Catalog: AWS Glue Data Catalog is a central catalog of metadata that can be 
used with other AWS services such as Amazon Athena, Amazon Redshift, and Amazon EMR. 

• AWS Glue Connections: Glue Connections are catalog objects that help organize and store 
connection information to various data stores. AWS Glue Connections can also be created for 
Marketplace AWS Glue Connectors, which allows you to integrate with third-party data stores, 
such as Apache Hudi, Google Big Query, and Elastic Search.

• AWS Glue Crawlers: Crawlers can be used to crawl existing data and populate an AWS Glue 
Data Catalog with metadata. 

• AWS Glue ETL Jobs: Glue ETL Jobs enables users to extract source data from various data 
stores, process it, and write output to a data target based on the logic defined in the ETL 
script. Users can take advantage of Apache Spark-based ETL Jobs to handle their workload in 
a distributed fashion. Glue also offers Python shell Jobs for ETL workloads; these don’t need 
distributed processing.

• AWS Glue Interactive Sessions: Interactive sessions are managed interactive environments 
that can be used to develop and test AWS Glue ETL scripts. 

• AWS Glue Schema Registry: AWS Glue Schema Registry allows users to centrally control data 
stream schemas and has integrations with Apache Kafka, Amazon Kinesis, and AWS Lambda. 

• AWS Glue Triggers: AWS Glue Triggers are data catalog objects that allow us to either manually 
or automatically start executing one or more AWS Glue Crawlers or AWS Glue ETL Jobs.

• AWS Glue Workflows: Glue Workflows can be used to orchestrate the execution of a set of 
AWS Glue Jobs and AWS Glue Crawlers using AWS Glue Triggers. 

• AWS Glue Blueprints: Blueprints are useful for creating parameterized workflows that can be 
created and shared for similar use cases. 

• AWS Glue Elastic Views: Glue Elastic Views helps users replicate the data from one store to 
another using familiar SQL syntax. 

This book will focus on learning about AWS Glue, diving deep into the features listed here, and learning 
about how these features help solve the data problems of the modern world. We will also learn about 
the fundamental concepts of AWS LakeFormation, which are important for securely managing and 
administering the data assets of an organization.
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Querying data using AWS

At the beginning of this chapter, we focused on various ways to collect and organize the data from 
various systems to enable various downstream workloads, such as feature engineering, data exploration, 
and analytics. While data lakes and data meshes have reduced the entry barrier to democratize data, 
you may still need to access data from various purpose-built stores. 

Today’s applications are built around the microservice architecture, which allows teams to split 
vertically based on their functionality and scale independently. Organizations may have their two 
pizza teams working on different microservices. Each of these teams is independent and can pick its 
own purpose-built data stores to support its application. 

In an ideal world, data from all of these purpose-built stores should flow into the data lake, but this 
might not always be the case. In a world where the speed of decision-making is paramount, data 
analysts may want to access the data and combine it even before the data starts hydrating the data lake.

This requirement led to the need for modern tools to support querying data across multiple different 
sources. In the AWS ecosystem, both Amazon Athena and Amazon Redshift allow you to query data 
across multiple data stores. 

While using Amazon Athena to query S3 data cataloged in AWS Glue Catalog is quite common, 
Amazon Athena can also be used to query data from Amazon CloudWatch Logs, Amazon DynamoDB, 
Amazon DocumentDB, Amazon RDS, and JDBC-compliant relational data sources such MySQL and 
PostgreSQL under the Apache 2.0 license using AWS Lambda-based data source connectors. Athena 
Query Federation SDK can be used to write a customer connector too. These connectors return data 
in Apache Arrow format. Amazon Athena uses these connectors and manages parallelism, along with 
predicate pushdown. 

Similarly, Amazon Redshift also supports querying Amazon S3 data through Amazon Redshift 
Spectrum. Redshift also supports querying data in Amazon RDS for PostgreSQL, Amazon Aurora 
PostgreSQL-Compatible Edition, Amazon RDS for MySQL, and Amazon Aurora MySQL-Compatible 
Edition through its Query Federation feature. Amazon Redshift offloads part of the computations to 
the target data stores and uses its parallel processing capabilities for the query’s operation.

To handle the undifferentiated heavy lifting, AWS Glue introduced a new feature called AWS Glue 
Elastic Views. It allows users to use familiar SQL. It combines and materializes the data from various 
sources into the target. Since AWS Glue Elastic Views is serverless, users do not have to worry about 
managing the underlying infrastructure or keeping the target hydrated.
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Summary
In this chapter, we discussed data collection practices that are used by organizations and the issue of 
dark data. We also discussed different storage and processing techniques, such as OLTP and OLAP, 
and how organizations are using a combination of these two techniques to extract value from the data 
gathered. We briefly discussed the evolution of data management strategies such as data warehousing, 
data lakes, the data lakehouse, and data meshes and the role played by ETL and ELT processes in 
ingesting data into OLAP systems for analysis. 

Then, we introduced the Apache Spark framework and talked about how Spark executes workloads 
by dividing them into different Spark Jobs, stages, and tasks. After this, we discussed different services 
in the AWS cloud that can be used to execute Spark workloads. We introduced AWS Glue and the 
different features available in Glue that make it a full-fledged data integration platform and not just 
a managed ETL service. 

In the next chapter, we will discuss the different microservices that are available in AWS Glue and how 
they work. We will also focus on some Glue-specific features/enhancements that make AWS Glue an 
ideal service for your data integration workloads. 



2
Introduction to Important AWS 

Glue Features

In the previous chapter, we talked about the evolution of different data management strategies, such 
as data warehousing, data lakes, the data lakehouse, and data meshes, and the key differences between 
each. We introduced the Apache Spark framework, briefly discussed the Spark workload execution 
mechanism, learned how Spark workloads can be fulfilled on the AWS cloud, and introduced AWS 
Glue and its components. 

In this chapter, we will discuss the different components of AWS Glue so that we know how AWS 
Glue can be used to perform different data integration tasks. 

Upon completing this chapter, you will be able to define data integration and explain how AWS Glue 
can be used for this. You will also be able to explain the fundamental concepts related to different 
features of AWS Glue, such as AWS Glue Data Catalog, AWS Glue connections, AWS Glue crawlers, 
AWS Glue Schema Registry, AWS Glue jobs, AWS Glue development endpoints, AWS Glue interactive 
sessions, and AWS Glue triggers.

In this chapter, we will cover the following topics:

• Data integration

• Integrating data with AWS Glue

• Features of AWS Glue

Now, let’s dive into the concepts of data integration and AWS Glue. We will discuss the key components 
and features of AWS Glue that make it a powerful data integration tool. 
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Data integration 
Data integration is a complex operation that involves several tasks – data discovery, ingestion, 
preparation, transformation, and replication. Data integration is the very first step in deriving 
insights from data so that data can be shared across the organization for collaboration and faster 
decision-making. 

The data integration process is often iterative. Upon completing a particular iteration, we can query 
and visualize the data and make data-driven business decisions. For this purpose, we can use AWS 
services such as Amazon Athena, Amazon Redshift, and Amazon QuickSight, as well as some other 
third-party services. The process is often repeated until the right quality data is obtained. We can set 
up a job as part of our data integration workflow to profile the data obtained against a specific set 
of rules to ensure that it meets our requirements. For instance, AWS Glue DataBrew offers built-in 
capabilities to define data quality rules and allows us to profile data based on our requirements. We 
will be discussing AWS Glue DataBrew Profile jobs in detail in Chapter 4, Data Preparation. Once 
the right quality data is obtained, it can be used for analysis, machine learning (ML), or building 
data applications. 

Since data integration helps drive the business forward, it is a critical business process. This also means 
there is less room for error as this directly impacts the quality of the data that’s obtained, which, in 
turn, impacts the decision-making process.

Now, let’s briefly explore how data integration can be simplified using AWS Glue.

Integrating data with AWS Glue
AWS Glue was initially introduced as a serverless ETL service that allows users to crawl, catalog, 
transform, and ingest data into AWS for analytics. However, over the years, it has evolved into a fully-
managed serverless data integration service. 

AWS Glue simplifies the process of data integration, which, as discussed earlier, usually involves 
discovering, preparing, extracting, and combining data for analysis from different data stores. These 
tasks are often handled by multiple individuals/teams with a diverse set of skills in an organization. 

As mentioned in the previous section, data integration is an iterative process that involves several 
steps. Let’s take a look at how AWS Glue can be used to perform some of these tasks.
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Data discovery

AWS Glue Data Catalog can be used to discover and search data across all our datasets. Data Catalog 
enables us to store table metadata for our datasets and makes it easy to query these datasets from 
several applications and services. AWS Glue Data Catalog can not only be used by AWS services such 
as AWS Glue, AWS EMR, Amazon Athena, and Amazon Redshift Spectrum, but also by on-premise 
or third-party product implementations that support the Hive metastore using the open source AWS 
Glue Data Catalog Client for Apache Hive Metastore (https://github.com/awslabs/
aws-glue-data-catalog-client-for-apache-hive-metastore). 

AWS Glue Crawlers enable us to populate the Data Catalog with metadata for our datasets by crawling 
the data stores based on the user-defined configuration. 

AWS Glue Schema Registry allows us to manage and enforce schemas for data streams. This helps 
us enhance data quality and safeguard against unexpected schema drifts that can impact the quality 
of our data significantly.

Data ingestion

AWS Glue makes it easy to ingest data from several standard data stores, such as HDFS, Amazon S3, 
JDBC, and AWS Glue. It allows data to get ingested from SaaS and custom data stores via custom 
and marketplace connectors.

Data preparation

AWS Glue enables us to de-duplicate and cleanse data with built-in ML capabilities using its FindMatches 
feature. With FindMatches, we can label sets of records as either matching or not matching and the 
system will learn the criteria and build an ETL job that we can use to find duplicate records. We will 
discuss FindMatches in detail in Chapter 14, Machine Learning Integration. 

AWS Glue also enables us to interactively develop, test, and debug our ETL code using AWS Glue 
development endpoints, AWS Glue interactive sessions, and AWS Glue Jupyter Notebooks. Apart 
from notebook environments, we can also use our favorite IDE to develop and test ETL code using 
AWS Glue development endpoints or AWS Glue local development libraries. 

AWS Glue DataBrew provides an interactive visual interface for cleaning and normalizing data without 
writing code. This is especially beneficial to novice users who do not have Apache Spark and Python/
Scala programming skills. AWS Glue DataBrew comes pre-packed with over 250 transformations that 
can be used to transform data as per our requirements.

Using AWS Glue Studio, we can develop highly scalable Apache Spark ETL jobs using the visual 
interface without having in-depth knowledge of Apache Spark.

https://github.com/awslabs/aws-glue-data-catalog-client-for-apache-hive-metastore
https://github.com/awslabs/aws-glue-data-catalog-client-for-apache-hive-metastore


Introduction to Important AWS Glue Features18

Data replication

The Elastic Views feature of AWS Glue enables us to create views of data stored in different AWS data 
stores and materialize them in a target data store of our choice. We can create materialized views by 
using PartiQL to write queries. 

At the time of writing, AWS Glue Elastic Views currently supports Amazon DynamoDB as a source. 
We can materialize these views in several target data stores, such as Amazon Redshift, Amazon 
OpenSearch Service, and Amazon S3. 

Once materialized views have been created, they can be shared with other users for use in their 
applications. AWS Glue Elastic Views continuously monitors changes in our dataset and updates the 
target data stores automatically.

In this section, we mentioned several AWS Glue features and how they aid in different data integration 
tasks. In the next section, we will explore the different features of AWS Glue and understand how they 
can help implement our data integration workload.

Features of AWS Glue
AWS Glue has different features that appear disjointed, but in reality, they are interdependent. Often, 
users have to use a combination of these features to achieve their goals. 

The following are the key features of AWS Glue: 

• AWS Glue Data Catalog

• AWS Glue Connections

• AWS Glue Crawlers and Classifiers

• AWS Glue Schema Registry

• AWS Glue Jobs

• AWS Glue Notebooks and interactive sessions 

• AWS Glue Triggers

• AWS Glue Workflows

• AWS Glue Blueprints

• AWS Glue ML

• AWS Glue Studio

• AWS Glue DataBrew

• AWS Glue Elastic Views
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Now that we know the different features and services involved in executing an AWS Glue workload, 
let’s discuss the fundamental concepts related to some of these features. 

AWS Glue Data Catalog

A Data Catalog can be defined as an inventory of data assets in an organization that helps data 
professionals find and understand relevant datasets to extract business value. A Data Catalog acts as 
metadata storage (or a metastore) that contains metadata stored by disparate systems. This can be used 
to keep track of data in data silos. Typically, the user is expected to provide information about data 
formats, locations, and serialization deserialization mechanisms, along with the query. Metastores 
make it easy for us to capture these pieces of information during table creation and can be reused 
every time the table is used. Metastores also enable us to discover and explore relevant data in the 
data repository using metastore service APIs. The most popular metastore product that’s used widely 
in the industry is Apache Hive Metastore.

AWS Glue Data Catalog is a persistent metastore for data assets. The dataset can be stored anywhere 
– AWS, on-premise, or in a third-party provider – and Data Catalog can still be used. AWS Glue Data 
Catalog allows users to store, annotate, and share metadata in AWS. The concept is similar to Apache 
Hive Metastore; however, the key difference is that AWS Glue Data Catalog is serverless and there is 
no additional administrative overhead in managing the infrastructure.

Traditional Hive metastores use relational database management systems (RDBMSs) for metadata 
storage – for example, MySQL, PostgreSQL, Derby, Oracle, and MSSQL. The problem with using 
RDBMS for Hive metastores is that relational database servers need to be deployed and managed. If 
the metastore is to be used for production workloads, then we need to factor high availability (HA) 
and redundancy into the design. This will increase the complexity of the solution architecture and the 
cost associated with the infrastructure and how it’s managed. AWS Glue Data Catalog, on the other 
hand, is fully managed and doesn’t have any administrative overhead (deployment and infrastructure 
management). 

Each AWS account has one Glue Data Catalog per AWS region and is identified by a combination 
of catalog_id and aws_region. The value of catalog_id is the 12-digit AWS account 
number. The value of catalog_id remains the same for each catalog in every AWS region. For 
instance, to access the Data Catalog in the North Virginia AWS region, aws_region must be set to 
'us-east-1' and the value of the catalog_id parameter must be the 12-digit AWS account 
number – for example, 123456789012. 

AWS Glue Data Catalog is comprised of the following components:

• Databases

• Tables

• Partitions

Now, let’s dive into each of these catalog item types in more detail.
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Databases 

A database is a logical collection of metadata tables in AWS Glue. When a table is created, it must be 
created under a specific database. A table cannot be present in more than one database. 

Tables

A table in a Glue Data Catalog is a resource that holds the metadata for any given dataset. The following 
diagram shows the metadata of a table stored in the Data Catalog:

Figure 2.1 – Metadata of a table stored in a Data Catalog

All tables contain information such as the name, input format, output format, location, and schema of 
the dataset, as well as table properties (stored as key-value pairs – primarily used to store table statistics, 
the compression format, and the data format) and Serializer-Deserializer (SerDe) information such 
as SerDe name, the serialization library, and SerDe class parameters. 



Features of AWS Glue 21

The SerDe library information in the table’s metadata informs the query processing engine of which 
class to use to translate data between the table view and the low-level input/output format. Similarly, 
InputFormat and OutputFormat specify the classes that describe the original data structure 
so that the query processing engine can map the data to its table view. At a high level, the process 
would look something like this:

• Read operation: Input data | InputFormat | Deserializer | Rows

• Write operation: Rows | Serializer | OutputFormat | Output data

Table Versions
It is important to note that AWS Glue supports versioning catalog tables. By default, a new version 
of the table is created when the table is updated. However, we can use the skipArchive 
option in the AWS Glue UpdateTable API to prevent AWS Glue from creating an archived 
version of the table. Once the table is deleted, all the versions of the table will be removed as well.

Partitions

Tables are organized into partitions. Partitioning is an optimization technique by which a table is further 
divided into related parts based on the values of a particular column(s). A table can have a combination 
of multiple partition keys to identify a particular partition (also known as partition_spec). 

For instance, a table for sales_data can be partitioned using the country, category, year, 
and month columns.

The following is an example query for this: 

SELECT * 

FROM sales_data 

WHERE country='US' AND category='books' AND year='2021' AND 
month='10'

Over time, as data grows, the number of partitions that can be added to a table can grow significantly 
based on the partition keys defined in the table. Fetching metadata for all these partitions can introduce 
a huge amount of latency. To address this issue, Glue allows users to add indexes for partition keys (refer 
to https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.
html) and when the GetPartitions API is called by the query processing engine with  
a particular query expression, the API will try to return a subset of partitions instead of all partitions. 
By default, if partition indexes are not defined on a table, the GetPartitions API will return all 
the partitions and perform filtering on the returned API response. 

https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html
https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html
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Now, let’s consider an example database setup, as shown in the following diagram. If partition indices 
idx_1, idx_2, and idx_3 are not defined, all the partitions in the table are returned when the 
GetPartitions API is called on the table_1 or table_2 table in the catalog_database 
database. However, if the partition indices are defined, only the partitions for a specific table with 
indices that match the values passed in the query will be returned. This reduces the effort involved 
by the query engine in fetching partition metadata:

Figure 2.2 – Structure of AWS Glue Data Catalog

Limitations of Using Partition Indexes
Once a partition index has been added to a table in Glue Data Catalog, index keys’ data types 
will be validated for all new partitions added to this table. It is important to make sure the values 
for the columns listed as partition indexes adhere to the data type defined in the schema. If this 
is not the case, the partition won’t be created. Once a table has been created, the names, data 
types, and the order of the keys registered as part of the partition index cannot be modified.

Now that we understand the fundamentals of AWS Glue Data Catalog, in the next section, we’ll explore 
AWS Glue connections and understand how they enable communication with VPC/on-premise  
data stores. 
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Glue connections 

AWS Glue connections are resources stored in AWS Glue Data Catalog that contain connection 
information for a given data store. Typically, an AWS Glue connection contains information such as 
login credentials, connection strings (URIs), and VPC configuration (VPC subnet and security group 
information), which are required by different AWS Glue resources to connect to the data store. The 
contents of an AWS Glue connection differ from one connection type to another.

Aws Glue Connection is a feature available in AWS Glue that is not present in traditional Hive 
Metastores. Connections enable AWS Glue workloads (crawlers, ETL Jobs, development endpoints, 
and interactive sessions) to access data stores that are typically not exposed to the public internet – for 
example, RDS database servers and on-premise data stores. 

Glue users can define connections that can be used to connect to data sources or targets. At the time of 
writing, there are eight types of Glue connections, each of which is designed to establish a connection 
with a specific type of data store: JDBC, Amazon RDS, Amazon Redshift, Amazon DocumentDB, 
MongoDB, Kafka, Network, and Custom/Marketplace connections.

The parameters required for each connection type are different based on the type of data store the 
connection will be used for. For instance, the JDBC connection type requires SSL configuration, JDBC 
URI, login credentials, and VPC configuration. 

The Network connection type is useful when users wish to route the traffic via an Amazon S3 VPC 
endpoint and do not want their Amazon S3 traffic to traverse the public internet. This pattern is 
usually used by organizations for security and privacy reasons. The Network connection type is also 
useful when users wish to establish connectivity to a custom data store (for example, an on-premise 
Elasticsearch cluster) within the ETL job and not define connection parameters in a Glue connection. 

When a Glue connection is attached to any Glue compute resource (Jobs, Crawlers, development 
endpoints, and interactive sessions), behind the scenes, Glue creates EC2 Elastic Network Interfaces 
(ENIs) with the VPC configuration (subnet and security groups) specified by the user. These ENIs 
are then attached to compute resources on the server side. This mechanism is used by AWS Glue to 
communicate with VPC/on-premise data stores. 

Elastic Network Interfaces (ENIs)
An ENI is essentially a virtual network interface that facilitates networking capabilities for 
compute resources on AWS. 
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Let’s use the following diagram to understand how Glue uses ENIs to communicate with  
VPC/on-premise data stores:

Figure 2.3 – VPC-based data store access from AWS Glue using ENIs

Here, when a user makes an API call to execute the AWS Glue workload, the request is submitted to 
the AWS Glue workload orchestration system, which will calculate the amount of compute resources 
required and allocates workers from the worker node fleet. 

If the workload being executed requires VPC connectivity, ENIs are created in the end user AWS 
account and are attached to worker nodes. There is a 1:1 mapping between the worker nodes and the 
ENIs; the worker nodes use these ENIs to communicate with the data stores. These data stores can be 
present in an AWS account or they could be present in the end user’s corporate data center.

ENIs that are created during workload execution are automatically cleared by AWS Glue (this can 
take up to 10 to 15 minutes). AWS Glue uses the same IAM role that’s used for workload execution 
to delete ENIs once the workload has finished executing. If the IAM role is not available during ENI 
deletion (for instance, if the IAM role was deleted immediately after workload execution), the ENIs 
will stay active indefinitely until they are manually deleted by the user.
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Note
It is important to make sure that the subnet being used by the Glue connection has enough IP 
addresses available as each Glue resource creates multiple ENIs (each of which consumes one 
IP address) based on the compute capacity required for workload execution.

At the time of writing, a Glue resource can only use one subnet. If multiple connections with 
different subnets are attached, the subnet settings from the first connection will be used by 
default. However, if the first connection is unhealthy for any reason – for instance, if the 
availability zone is down – then the next connection is used.

In the next section, we will explore Glue Crawlers and classifiers and how they aid in data discovery.

AWS Glue crawlers

A Crawler is a component of AWS Glue that helps crawl the data in different types of data stores, infers 
the schema, and populates AWS Glue Data Catalog with the metadata for the dataset that was crawled. 

Crawlers can crawl a wide variety of data stores – Amazon S3, Amazon Redshift, Amazon RDS, 
JDBC, Amazon DynamoDB, and DocumentDB/MongoDB to name a few. This is a powerful tool 
that’s available for data discovery in AWS Glue. 

Glue Connections for Crawlers
For a crawler to crawl a VPC resource or on-premise data stores such as Amazon Redshift, 
JDBC data stores (including Amazon RDS data stores), and Amazon DocumentDB (MongoDB 
compatible), a Glue connection is required. 

Crawlers are capable of crawling S3 buckets without using Glue connections. However,  
a Network connection type is required if you must keep S3 request traffic off the public internet.

For a crawler with a Glue connection, it is recommended to have at least 16 IP addresses 
available in the subnet. When a connection is attached to a Glue resource, multiple ENIs are 
created to run the workload. 
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Now that we know what data stores are supported by AWS Glue crawlers, let’s explore how they work. 
Take a look at the following diagram:

Figure 2.4 – Workflow of a Glue crawler

The workflow of a crawl can be divided into three stages: 

1. Classification: In this stage, the crawler traverses the input data store and uses classifiers 
(built-in/custom) to classify the source data. When a crawler is created, users can choose one 
or more custom classifiers that will be used by the crawler during classification to identify the 
format of the data to infer the schema. Input data is evaluated against the list of classifiers in the 
same order; the certainty=1.0 value (100% certainty) is returned for the first classifier 
to successfully recognize the data store. This will be used for schema inference. If none of the 
custom classifiers are successful in recognizing the data store, the crawler will move on to 
evaluate the data store against a list of built-in classifiers (https://docs.aws.amazon.
com/glue/latest/dg/add-classifier.html#classifier-built-in). 
Finally, the certainty score decides how the data store is classified. If none of the classifiers 
return certainty=1.0, the output of the classifier with the highest certainty value 
will be used by Glue for table creation. If no classifier returned a certainty value that was 
higher than 0.0, Glue creates a table with the UNKNKOWN classification. The crawler will use 
the selected classifier to infer the schema of the dataset. 

2. Clustering/Grouping: The output from the classification stage is used by the crawler and the data 
is grouped based on crawler heuristics (schema, classification, and other properties). Table or 
partition objects are created based on clustered data using Glue crawler’s internal logic wherein 
schema similarity, compressionType, directory structure, and other factors are considered.

https://docs.aws.amazon.com/glue/latest/dg/add-classifier.html#classifier-built-in
https://docs.aws.amazon.com/glue/latest/dg/add-classifier.html#classifier-built-in
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3. Output: In this stage, the table or partition objects that were created in the clustering stage will 
be written to Glue Data Catalog using Glue API calls. If the table(s) already exists and this is 
the first run of the crawler, a new table with a hash string suffix will be created. However, if the 
crawler is running on an existing catalog table or if this is the crawler’s subsequent run, updates 
to catalog table(s) will be handled according to the crawler’s SchemaChangePolicy settings. 
(In some edge cases, the SchemaChangePolicy property will be ignored and new tables 
and partitions might be created. This depends on the data source type defined in the crawler.) 
The tables created by the crawler are placed in the database that’s been nominated. If no database 
has been set up in the crawler settings, the tables will be placed in the default database.

Note
At the time of writing, the maximum runtime for any crawler is 24 hours. After 24 hours, the 
crawler’s run is automatically stopped with the CANCELLED status.

Users are allowed to specify a table prefix in the crawler’s settings. The length of this prefix 
cannot exceed 64 characters.

The maximum length of the name of the table cannot exceed 128 characters. The crawler 
automatically truncates the names generated to fit this limit.

If the name of the table that’s generated is the same as the name of an existing table, the Glue 
crawler automatically adds a hash string suffix to ensure that the table name is unique.

For Amazon S3 data store crawls, the crawler will read all the files in the path specified by default. The 
crawler will classify each of the files available in the S3 path and persist the metadata to the crawler’s 
service side storage (not to be confused with AWS Glue Data Catalog). Metadata gets reused and the 
new files are crawled during the subsequent crawler runs and the metadata stored on the service side 
is updated as necessary. 

Note
When a new version of an existing file is uploaded to Amazon S3 after a crawl, a subsequent 
crawl will consider this a new file. Then, the new file will be included in the new crawl.

For plain text file formats (CSV, TSV, JSON), it is not feasible to crawl the entire file for larger files 
to evaluate the schema. Therefore, the crawler will read the initial 1 to 10 MB of data of each file, 
depending on the file format, and ensure that at least one record is read (if the record’s size is greater 
than 1 MB). The schema is inferred based on the data read into the buffer. 

For the JDBC, Amazon DynamoDB, and Amazon DocumentDB (with MongoDB compatibility) data 
stores, the stages of the crawler workflow are the same, but the logic that’s used for classification and 
clustering is different for each data store type. The classification of the table(s) is decided based on 
the data store type/database engine. 
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For JDBC data stores, Glue connects to the database server, and the schema is obtained for the tables 
that match the include path value in the crawler settings. Similar logic is used for DocumentDB/
MongoDB data stores and the schema of MongoDB collections is inferred. 

In the next section, we’ll explore some of the key features of AWS Glue crawlers.

Key features of Glue crawlers

AWS Glue crawlers have several features and configuration options that make it easy to discover data 
and populate the Data Catalog. In the following sub-sections, we will look at some of the features of 
AWS Glue crawlers that help optimize the data discovery process.

Data sampling – DynamoDB and DocumentDB/MongoDB

By default, Glue performs a full scan of the DynamoDB table and MongoDB collection to infer the 
schema. This operation can be time-consuming when the table is not a high throughput table. To 
address this issue, we can enable the Data sampling feature. When sampling is enabled, Glue will 
scan a subset of the data rather than perform a full scan.

Data sampling – Amazon S3

By default, Glue will read all the files in the Amazon S3 data store. The Data sampling feature is 
available for Amazon S3 data stores as well. This will reduce crawler runtime significantly. Users 
can specify the number of objects (in a value range of 1 to 249) in each leaf directory to be crawled. 
This feature is helpful when the users have prior knowledge of data formats and the schemas in the 
directories do not change.

Amazon S3 data store – incremental crawl

In Amazon S3, crawlers are used to scan new data and register new partitions in Glue Data Catalog. 
This can be further optimized by enabling the Incremental Crawls feature (https://docs.
aws.amazon.com/glue/latest/dg/incremental-crawls.html). This feature is 
best suited for datasets that have stable schemas. When this feature is enabled, only new directories 
that have been added to the dataset are crawled. This feature can be enabled in the AWS Glue console 
by selecting the Crawl new folders only checkbox.

Amazon S3 data store – table-level specification

While discussing the Clustering/Grouping stage in the crawler workflow, we talked about how crawlers 
use internal logic based on data store properties (schema similarity, compression, and directory structure) 
to decide whether a directory that’s stored in Amazon S3 is a partition or a table. In some use cases, two 
or more tables can have a similar schema, which causes the crawler to mark these tables as partitions 
of the same tables instead of creating separate tables. Using the TableLevelConfiguration 
option in the Grouping policy, we can inform the crawler of where the tables are located and how we 
want the partitions to be created. Let’s consider an example. 

https://docs.aws.amazon.com/glue/latest/dg/incremental-crawls.html
https://docs.aws.amazon.com/glue/latest/dg/incremental-crawls.html
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Imagine that we have the following directory structure in an Amazon S3 bucket: 

s3://myBucket/prefix/data/year=2021/month=10/day=08/hour=12/
file1.parquet

s3://myBucket/prefix/data/year=2021/month=11/day=10/hour=12/
file2.parquet

All the Parquet files in the S3 location have the same schema. If we point the crawler to s3://
myBucket/prefix/data/ and run the crawler, it will create a single table and four partition 
keys – year, month, day, and hour. However, consider a scenario where we want to create separate 
tables for each month. Typically, the solution is to add multiple include_path for the crawler 
to crawl – for example, s3://myBucket/prefix/data/year=2021/month=10/ and 
s3://myBucket/prefix/data/year=2021/month=11/. Now, if there are hundreds 
of such paths and we want to create a table for all of them, it would not be feasible to add all the paths 
to the crawler configuration. 

The same outcome can be achieved by using the Table level feature. We can set the Table Level 
parameter to 5 in crawler output settings. This will instruct the crawler to create the tables at level 5 
from root (which corresponds to month in the directory structure specified previously). Now, the 
crawler will create two tables called month_10 and month_11. 

In this section, we discussed some of the key features of Glue crawlers that can be enabled to enhance 
the performance or precision of the crawler. Please refer to the AWS Glue documentation for an 
exhaustive list of available crawler features. 

Custom classifiers

While discussing the different stages in the crawler workflow, we mentioned it is possible to add 
custom classifiers to Glue crawlers. Classifiers are responsible for determining the file’s classification 
string (for example, parquet) and the schema of the file. When built-in classifiers are not capable 
of crawling the dataset or the table that’s been created requires customization, users can define custom 
classifiers and crawlers that will use the logic defined to create schema based on the type of classifier.

Note
If a custom classifier definition gets changed after a crawl, any data that was previously crawled 
will not be reclassified as the crawler keeps track of metadata for previously crawled data. If a 
mistake was made during classifier configuration, just fixing the classifier configuration will 
not help. The only way to reclassify already classified data is to delete and recreate the crawler 
with the updated classifier attached. 
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At the time of writing, users can define the following types of custom classifiers:

• Grok classifiers: Grok patterns are named sets of regular expressions that can match one line 
of data at a time. When the dataset matches the grok pattern specified, the structure of the 
dataset is determined and the data is tokenized and mapped to fields defined in the pattern 
specified. The GrokSerDe serialization library is used for tables created in Glue Data Catalog.

• XML classifiers: XML classifiers allow users to define the tag in the XML files that contains 
the records. For instance, let’s consider the following XML sample: 

<?xml version="1.0"?>

<catalog>

   <book id="bk101">

      <author>Gambardella, Matthew</author>

      <title>XML Developer's Guide</title>

   </book>

   <book id="bk102">

      <author>Ralls, Kim</author>

      <title>Midnight Rain</title>

   </book>

</catalog>

In this case, using book as the XML row tag will create a table containing two columns – 
author and title. 

Note
It is important to note that an element that holds the record cannot be self-closing. For example, 
<book id="bk102"/> will not parse. Empty elements should have a separate starting 
and closing tag; for example, <book id="bk102"> </book>.

• JSON Classifiers: Using JSON classifiers, users can specify the JSON path where individual 
records are present. This classifier uses JsonPath expressions as input and accesses the 
items in the JSON based on the path specified. The syntax for JsonPath can be found in 
https://docs.aws.amazon.com/glue/latest/dg/custom-classifier.
html#classifier-values-json. 

Let’s consider the following sample JSON dataset: 

{

  "book": [

    {

      "category": "reference",

https://docs.aws.amazon.com/glue/latest/dg/custom-classifier.html#classifier-values-json
https://docs.aws.amazon.com/glue/latest/dg/custom-classifier.html#classifier-values-json
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      "author": "Nigel Rees",

      "title": "Sayings of the Century",

    },

    {

      "category": "fiction",

      "author": "Herman Melville",

      "title": "Moby Dick",

    }

  ]

}

To extract individual books as records, we can use the $.book[*] JSON path.

• CSV Classifiers: CSV classifiers allow users to specify different options to crawl delimited files. 
Users can specify custom delimiters, quote symbols, options about the header, and validations 
(this allows files with a single column – trim whitespace before column identification). 

In the next section, we will discuss the AWS Glue Schema Registry (GSR) and how we can handle 
evolving schemas to stream data stores centrally.

AWS Glue Schema Registry

With organizations’ growing need for real-time analytics, streaming data processing is becoming 
more and more important in an enterprise data architecture. Organizations collect real-time data 
from a wide variety of sources, including IoT sensors, user applications, application/security logs, 
and geospatial services. Collecting real-time data gives organizations visibility into aspects of their 
business and customer activity and enables them to respond to emerging situations. For example, 
sensors in industrial equipment send data to streaming applications. The application monitors the 
data that’s been sent by the sensors and detects any potential faults in the machinery.

Over time, as organizations grow, more data sources (for example, additional sensors or trackers) 
can be used to enrich the data streams with additional information that’s vital to the business. This 
creates a problem for all the downstream applications that already consume these data streams as 
they must be upgraded to handle these schema changes. Schema registries can be used to address the 
issues caused by schema evolution and allow streaming data producers and consumers to discover 
and manage schema changes, as well as adapt to these changes based on user settings. 

GSR is a feature available in AWS Glue that allows users to discover, control, and evolve schema 
for streaming data stores centrally. Glue Schema registries support integrations with a wide variety 
of streaming data stores such as Apache Kafka, Amazon Kinesis Data Streams, Amazon Managed 
Streaming for Apache Kafka (MSK), Amazon Kinesis Data Analytics for Apache Flink, and AWS 
Lambda by allowing users to enforce and manage schemas.
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AWS Glue Schema Registry is fully managed, serverless, and available for users free of cost. At the 
time of writing, GSR supports the AVRO, JSON, and protocol buffer (protobuf) data formats for 
schemas. JSON schema validation is supported by the Everit library (https://github.com/
everit-org/json-schema). 

Note
The AWS Glue Schema Registry currently supports the Java programming language. Java 
version 8 (or above) is required for both producers and consumers.

Schema registries use serialization and deserialization processes to help stream data that producers 
and consumers enforce a schema on records. If a schema is not available in the schema registry, it 
must be registered for use (auto-registration of the schema can be enabled for any new schema to be 
auto-registered). 

Upon registering a schema in the schema registry, a schema version identifier will be issued to the 
serializer. If the schema is already available in the GSR and the serializer is using a newer version of 
the schema, the GSR will check the compatibility rule to make sure that the new version is compatible. 
The schema will be registered as a new version in the GSR. 

When a producer has its schema registered, the GSR serializer validates the schema of the record 
with where the schema is registered. If there is a mismatch, an exception will be returned. Producers 
typically cache the schema versions and match the schema against the versions available in the cache. 
If there is no version available in the cache that matches the schema of the record, GSR will be queried 
for this data using the GetSchemaVersion API. 

If the schema is validated using a version in the GSR, the schema version ID and definition will be 
cached locally by the producer. If the record’s schema is compliant with the schema registered, the 
record is decorated with the schema version ID and then serialized (based on the data format selected), 
compressed, and delivered to the destination. 

Once a serialized record has been received, the deserializer uses the version ID available in the payload 
to validate the schema. If the deserializer has not encountered this schema version ID before, the GSR 
is queried for this and the schema version is cached in local storage. 

If the schema version IDs in the GSR/cache match the version in the serialized record, the deserializer 
decompresses and deserializes the data and the record is handed off to the consumer application. 
However, if the schema version ID doesn’t match the version IDs available in cache or the GSR, the 
consumer application can log this event and move on to other records or halt the process based on 
user configuration. 

https://github.com/everit-org/json-schema
https://github.com/everit-org/json-schema
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SerDe libraries can be added to both producer and consumer applications by adding the 
software.amazon.glue:schema-registry-serde Maven dependency (https://
mvnrepository.com/artifact/software.amazon.glue/schema-registry-
serde). Refer to https://docs.aws.amazon.com/glue/latest/dg/schema-
registry-integrations.html for example producer and consumer implementations.

In the next section, we will explore one of the key components of AWS Glue: ETL jobs. 

AWS Glue ETL jobs

ETL is one of the main components of data integration. Designing an ETL pipeline to ingest and 
transform data can be time-consuming as data grows over time. Setting up, managing, and scaling the 
infrastructure takes up most of the effort in a typical on-premise data engineering project. Glue ETL 
almost eliminates the effort involved in setting up infrastructure as it is fully managed and serverless. 
All the effort involved in setting up hosts, configuration management, and patching is handled behind 
the scenes by the Glue ETL engine so that the user can focus on developing ETL scripts and managing 
the necessary dependencies. Of course, Glue ETL is not a silver bullet that eliminates all the challenges 
involved in running an ETL workload, but with the right design and strategy, it can be a great fit for 
almost all organizations.

At the time of writing, Glue allows users to create three different types of ETL jobs – Spark ETL, Spark 
Streaming, and Python shell jobs. The key differences between these job types are in the libraries/
packages that are injected into the environment during job orchestration on the service side and 
billing practices. 

During job creation, users can use the AWS Glue wizard to generate an ETL script for Spark and 
Spark Streaming ETL jobs by choosing the source, destination, column mapping, and connection 
information. However, for Python shell jobs, the user will have to provide a script. At the time of 
writing, Glue ETL supports Scala 2 and PySpark (Java and R jobs are currently not supported) for 
Spark and Spark Streaming jobs and Python 3 for Python shell jobs. 

When Glue ETL was introduced, Python 2 support was available in Glue ETL v0.9 and 1.0. However, 
since Python 2 was sunsetted by the open source community, ETL job environments that used Python 
2 were phased out. This is specified in the policy available in the Glue EOS milestones documentation 
(https://docs.aws.amazon.com/glue/latest/dg/glue-version-support-
policy.html#glue-version-support-policy-milestones).

Note
AWS Glue allows multiple connections to be attached to ETL jobs. However, it is important to 
note that a Glue job can use only one subnet for VPC jobs. If multiple connections are attached 
to a job, only the first connection is attached to the ETL job. 

https://mvnrepository.com/artifact/software.amazon.glue/schema-registry-serde
https://mvnrepository.com/artifact/software.amazon.glue/schema-registry-serde
https://mvnrepository.com/artifact/software.amazon.glue/schema-registry-serde
https://docs.aws.amazon.com/glue/latest/dg/schema-registry-integrations.html
https://docs.aws.amazon.com/glue/latest/dg/schema-registry-integrations.html
https://docs.aws.amazon.com/glue/latest/dg/glue-version-support-policy.html#glue-version-support-policy-milestones
https://docs.aws.amazon.com/glue/latest/dg/glue-version-support-policy.html#glue-version-support-policy-milestones
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There are some advanced features that users can select during job creation, such as job bookmarks, 
continuous logging, Spark UI, and capacity settings (the number of workers and worker type). Glue 
allows users to inject several job parameters (including Spark configuration parameters) so that they 
can alter the default Spark behavior. 

Glue ETL introduces quite a lot of advanced Spark extensions/APIs and transformations to make it 
easy to achieve complex ETL operations. Let’s look at some of the important extensions/features that 
are unique to Glue ETL. 

GlueContext

The GlueContext class wraps Apache Spark’s SparkContext object and allows you to interact 
with the Spark platform. GlueContext also serves as an entry point to several Glue features – 
DynamicFrame APIs, job metrics, continuous logging, job bookmarks, and more. The GlueContext 
class provides methods to create DataSource and DataSink variables, which is essential in 
reading/writing Glue DynamicFrames. GlueContext is also helpful in setting the number of output 
partitions (the default is 20) in a DynamicFrame when the number of output partitions is below the 
minimum threshold (the default is 10).

GlueContext can be initialized using the following code snippet: 

sc = SparkContext()

glueContext = GlueContext(sc)

Once the GlueContext class has been initialized, we can use the object created to extract the 
SparkSession object: 

spark = glueContext.spark_session

DynamicFrame

DynamicFrame is a key functionality of Glue that enables users to perform ETL operations efficiently. 
As defined in the AWS Glue documentation (https://docs.aws.amazon.com/glue/
latest/dg/glue-etl-scala-apis-glue-dynamicframe-class.html),  
a DynamicFrame is a distributed collection of self-describing DynamicRecord objects (comparable 
to a Row in Spark DataFrame, but DynamicRecords do not require them to adhere to a set schema). 
Since the records are self-describing, DynamicFrames do not require a schema to be created and can 
be used to read/transform data with inconsistent schemas. SparkSQL performs two passes over 
the dataset to read data since a Spark DataFrame expects a well-defined schema for data ingestion – 
the first one to infer the schema from the data source and the second to load the data. Even though 
SparkSQL supports schema inference, it is still limited in its capabilities. Glue infers the schema 
for a given dataset at runtime when required and does not pre-compute the schema. Any schema 
inconsistencies that are detected are encoded as choice (or union) data types that can be later resolved 
to make the dataset compatible with targets that require a fixed schema. 

https://docs.aws.amazon.com/glue/latest/dg/glue-etl-scala-apis-glue-dynamicframe-class.html
https://docs.aws.amazon.com/glue/latest/dg/glue-etl-scala-apis-glue-dynamicframe-class.html
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DynamicFrames can be created using different APIs, depending on the use case. The following syntax 
can be used to create a DynamicFrame using a Glue Data Catalog table in PySpark (documentation on 
this can be found at https://docs.aws.amazon.com/glue/latest/dg/aws-glue-
api-crawler-pyspark-extensions-dynamic-frame-reader.html#aws-glue-
api-crawler-pyspark-extensions-dynamic-frame-reader-from_catalog):

datasource0 = glueContext.create_dynamic_frame.from_
catalog(name_space='my_database', table_name='my_table', 
transformation_ctx='datasource0')

This statement will create a DynamicFrame object called datasource0 for the my_table table 
in the my_database database. This statement will use the GlueContext object, which uses 
the Glue SDK, to connect to Glue Data Catalog and fetch the data store classification and properties 
to create the object. Additionally, users can pass additional options into this statement by using the 
additional_options parameter and a pushdown predicate filter expression to apply filters to 
the dataset while it is being read using the push_down_predicate parameter.

In the preceding source code example, we used the from_catalog method to create datasource0. 
Similarly, DynamicFrames can be created using the following methods: 

• from_options: This method allows users to create DynamicFrames by manually specifying 
the connection type, options, and format. This method provides users with the flexibility to 
customize options for a data store. 

• from_rdd: This method allows users to create DynamicFrames using Spark Resilient 
Distributed Datasets (RDDs).

The DynamicFrame class provides several transformations that are unique to Glue and also allows 
conversion to and from Spark DataFrames. This makes it incredibly easy to integrate the existing 
source code and take advantage of the operations that are available in Spark DataFrames but not yet 
available in Glue DynamicFrames. Users can convert a DynamicFrame into a Spark DataFrame using 
the following syntax: 

df = datasource0.toDF()

Here, datasource0 is the DynamicFrame and df is the Spark DataFrame that was returned.

Similarly, a Spark DataFrame can be converted into a Glue DynamicFrame using the following code 
snippet: 

from awsglue.dynamicframe import DynamicFrame

dyf = DynamicFrame.fromDF(dataframe=df, glue_ctx=glueContext, 
name="dyf")

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-dynamic-frame-reader.html#aws-glue-api-crawler-pyspark-extensions-dynamic-frame-reader-from_catalog
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-dynamic-frame-reader.html#aws-glue-api-crawler-pyspark-extensions-dynamic-frame-reader-from_catalog
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-dynamic-frame-reader.html#aws-glue-api-crawler-pyspark-extensions-dynamic-frame-reader-from_catalog
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Both Spark DataFrames and Glue DynamicFrames are high-level Spark APIs that interact with 
Spark RDDs. That being said, the structure of a DynamicFrame is significantly different from that of 
a DataFrame. 

While a DynamicFrame provides a flexible set of APIs to access and transform datasets, there are some 
areas where DataFrames outshine DynamicFrames. For instance, since DynamicFrames are based on 
raw RDDs and not Spark DataFrames, it does not take advantage of Spark’s catalyst optimizer. This is 
the reason why some aggregation operations (such as joins) perform better with Spark DataFrames 
than Glue DynamicFrames. In such cases, we can convert it into Spark DataFrame to take advantage 
of the performance boost offered by the catalyst optimizer. Also, some functions/classes are only 
available for Spark DataFrames, such as Spark MLlib and SparkSQL functions.

It is important to note that converting a Glue DynamicFrame into a Spark DataFrame requires a full 
Map stage in Spark. This should only be used when necessary. DynamicFrame to DataFrame conversion 
blocks Spark from optimizing workloads based on upstream code and dramatically reduces efficiency. 

Job bookmarks

Bookmarking is a key feature available in Glue ETL that allows users to keep track of data that was 
processed and written. During the next job run, only new data will be processed. This is an extremely 
useful option that helps in processing large datasets that are constantly growing. While specifying the 
syntax for DynamicFrame creation from the Data Catalog table earlier, the transformation_
ctx parameter (https://docs.aws.amazon.com/glue/latest/dg/monitor-
continuations.html#monitor-continuations-implement-context) was 
mentioned in the code snippet. This parameter is used as the identifier for the job bookmark’s state, 
which is persisted across job runs. Job bookmarks are supported for S3 and JDBC-based data stores. 
At the time of writing, the JSON, CSV, Apache Avro, XML, Parquet, and ORC file formats are 
supported with S3 data stores. For an Amazon S3 data source, job bookmarks keep track of the last 
modified timestamp of the objects processed. This information is then persisted in the bookmark storage 
on the service side. During the next jobRun, the information that was collected by the bookmark in the 
previous jobRun will be used to filter out already processed objects; then, new objects are processed. 

Note:
A new version of an already existing object is still considered a new object and will be processed 
in the new jobRun.

At the time of writing, Glue DynamicFrames only support Spark SaveMode.Append mode 
for writes. So, if a new version of an object was added to the data store, there is a possibility of 
data duplication in the target data store. This must be handled by the user with custom logic 
in the ETL script.

https://docs.aws.amazon.com/glue/latest/dg/monitor-continuations.html#monitor-continuations-implement-context
https://docs.aws.amazon.com/glue/latest/dg/monitor-continuations.html#monitor-continuations-implement-context
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For JDBC data stores, job bookmarks use key(s) specified by the user and the order of the keys to track 
the data being processed. If no keys are specified by the user, Glue will use the primary key of the JDBC 
table. It is important to note that Glue will not accept the primary key, which is not sequential (there 
shouldn’t be gaps in the values). In such cases, we just have to specify the column manually as the key 
in the jobBookmarkKeys parameter in additional_options (connection_options 
for the from_options API). This will force Glue to use the key for bookmarking. 

Note – Bookmarking with JDBC Data Stores
If more than one key is specified, Glue will combine the keys to form a single composite key. 
However, if a key is not specified, Glue will use the primary key of the JDBC table as the key 
(only if the key is increasing/decreasing sequentially). If keys are specified by the user, gaps are 
allowed for these keys. However, the keys have to be sorted – either increasing or decreasing. 

GlueParquet

Parquet is one of the most popular file formats used for data analytics workloads. We already know 
that DynamicFrames contain self-describing dynamic records with flexible schema requirements 
– the same principle can be applied while writing parquet datasets. By setting the output format as 
glueparquet, users can take advantage of the custom-built parquet writer, which computes the 
schema dynamically during write operations. 

This writer computes a schema for the dataset that’s available in memory. Performing a pass over the 
dataset in memory is computationally cheaper compared to performing a pass over the data in disk or 
Amazon S3. A buffer is created for each column that’s encountered in this pass and data is inserted into 
these buffers. If the writer comes across a new column, a new buffer is initialized and data is written 
into it. When the file is to be written to the target, the buffers for all the columns are aggregated and 
flushed. This approach helps avoid schema computation during a parquet write to the target. 

This writer can be used by setting format="glueparquet" or format=parquet along 
with the format_option parameter, where useGlueParquetWriter is set to true. The 
data that’s written to the target data store is still in parquet format, however, the writer uses different 
logic to write data to the target. 

It is important to note that the GlueParquet writer only supports schema evolution – that is, 
adding/removing columns – and does not support changing data types for existing columns. The 
glueparquet format can only be used for write operations. To read the data written by this writer, 
we still have to use format=parquet.

Now that we understand the fundamentals of AWS Glue ETL Jobs, we will explore Glue development 
endpoints, which can be used by end users to develop ETL scripts for ETL Jobs.
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Glue development endpoints 

When Glue ETL was introduced, the orchestration service on the service side provisioned Spark clusters 
on-demand and configured them. This approach introduced a significantly high cold-start of about 
10 to 15 minutes (with a timeout of 25 minutes). However, this all changed with the introduction of 
Glue v2.0, which used a different infrastructure provisioning mechanism. This cut down the cold-start 
from 10 to 15 minutes to 10 to 30 seconds (with a timeout of 5 minutes). 

Glue ETL is a heavily customized environment with a lot of proprietary classes and libraries pre-packaged 
and ready for use. Developing Glue ETL scripts proved to be a challenge as Glue ETL was not initially 
designed for instant feedback. One mistake in the ETL script during development can take up to 10 
to 15 minutes for the job to start running – only then will the user be able to see the mistake. This 
can be a bit frustrating and lead to poor developer experience. 

Glue development endpoints were introduced to address this pain point. This feature allows users 
to create an environment for Glue ETL development wherein the developer/data engineer can use 
Notebook environments (Jupyter/Zeppelin), read-eval-print loop (REPL) shells, or IDEs to develop 
ETL scripts and test them instantly using the endpoint. 

Glue development endpoints are essentially long-running Spark clusters that run on the service side 
with all the pre-packaged libraries and dependencies available in the ETL environment ready for use. 
Apache Livy and Zeppelin Daemon are also installed in a development environment, which enables 
users to use Jupyter and Zeppelin notebook environments for ETL script development. 

While Glue development endpoints provided a mechanism for users to develop and test Glue ETL 
scripts, it required users to create and manage development endpoints and notebook servers. Glue 
interactive sessions made this process easier by allowing users to use their own notebook environments. 

In the next section, we’ll explore interactive sessions in more detail.

AWS Glue interactive sessions 

Glue interactive sessions introduced the optimizations that are used for Glue ETL v2.0 infrastructure 
provisioning to development environments. This can be used by users via custom-built Jupyter kernels. 
Glue interactive sessions are not long-running Spark clusters and can be instantaneously created or 
torn down (using the %delete_session magic command). The cold-start duration is significantly 
less (approximately 7 to 30 seconds) compared to development endpoints (10 to 20 minutes). 

Interactive sessions make it easier for users to access the session from Jupyter notebook environments 
hosted anywhere (the notebook server can be running locally on a user workstation as well) with 
minimal configuration. The session is created on-demand when the user starts the session in the 
notebook using the %new_session magic command and can be configured to auto-terminate 
when there is no user activity for a set period (with the %idle_timeout magic variable). 
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To set up Glue interactive sessions, all we need is a Jupyter environment with Python 3.6 or above 
with Glue kernels installed and connectivity to AWS Glue APIs. We can follow the steps available at 
https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions.
html to set up an interactive sessions environment.

The configuration for the interactive session (similar to the ETL job configuration) can be done using 
the magic variables that are available in Glue kernels. An exhaustive list of the magic variables that 
are available in Glue kernels can be found at https://docs.aws.amazon.com/glue/
latest/dg/interactive-sessions-magics.html.

As we can see, with minimal setup, we can start developing ETL scripts from any Jupyter environment, 
so long as Glue kernels are installed and connectivity to Glue APIs is available.

In the next section, we will explore Glue triggers, which allow us to orchestrate complex Glue workloads 
since we can execute Glue jobs or crawlers on-demand, based on a schedule or the outcome of  
a condition.

Triggers

Triggers are Glue Data Catalog objects that can be used to start (manually or automatically) one or more 
crawlers or ETL jobs. Triggers allow users to chain crawlers and ETL jobs that depend on each other.

There are three types of triggers: 

• On-demand triggers: These triggers allow users to start one or more crawlers or ETL jobs by 
activating the trigger. This can be done manually or via an event-driven API call. 

• Scheduled triggers: These time-based triggers are fired based on a specified cron expression. 

• Conditional triggers: Conditional triggers fire when the previous job(s)/crawler(s) satisfy 
the conditions specified. Conditional triggers watch the status of the jobs/crawlers specified – 
success, failed, timeout, and so on. If the list of conditions specified is satisfied, the trigger is fired.

Note
A scheduled/conditional trigger must be in the ACTIVATED state (and not in the CREATED/
DEACTIVATED state) for the trigger to start firing based on a schedule or a specific condition. 
This is the first thing that the user can check if a scheduled/conditional trigger is not firing 
as expected. 

When multiple glue resources are chained using triggers, the dependent job/crawler is started, 
provided that the previous job/crawler was started by a trigger. 

If we are designing a chain of dependent jobs/crawlers, it is important to make sure that all 
the jobs and crawlers in the chain are descendants of the same scheduled/on-demand trigger.

https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions.html
https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions.html
https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions-magics.html
https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions-magics.html
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Triggers can be part of a Glue workflow or they can be independent. We can design a chain of dependent 
jobs and crawlers. However, Glue workflows are preferable while designing complex multi-job ETL 
operations. We will discuss Glue workflows and blueprints in detail later in this book.

Summary
In this chapter, we introduced different AWS Glue microservices, including Glue Data Catalog, 
crawlers, classifiers, connections, ETL jobs, development endpoints, the schema registry, and triggers. 
We also discussed the key features of each of those different microservices to understand how they 
aid in different stages of data integration. 

Then, we explored the structure of Glue Data Catalog, Glue connections, and the mechanisms used 
by crawlers and classifiers for data discovery. We also talked about the different classes/APIs that are 
available in AWS Glue ETL that help with data preparation and transformation. After this, we briefly 
explored development endpoints and interactive sessions, which make it easy for data engineers/
developers to test and write ETL jobs. Then, we explored AWS Glue Triggers and understood how 
they help us orchestrate complex ETL workflows by allowing Glue users to chain crawlers and ETL 
jobs based on specific conditions or a schedule.

In the next chapter, we will discuss some of the key features of AWS Glue ETL jobs in detail and explore 
how they can be used to prepare and ingest data from different types of data stores.



3
Data Ingestion

In the previous chapter, we discussed the fundamental concepts and inner workings of the various 
features/microservices that are available in AWS Glue, such as Glue Data Catalog, connections, crawlers, 
and classifiers, the schema registry, Glue ETL jobs, development endpoints, interactive sessions, 
and triggers. We also explored how AWS Glue crawlers aid in data discovery by crawling different 
types of data stores – Amazon S3, JDBC (Amazon RDS or on-premises databases), and DynamoDB/
MongoDB/DocumentDB infer the schema and populate AWS Glue Data Catalog. While discussing 
Glue ETL in the previous chapter, we introduced a few of the important extensions/features of Spark 
ETL, including GlueContext, DynamicFrame, JobBookmark, and GlueParquet. In 
this chapter, we will see them in action by looking at some examples. 

In this chapter, we will be discussing some of the components of AWS Glue mentioned in the previous 
paragraph – specifically Glue ETL jobs, the schema registry, and Glue custom/Marketplace connectors 
– in further detail and exploring data ingestion use cases, such as ingesting data from file/object 
stores, JDBC-compatible data stores, streaming data sources, and SaaS data stores, to demonstrate 
the capabilities of Glue. We know that AWS Glue supports three different types of ETL jobs – Spark, 
Spark Streaming, and a Python Shell. Each of these job types is designed to handle a specific type 
of workload and the environment in which the workload is executed varies, depending on the type 
of ETL job. For instance, Python Shell jobs allow users to execute Python scripts as a shell in AWS 
Glue. These jobs run on a single host on the server side. Spark/Spark Streaming ETL, on the other 
hand, allows you to execute PySpark/Scala-based ETL jobs in a distributed environment and allows 
users to take advantage of Spark libraries to execute ETL workloads.

In the upcoming sections, we will explore how Glue ETL can be used to ingest data from different data 
stores, including file/object stores, JDBC data stores, Spark Streaming data sources, and SaaS data stores.

By completing this chapter, you will be able to articulate and explain the features of AWS Glue ETL 
that help with ingesting data from file/object stores, HDFS, JDBC, Spark Streaming, and SaaS data 
stores and compose ETL scripts for them. You will also be able to explain the mechanism used by 
Glue job bookmarks to perform incremental data ingestion from Amazon S3 object stores and JDBC 
data stores. You will be able to create and use JDBC/custom/Marketplace connectors to ingest data 
from custom JDBC and SaaS data stores. 
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In this chapter, we will cover the following topics:

• Data ingestion from file/object stores

• Data ingestion from JDBC data stores

• Data ingestion from streaming data sources

• Data ingestion from SaaS data stores

Now, let’s explore how we can ingest data from different types of data stores using AWS Glue and the 
salient features of AWS Glue that make it easy to ingest data from data stores.

Technical requirements
To get started with this chapter, you will need a workstation that’s running Linux, macOS, or Windows 
with at least 7 GB of storage and 4 GB of RAM. While the code snippets can be run directly on AWS 
Glue (an AWS account is required to access AWS Glue), you can still run most of the code snippets in 
this chapter on your workstation directly. The code snippets in this chapter are available in this book’s 
GitHub repository at https://github.com/PacktPublishing/Serverless-ETL-
and-Analytics-with-AWS-Glue/tree/main/Chapter03.

There are several options available for setting up the Glue development environment on your 
workstation. Please refer to the AWS Glue documentation at https://docs.aws.amazon.
com/glue/latest/dg/aws-glue-programming-etl-libraries.html  
for instructions regarding each of those options. 

Now, let’s explore how we can ingest data from different types of data stores one by one.

Data ingestion from file/object stores
This is one of the most common use cases for Glue ETL, where the source data is already available 
in file storage or cloud-based object stores. Here, depending on the type of job being executed, the 
methods or libraries used to access the data store differ. 

There are several file/object storage services available today – Amazon S3, HDFS, Azure Storage, 
Google Cloud Storage, IBM Cloud Object Storage, FTP, SFTP, and HTTP(s) to name a few. In 
this section, we will focus on two of the most popular file/object stores that are used with AWS 
Glue – Amazon S3 and HDFS.

Data ingestion from Amazon S3

Data ingestion from Amazon S3 is by far the most commonly used design pattern for ETL in AWS 
Glue. Most organizations already have some mechanism to move data to Amazon S3, typically 
by using the AWS CLI/SDKs directly, AWS Transfer Family (https://aws.amazon.com/
aws-transfer-family/), or some other third-party tools. 

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter03
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter03
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html
https://aws.amazon.com/aws-transfer-family/
https://aws.amazon.com/aws-transfer-family/
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If we are using Python Shell jobs, the user can take advantage of several Python packages that allow 
them to connect to the desired file storage. If the user wishes to read an object from Amazon S3, they 
can use the Amazon S3 Boto3 client to get and read objects using Python packages/functions (for 
example, native Python functions and pandas), depending on the file format. 

The following code snippet can be used with an AWS Glue Python Shell ETL job to read a CSV from an 
Amazon S3 bucket, transform the file from CSV into JSON, and write the output to another Amazon 
S3 location (the source code for this is available in this book’s GitHub repository at https://
github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-
AWS-Glue/tree/main/Chapter03): 

import boto3, io, pandas as pd

client = boto3.client('s3')

# nyc-tlc - https://registry.opendata.aws/

src_bucket = 'nyc-tlc' # SOURCE_S3_BUCKET_NAME

target_bucket = 'TARGET_S3_BUCKET_NAME'

src_object = client.get_object(

    Bucket=src_bucket, 

    Key='trip data/yellow_tripdata_2021-07.csv'

)

# Read CSV and Transform to JSON

df = pd.read_csv(src_object['Body'])

jsonBuffer = io.StringIO()

df.to_json(jsonBuffer, orient='records')

# Write JSON to target location

client.put_object(

    Bucket=target_bucket, 

    Key='target_prefix/data.json', 

    Body=jsonBuffer.getvalue()

)

Here, the source data is a CSV file stored in an Amazon S3 location. The preceding script is downloading 
the data using the get_object() method, which is available in the AWS Python SDK (boto3), 
reading and transforming the CSV file using the pandas library, and writing to a different Amazon 
S3 location using the put_object() method. 

The same source code can be executed in several ways in AWS – any Amazon EC2 instance with 
Python installed, an AWS Lambda function, or within a Docker container using Amazon ECR/AWS 
Batch, to name a few. Out of all the approaches listed, AWS Lambda and AWS Glue Python Shell jobs 
are the only ones that are serverless. Now, the question is, “Why should we use AWS Glue Python Shell 
jobs over AWS Lambda?”

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter03
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter03
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter03
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While AWS Lambda and AWS Glue Python Shell jobs are both capable of running Python scripts, 
Python Shell jobs are designed for ETL workloads and can be orchestrated easier with other Glue 
components such as crawlers, Spark jobs, and Glue triggers using AWS Glue workflows. AWS Lambda 
functions can use a maximum of 512 MB of storage space (the /tmp directory), up to 10,240 MB of 
memory, and up to 6 vCPUs – the functions can run for up to a maximum of 15 minutes. 

Glue Python Shell jobs, on the other hand, use the concept of Data Processing Units (DPUs) for 
capacity allocation, where one DPU provides four vCPUs and 16 GB of memory. Users can use either 
0.0625 DPU or a 1 DPU capacity for Python Shell jobs. Essentially, a Python Shell job can use up to 
four vCPUs and 16 GB of memory and the user can configure the timeout value for Python Shell jobs 
(the default is 48 hours). At the time of writing, Glue Python Shell jobs are allocated 20 GB of disk 
space by default, though this may change in the future.

Now, let’s consider the same ETL operation we performed in the previous script but using AWS Glue 
Spark ETL instead. 

Let’s consider the following code snippets: 

• Using AWS Glue DynamicFrame (code snippet 1): The following code snippet shows how 
to read data from Amazon S3 and write the transformed data to another Amazon S3 location:

dy_frame = glueContext.create_dynamic_frame.from_options(

    connection_type="s3", 

    connection_options = {"paths": ["s3://nyc-tlc/trip 
data/yellow_tripdata_2021-07.csv"]}, 

    format="csv", 

    format_options = {"withHeader": True}

)

datasink = glueContext.write_dynamic_frame.from_options(

    frame = dy_frame, connection_type = "s3", 

    connection_options = {

    "path": "s3://TARGET_BUCKET_NAME/target_prefix/"

    }, 

    format = "json"

)

• Without using AWS Glue DynamicFrame (code snippet 2): The following code snippet 
implements a similar workflow to the previous one, but this time, we will not be using AWS 
Glue DynamicFrames:

df = spark.read.option("header","true").csv("s3://
nyc-tlc/trip data/yellow_tripdata_2021-07.csv")

df.write.json("s3://TARGET_BUCKET_NAME/target_prefix/")
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Now, both of these code snippets are essentially performing the same operations. This begs the question, 
“What is the advantage of using Glue DynamicFrame over a Spark DataFrame?”

As discussed in the previous chapter, DynamicFrames are structurally different from Spark DataFrames 
since they have several optimizations enabled under the hood. 

AWS Glue Spark ETL and EMRFS
In the preceding examples, as you may have noticed, we specified Amazon S3 paths in the 
s3://BUCKET_NAME/prefix format to read or write data. Notice that the s3:// 
protocol string was used instead of s3a:// or s3n://, which you may have seen examples 
of in the Spark documentation or blog articles online. 

Under the hood, AWS Glue ETL (Spark) uses an EMRFS (https://docs.aws.amazon.
com/emr/latest/ReleaseGuide/emr-fs.html) driver by default to read from 
Amazon S3 data stores when the path begins with the s3:// URI scheme (class: com.
amazon.ws.emr.hadoop.fs.EmrFileSystem), regardless of whether Apache 
Spark DataFrames or AWS Glue DynamicFrames are used. The EMRFS driver was originally 
developed for Amazon EMR and has been since adopted by AWS Glue for Amazon S3 reads 
and writes from Glue Spark ETL. 

While users can still use s3a:// (class: org.apache.hadoop.fs.s3a.
S3AfileSystem) and s3n:// (class: org.apache.hadoop.fs.s3native.
NativeS3FileSystem) to read from Amazon S3 data stores, it is strongly discouraged 
as different classes would be used to read the data store and bypass configuration properties, 
as well as making optimizations that have been set up on the server side. 

In addition, it is important to note that NativeS3FileSystem (s3n://) has reached 
End-of-Life (EoL) and must not be used.

Schema flexibility

Since DynamicRecords are self-describing, a schema is computed on the fly and there is no need to 
perform an additional pass over the source data. 

Advanced options for managing schema conflicts

DynamicFrames make it easier to handle schema conflicts by introducing ChoiceType whenever 
a schema conflict is encountered instead of defaulting to the most compatible data type (usually, this 
is StringType). For instance, if one of the columns has integer/long values and string values, 
Spark infers it as StringType by default. However, Glue creates ChoiceType and allows the 
user to resolve the conflict.

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-fs.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-fs.html
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Let’s consider an example where the Provider Id column has StringType and numeric 
(LongType) values. When the data is read using a Spark DataFrame, the column will be inferred 
as StringType by Spark:

root

 |-- ColumnA: string (nullable = true)

 |-- ColumnB: string (nullable = true)

Now, when the same dataset is read using AWS Glue DynamicFrames, the column is represented with 
ChoiceType and lets the user decide how to resolve the type conflict:

root

 |-- ColumnA: string

 |-- ColumnB: choice

 |    |-- long

 |    |-- string

When a column is recognized as ChoiceType, the user can resolve the conflict by using the 
ResolveChoice class in Glue. There are four different options for the user to choose from: cast, 
make_cols, make_struct, and project. Let’s take a look:

• cast: The user can cast the column to long using the following statement: 

new_dyf = dyf.resolveChoice(specs = [('ColumnB 
','cast:long')])

The column will use LongType as the data type. For the string values that could not be 
cast to LongType, Glue inserts null values. 

• make_struct: We can convert this into a struct using make_struct, which will 
produce a struct column in the DynamicFrames, with each containing both StringType 
and LongType values. 

• make_cols: This option can be used by the user to create separate columns for each of the 
data types detected. In this instance, two new columns will be produced: ColumnB_long 
and ColumnB_string.

• project: This option can be used when the user is only concerned about retaining values 
of a specific type. In this case, if the project:long action is used, this will result in a 
DynamicFrame where the values that are not long are dropped.

Now that we know how to manage schema conflicts in Glue ETL, let’s explore other features of Glue 
ETL that make it easy for us to transform and ingest data.
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AWS Glue-specific ETL transformations and extensions

Several transformations and ETL actions are unique to Glue DynamicFrames – Unbox, SplitFields, 
ResolveChoice, and Relationalize to name a few. Please refer to the AWS Glue documentation 
at https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-
python.html for an exhaustive list of transformations and extensions supported by DynamicFrames.

Job bookmarks

To take advantage of job bookmarks – a key feature of Glue ETL – it is necessary to use Glue 
DynamicFrames. 

Grouping

We have all come across or heard of a classic problem in big data processing – reading a large number 
of small files. Spark launches a separate task for each data partition for each stage; if the file size is less 
than the block size, Spark will launch one task per file. Consider a scenario where there are billions of 
such files/objects in the data store – this will lead to a huge number of tasks being created, which will 
cause unnecessary delays due to scheduling logic (any given executor can run a finite number of tasks 
in parallel, depending on the number of CPU cores available). Using the Grouping feature in Glue ETL 
(https://docs.aws.amazon.com/glue/latest/dg/grouping-input-files.
html), users can group input files to combine multiple files into a single task. This can be done by 
specifying the target size of groups in bytes with groupSize. Glue ETL automatically enables this 
feature if the number of input files is higher than 50,000. 

For example, in the following code snippet, we are reading JSON data from Amazon S3 while performing 
grouping. This allows us to control the task size rather than letting Spark control the task size based 
on the number of input files:

dy_frame = glueContext.create_dynamic_frame.from_options(

    connection_type="s3", 

    connection_options = {

        'paths': ["s3://s3path/"], 

        'recurse':True, 

        'groupFiles': 'inPartition', 

        'groupSize': '1048576'

    }, format="json")

Note
groupFiles is supported for DynamicFrames that have been created using the csv, ion, 
grokLog, json, and xml formats. This option is not supported for Avro, Parquet, or ORC 
data formats.

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python.html
https://docs.aws.amazon.com/glue/latest/dg/grouping-input-files.html
https://docs.aws.amazon.com/glue/latest/dg/grouping-input-files.html
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Optimizing Amazon S3 reads using S3ListImplementation

When a DynamicFrame, DataFrame, or RDD is created in Spark, Spark creates a list of files in the 
Spark driver memory to be included in the object. Only when the list is completely in memory is 
the object created in Spark. This becomes a problem when we are dealing with a huge number of 
files – the Spark driver will run out of memory and the ETL job will fail. 

Glue provides a mechanism to handle this issue: S3ListImplementation. This allows 
DynamicFrame to lazily load the file listing. S3ListImplementation works by calling the Amazon 
S3 ListObjectsV2 API and fetching the list of objects in batches of 1,000. Job Bookmark and 
Pushdown predicate filters are applied to each batch and the next batch is fetched using the pagination 
token that’s returned in each API response. This process repeats until the job traverses all the files in 
the Amazon S3 path supplied.

The following code snippet demonstrates how we can enable the S3ListImplementation feature in 
Glue DynamicFrames to read data from an Amazon S3 data store:

dyf = glueContext.create_dynamic_frame.from_catalog(

    database = "db_name",

    table_name = "million_files_table",

    transformation_ctx = " dyf",

    additional_options = {

        "useS3ListImplementation": True

    }

)

As you may have observed, this feature is only beneficial when some form of filtering is enabled – Job 
Bookmark or Pushdown predicates. If job bookmarks are not enabled or if the list of files is still bigger 
than what the driver can handle, S3ListImplementation will not help and the job will fail due to the 
driver running out of memory. 

In such cases, the best option is to perform workload partitioning using Bounded Execution or to 
push down partitions further and batch your ETL job, as we will see in the next section.

Workload partitioning with Bounded Execution for Amazon S3 data stores

The Bounded Execution feature was introduced to allow users to mitigate issues originating from 
inefficient Spark scripts, data abnormalities, and in-memory execution of large-scale transformations. 

Workload partitioning allows users to run ETL jobs on unprocessed data with an upper bound on the 
data size or the number of files that can be processed within a job run. For instance, if there are 4,000 
files, the user can set the upper bound for the number of files to 1,000, which will limit the number 
of files that are processed during this JobRun. We can use four separate JobRuns to process the entire 
dataset instead of processing the entire dataset within a single JobRun. 



Data ingestion from file/object stores 49

Note
It is important to use this feature in conjunction with job bookmarks to avoid reprocessing the 
same dataset over and over again. 

This feature can be used when the jobs are failing due to driver or executor memory issues, which can 
occur due to data skew (a hot partition issue), too many objects being listed, or large data shuffles. 

• By the number of files: Bounded Execution can be implemented in AWS Glue ETL to limit 
the data that’s read in an ETL job run to a specific number of files. The following code snippet 
demonstrates how we can implement this:

dyf_4000 = glueContext.create_dynamic_frame.from_catalog(

    database = "db_name",

    tableName = "four_thousand_file_table",

    transformation_ctx = "dyf_4000",

    additional_options = {"boundedFiles": "1000"}

)

• By the volume of data: Bounded Execution can also be implemented to limit the volume of 
data that’s ingested per job run instead of limiting the run to a specified number of files. The 
following code snippet demonstrates how this can be implemented:

dyf_volume = glueContext.create_dynamic_frame.from_
catalog(

    database = "db_name",

    tableName = "four_thousand_file_table",

    transformation_ctx = "dyf_volume",

    # Volume in bytes

    additional_options = {"boundedSize": "1000000000"}

)

Data ingestion from HDFS data stores

While it is true that several features/optimizations in AWS Glue Spark ETL are designed for data 
ingestion from Amazon S3 data stores, it is still possible to ingest data from HDFS data stores (or any 
data store supported by Apache Spark). Data can be read from a Hadoop cluster hosted in on-premises 
data centers or by a third-party provider.
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The following code snippet demonstrates data ingestion from a HDFS location in an Amazon  
EMR cluster: 

df = spark.read.parquet("hdfs://EMR_MASTER:8020/parquet/")

df.write.mode("overwrite").parquet("s3://TARGET/prefix/")

Data ingestion from JDBC data stores
For many organizations hydrating data lakes by ingesting the data from OLTP, data stores are the 
primary use case for using ETL tools/frameworks. Typically, these ETL jobs are run periodically 
to keep the data lake up to date. As discussed in Chapter 1, Data Management - Introduction and 
Concepts, there are quite a few options available in AWS to achieve this outcome. The most popular 
ones are AWS DMS and AWS Glue. 

Users can set up AWS DMS replication instances to capture ongoing changes from the source data store. 
At the time of writing, this feature supports Microsoft SQL Server, PostgreSQL, Oracle, and MySQL 
databases. Please refer to the AWS DMS documentation at https://docs.aws.amazon.com/
dms/latest/userguide/CHAP_Task.CDC.html for more information on this feature.

Another option is to use AWS Glue Spark ETL to read JDBC data stores and move the data to Amazon 
S3 or other target data stores supported by Apache Spark. With this option, users do not need to set up 
replication tasks or instances and AWS Glue Spark ETL supports advanced transformations. AWS Glue 
leverages Apache Spark’s capability of handling JDBC operations and adds quite a few optimizations 
under the hood for JDBC read/write operations. We will be unpacking a few of the key optimizations 
available using examples shortly. 

Let’s consider a simple ETL operation where the job is moving data from a JDBC-compatible data 
store (we will be using a MySQL database for our example here) to the Amazon S3 target location in 
Parquet format. In the following code snippet, we are connecting to a MySQL 5.7 host that is using 
the world_x sample dataset. This is available in the MySQL documentation at https://dev.
mysql.com/doc/world-x-setup/en/:

mysql_options = {

    "url": "jdbc:mysql://DB_HOST:3306/world_x",

    "dbtable": "city",

    "user": "admin",

    "password": "password"

}

dyf = glueContext.create_dynamic_frame.from_options(

    connection_type="mysql",

    connection_options=mysql_options

)

https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Task.CDC.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Task.CDC.html
https://dev.mysql.com/doc/world-x-setup/en/
https://dev.mysql.com/doc/world-x-setup/en/
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sink = glueContext.write_dynamic_frame.from_options(

    frame = dyf, 

    connection_type = "s3", 

    connection_options = {"path": "s3://TARGET/prefix/"}, 

    format = "parquet"

)

A similar outcome can be achieved in AWS Glue Spark ETL using Apache Spark DataFrames instead 
of AWS Glue DynamicFrames:

mysql_options = {

    "url": "jdbc:mysql://DB_HOST:3306/world_x",

    "dbtable": "city",

    "user": "admin",

    "password": "password"

}

df = spark.read \

        .format("jdbc") \

        .option("url", mysql_options["url"]) \

        .option("dbtable", mysql_options["dbtable"]) \

        .option("user", mysql_options["user"]) \

        .option("password", mysql_options["password"]) \

        .load()

df.write.parquet("s3://TARGET/prefix")

Even though both code snippets do the same thing, the second code snippet is missing quite a few 
optimizations that were used by the first code snippet under the hood. 

Both code snippets offer similar performance for smaller datasets. However, when the second code 
snippet is run on a larger dataset, it will run into executor out-of-memory (OOM) issues. This is 
because Apache Spark sets the default value of the fetchsize JDBC option to 0. On the other 
hand, AWS Glue DynamicFrames use a fetchsize value of 1000 rows by default.

The fetchsize parameter informs the JDBC driver of the number of rows to read in one round 
trip. Since the default value for this parameter is 0, the entire table will be read in one round trip. 
This is not a problem for smaller tables that can easily fit into executor on-heap memory space, but 
the same cannot be said for larger tables where the volume of data is larger than the executor heap 
memory allocation; this will lead to executor OOM errors, causing the ETL job to fail. 
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It is important to note that with both of these approaches, Apache Spark connects to the JDBC data 
store over a single connection by default. Considering Spark ETL jobs are executed in a distributed 
environment, a single executor is active while Spark is reading data from the JDBC data store; the 
rest of the executors are idle. To distribute the workload across all the available executors, we can 
parallelize JDBC reads by specifying a few additional parameters. 

Let’s explore how to implement parallel JDBC reads from Glue Spark ETL using DynamicFrames. 
Upon checking the schema for the table we used in the preceding example (city), we can see that 
the table has a primary key ID (integer) and four other string columns – Name, CountryCode, 
District, and Info.

Now, in AWS Glue ETL, we can parallelize JDBC reads using hashexpression – an integer column 
or a WHERE condition that yields an integer value or a hashfield. This is a column (of any data 
type) in the table using which we can partition the dataset. Here, it is preferable to use a key that has 
an even distribution of values. For example, we can use the month column in a transactions table 
to partition the data. However, if one of the months has an extremely high number of transactions, 
then this introduces a data skew and affects performance. 

In our sample dataset, since we have a primary key with integer values, we can use this column as 
our hashexpression and specify the number of partitions desired (hashpartitions). The 
Glue ETL libraries will launch parallel SELECT queries based on the hashpartitions value 
that is set. The following code snippet demonstrates how we can implement input partitioning on 
the same dataset:

mysql_options = {

    "url": "jdbc:mysql://DB_HOST:3306/world_x",

    "dbtable": "city",

    "user": "admin",

    "password": "password",

    "hashexpression": "ID",

    "hashpartitions": '10'}

dyf = glueContext.create_dynamic_frame.from_options(

    connection_type="mysql",

    connection_options=mysql_options

)

sink = glueContext.write_dynamic_frame.from_options(

    frame = dyf, 

    connection_type = "s3", 

    connection_options = {"path": "s3://TARGET/prefix/"}, 

    format = "parquet"

)
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Once we execute the preceding code snippet, AWS Glue ETL will launch 10 SELECT queries in parallel, 
each of which will query a different partition of data while using hashexpression to split the 
data. We can enable MySQL general_log (refer to the instructions outlined in the knowledge 
center article at https://aws.amazon.com/premiumsupport/knowledge-center/
rds-mysql-logs/ for AWS RDS) and check the query history to see this in action: 

Figure 3.1 – Queries generated by AWS Glue ETL when hashpartitions is specified

Based on the query log shown in the preceding screenshot, we can see that the SELECT query looks 
similar to the following template:

SELECT * FROM (select * from table_name WHERE hashexpression % 
hashpartitions = partition_num) as table_name

AWS Glue ETL also executes the same query with an additional condition, WHERE 1=0, before 
executing the actual query. This query returns no results; however, it returns the schema for the partition. 

Similarly, if we use hashfield instead of hashexpression, the query follows a similar pattern 
but instead, the modulo operator will be used on the hash generated based on the hashfield 
column value.

The following is an example query (for partition #0):

SELECT * FROM (select * from city WHERE 
CONV(SUBSTRING(MD5(CONCAT('',CountryCode)), -8, 8), 16, 10) % 
10 = 0) as city

https://aws.amazon.com/premiumsupport/knowledge-center/rds-mysql-logs/
https://aws.amazon.com/premiumsupport/knowledge-center/rds-mysql-logs/
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Based on the queries we’ve executed, we can see that the pattern looks similar to the following template: 

SELECT * FROM (select * from table_name WHERE 
CONV(SUBSTRING(MD5(CONCAT('',hashfield)), -8, 8), 16, 10) % 
hashpartitions = partition_num) as table_name

Now, it is important to note that the sample query or the template mentioned previously is for 
a MySQL database engine. If a different database engine is being queried, the hashing syntax or 
functions used will be completely different. That being said, the overall logic will be similar to the 
example mentioned previously.

JDBC reads from Spark DataFrames can be optimized similarly using the partitionColumn, 
lowerBound, upperBound, and numPartitions parameters – refer to the Apache Spark 
documentation at https://spark.apache.org/docs/3.1.1/sql-data-sources-
jdbc.html for more information on these parameters. Apache Spark will use these parameters 
to create partitions using partitionColumn to parallelize JDBC reads. It is important to note 
that lowerBound and upperBound are just used to decide the partition’s stride; data will not 
be filtered based on these values. 

Now, the difference between the approach used by AWS Glue’s hashexpression- or hashfield-
based partitioning and Apache Spark’s built-in approach is that Apache Spark can split the data using 
the built-in approach without generating hashes. The built-in approach to split the data is more efficient 
during SQL query runtime compared to AWS Glue’s approach as it avoids performing multiple full 
scans of the source table. However, Apache Spark’s approach is vulnerable to data skews, which may 
lead to other performance issues during the ETL job’s runtime. So, it is important to examine the 
dataset and consider the use case before choosing one approach over the other to partition the dataset.

So far, we’ve explored JDBC reads from AWS Glue DynamicFrames using code snippets where we 
created Python dictionaries to define connection properties such as the JDBC URL, username, password, 
database name, and table name. However, it is not recommended to hardcode credentials directly into 
an ETL script. This is not a problem when a catalog table is being used to connect to the JDBC data 
store as JDBC credentials are stored in an AWS Glue connection and can be encrypted using an AWS 
KMS key. However, if the create_dynamic_frame.from_options() method is being 
used to read from the JDBC data store, we can leverage AWS Glue’s integration with AWS Secrets 
Manager to keep JDBC user credentials away from the ETL script. We can store the username and 
password properties in AWS Secrets Manager in the following format: 

{

  "username": "admin",

  "password": "password"

}
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Once the credentials have been stored in AWS Secrets Manager, we can grant permissions to the AWS 
IAM role that’s used by the Glue ETL job to read these credentials (refer to the AWS Secrets Manager 
documentation for sample policies: https://docs.aws.amazon.com/secretsmanager/
latest/userguide/auth-and-access_examples.html#auth-and-access_
examples_read) and make the following change to the connection options in the Python dictionary:

mysql_options = {

    "url": "jdbc:mysql://DB_HOST:3306/world_x",

    "dbtable": "city",

    "secretId": "glue_sec/mysqltestdb" # secret ARN or Name

}

Now, AWS Glue will automatically fetch the username/password combination from AWS Secrets 
Manager when connecting to the JDBC data store. 

It is also possible for users to pass a custom JDBC driver for JDBC data stores that are supported by AWS 
Glue by passing the customJdbcDriverS3Path and customJdbcDriverClassName 
parameters. This option is helpful when users wish to use the advanced version of JDBC compared 
to the one available in the AWS Glue environment by default:

mysql_options = {

    "url": "jdbc:mysql://DB_HOST:3306/world_x",

    "dbtable": "city",

    "customJdbcDriverS3Path":"s3://bucket/pre/mysql8.jar",

    "customJdbcDriverClassName":"com.mysql.cj.jdbc.Driver",

    "secretId": "glue_sec/mysqltestdb" # secret ARN or Name

}

For a list of JDBC data stores supported and the JDBC driver versions available in AWS Glue ETL, 
please refer to the AWS Glue documentation at https://docs.aws.amazon.com/glue/
latest/dg/migrating-version-30.html#migrating-version-30-appendix-
jdbc-driver.

We can also build a custom JDBC connector if the database server engine is not natively supported by 
AWS Glue ETL. In the next section, we will explore how this can be achieved using AWS Glue Studio.

AWS Glue custom JDBC connectors

So far, we have focused on reads/writes for JDBC data store types directly supported by AWS Glue – 
Microsoft SQL Server ("connectionType": "sqlserver"), MySQL ("connectionType": 
"mysql"), Oracle DB ("connectionType": "oracle"), PostgreSQL ("connectionType": 
"postgresql"), and Amazon Redshift ("connectionType": "redshift").

https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples.html#auth-and-access_examples_read
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples.html#auth-and-access_examples_read
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples.html#auth-and-access_examples_read
https://docs.aws.amazon.com/glue/latest/dg/migrating-version-30.html#migrating-version-30-appendix-jdbc-driver
https://docs.aws.amazon.com/glue/latest/dg/migrating-version-30.html#migrating-version-30-appendix-jdbc-driver
https://docs.aws.amazon.com/glue/latest/dg/migrating-version-30.html#migrating-version-30-appendix-jdbc-driver
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However, there are plenty of other JDBC data store types that were not mentioned previously. AWS 
Glue added a feature to AWS Glue Studio that allows users to define custom JDBC connectors. This 
would use either a custom.jdbc or marketplace.jdbc connection type, depending on the 
connector definition in AWS Glue Studio.

Users can create custom JDBC connectors using the Create custom connector option in AWS Glue 
Studio by uploading the JDBC JAR file to S3 and specifying the JDBC class name and base URL.

For instance, if we have to run an ETL workload that reads from MySQL Database v8.0 and use 
advanced parameters that are only supported by MySQL Connector J/8.0, we can create a custom 
connector with different configuration properties. Here, we are using a comma-separated list JDBC 
URL format supported by MySQL Connector J/8.0 and we are defining placeholders (${varName}) 
instead of specifying actual values. The advantage of this approach is that we can reuse connectors to 
create multiple connections.

The following are the parameters we used to create a MySQL Connector J/8.0 custom JDBC connector 
in the AWS Glue Studio management console: 

• Connector S3 URL: s3://bucket/pre/mysql-connector-java-8.0.23.jar

• Name: mysql-8-connector 

• Connector type: JDBC

• Class name: com.mysql.cj.jdbc.Driver

• JDBC URL Base: jdbc:mysql://(host=${host},port=${port}, 
user=${username},password=${password})/${dbname}

• URL parameter delimiter: &

Once the connector has been set up, we can set up a secret in AWS Secrets Manager with the following 
key-value pairs:

{

  "username": "admin",

  "password": "password",

  "engine": "mysql",

  "host": "database.hostname.internal",

  "port": "3306",

  "dbname": "world_x"

}

Once the secret has been set up, we can create a connection (let’s assume the name of the connection 
is mysql-8-connection-rds) in Glue Studio using the connector and select the secret and 
network options (VPC, subnet, and security group). 
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We can use the following AWS Glue DynamicFrame code snippet to read data using the custom JDBC 
connection that was just created: 

dyf = glueContext.create_dynamic_frame.from_options(

    connection_type="custom.jdbc",

    connection_options={

        "dbTable": "city",

        "connectionName": "mysql-8-connection-rds",

    }

)

dyf.toDF().show(truncate=False)

The preceding code snippet will read the dataset from the MySQL 8 database using a custom JDBC 
connector and print the top 20 rows to logs.

Now that we know how we can ingest data from JDBC data stores, in the next section, we will learn 
how to ingest data from streaming data sources such as Apache Kafka and AWS Kinesis.

Data ingestion from streaming data sources
We explored fundamental concepts regarding data ingestion from streaming data sources in the 
previous chapter when we discussed AWS Glue Schema Registry (GSR). In this section, we will learn 
how to implement data ingestion from streaming data sources such as Amazon Kinesis and Apache 
Kafka using AWS Glue Spark ETL. 

Stream processing can be defined as the act of continuously incorporating new data to compute  
a result wherein the input data is unbounded and has no predetermined beginning or end. Apache Spark 
has two components for stream processing: Spark Streaming and Structured Streaming. 

According to the Apache Spark documentation (https://spark.apache.org/docs/3.1.1/
streaming-programming-guide.html), “Spark Streaming is an extension of the core Spark 
API that enables scalable, high-throughput, fault-tolerant stream processing of live data streams.”

Spark Streaming introduces a high-level abstraction layer called a discretized stream (also known 
as a Dstream), which represents a continuous stream of data and exposes a programming model to 
operate on the underlying data in the stream. 

Structured Streaming, on the other hand, is a stream processing engine built on the Spark SQL engine. 
Structured Streaming is known to be both scalable and fault-tolerant and as an added benefit, we 
can express operations on streaming data in the same way we do so for batch data. This extends the 
Dataset and Dataframe APIs with streaming capabilities and uses a declarative model to acquire 
data from a stream or set of streams. 

https://spark.apache.org/docs/3.1.1/streaming-programming-guide.html
https://spark.apache.org/docs/3.1.1/streaming-programming-guide.html
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Stream processing in AWS Glue ETL uses Apache Spark’s Structured Streaming. Streaming ETL in 
AWS Glue allows users to hydrate their data lakes or data warehouses by ingesting streaming data while 
allowing users to take advantage of Glue DynamicFrames. The same set of advanced ETL transforms 
is available in AWS Glue ETL for batch data processing. Glue ETL supports streaming data ingestion 
from Apache Kafka and Amazon Kinesis. Data is read in micro-batches with a specified window size 
(100 seconds by default). 

Unlike Spark batch jobs, Structured Streaming jobs require a schema for the data. We can use a schema 
stored in Glue Data Catalog as the source for the schema so that it can be integrated with the Glue 
Schema Registry.

The following code snippets will show us how to ingest streaming data from an Apache Kafka stream. 
The ETL source code is similar for the AWS Kinesis streaming data source. The key difference is in 
the setup that’s involved in creating a Glue Data Catalog table and the parameters that will be passed. 

Now, the read statement looks almost similar to batch data reads when using a Glue Data Catalog 
table. However, the difference here is that we are creating a DataFrame instead of a DynamicFrame:

df_kafka = glueContext.create_data_frame.from_catalog(

    database = "default", 

    table_name = "kafka_stream", 

    transformation_ctx = "datasource0", 

    additional_options = {

        "startingOffsets": "earliest", 

        "inferSchema": "true"

    }

)

The preceding code snippet looks similar for a Kinesis data stream. However, the only difference 
would be the parameters that are passed in additional_options – we can pass Amazon Kinesis 
connection properties (refer to https://docs.aws.amazon.com/glue/latest/dg/
aws-glue-programming-etl-connect.html#aws-glue-programming-etl-
connect-kinesis for a list of AWS Kinesis properties that can be used) instead of Apache Kafka 
connection properties (refer to https://docs.aws.amazon.com/glue/latest/dg/
aws-glue-programming-etl-connect.html#aws-glue-programming-etl-
connect-kafka for a list of Apache Kafka connection properties that can be used).

The next step is to define a method that will be executed on each micro-batch during stream processing:

def processBatch(data_frame, batchId):

    if (data_frame.count() > 0):

        datasource0 = DynamicFrame.fromDF(

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-kinesis
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-kinesis
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-kinesis
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-kafka
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-kafka
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-kafka
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            data_frame, 

            glueContext, 

            "from_data_frame"

        )

        now = datetime.datetime.now()

        path_datasink1 = "s3://bucket/destination/" + "/
ingest_year=" + "{:0>4}".format(str(now.year)) + "/ingest_
month=" + "{:0>2}".format(str(now.month)) + "/ingest_day=" + 
"{:0>2}".format(str(now.day)) + "/ingest_hour=" + "{:0>2}".
format(str(now.hour)) + "/"

        datasink1 = glueContext.write_dynamic_frame.from_
options(

            frame = datasource0, 

            connection_type = "s3", 

            connection_options = {

                "path": path_datasink1

            }, 

            format = "parquet", 

            transformation_ctx = "datasink1"

        )

In the preceding code snippet, we converted the DataFrame into a DynamicFrame and built the target 
S3 path to write the micro-batch that’s being processed by obtaining the year, month, day, and hour 
values using the datetime Python library. We used the glueContext.write_dynamic_
frame.from_options() method to write the data to Amazon S3. 

Since the preceding code snippet defines a method for writing data to Amazon S3, this method has to 
be called on each micro-batch. This is where Glue ETL’s forEachBatch() method comes into the 
picture. Using this method, we can call the processBatch() method on each micro-batch and 
specify Structured Streaming-related options such as windowSize and checkpointLocation:

glueContext.forEachBatch(

    frame = data_frame_datasource0, 

    batch_function = processBatch, 

    options = {

        "windowSize": "100 seconds", 

        "checkpointLocation": "s3://bucket/checkpoint_loc/"

    }

)
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If our use case requires the data to be transformed in some way, we can implement the DynamicFrame 
transformations that are available in Glue ETL in the processBatch() method after converting 
the DataFrame into a DynamicFrame.

AWS Glue Schema Registry

We introduced AWS GSR in the previous chapter. In this chapter, we will explore how the schema 
registry works in detail. 

AWS GSR is fully managed and serverless and available to users free of cost. At the time of writing, GSR 
supports the AVRO and JSON data formats for the schema. JSON Schema validation is supported via 
the Everit library, which is available at https://github.com/everit-org/json-schema. 

Note
AWS GSR currently supports the Java programming language. Producers and consumers need 
to be running Java 8 or above.

Schema registries use serialization and deserialization processes to help streaming data producers and 
consumers enforce schemas on records. 

If a schema is not available in the schema registry, it must be registered for use (auto-registration of 
the schema can be enabled for any new schema). Upon registering a schema in the schema registry, 
a schema version identifier (version ID) will be issued to the serializer. 

If the schema is already available in GSR and the serializer is using a newer version of the schema, 
GSR will check the compatibility rule to make sure that the new version is compatible. If it is, the 
schema will be registered as a new version in GSR. 

When a producer has its schema registered, the GSR serializer validates the schema of the record with 
the schema that’s been registered. If there is a mismatch, an exception will be returned. Producers 
typically cache the schema versions and match the schema against the versions available in the cache. 
If there is no version available in the cache that matches the schema of the record, GSR will be queried 
for the same using the GetSchemaVersion API. If the schema is validated using a version in GSR, 
the schema version ID and definition will be cached locally by the producer. If the record’s schema is 
compliant with the schema that’s been registered, the record is decorated with the schema version ID 
and then serialized (based on the data format selected), compressed, and delivered to the destination. 

Once a serialized record has been received, the deserializer uses the version ID available in the payload 
to validate the schema. If the deserializer has not encountered this schema version ID before, GSR is 
queried for it and the schema version is cached in local storage. 

https://github.com/everit-org/json-schema
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If the schema version IDs in GSR/the cache match with the version in the serialized record, the 
deserializer decompresses and deserializes the data and the record is handed off to the consumer 
application. However, if the schema version ID doesn’t match the version IDs available in the cache 
or GSR, the consumer application can log this event and move on to other records or halt the process 
based on the user’s configuration. 

SerDe libraries can be added to both producer and consumer applications by adding the software.
amazon.glue:schema-registry-serde Maven dependency (refer to https://
mvnrepository.com/artifact/software.amazon.glue/schema-registry-
serde for more information). Please refer to the AWS GSR documentation at https://docs.
aws.amazon.com/glue/latest/dg/schema-registry-integrations.html 
for example producer and consumer implementations.

In this section, we explored how to ingest data from streaming data sources and understood the 
mechanism that’s used by AWS GSR to centrally manage evolving schemas. 

In the next section, we will learn how to ingest data from SaaS data stores.

Data ingestion from SaaS data stores
So far, we have explored ways to ingest data from file/object stores, JDBC, and streaming data 
sources using AWS Glue ETL. Apart from these methods, organizations can take advantage of 
Marketplace connectors or create their own connectors to ingest data from a data store that is not 
directly supported by AWS Glue ETL. This feature was added to AWS Glue as part of the Glue Studio 
release in December 2020. 

For example, with this new capability, we can take advantage of connectors for Salesforce, SAP, and 
Snowflake. If a connector is not readily available in AWS Marketplace, we can build custom connectors 
so that we can integrate custom-built Spark connectors and Athena Federated Query connectors into 
our ETL jobs. 

Connectors for popular data stores such as Snowflake, SAP, Salesforce, Apache Hudi, Google BigQuery, 
Delta Lake, Elasticsearch, and CloudWatch Logs are readily available on AWS Marketplace. Depending 
on the publisher of a given connector, there might be a subscription fee for connector usage. At the 
time of writing, all the connectors that have been published by AWS on Marketplace are available for 
use at no additional cost. 

If a connector is not available for a data store, users can build a connector and use it in their ETL 
workload. While exploring methods to ingest data from JDBC data stores, we unpacked the process of 
creating custom JDBC connectors. In this section, we will explore how to use a Marketplace connector 
to ingest data from a SaaS product. We will be ingesting data from AWS CloudWatch Logs for our 
example. However, before we can proceed, we will have to set up a connector by subscribing to the 
CloudWatch connector on AWS Marketplace. 

https://mvnrepository.com/artifact/software.amazon.glue/schema-registry-serde
https://mvnrepository.com/artifact/software.amazon.glue/schema-registry-serde
https://mvnrepository.com/artifact/software.amazon.glue/schema-registry-serde
https://docs.aws.amazon.com/glue/latest/dg/schema-registry-integrations.html
https://docs.aws.amazon.com/glue/latest/dg/schema-registry-integrations.html


Data Ingestion62

This can be done by navigating to the AWS Glue Studio console | Connectors | Marketplace Connectors 
and subscribing to Cloudwatch Metrics connector for AWS Glue. For a detailed set of instructions 
for subscribing to Marketplace connectors, please refer to the AWS Glue Studio documentation at 
https://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.
html#subscribe-marketplace-connectors. Once the subscription process is complete, 
a connection will be created in AWS Glue Studio with the name specified during the setup process.

We can use the following code snippet to read metrics data from AWS CloudWatch metrics: 

dyf = glueContext.create_dynamic_frame.from_options(

    connection_type="marketplace.athena",

    connection_options={

        "schemaName": "default",

        "tableName": "metrics",

        "connectionName": "CloudWatchMetricsConnector",

    }

)

Once the metrics data has been read into a DynamicFrame, we can either transform the data or 
write the data straight to the target. In this use case, we’ll write the data to an Amazon S3 location in 
Parquet format and set up a Glue Data Catalog table for the target dataset so that it can immediately 
be queried from Amazon Redshift Spectrum or Amazon Athena:

target = glueContext.getSink(

    path="s3://bucket/target/",

    connection_type="s3",

    updateBehavior="UPDATE_IN_DATABASE",

    partitionKeys=[],

    compression="snappy",

    enableUpdateCatalog=True

)

target.setCatalogInfo(

    catalogDatabase="default", 

    catalogTableName="cw_metrics"

)

target.setFormat("glueparquet")

target.writeFrame(dyf)

https://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html#subscribe-marketplace-connectors
https://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html#subscribe-marketplace-connectors
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The preceding code snippet will write the data to the Amazon S3 target location and create a table 
called cw_metrics in the default database in AWS Glue Data Catalog. 

In this section, we ingested metrics data from AWS CloudWatch for AWS resources in a specific AWS 
Region. Users can ingest data from a data store for which a connector is not readily available by building 
a custom connector using the Apache Spark DataSource API or the Amazon Athena DataSource 
API; detailed instructions and examples are available in aws-samples/aws-glue-samples 
in this book’s GitHub repository at https://github.com/aws-samples/aws-glue-
samples/tree/master/GlueCustomConnectors/development.

Summary
In this chapter, we discussed the methods and different optimization features that can be used in AWS 
Glue ETL to ingest data from file/object stores, JDBC-compatible data stores, and streaming data stores. 
We also explored serialization and deserialization, which are used by AWS GSR to handle evolving 
schemas. Then, we introduced Glue Studio Marketplace connectors, using which we can ingest data 
from SaaS. Finally, we briefly discussed how users can build custom JDBC/Spark/Athena Federated 
Query connectors to ingest data from data stores that are not directly supported by AWS Glue and 
when there is no connector readily available in AWS Marketplace. 

In the next chapter, we will be discussing data preparation strategies. We'll explore different factors 
that can be considered while choosing the right service/tool. We will also discuss the different available 
options: visual data preparation versus source code-/SQL-based data preparation and the different 
transformation classes that are available in AWS Glue ETL to help with preparing data. 

https://github.com/aws-samples/aws-glue-samples/tree/master/GlueCustomConnectors/development
https://github.com/aws-samples/aws-glue-samples/tree/master/GlueCustomConnectors/development




Section 2 –  
Data Preparation, 

Management, and Security

In this section, you will learn about using the right tool (such as Glue Studio, Glue DataBrew, Lambda, 
and EMR) for the right purpose. You will also learn about good data layout practices along with data 
sharing, data security, metadata management, and various ways of orchestration. You will explore the 
common data transformation tasks customers have.

This section includes the following chapters:

• Chapter 4, Data Preparation

• Chapter 5, Designing Data Layouts

• Chapter 6, Data Management

• Chapter 7, Metadata Management

• Chapter 8, Data Security

• Chapter 9, Data Sharing

• Chapter 10, Data Pipeline Management





4
Data Preparation

In the previous chapter, we explored fundamental concepts surrounding data ingestion and how we 
can leverage AWS Glue to ingest data from various sources, such as file/object stores, JDBC data stores, 
streaming data sources, and SaaS data stores. We also discussed different features of AWS Glue ETL, 
such as schema flexibility, schema conflict resolution, advanced ETL transformations and extensions, 
incremental data ingestion using job bookmarks, grouping, and workload partitioning using bounded 
execution in detail with practical examples. Doing so allowed us to understand how each of these 
features can be used to ingest data from data stores in specific use cases. 

In this chapter, we will be introducing the fundamental concepts related to data preparation, different 
strategies that can help choose the right service/tool for a specific use case, visual data preparation, 
and programmatic data preparation using AWS Glue.

Upon completing this chapter, you will be able to explain how to perform data preparation operations in 
AWS Glue using a visual interface and source code. You will also be able to articulate different features 
of AWS Glue DataBrew, AWS Glue Studio, and AWS Glue ETL. You will also be able to write simple 
ETL scripts in AWS Glue ETL to prepare the data using some of the most popular transformations 
and extensions. Finally, you will be able to articulate the importance of planning and the different 
factors that must be taken into consideration while choosing a tool/service to implement a data 
preparation workflow.

In this chapter, we will cover the following topics:

• Introduction to data preparation

• Data preparation using AWS Glue

• Selecting the right service/tool

Now, let’s dive into the fundamental concepts of data preparation and understand how data preparation 
can be done using AWS Glue and the different services/tools we can utilize to perform data preparation 
tasks quite easily.



Data Preparation68

Technical requirements
Please refer to the Technical requirements section in Chapter 3, Data Ingestion, as they are the same 
for this chapter as well. 

In the upcoming sections, we will be discussing the fundamental concepts of data preparation, the 
importance of data preparation, and how we can prepare data using different tools/services in AWS Glue.

Introduction to data preparation 
Data preparation can be defined as the process of sanitizing and normalizing the dataset using  
a combination of transformations to prepare the data for downstream consumers. In a typical data 
integration workflow, prepared data is consumed by analytics applications, visualization tools, and 
machine learning pipelines. It is not uncommon for the prepared data to be ingested by other data 
processing pipelines, depending on the requirements of the consuming entity.

When we consider a typical data integration workflow, quite often, data preparation is one of the 
more challenging and time-consuming tasks. It is important to ensure the data is prepared correctly 
according to the requirements as this impacts the subsequent steps in the data integration workflow 
significantly. 

The complexity of the data preparation process depends on several factors, such as the schema of the 
source data, schema drift, the volume of data, the transformations to be applied to obtain the data in 
the required schema, and the data format, to name a few. It is important to account for these factors 
while planning and designing the data preparation steps of the workflow to ensure the quality of the 
output data and to avoid a garbage in, garbage out (GIGO) situation.

Now that we know the fundamental concepts and the importance of the data preparation steps in a data 
integration workflow, let’s explore how we can leverage AWS Glue to perform data preparation tasks.

Data preparation using AWS Glue
It is normal for data to grow continuously over time in terms of volume and complexity, considering 
the huge number of applications and devices generating data in a typical organization. With this ever-
growing data, a tremendous amount of resources are required to ingest and prepare this data – both 
in terms of manpower and compute resources. 
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AWS Glue makes it easy for individuals with varying levels of skill to collaborate on data preparation 
tasks. For instance, novice users with no programming skills can take advantage of AWS Glue DataBrew 
(https://aws.amazon.com/glue/features/databrew/), a visual data preparation 
tool that allows data engineers/analysts/scientists to interact with and prepare the data using a variety 
of pre-built transformations and filtering mechanisms without writing any code. 

While AWS Glue DataBrew is a great tool for preparing data using a graphical user interface (GUI), 
there are some use cases where the built-in transformations may not be flexible enough or the user may 
prefer a programmatic approach to prepare data over using the GUI-based approach. In such cases, 
AWS Glue enables users to prepare data using AWS Glue ETL. Users can leverage AWS Glue Studio – 
AWS Glue’s new graphical interface – to author, execute, and monitor ETL workloads. Although Glue 
Studio offers a GUI, users may still require programmatic knowledge of AWS Glue’s transformation 
extensions and APIs to implement data preparation workloads, especially when implementing custom 
transformations using SQL or source code. 

Now that we know about the different data preparation options that are available in AWS Glue, let’s 
dive deep into each of them while looking at practical examples to understand them.

Visual data preparation using AWS Glue DataBrew

AWS Glue makes it possible to prepare data using a visual interface through AWS Glue DataBrew. As 
mentioned previously, AWS Glue DataBrew is a visual data preparation tool wherein users can leverage 
over 250 pre-built transformations to filter, shape, and refine data according to their requirements. AWS 
Glue DataBrew makes it easy to gather insights from raw data, regardless of the level of technical skill 
that the individuals interacting with the data have. More importantly, since DataBrew is serverless, 
users can explore and reshape terabytes of data without creating expensive long-running clusters, thus 
eliminating any administrative overhead involved in managing infrastructure. 

Getting started with AWS Glue DataBrew is quite simple. To use DataBrew, you can create a project 
and connect it to a data store to obtain raw data. AWS Glue DataBrew can ingest raw data from 
Amazon S3, Amazon Redshift, JDBC data stores (including on-premise database servers), and AWS 
Data Exchange. We can also ingest data from external data stores such as Snowflake. You can even 
upload a file directly from the AWS Glue DataBrew console and specify an Amazon S3 location to 
store this uploaded file. At the time of writing, AWS Glue DataBrew supports the CSV, TSV, JSON, 
JSONL, ORC, Parquet, and XLSX file formats. 

https://aws.amazon.com/glue/features/databrew/


Data Preparation70

AWS Glue DataBrew can also ingest data from a wide range of external Software-as-a-Service (SaaS) 
providers via Amazon AppFlow. There are several external SaaS providers supported via Amazon 
AppFlow, including Amplitude, Datadog, Google Analytics, Dynatrace, Marketo, Salesforce, ServiceNow, 
Slack, and Zendesk, to name a few. This feature enables users to prepare the data by applying the 
necessary transformations while interacting with the data on a visual interface. This data can be 
further integrated with datasets from other data stores or SaaS applications. This helps the users take 
a holistic approach to analyzing and gathering insights from their datasets, which have been spread 
across different data stores or SaaS platforms. The following screenshot outlines the grid-like visual 
interface and different options available in the AWS Glue DataBrew project workspace:

Figure 4.1 – AWS Glue DataBrew project workspace

Once a project has been created and a dataset has been attached to the project, you can specify the 
AWS IAM role that can be used by this project to interact with other AWS services and a sampling 
strategy. This includes specifying the number of rows the visual editor has to load and whether these 
rows can be chosen at random or whether they have to be from the beginning or the end of the dataset. 

After creating the project, AWS Glue DataBrew loads the project workspace and you will see your data 
in a grid-like interface (Figure 4.1). You can explore the data with ease using the project workspace 
and you will also be able to gain insights into each column using the statistics populated under the 
column name in the interface. Detailed statistics can be viewed for individual columns by clicking on 
the column name. By doing this, AWS Glue DataBrew generates insights based on the sample data 
that’s been loaded into the project workspace and displays them in the Column details panel on the 
right-hand side of the workspace. 
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The following screenshot shows the list of recommendations that were generated for the human_rights 
column in the sample dataset after it was loaded into the AWS Glue DataBrew project workspace:

Figure 4.2 – AWS Glue DataBrew – recommended transformations

Based on the data type and the sample data that’s loaded into the workspace, AWS Glue DataBrew also 
generates a list of recommended transformations that can be applied. For instance, if the values for a 
specific column in the dataset are missing, the list of recommended transformations includes different 
strategies to handle missing values, such as deleting rows with missing values, filling with an empty 
value, filling with the last valid value, filling with the most frequent value, and filling with a custom 
value. To apply one of these transforms, all we have to do is click Apply as step next to the transform. 
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As we make changes by applying different transformations, AWS Glue DataBrew captures the sequence 
of transformations that have been applied and builds a recipe. You can click on the column name and 
select a transformation from the top ribbon to apply a transformation for that column. Once you are 
happy with the recipe that’s been generated, you can publish this recipe and it will be saved in AWS 
DataBrew (Figure 4.2a). This recipe can be downloaded as a JSON file and can be reused by importing 
the file as a new recipe in DataBrew. This is useful when you want to share the recipe with DataBrew 
users in other AWS accounts:

Figure 4.3 – Options to create, publish, and import/export recipes

In the preceding screenshot, several options are highlighted. Option 1 allows us to toggle the sidebar, 
which displays the current version of the recipe. The same recipe can be published using option 2. 
A recipe can be exported or imported using option 3. Finally, option 4 allows us to create a job from 
the recipe. Now that we know how to build, export, and import a recipe, let’s explore different types 
of jobs in AWS Glue DataBrew.

Recipe jobs

A recipe can be used to create a recipe job in AWS Glue DataBrew, which will allow you to run the 
steps on your dataset (refer to option 4 in Figure 4.3). The job can be set up to run on-demand or at 
regular intervals by specifying a schedule. At the time of writing, AWS Glue DataBrew allows you to 
write transformed data to Amazon S3, Amazon Redshift, and JDBC data. Additional settings can be 
specified for the job, depending on the type of output destination data store. 

For instance, if you are writing the data to an Amazon S3 location, you can specify options such as 
output format, compression codec, and output encryption using AWS KMS. The list of available options 
changes with the type of output data store selected. Other configuration items can be set for the job 
run, such as Maximum number of units (maximum number of DataBrew nodes that can be used), 
Number of retries, Job timeout (in minutes), and CloudWatch logs for the job run. 
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Profile jobs

In the previous section, you learned how to define a recipe and create a job from this recipe. Wouldn’t 
it be great if most of the heavy lifting involved in understanding the data is handled by AWS Glue 
DataBrew so that we can plan the transformations better? AWS Glue DataBrew has another type of 
job called a profile job that addresses this exact issue. A profile job can be defined to evaluate the 
dataset and generate statistics and a summary that will help us understand the data better. This will, 
in turn, help us decide the type of transformations required to prepare the data. 

A profile job run generates a data profile in AWS Glue DataBrew that contains a summary of the 
dataset and statistics for each column and any advanced summaries selected by the user. Profile jobs 
allow users to generate a correlations summary of different numeric columns available. It also allows 
you to profile the dataset based on advanced rules such as personally identifiable information (PII) 
detection. The dataset is evaluated using pre-built rules that analyze the column names and the values 
to flag any potential PII data in a given dataset. This is extremely helpful to make sure the dataset 
complies with data governance policies set forth by the organization or an external governing body. 

The following screenshot shows what a sample data profile looks like: 

Figure 4.4 – Data profile overview

In the lower half of the preceding screenshot, we can see that AWS Glue DataBrew has generated 
different summaries of the dataset based on the data types of the columns in the dataset. For instance, 
we can see a value distribution chart and the minimum, maximum, mean, median, mode, standard 
deviation, and other statistics for numeric columns. The summary also captures any missing data. 
We can use these pieces of information and design appropriate transformations in the recipe job to 
filter and reshape data based on our requirements. 

Now that we know how profile jobs can be used to generate statistics and summaries for a given dataset, 
let’s learn how to enrich these summaries with information based on user-defined rules. 
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Controlling data quality using DQ Rules

AWS Glue DataBrew allows us to define a ruleset that governs the quality of the dataset based on 
specified rules. The dataset is evaluated against the user-defined rules and violations are flagged in the 
data profile generated by the profile job run. This allows us to enrich the data profile with additional 
information based on the custom rules defined.

Upon creating a dataset in AWS Glue DataBrew, you can navigate to the DQ Rules option in the 
navigation panel and define a new ruleset for the dataset that’s been created. 

A data quality (DQ) ruleset is a collection of rules that defines the data quality for the dataset. This is 
achieved by comparing different data metrics with expected values. Once a ruleset has been defined, 
we can associate this ruleset with a profile job. After the job run, we will be able to see additional 
information under the Data quality rules tab in the generated data profile. This view includes the 
list of user-defined rules that were evaluated and a summary of whether all the columns adhered to 
these rules. 

The following screenshot shows that the sample dataset was evaluated against two user-defined rules. 
The dataset passed the checks for one rule (Check Dataset For Duplicate Rows) and a few columns 
failed the checks for the other rule (Check All Columns For Missing Values):

Figure 4.5 – Data profile generated based on user-defined DQ Rules

Using the insights generated by profile jobs, you can plan the data preparation steps according to 
your requirements and write the output to your destination data store. For instance, now that we 
know there are missing values in some of the columns, we can define transformations to handle those 
missing values – for example, populate with the last valid value, populate it with an empty string, or 
use a custom value. 
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Similarly, data masking transformations such as redaction, substitution, and hash functions can be 
applied to columns flagged as PII. We can even encrypt the data using probabilistic (using an AWS 
KMS key) or deterministic encryption (using a secret in AWS Secrets Manager) and decrypt the data 
when necessary. 

There are over 250 transformations available in AWS Glue DataBrew for cleaning, reshaping, and 
preparing data based on the requirements and new transformations are being added to DataBrew 
frequently. A complete list of all the recipe steps and functions can be found in the AWS Glue 
DataBrew documentation at https://docs.aws.amazon.com/databrew/latest/
dg/recipe-actions-reference.html. 

Usage patterns for services/tools differ from one organization to another. An organization can 
choose to use AWS Glue DataBrew as its tool of choice for all data preparation workloads. However, 
if an organization prefers to use SQL or ETL scripts for their data preparation workload, AWS Glue 
DataBrew can be used for prototyping a data preparation pipeline. Then, data engineers can use the 
recipe in DataBrew as a reference to the authoring Glue ETL job. This allows other individuals within 
an organization who do not have Spark/Glue ETL programming skills to actively collaborate in data 
preparation workflows. Using this approach will reduce the effort and time taken by engineers to 
explore the data and design the data preparation steps from scratch.

Now that we know how we can leverage AWS Glue DataBrew for data preparation using a visual 
interface, let’s learn how to prepare data using a source code-based approach in AWS Glue. 

Source code-based approach to data preparation using AWS Glue

While AWS Glue DataBrew offers a visual interface-based approach to tackle data preparation tasks 
in a data integration workflow, AWS Glue offers AWS Glue ETL and AWS Glue Studio as source code/
SQL-based approaches for the same. AWS Glue ETL and AWS Glue Studio require us to have some 
level of Glue/Spark programming knowledge to implement ETL jobs, which aids in data preparation as 
we get a much higher level of flexibility compared to AWS Glue DataBrew. With AWS Glue DataBrew, 
we can use pre-built transformations to prepare data. Since there are no such restrictions in AWS 
Glue ETL and AWS Glue Studio, we can design and develop custom transformations based on our 
requirements using existing Glue/Spark ETL APIs and extensions. 

AWS Glue ETL and AWS Glue Studio

In Chapter 2, Introduction to Important AWS Glue Features, and Chapter 3, Data Ingestion, we briefly 
discussed some of the features of AWS Glue ETL and how they aid in data ingestion. In this section, 
we will explore different features of AWS Glue ETL and AWS Glue Studio and how these can be 
leveraged to prepare data.
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Based on our discussion in Chapter 2, Introduction to Important AWS Glue Features, we know that a 
DynamicRecord is a data structure in AWS Glue in which individual rows/records in the dataset 
are processed and that a DynamicFrame is a distributed collection of DynamicRecord objects. 
To use Glue ETL transformations, the dataset must be represented as a Glue DynamicFrame, not 
an Apache Spark DataFrame. We can author ETL scripts using several methods on AWS Glue 
Studio, Interactive Sessions, or even locally on our development workstation using our preferred IDE 
or text editor since AWS Glue runtime libraries are publicly available. You can refer to the AWS Glue 
documentation at https://docs.aws.amazon.com/glue/latest/dg/aws-glue-
programming-etl-libraries.html to explore different ETL job development options. 

AWS Glue Studio is a new visual interface that makes it easy to author, run, and monitor AWS Glue 
ETL Jobs. AWS Glue Studio enables us to design and develop ETL jobs using a visual editor (Figure 
4.6), implement complex operations such as PII detection and redaction, provide interactive ETL 
script development using Jupyter notebooks, set up custom/marketplace connectors to connect to 
SaaS/custom data stores, and easily monitor ETL job runs using a unified monitoring dashboard:

Figure 4.6 – Visual job editor in AWS Glue Studio 

In the next section, we’ll learn how to clean and prepare data using some of the transformations and 
extensions available in AWS Glue ETL.
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Data transformation using AWS Glue ETL

Data preparation can be done in AWS Glue ETL by making use of built-in extensions and transformations. 
A complete list of extensions and transformations, syntax, and usage instructions can be found in the 
AWS Glue ETL documentation: 

• AWS Glue Scala ETL jobs: https://docs.aws.amazon.com/glue/latest/dg/
glue-etl-scala-apis.html

• AWS Glue PySpark ETL jobs: https://docs.aws.amazon.com/glue/latest/
dg/aws-glue-programming-python.html 

In this section, we will explore some of the most commonly used transformations in AWS Glue ETL. 

ApplyMapping

The ApplyMapping transformation allows us to specify a declarative mapping of columns to 
a specified DynamicFrame. This transformation takes a DynamicFrame and a list of tuples, each 
consisting of the column name and data type mapping in the source and target DynamicFrames. 
This transformation is helpful when we want to rename columns or restructure a nested schema or 
change the data type of a column. It is important to specify a mapping for all the columns that are to 
be present in the target DynamicFrame. If a mapping is not defined for a column, that column will 
be dropped in the target DynamicFrame. 

For example, let’s assume there’s a dataset with the following nested schema: 

root

|-- email: string

|-- employee: struct

|    |-- employee_id: int

|    |-- employee_name: string

We can rename the email column employee_email and move the column under the employee 
struct using the following ApplyMapping transformation:

mappingList = [("email", "string", "employee.employee_email", 
"string"), ("employee.employee_id", "int", "employee.employee_
id", "int"), ("employee.employee_name", "string", "employee.
employee_name", "string")]

applyMapping0 = ApplyMapping.apply(frame=datasource0, 
mappings=mappingList)

https://docs.aws.amazon.com/glue/latest/dg/glue-etl-scala-apis.html
https://docs.aws.amazon.com/glue/latest/dg/glue-etl-scala-apis.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python.html
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In the preceding snippet, mappingList is the list of mapping tuples being passed to the 
ApplyMapping transform. We can also see the mapping tuple that maps the email column to 
employee.employee_email. This mapping is essentially renaming the column employee_
email and moving the column under the employee struct. Now, when we print the schema of 
the applyMapping0 DynamicFrame, we will see the following: 

>>> applyMapping0.printSchema()

root

|-- employee: struct

|    |-- employee_email: string

|    |-- employee_id: int

|    |-- employee_name: string

As you can see, by using the ApplyMapping transformation, we were able to achieve two things:

• Rename the column employee_email.

• Reshape the schema of the dataset to move the email column under the employee struct.

Now, let’s look at another commonly used transformation: Relationalize.

Relationalize

The Relationalize transform helps us reshape a nested schema of the dataset by flattening it. 
Any array columns that are present are pivoted out. This transformation is extremely helpful when 
we are working with a dataset that has a nested schema structure and we want to write the output to 
a relational database.

Let’s see this transformation in action. Let’s assume there is a dataset with the following schema. 
You will be able to find the source code and sample dataset for this example in this book’s GitHub 
repository at https://github.com/PacktPublishing/Serverless-ETL-and-
Analytics-with-AWS-Glue/tree/main/Chapter04:

>>> datasource1.printSchema()

root

|-- company: string

|-- employees: array

|    |-- element: struct

|    |    |-- email: string

|    |    |-- name: string

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter04
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter04
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Now, let’s apply the Relationalize transformation to flatten this schema. In return, we will get 
a DynamicFrameCollection populated with DynamicFrames. Any array columns present in 
the dataset are pivoted out to a separate DynamicFrame: 

relationalize0 = Relationalize.apply(frame=datasource1, 
staging_path='/tmp/glue_relationalize', name='company')

To list the keys for the different DynamicFrames that have been generated, we can use the keys() 
method on the returned DynamicFrameCollection. In the preceding example, that would 
be relationalize0:

>>> relationalize0.keys()

dict_keys(['company', 'company_employees'])

Now, since two DynamicFrames in DynamicFrameCollection were returned, it would be 
easier to interact with them separately if we extract them from DynamicFrameCollection. 
We could select() each of those DynamicFrames and use the show() method to see their 
contents. Alternatively, we can use the SelectFromCollection transformation to select 
individual DynamicFrames:

>>> company_Frame = relationalize0.select('company')

>>> company_Frame.toDF().show()

+----------+---------+

|   company|employees|

+----------+---------+

|DummyCorp1|        1|

|DummyCorp2|        2|

|DummyCorp3|        3|

+----------+---------+

>>> emp_Frame = relationalize0.select('company_employees')

>>> emp_Frame.toDF().show()

+---+-----+-------------------+------------------+

| id|index|employees.val.email|employees.val.name|

+---+-----+-------------------+------------------+

|  1|    0|   foo@company1.com|              foo1|

|  1|    1|   bar@company1.com|              bar1|

|  2|    0|   foo@company2.com|              foo2|

|  2|    1|   bar@company2.com|              bar2|

|  3|    0|   foo@company3.com|              foo3|
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|  3|    1|   bar@company3.com|              bar3|

+---+-----+-------------------+------------------+

As you may recall, the Relationalize transform has pivoted the employees column and 
created a new DynamicFrame with additional columns: id and index. The id column acts similarly 
to a foreign key for the employees column in the company DynamicFrame. 

However, for us to be able to write the flattened data to a relational database, we need the data to be 
present in one DynamicFrame. To bring both of these DynamicFrames together, we can use the Join 
transform. Let’s look at the Join transform and see how it works. 

Join 

The Join transform, as its name suggests, joins two DynamicFrames. A Join transform in AWS 
Glue performs an equality join. If you are interested in performing other types of Join (for example, 
broadcast joins) in Glue ETL, you will have to convert the DynamicFrame into a Spark DataFrame. 

Let’s continue with our example and join the two DynamicFrames that were created by Relationalize 
while using employees and id as the keys: 

join0 = Join.apply(frame1 = company_Frame, frame2 = emp_Frame, 
keys1 = 'employees', keys2 = 'id')

Let’s use the show() function to see the joined data: 

>>> join0.toDF().show(truncate=False)

This will result in the following output:

Figure 4.7 – Output demonstrating a Join transformation

As you can see, the email and name array columns have been renamed employees.val.
email and employees.val.name, respectively. This is the result of pivoting the array in the 
Relationalize transformation. This can be corrected using the RenameField transformation 
before joining the DynamicFrames.
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Now, let’s look at the RenameField transformation to see how we can rename columns.

RenameField

The RenameField transformation allows us to rename columns. This transformation takes three 
parameters as input – a DynamicFrame where the column needs to be renamed, the name of the 
column to be renamed, and the new name for the column. 

In our example, we saw that after the array was pivoted by the Relationalize transform, the 
email and name array columns were renamed employees.val.email and employees.
val.name, respectively. To rename the columns so that they have their original names, we can use 
the following code snippet: 

renameField0 = RenameField.apply(frame = join0, old_name = 
"`employees.val.email`", new_name = "email")

renameField1 = RenameField.apply(frame = renameField0, old_name 
= "`employees.val.name`", new_name = "name")

You may have noticed the wrapping backquotes (`) for the old column names in the preceding code 
snippet. This is because we have a dot (.) character in the name of the column itself and here, the dot 
character does not represent a nested structure. To suppress the default behavior of the dot character, 
we have wrapped the column names in backquotes.

We can confirm that the columns have been successfully renamed by printing the schema of the 
renameField1 DynamicFrame. Now that we have a flattened schema structure and the columns 
have been renamed according to our requirements using transformations such as Relationalize, 
Join, and RenameField, we can safely write the resultant DynamicFrame to a table in a relational 
database.

Now, let’s look at some of the other transformations available in AWS Glue ETL. 

Unbox

The Unbox transformation is helpful when a column in a dataset contains data in another format. Let’s 
assume that we are working with a dataset that’s been exported from a table in a relational database 
and that one of the columns has a JSON object stored as a string. 

If we continue to use string data types for this JSON object, we won’t be able to analyze the data 
present in this column as easily as the downstream application may not know how to parse it. Even 
if it does, the queries would be extremely complex. Since the purpose of the data preparation step is 
to clean and reshape the data, it is much better to address this within the data preparation workflow. 
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Let’s assume that our dataset has the following schema: 

root

|-- location: string

|-- companies_json: string

When we use the show() method on the DynamicFrame, we will see that there is a JSON string in 
the companies_json column:

+-----------+--------------------+

|   location|      companies_json|

+-----------+--------------------+

|Seattle, WA|{"jsonrecords":[{...|

+-----------+--------------------+

Now, let’s see how the Unbox transform can help us unpack this JSON object and merge the schema 
of the JSON object with the DynamicFrame schema:

>>> unbox0 = Unbox.apply(frame = datasource2, path = 
"companies_json", format = "json")

>>> unbox0.printSchema()

root

|-- location: string

|-- companies_json: struct

|    |-- jsonrecords: array

|    |    |-- element: struct

|    |    |    |-- company: string

|    |    |    |-- employees: array

|    |    |    |    |-- element: struct

|    |    |    |    |    |-- email: string

|    |    |    |    |    |-- name: string

As we can see, the schema from the JSON object was merged into DynamicFrame’s schema. Now, 
we can use other transformations to further transform the data or output the DynamicFrame as-is. 

Now, there might be situations where you run into an issue when applying a transformation in 
Glue ETL and you may notice that some or all the records in a DynamicFrame have gone missing. 
This may happen if there was an error when parsing the records. How do we find out if this has 
happened? Well, AWS Glue ETL has a transformation that captures the nested error records called 
ErrorsAsDynamicFrame. Let’s take a look at how this works.
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ErrorsAsDynamicFrame

This transformation takes a DynamicFrame as input and returns the nested error records that have been 
encountered up until the creation of the input DynamicFrame. In the Unbox transform example, we 
used a JSON string nested within a record to demonstrate the capabilities of Unbox. Let’s introduce 
a syntax error into the JSON string of one of the records by removing a curly brace or a comma that 
will interfere with the normal functioning of the JSON parser. 

The following source code can be found in this book’s GitHub repository at https://github.
com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/
tree/main/Chapter04:

# Refer GitHub repository for Sample code-gen function 
createSampleDynamicFrameForErrorsAsDynamicFrame()

>>> datasource2 = 
createSampleDynamicFrameForErrorsAsDynamicFrame()

>>> datasource2.toDF().show()

+-----------+--------------------+

|   location|      companies_json|

+-----------+--------------------+

|Seattle, WA|{"jsonrecords":[{...|

|Sydney, NSW|{"jsonrecords":[{...|

+-----------+--------------------+

>>> unbox0 = Unbox.apply(frame = datasource2, path = 
"companies_json", format = "json")

>>> unbox0.toDF().show()

+-----------+--------------------+

|   location|      companies_json|

+-----------+--------------------+

|Seattle, WA|{[{DummyCorp1, [{...|

+-----------+--------------------+

>>> ErrorsAsDynamicFrame.apply(unbox0).count()

1

>>> ErrorsAsDynamicFrame.apply(unbox0).toDF().show()

+--------------------+

|               error|

+--------------------+

|{{  File "/tmp/66...|

+--------------------+

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter04
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter04
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter04


Data Preparation84

As we can see, the valid JSON record that was in the DynamicFrame was parsed correctly by the parser. 
However, the invalid record was not parsed and we can see that the ErrorsAsDynamicFrame 
class has captured the errors. As part of the ETL script, we can have validation steps using this class 
to ensure there were no errors when transforming data.

You may have noticed by now that each of the AWS Glue ETL transforms have two parameters available. 
These parameters specify the error threshold for each transformation:

• stageThreshold specifies the maximum number of errors that can occur in a given 
transformation for which the job needs to fail.

• totalThreshold specifies the maximum number of errors up to and including the current 
transformation.

We can leverage these parameters to manage error handling behavior in AWS Glue ETL. 

There are several other transformations available in AWS Glue ETL that make it easy to reshape and 
clean data based on our requirements. It would not be practical to discuss each of the transformations 
available in AWS Glue ETL here as the service has been constantly evolving since it was released 
and new transformations and extensions are being added by AWS. You can find an exhaustive list 
of transformations, syntax, and examples in the AWS Glue documentation, as mentioned at the 
beginning of this section. 

Now that we are familiar with AWS Glue DataBrew, AWS Glue ETL, and AWS Glue Studio, it is 
important to know which tool/service to choose for your workload. 

Selecting the right service/tool
In the previous sections, we looked at the different features, transformations, and extensions/APIs 
that are available in AWS Glue DataBrew, AWS Glue Studio, and AWS Glue ETL for preparing data. 
With all the choices available and the varying sets of features in each of these tools, how do we pick a 
tool/service for our use case? There is no hard and fast rule in selecting a tool/service and the choice 
depends on several factors that need to be considered based on the use case. 

As discussed earlier in this chapter, AWS Glue DataBrew empowers data analysts and data scientists 
to prepare data without writing source code. AWS Glue ETL, on the other hand, has a higher learning 
curve and requires Python/Scala programming knowledge and a fundamental understanding of Apache 
Spark. So, if the individuals preparing the data are not skilled in AWS Glue/Spark ETL programming, 
they can use AWS Glue DataBrew. 

One of the important factors to consider while choosing a tool/service is whether the data preparation 
tasks being planned can be implemented using the tool/service. While AWS Glue DataBrew has a 
library of over 250 pre-built transformations, they may still not cover some of the transformations 
required to implement your data preparation workflow or it might be too complex to implement your 
workflow using built-in transformations in DataBrew. In such cases, we can simplify the workflow by 
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writing an ETL job in AWS Glue ETL since we have the flexibility to write custom transformations. We 
can leverage built-in AWS Glue ETL transformations or we can custom-design our transformations 
using Apache Spark APIs.

Another factor that can influence this decision is whether the data preparation workflow that’s being 
implemented is a one-off operation or something that needs to be accomplished quite frequently. If 
the data preparation tasks are simple and infrequent, it would not justify the effort involved in writing 
source code manually. In such cases, we can use AWS Glue DataBrew or AWS Glue Studio’s visual 
job editor to set up an ETL job to accomplish our tasks. However, if the tasks are complex, require  
a higher level of flexibility, and are going to be performed regularly, AWS Glue ETL would be a better 
choice as we can customize the ETL job based on our requirements. 

To summarize, it is important to consider the use case and construct a plan based on the requirements. 
Some of the key considerations that could factor into the decision-making process are as follows: 

• Features offered by a specific tool and whether our tasks can be accomplished using built-in 
transforms

• The skill sets of individuals within the team

• The complexity of the workflow that is being implemented

• The frequency of data preparation operations

So, it is important to consider the use case at hand, plan your data preparation workflow, and then 
choose a tool/service to implement your workflow. Otherwise, you could end up wasting a lot of time 
and effort in designing your workflow using a specific tool/service that was not fit for your use case 
to begin with.

Summary
In this chapter, we discussed the fundamental concepts and importance of data preparation within 
a data integration workflow. We explored how we can prepare data in AWS Glue using both visual 
interfaces and source code. 

We explored different features of AWS Glue DataBrew and saw how we can implement profile jobs 
to profile the data and gather insights about the dataset being processed, as well as how to use a DQ 
Ruleset to enrich the data profile, use PII detection and redaction, and perform column encryption 
using deterministic and probabilistic encryption. We also discussed how we can apply transformations, 
build a recipe using those transformations, create a job using that recipe, and run the job. 

Then, we discussed source code-based ETL development using AWS Glue ETL jobs and the different 
features of AWS Glue Studio before exploring some of the popular transformations and extensions 
available in AWS Glue ETL. We saw how these transformations can be used in specific use cases while 
covering source code examples and how we can detect and handle errors during data preparation in 
AWS Glue ETL. 
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We talked about different factors that need to be considered while choosing a service/tool in AWS  
Glue and the importance of considering the use case and planning while designing our data  
preparation workflow. 

In the next chapter, we will discuss the importance of data layouts and how we can design data 
layouts to optimize analytics workloads. We will be exploring some of the concepts that factor into 
performance and resource consumption during query execution, such as data formats, compression, 
bucketing, partitioning, and compactions.



5
Data Layouts 

Data analysis is a common practice to make data-driven decisions to accelerate business and grow 
your company, organization, teams, and more. In a typical analysis process, queries that process and 
aggregate records in your datasets will be run for your data to understand their business trends. 
The queries are commonly run from Business Intelligence (BI) dashboard tools, web applications, 
automated tools, and more. Then, you will be able to get the results you need such as user subscriptions, 
marketing reports, sales trends, and more.

For their analytic queries, it’s important to consider analytic query performance because they need 
to timely utilize the analysis data and to quickly make a business decision for their business growth. 
To accelerate the query performance to quickly obtain the analysis data, you need to care about your 
dashboard tools, computation engine that processes the large amount of your data, data layout design 
of your data and its data storage, and more. The combination of these resources affects your analytic 
query performance so that it’s important to understand them.

This chapter focuses on how we design data layouts to optimize your analytic workloads. In particular, 
to design the data layouts that can maximize your query performance, we need to consider the three 
important parts such as key techniques for our data to optimize query performance, how we manage 
our files, and how we optimize our Amazon S3 storage. 

By focusing on these three parts, in this chapter, we will learn useful and general techniques to 
accelerate your analytic workloads, and important functionalities to optimize the workloads that can 
be achieved using AWS Glue and Lake Formation.

In this chapter, we will cover the following topics:

• Why do we need to pay attention to data layout?

• Key techniques to optimally storing data

• Optimizing the number of files and each file size

• Optimizing your storage by working with Amazon S3
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Technical requirements
For this chapter, if you wish to follow some of the walk-throughs, you will require the following:

• Access to GitHub, S3, and the AWS console (specifically AWS Glue, AWS Lake Formation, 
and Amazon S3)

• A computer with the Chrome, Firefox, Safari, or Microsoft Edge browser installed and the AWS 
Command-Line Interface (AWS CLI):

 � Regarding the AWS CLI, you can use not only the AWS CLI but also AWS CLI version 2. In 
this chapter, the AWS CLI (not version 2) is used. You can set up the AWS CLI (and version 
2) from https://docs.aws.amazon.com/cli/latest/userguide/
cli-chap-getting-started.html. 

• An AWS account and an accompanying IAM user (or IAM role) with sufficient privileges to 
complete this chapter’s activities. We recommend using a minimally scoped IAM policy to 
avoid unnecessary usage and making operational mistakes. You can get the IAM policy for this 
chapter from the relevant GitHub repository, which is shown at https://github.com/
PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/
blob/main/Chapter05/data.json. This IAM policy includes the following access:

 � Permissions to create a list of IAM roles and policies for creating a service role for an AWS 
Glue ETL job

 � Permissions to read, list, and write access to an Amazon S3 bucket

 � Permissions to read and write access to Glue Data Catalog databases, tables, and partitions

 � Permissions to read and write access to Glue Studio

• An S3 bucket for reading and writing data with AWS Glue. If you haven’t created one yet, you 
can do so from the AWS console (https://s3.console.aws.amazon.com/s3/
home) | Create bucket. You can also create a bucket by running the aws s3api create-
bucket --bucket <your_bucket_name> --region us-east-1 AWS CLI 
command.

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/data.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/data.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/data.json
https://s3.console.aws.amazon.com/s3/home
https://s3.console.aws.amazon.com/s3/home
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Why do we need to pay attention to data layout?
As we discussed earlier, it’s important to maximize query performance for your analytic workloads 
because they need to quickly understand for their situation for quick decisions based on the query 
results. To achieve the most optimal analytics workloads, one of the most important phases is data 
extraction process that a computation engine retrieves your data from the data location (Relational 
database, Distributed storage and so on) and reads records. It’s because many operations on our analytic 
workloads are reading data and processing them into what we want based on our running queries. 
These days, many computation engines that process data are effectively optimized their computation 
by their community, company and more. However, the data extraction process, especially retrieving 
and reading data from an external location highly depends on our data layout such as the file number, 
file format and so on, network speed, and more. Therefore, to achieve optimal data extraction, we 
should carefully design our data layout to optimize our query performance more.

When considering the data layout, you should mainly focus on the following three parts: 

• Key techniques to optimally storing data: This is the first part. When you store your data, you 
should pay attention to what file format and compression type you use, and whether you use 
partitioning and/or bucketing. Because these techniques are import to optimize your query 
performance. We’ll go through the details about the techniques in Key techniques to optimally 
storing data section. Paying attention to how you store data can optimize the processing of 
your data with a processor engine that actually runs analytic queries such as saving process 
time to compute data schema by choosing a file format. This has a schema, avoiding processing 
unnecessary files by filtering your data in advance, and more. 

• Optimizing the number of files and each file size: This is the second part. It’s possible to save 
processing time by keeping the number of files as small as possible and by keeping each file size 
the number which is a computation engine’s chunk size such as 64MB, 128MB and so on. This is 
because we can potentially avoid spending time of handling each file by the computation engine.

• Optimizing data storage based on data access: This is the last one. Your data size should 
be incremental and grow continuously, such as continuous web access logs, data sent by IoT 
devices, and more. Generally, the larger the data size in your storage, the higher the cost of the 
storage usage you need to pay. Therefore, often you need to archive part of the data and keep 
other parts based on the access to the data to decrease the storage cost and reduce unnecessary 
data access for your analytic workloads.

To achieve data retrieval as quickly as possible, and then enhance your analytic workloads, in the next 
section, we will focus on learning about the previously mentioned points to introduce a good data 
layout. In particular, this chapter will show how you can meet these requirements with AWS Glue, 
AWS Lake Formation, and Amazon S3.
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Key techniques to optimally storing data 
As mentioned earlier, the data extraction process is one of the most important phases to consider when 
optimizing your analytic workloads. In the usual process of data retrieval, users such as data analysts, 
business intelligence engineers, and data engineers run queries to a distributed analytics engine such 
as Apache Spark and Trino. Then, the distributed analytics engine gets information about the data, 
such as each file location and metadata. Usually, this kind of data is stored in distributed storage such 
as Amazon S3, HDFS, and more. After getting all the information about the data, the computing 
engine actually accesses and reads the data that you specify in the queries. Finally, it returns query 
results to the users. 

To make the data retrieval process faster for further analysis, it’s important to consider how you 
store data. In particular, you can optimize workloads for analysis by storing data in the most suitable 
condition for your analysis. For example, when running analytic queries, if there were a lot of files 
in your storage, running queries would take more time than if there are a smaller number of files. 
This is mainly because a distributed analytics engine would need time to get the information about 
each file, such as each file location and metadata. Based on the information, the computing engine 
retrieves the data from storage before processing it. In such cases, it’s possible to improve the time of 
the data retrieval process by gathering the files within a smaller number of files and decreasing each 
file size by compressing it to match the size that the computing engine can process (usually, this size 
is based on your computing engine’s memory capacity). Usually, this processing can be achieved by 
using computing engines.

To optimally store your data, you should pay attention to file formats, compression types, the splitability 
of files, and partitioning or bucketing as they can affect the workloads of your analytic queries. We 
will learn more about this in the following sections.

Selecting a file format

Generally, data can be categorized into unstructured, semi-structured, and structured formats 
based on whether the data has a specific schema and types. If the data has specific key-value pairs 
but doesn’t have any typed schema, the data can be classified into a semi-structured format such as 
JSON, CSV, or XML. If the data has specific columns and types, it can be classified into a structured 
format such as Apache Parquet, Apache ORC, Apache Avro, and more. Otherwise, the data can be 
generally thought of as an unstructured format such as images and log files.
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Selecting a file format affects your query performance. Structured format data with a schema like a 
relational database table enables a data processing engine to avoid computing the data schema and 
to extract only necessary data (e.g. values in the columns you want to process) based on user defined 
queries. In particular, it’s recommended that you use the formats that have columnar data structures 
such as Apache Parquet and Apache ORC because these formats provide a lot of merits for the 
analysis. For example, Apache Spark that is used on AWS Glue can optimize querying Parquet files 
by narrowing down access to records based on Parquet format structure. We’ll see the merits next, 
and see how to convert your data to these columnar formats.

Storing your data in columnar formats for effective analytic workloads

As we’ve seen so far, Apache Parquet and Apache ORC are file formats that have table-like schemas 
and columnar storage. These formats can effectively provide data processing for your analytic queries 
based on their columnar format features such as metadata columns, filtering columns and the relevant 
records, effective compression and encoding schemas, and more.

Actual data in Parquet files consists of row groups, which include arrays of columns. Parquet defines 
the size of a chunk of the data for each column to store records, which includes columns and pages 
as Block size. By default, this size is defined as 128 MB. Also, ORC has a chunk size to store records 
called Stripe size, which is defined as 64 MB by default. Each chunk in ORC includes index data, 
row data, and, strip footer. If you store data with a large block or strip size, a processor can execute 
effective column-based manipulations; however, this is possible to cause multiple I/O operations due 
to multiple blocks in your storage. On the other hand, if you store data with a small block or strip size, 
this too needs multiple accesses to each file and possibly reduces its efficiency. Therefore, when you 
store your data with the Parquet or ORC format, you should store data with the block or stripe size 
or set a larger block or stripe size based on your data if your data has a lot of columns.

Configuration of Parquet block or ORC stripe size in Glue Spark jobs
You can configure the block or strip size by specifying each relevant parameter to the option 
method for Spark DataFrameWriter as follows:

dataframe.write.option('parquet.block.size', 1024 * 1024)   
# 1024 * 1024 bytes = 1MB block size

dataframe.write.option('orc.stripe.size', 1024 * 1024)   
# 1MB strip size
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You can also effectively narrow down your data for Parquet and ORC formats when filtering or querying 
values in particular columns. Many computation engines such as Apache Spark, Apache Hive and 
Trino/Presto support a narrow-down feature called predicate pushdown or filter pushdown. Each 
block in Parquet and ORC files has statistics of the chunk such as the value range of minimum and 
maximum. This statistical information is used for your running query to determine which part is 
necessary to read. If you sort the column value that you use for filtering before processing the data, 
this can improve your analytic query performance based on its mechanism.

Converting your data to Apache Parquet or Apache ORC formats with  
AWS Glue

You can convert your data files with a Glue ETL Spark job. Using AWS Glue Studio, you can create the 
Glue job and it automatically generates the format conversion script. Regarding how to use the Glue 
Studio, please refer to AWS Glue ETL and AWS Glue Studio section in Chapter 4, Data Preparation. 
The following example shows the steps to generate the format conversion script from JSON to Apache 
Parquet with snappy compression. Follow these steps:

1. Download the sample sales data (data.json) on your local machine from https://
github.com/PacktPublishing/Serverless-ETL-and-Analytics-
with-AWS-Glue/blob/main/Chapter05/data.json. Once downloading is 
completed, upload the file to your Amazon S3 bucket using the command; aws s3 cp 
data.json s3://<your-bucket-and-path>/ or from the S3 console (https://
s3.console.aws.amazon.com/s3/buckets)

2. Access Jobs on Glue Studio console (https://us-east-1.console.aws.amazon.
com/gluestudio/home#/jobs).

3. Choose Visual with a source and target and Create on the top of right page.

4. In Data source – S3 bucket node, set your S3 bucket and path, and choose Infer schema.

5. In Data target – S3 bucket node, set Parquet to Format, Snappy to Compression  
Type and your S3 bucket and path. You can generate the following diagram and script as the 
following screenshot.

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/data.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/data.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/data.json
https://s3.console.aws.amazon.com/s3/buckets
https://s3.console.aws.amazon.com/s3/buckets
https://us-east-1.console.aws.amazon.com/gluestudio/home#/jobs
https://us-east-1.console.aws.amazon.com/gluestudio/home#/jobs
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Figure 5.1 – Format conversion Glue job diagram and script on Glue Studio console

6. To run this file format conversion job, choose Job details tab and complete all information 
such as Job name, IAM Role, Job type and so on. 

7. After completing all information, choose Save and Run. 

After running the Glue job completed, you can see parquet files with snappy compression in the target 
S3 bucket and path.

Next, we’ll look at several data compression types that can decrease your data size.

Compressing your data

Reducing file size by compression enables you to save data network transfer cost, save query process 
time, reduce usage of data storage, save the storage cost and so on. For these merits, you should store 
data with compression. Note that you pay attention to whether the compression type is splittable or 
not, compression or decompression speed and each compressed file size, which possibly affect your 
query performance. We will see the file splittability in the Splittable or Unsplittable files section and 
see the file size management in the Managing number of files and each file size section.
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The following table shows, in Spark, compression formats that are commonly used for Apache Parquet 
such as gzip, lz4, snappy, and zstd, along with their compression ratios and compression/
decompression speeds. Each compression ratio and (de)compression speed is measured by running 
actual data processing jobs, in seconds. Additionally, each of them is normalized by each no compression 
result and gzip compression result, respectively: 

Table 5.1 – Comparison of compression ratio and speed between compression types

Each value in the table was measured by running a Glue Spark job. The following list shows what 
environment the Spark job ran on:

• The test data is all tables in TPC-DS dataset with scale 1000 whose size and file format are 412.3 
GB in Apache Parquet files without compression. Refer to Further Reading section about the 
TPC-DS.

• TPC-DS Glue custom connector (https://aws.amazon.com/marketplace/pp/
prodview-xtty6azr4xgey) was used to generate TPC-DS dataset.

• Used analytic engine: Glue 3.0 (Spark 3.1.1).

• Compression speed and ratio were measured by running the Glue job script in the book’s 
GitHub repository (https://github.com/PacktPublishing/Serverless-
ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/
MeasureCompressionSpeedAndRatio.scala).

https://aws.amazon.com/marketplace/pp/prodview-xtty6azr4xgey
https://aws.amazon.com/marketplace/pp/prodview-xtty6azr4xgey
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/MeasureCompressionSpeedAndRatio.scala
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/MeasureCompressionSpeedAndRatio.scala
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/MeasureCompressionSpeedAndRatio.scala
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As shown in Table 5.1, compressing the data with gzip, lz4, snappy, and zstd can reduce the 
file size compared to the case without compression. In addition to reducing file size by the compression 
technique, compression/decompression speed can affect your processing job. In particular, a data 
processing job, including gzip compression, is expected to be slower than a job using the other 
compression types such as lz4, snappy, and zstd, based on Table 5.1. Therefore, when compressing 
your data with a processing job to optimize the data in your storage, you should consider not only 
the compression ratio but also the compression speed to get compressed data as quickly as possible.

Note
Generally, the higher the compression ratio of an algorithm you specify, the more computation 
overhead is necessary to compress and decompress data.

So far, we’ve seen how the compression works for your data and workloads. But how can we actually 
run the compression job for our data? We can compress our data with AWS Glue. Using Glue Studio, we 
can generate the compression Glue job script as we’ve seen in Converting your data to Apache Parquet 
or Apache ORC formats with AWS Glue section. Specifically, we just choose a compression type for the 
Data target – S3 bucket node in Step 5 of the example in the previous section. The compression type 
you can choose depends on your file format type. For example, if you set Parquet as the format, 
you can choose Snappy, LZO, GZIP or Uncompressed. The following example script shows the 
partial code that is generated by Glue Studio and that writes the Parquet files with GZIP compression.

S3bucket_node3 = glueContext.write_dynamic_frame.from_options(

    frame=ApplyMapping_node2,

    connection_type="s3",

    format="glueparquet",

    connection_options={

        "path": "s3://your-target-bucket-and-path/",

        "partitionKeys": [],

    },

    format_options={"compression": "gzip"},

    transformation_ctx="S3bucket_node3",

)
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You can also compress your data with Spark DataFrame. If you use Spark DataFrame for compression, 
you need to directly edit your Glue job script on Glue Studio. The following example shows the part 
of the job script that writes Parquet files with zstd compression.

COMPRESSION_CODEC = 'zstd'

dataframe.write\

         .option('compression', COMPRESSION_CODEC)\

         .parquet(DST_S3_PATH)

The whole script is available at https://github.com/PacktPublishing/Serverless-
ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/compression_
by_dataframe.py.

Note
Glue DynamicFrame currently doesn’t support zstd for reading and writing. You should use 
Spark DataFrame to compress/decompress data to/from zstd.

Next, we’ll look at file splittability, which is determined by file format and compression type.

Splittable or unsplittable files

When you run analytics queries and process data, it’s helpful to know whether the files from your data 
source are splittable or not. A file is splittable means whether a processor such as AWS Glue can get the 
contents of a file by separating it based on the chunk size of the processor when the processor reads 
the file. When a file is not splittable, a processor cannot separate a file and needs to get the whole file. 

Why do we need to think about whether a file is splittable? Well, usually, it affects your data retrieval. 
Let’s assume that your data files are not splittable and each file has a big size that is greater than the size 
of your memory or storage. A file is not splittable; therefore, a processor cannot separate it as a chunk 
and needs to read the whole file. However, a processor cannot process a file because each file size is 
more than the memory and storage size or processor. In particular, with Apache Spark, processing 
a large size of an unsplittable file might cause an out-of-memory error because Spark processes the 
data in memory. In other words, you should control each file size appropriately for your processor if 
your data source has unsplittable files.

Whether it’s splittable or not depends on what the file format is and/or how the file has been compressed. 
The following table shows popular file formats and compression types, and whether they’re splittable 
or unsplittable. Please check the files in your data source if you use a data processor such as AWS Glue, 
Amazon EMR, or Amazon Athena, which processes and writes the data in your storage:

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/compression_by_dataframe.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/compression_by_dataframe.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/compression_by_dataframe.py
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Table 5.2 – The splittability of file formats and compression types

From Table 5.2, for example, if your data files are in XML format without compression, they’re splittable. 
As another example, if your data files are in JSON format with gzip compression, they’re unsplittable.

Partitioning

Partitioning is a technique to store your data separately into different folders based on specified 
partition keys. Each partition key is related to your data and actually acts as a column. For example, 
if you have your data in your Amazon S3 bucket as s3://bucket-name/category=drink/
data.json, the partition key can be recognized as category, and its value is drink.

By partitioning your data, you can reduce data scan size by querying only the required data. Specifically, 
a computation engine (such as Spark, Presto and so on.) only reads the data in specified partition keys 
and values in your query. In the example above, if you specify drink for the category partition 
key, the engine only reads the data under the drink folder by listing partition values for the key. 
This can reduce data scan size and improve query performance.
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You can define a column as a partition key at table creation. The partition keys and values are registered 
in your table that is stored in Apache Hive metastore. The Hive Metastore is a service to store table 
metadata and their relevant information, in a database backend such as a relational database. More 
details about the Hive Metastore is discussed in the AWS Glue Data Catalog section in Chapter 2, 
Introduction to Important AWS Glue Features. The computing engine retrieves the list of partition 
values from the metastore based on your query with a specific range of partition values for keys, and 
then it reads the data in specified partitions. Therefore, partitioning enables a computation engine to 
filter partitions and avoid processing unnecessary partitions.

When you partition your data, you should use Hive style partitioning such as /path/
to/<partition_key_1>=<value1>/<partition_key_2>=<value2> compared to 
non key-value style such as /path/to/value1/value2. Using Hive style partitioning, partition 
keys can be processed as table columns and the values are filtered by WHERE clause in SQL-like query 
such as WHERE category = 'drink'. Also, you can automatically register partition values in 
your Hive Metastore for the key by MSCK REPAIR TABLE <your-table-name> Hive query 
that can be run by not only Glue Spark jobs but also Athena. For more details about Hive query for 
Hive style partitioned tables, please refer to https://docs.aws.amazon.com/athena/
latest/ug/partitions.html.

The Glue Data Catalog, which we saw in Chapter 2, Introduction to Important AWS Glue Features, can be 
used as an external Hive metastore. You can register partition keys and values in your table in the Glue 
Data Catalog. For example, you can register category as a partition key and drink as its value in 
a Glue Data Catalog table on your S3 bucket structure such as s3://bucket-name/category=drink/<data 
files>. We look at how to register partition keys and values in the Glue Data Catalog in Registering 
partition values in a Glue Data Catalog table section below. By specifying a range of partitions, you 
can reduce the data scan size in your Glue ETL Spark job because the job only reads the data in the 
specified partitions. This possibly improves the Glue job performance.

Example - partitioning by AWS Glue ETL Spark job

In this example, we partition the data (data.json) in the S3 bucket with Hive style partitioning 
by a Glue Spark job. Specifically, we partition the S3 bucket as the following structure based on the 
data.json records. In the following folder structure, the partition key is category, and the 
values are drink, grocery and kitchen.

s3://bucket-name/

          ├── category=drink/<data files>

          ├── category=grocery/<data files>

          ├── category=kitchen/<data files>

To write your data with Hive style partitioning by a Glue job, you can mainly use partitionKeys 
option for Glue DynamicFrame or partitionBy method for Spark DataFrame. 

https://docs.aws.amazon.com/athena/latest/ug/partitions.html
https://docs.aws.amazon.com/athena/latest/ug/partitions.html
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As we’ve seen in Converting your data to Apache Parquet or Apache ORC formats with AWS Glue 
section, using Glue Studio, we can automatically generate a partitioning script by specifying partition 
keys for the Data target – S3 bucket node. In the following screenshot, category is specified as 
the partition key.

Figure 5.2 – Specifying partition key for Data target node

The following script is the partial code that is generated by Glue Studio based on this diagram. This script 
writes snappy compressed Parquet files with hive style partitioning as category=<partition_
value>.

S3bucket_node3 = glueContext.write_dynamic_frame.from_options(

    frame=ApplyMapping_node2,

    connection_type="s3",

    format="glueparquet",

    connection_options={

        "path": "s3://your-target-bucket-and-path/",

        "partitionKeys": ["category"],

    },
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    format_options={"compression": "snappy"},

    transformation_ctx="S3bucket_node3",

)

If you use Spark DataFrame for partitioning, you need to directly edit your Glue job script on Glue 
Studio. The following example shows the part of the job script that writes snappy compressed Parquet 
files with category based partitioning.

dataframe.write\

.partitionBy('category')\

.parquet(DST_S3_PATH). # The default compression type is 
snappy.

The whole script is available at https://github.com/PacktPublishing/Serverless-
ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/partitioning_
by_dataframe.py

Best practice to select partition keys
Please note that the number of partitions when you select partition keys for your data. The more 
number of partitions in a table increases, the higher the overhead of processing the partition 
metadata. Therefore, you should choose a low-cardinality column as a partition key. Also, note 
that avoid choosing a partition key that has many skewed values to lower the overhead of filtering 
values. Usually we use year, month, day, category, region and so on a partition key.

If you create a table in the Glue Data Catalog based on your data by the Glue Crawler, Athena DDLs 
and so on., you can define columns as partition keys in your table registered in Glue Data Catalog. 
Glue Data Catalog that we’ve seen in Chapter2, Introduction to Important AWS Glue Features supports 
partitioning columns. 

The following output of AWS CLI get-table command shows a table metadata that is created 
based on the example dataset. You can see columns and the category partition key as follows.

$ aws glue get-table --database-name db_name --name product_
sales

{

    "Table": {

        "Name": "product_sales",

        "DatabaseName": "db_name",

        ...

        "StorageDescriptor": {

            "Columns": [

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/partitioning_by_dataframe.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/partitioning_by_dataframe.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/partitioning_by_dataframe.py
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                {

                    "Name": "product_name",

                    "Type": "string"

                },

                {

                    "Name": "price",

                    "Type": "long"

                },

                ...

        },

        "PartitionKeys": [

            {

                "Name": "category",

                "Type": "string"

            }

        ],

...

To identify each partition column value for data retrieval by AWS Glue, Amazon Athena, Amazon 
EMR, and Amazon Redshift Spectrum you need to register the values of the partition key in your 
Glue Data Catalog table. 

Registering partition values in AWS Glue Data Catalog

Primarily, there are four ways to reflect those partition column values in the Glue Data Catalog:

• Glue DynamicFrame: Adding partitions by Glue ETL jobs. An example of the script is shown 
at https://docs.aws.amazon.com/glue/latest/dg/update-from-job.
html#update-from-job-partitions.

• Spark DataFrame: Running saveAsTable with partitionBy such as the following 
example:

# PySpark example

your_data_frame.write\

            .mode('overwrite')\

            .partitionBy('<partition_column>')\

            .option('path', 's3://your-bucket/path/')\

            .saveAsTable("db.table")

https://docs.aws.amazon.com/glue/latest/dg/update-from-job.html#update-from-job-partitions
https://docs.aws.amazon.com/glue/latest/dg/update-from-job.html#update-from-job-partitions
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The preceding example registers a table that has a partition column such as <partition_
column> in the Glue Data Catalog. It also writes the data to Amazon S3. The data is 
written into the s3 path, which is concatenated s3://your-bucket/path/ with 
the pair of our specified partition column and its value, such as s3://your-bucket/
path/<partition_column>=<value>/.

• Running the ALTER TABLE ADD PARTITION query by Amazon Athena or by Amazon 
Redshift Spectrum.

• Directly calling the CreatePartition API (https://docs.aws.amazon.com/glue/
latest/dg/aws-glue-api-catalog-partitions.html#aws-glue-
api-catalog-partitions-CreatePartition), which adds a partition to the 
Glue Data Catalog by specifying partition column names and the column value. If you add 
one or more partitions to the Glue Data Catalog, you can use the BatchCreatePartition API 
(https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-
catalog-partitions.html#aws-glue-api-catalog-partitions-
BatchCreatePartition or https://docs.aws.amazon.com/glue/
latest/webapi/API_CreateTable.html).

Using the first two ways, you can write the data and add partition values to your Glue Data Catalog 
simultaneously. The other operations simply help in adding the partition values to the Glue Data 
Catalog. Therefore, you can operate these two operations after writing your data with the partitioning. 

Partition Pruning AWS Glue

If you use the Glue DynamicFrame to read data from partitioned tables in the Glue Data Catalog, you 
can use data filtering queries that enable your Glue Spark job to avoid processing unnecessary partitions 
for your analysis. The DynamicFrame supports the following two types of data filtering queries:

• Predicate pushdown: This enables your Glue Spark job to filter partitions. This happens on 
the client (Spark job) side. This works as the following steps:

I. The Glue job firstly retrieves all partitions that are registered in the Glue Data Catalog, 
and it keeps them as a partitions list.  

II. The job filters the partitions in the list based on the specified predicate pushdown query

III. The job reads the data located in the filtered partitions in Step 2.

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-partitions.html#aws-glue-api-catalog-partitions-CreatePartition
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-partitions.html#aws-glue-api-catalog-partitions-CreatePartition
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-partitions.html#aws-glue-api-catalog-partitions-CreatePartition
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-partitions.html#aws-glue-api-catalog-partitions-BatchCreatePartition
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-partitions.html#aws-glue-api-catalog-partitions-BatchCreatePartition
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-partitions.html#aws-glue-api-catalog-partitions-BatchCreatePartition
https://docs.aws.amazon.com/glue/latest/webapi/API_CreateTable.html
https://docs.aws.amazon.com/glue/latest/webapi/API_CreateTable.html
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• Catalog-side predicate pushdown: This is also a query to prune partitions as well as the 
predicate pushdown, however the pruning partitions happens on the sever (the Glue Data 
Catalog) side. This works as the following steps:

I. The Glue job requests the specified partitions registered in a table to the Glue Data Catalog.

II. The partitions list as a result of filtering on the server (Glue Data Catalog) side is returned 
returns the list to the job based on the request in Step 1

III. The job reads the data located in the specified partitions. 

These predicate pushdowns contribute to making data retrieval faster compared to retrieving all data 
in your storage by the processing job.

You can operate predicate pushdown as mentioned by specifying the push_down_predicate 
option in DynamicFrame. You can also use this with SparkSQL by specifying partitions in the WHERE 
clause. In the following example, the DynamicFrame only reads the data in the partition whose category 
is grocery by setting category=='grocery' to push_down_predicate option.

# PySpark example of a pushdown predicate

glue_context.create_dynamic_frame.from_catalog(

    database="db_name",

    table_name="product_sales",

    push_down_predicate="category==grocery")

Also, you can operate catalog-side predicate pushdown by specifying catalogPartitionPredicate 
in a DynamicFrame. Please note that partition indexes in AWS Glue, which we’ll see next needs to be 
enabled to use the catalog partition predicate. In the following example , the Glue DynamicFrame 
reads the data at the partition which is category == book.

# PySpark example of a catalog partition predicate

glue_context.create_dynamic_frame.from_catalog(

    database="db_name", 

    table_name="product_sales",

    additional_
options={"catalogPartitionPredicate":"category=='grocery'"})     

As discussed earlier, the catalog-side predicate pushdown partition prunes partitions on the Glue Data 
Catalog side instead of on processing job side. Catalog-side predicate pushdown can be much faster 
than using predicate pushdown on the job side if there are a lot of partitions such as over millions of 
partitions in your Amazon S3 bucket.
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Running queries faster with partition indexes

Partition indexes (https://docs.aws.amazon.com/glue/latest/dg/partition-
indexes.html) in AWS Glue is one of the functionalities in the Glue Data Catalog. This enables 
to reduce the query time to filter partitions in the Glue Data Catalog tables. Partition filtering works 
on the Glue Data Catalog side, instead of returning all partitions to a requester. Once you set the 
partition indexes to your table that has partitions, a requester (typically, a Glue job) only retrieves 
necessary partitions that you requested. If the partition index is not enabled, all partitions in the Glue 
Data Catalog table are returned to a requester and then the requester needs to choose partitions that 
you want to query. Using partition indexes can increase query performance and save costs such as 
requests to the Glue Data Catalog table. 

Bucketing

Bucketing is a technique that is used to divide data into sub-data and to group rows based on one 
or more specified columns. Also, this can reduce your processed data by filtering any unnecessary 
data rows based on the bucketing information if you specify the bucketed columns in your queries. 
Bucketing can improve your query performance and then accelerate your analytic workloads, too. 

You can also specify a bucketed column at table creation. When you set a column as the bucketed 
column, you should choose with high cardinality and that can be used often for filtering the data. The 
Glue Data Catalog supports bucketing. If you specify bucketing at table creation, then the bucketing 
columns are defined in the StorageDescriptor part of the Data Catalog. On the other hand, 
when Spark writes the data with bucketing, Spark adds the Spark format, which describes the bucketing 
information as parameters of the Data Catalog. 

To write your data with bucketing on S3 with Glue ETL Spark jobs, you can mainly use the bucketBy 
method for a Spark DataFrame. MurmurHash (https://en.wikipedia.org/wiki/
MurmurHash) is used in Spark and Glue by default. Please note that Glue DynamicFrameWriter 
doesn’t support writing with bucketing in the writing process. For example, you can write the data 
using bucketing such as the product sales table that based on data.json by following examples of 
using a DataFrame. In this example, you need to pass the bucketed number and one or more columns 
to the bucketBy method:

# PySpark example of setting the bucketed number to 10 and 
column to 'customer_id'

your_data_frame.write\

.bucketBy(10, 'customer_id')\

.parquet('s3://<your-bucket>/<path>/')

https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html
https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html
https://en.wikipedia.org/wiki/MurmurHash
https://en.wikipedia.org/wiki/MurmurHash
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There are primarily two ways to reflect the bucket column values in the Glue Data Catalog for Glue 
ETL jobs to identify the columns as bucketed columns in the data retrieval phase:

• Spark DataFrame: Running saveAsTable with bucketBy as dataframe.write.
buckety(<number of buckets>, <bucketed columns>.saveAsTable("db.
table"). The Spark public document (https://spark.apache.org/docs/3.1.1/
sql-data-sources-load-save-functions.html#bucketing-sorting-
and-partitioning) also shows how to register bucketed columns on your table by using 
bucketBy with saveAsTable.

• Running CREATE TABLE with CLUSTERED BY (<bucketed columns>) INTO 
<number of buckets> BUCKETS. 

By using saveAsTable in a Spark DataFrame, you can write data with bucketing and add the 
bucketing information to your Glue Data Catalog simultaneously. The other option requires creating 
a new table and adding the bucketing information to the Data Catalog at the time of the new table 
creation. 

Note
If you are creating a table using bucketing with Athena DDL, you can see the Athena DDL 
syntax at https://docs.aws.amazon.com/athena/latest/ug/create-
table.html. In addition to the DDL, Athena CTAS can also be operated to define and 
register the bucketing information. An example of the CTAS query, including a definition of 
bucketing, is shown at https://docs.aws.amazon.com/athena/latest/ug/
ctas-examples.html#ctas-example-bucketed.

We’ve seen how we store data optimally, focusing on topics such as file formats, compression types, 
file splitability, and partitioning/bucketing. Next, we’ll see the second topic, Managing the number of 
files and each file size, which you need to consider for optimizing your analytic queries.

Optimizing the number of files and each file size
The number of files and each file size are also related to the performance of your analytic workloads. 
In particular, the number of files and file sizes are related to the performance of the data retrieval 
phase by using an analytic engine in your analytic workloads. To understand the relationship between 
the number of files and the file size and the performance of the data retrieval process by an analytic 
engine, we’ll look at how the engine generally retrieves data and returns the result as follows.

https://spark.apache.org/docs/3.1.1/sql-data-sources-load-save-functions.html#bucketing-sorting-and-partitioning
https://spark.apache.org/docs/3.1.1/sql-data-sources-load-save-functions.html#bucketing-sorting-and-partitioning
https://spark.apache.org/docs/3.1.1/sql-data-sources-load-save-functions.html#bucketing-sorting-and-partitioning
https://docs.aws.amazon.com/athena/latest/ug/create-table.html
https://docs.aws.amazon.com/athena/latest/ug/create-table.html
https://docs.aws.amazon.com/athena/latest/ug/ctas-examples.html#ctas-example-bucketed
https://docs.aws.amazon.com/athena/latest/ug/ctas-examples.html#ctas-example-bucketed
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The basic process of data retrieval and returning a result is firstly getting a list of files, reading each file, 
processing the contents of the files based on your queries, and then returning the result. In particular, 
when processing data in Amazon S3, the analytic engine lists objects in your specified S3 bucket, gets 
objects, reads the contents, then processes and returns the result. When you use an AWS Glue ETL 
Spark job to process your data in the S3, in the data retrieval process, the Spark driver in the Glue 
job lists objects in the S3 bucket, then Spark Executors on the Glue job get objects based on the result 
listed by Spark Driver. 

Therefore, the greater the number of files in your storage, the longer listing takes. In addition to  
this, if your data source is based on a lot of small files, it also takes longer to process data across 
multiple files because it needs more file I/O compared to the file I/O for a smaller number of files. 
Therefore, managing the number of files and file sizes is important for your data retrieval process by 
the analytic engine.

What is compaction?

We store various types of logs such as web access logs, application logs, and IoT device logs in storage 
such as Amazon S3. These logs are delivered by applications and devices continuously and periodically 
(in a relatively short period, from seconds to minutes). Furthermore, these logs often consist of a small 
file in the size of kilobytes or a few megabytes. Therefore, as the logs are delivered into your storage, 
the number of small files in your storage increases. Usually, this can cause a situation where there are 
a lot of small files in your storage, such as there being 100 million files and each file size being 1 KB.

If you directly run your analytic workloads for data that consists of a lot of small files, it’s expected 
that the query time would increase because listing files in the data retrieval phase by an analytic 
engine takes a lot of time. Therefore, when running a processing job, you need to transform a lot 
of small-file data into data with the appropriate number of files, as well as the size of each file. This 
action to merge small files into larger ones and arrange the data is called compaction. Compaction 
is a necessary process to relax the a lot of small files problem, which increases query time and affects 
your analytic workloads. The following table shows the performance comparison of record count by 
a Spark DataFrame between non-compacted data and compacted data:

Table 5.3 – Comparison of the speed of record count by a Spark DataFrame between 

non-compacted data and compacted data (this speed is measured by seconds) 
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As you can see in the preceding table, counting records of compacted data is about 66 times faster 
than that of non-compacted data. Based on the result, we can see that compaction greatly contributes 
to increasing query performance if the compacted and non-compacted data have the same size. 

In the following sections, we’ll see how you can run compaction on your data with AWS Glue. AWS 
Glue provides flexible solutions to run compaction and basic compaction steps using Spark. In 
addition to Glue, you can also use the AWS Lake Formation automatic compaction functionality, 
which automatically runs compaction on your specified data. Additionally, we’ll learn about Lake 
Formation’s automatic compaction.

Compaction with AWS Glue ETL Spark jobs

You can process your data, merge the files, and store the data in columnar format using Glue ETL 
Spark jobs to optimize your analytic workloads. To build an automatic compaction, you essentially 
need to consider the following two key things in the compaction process:

• How you determine the number of files after the compaction process?

• How you control each file size through the compaction process?

You can control the number of output files in Glue ETL Spark job. Additionally, you can manage 
each file size by controlling the number of files when Glue job writes the data in your storage such as 
Amazon S3, and by specifying the file format and compression.

Essentially, Spark determines the number of output files based on the number of Spark partitions, which 
determines the amount of concurrency of processing data. The number of partitions is determined by 
input splits, such as data splitted size in EMRFS is defined as fs.s3.block.size, HDFS block 
size, and more. Additionally, the number is determined by the operations on your data in Spark such 
as spark.sql.shuffle.partitions/spark.default.parallelism, which defines 
the number of partitions after shuffling operations. 

In a Glue job, by setting the number of partitions just before writing data with Spark, your Glue job 
writes the data with the same number of files as the number of partitions specified. You can control 
the number of partitions using the repartition(<number>) or coalesce(<number>) 
methods for a Glue DynamicFrame or Spark DataFrame. Please note that there is currently no option 
to specify the output file size in Spark when writing data. Therefore, to control the number of files and 
each file size by Spark, you need to control the number of partitions in your Spark application (Glue job).

The following steps show an example of compaction process by a Glue job:

1. Check the total size of input files and the number of files. 

2. If possible, process a small part of the data with Spark and check the compression ratio of the 
output file size to the input file size (columnar formats such as Parquet and ORC are good as 
output file formats for analytic workloads).
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3. Based on the compression ratio and each file size, compute and set the number of output 
partitions. It’s good to start by setting 64 or 128 MB to efficiently process data with a Glue job.

4. Update the number of partitions by repartition() or coalesce()_ method based 
on your input file size.

The compaction sample script is provided by AWS in the AWS provided GitHub’s repository (https://
github.com/awslabs/aws-glue-blueprint-libs/blob/master/samples/
compaction/compaction.py). The compaction process in this script roughly works as follows.

1. Spark partition number and size is calculated by listing objects in a specified S3 folder in 
get_partition_num_and_size method. 

2. If partition size control option (enable_size_control) is set to true, based on the 
calculated partition number and size, optimal file number per partition (optimal_file_
num) is calculated.

3. The partition number is updated by coalesce() method with the calculated optimal file 
number. Then write the number of files.

Automatic Compaction with AWS Lake Formation acceleration

The Lake Formation acceleration feature automatically runs compaction on your data. This compaction 
is a background process and doesn’t affect your analytic workloads. You don’t have to implement a 
compaction Glue ETL job that reads your data and merges and compresses the data into a new one. 
To enable this feature, you need to create a table whose table type has GOVERNED. You can create a 
GOVERNED status table by checking the Enable governed data access and management box from 
Create Table in Tables in the Lake Formation console navigation pane, as shown in the following 
screenshot. After checking it, Automatic compaction will automatically be turned on. Once the 
GOVERNED status for a table has been enabled, Lake Formation starts monitoring your data and 
runs compaction jobs internally without interfering with concurrent queries:

Figure 5.3 – Enabling governed status for a table

https://github.com/awslabs/aws-glue-blueprint-libs/blob/master/samples/compaction/compaction.py
https://github.com/awslabs/aws-glue-blueprint-libs/blob/master/samples/compaction/compaction.py
https://github.com/awslabs/aws-glue-blueprint-libs/blob/master/samples/compaction/compaction.py
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At the time of writing, this compaction feature is supported only for partitioned tables in the Parquet 
format. Next, we’ll look at how to optimize our data layout with Amazon S3 functionalities.

Optimizing your storage with Amazon S3
So far, we’ve seen how we should store data optimally and how we can manage data to optimize data 
retrieval and accelerate the analytic workloads. The techniques primarily work on the data itself, such 
as storing data with columnar formats, data compaction, and more. Not only does it handle data itself 
optimally, but it’s also important to think about optimization on the storage side. 

Our data, such as logs of web access, device data, and so on, is continuously reported, and that data size 
grows over time. As the storage usage increases, the cost increases, too. To reduce the cost of storage 
usage, usually, we archive data that is not frequently or ever accessed. Generally, we can divide data 
into the following tiers based on the frequency of access to it:

•  Hot: This is data that you usually access.

• Warm: This is data that you have relatively less access to or require less than hot data.

• Cold: This is data that you infrequently access or almost do not require.

Based on the three preceding tiers, usually, we select machines and configure replication policies. 

Amazon S3 provides more flexible storage options that you can select. By selecting suitable options for 
your data and archiving your data effectively, you can reduce not only the storage cost but also the data 
retrieval time. In this section, we’ll look at the S3 storage plans, the data life cycle that S3 also provides, 
and the way to archive or delete your unnecessary or infrequently accessed data with AWS Glue.

Selecting suitable S3 storage classes for your data

You can see the storage classes that S3 provides and the main usage of each storage class in the table 
under the Comparing the Amazon S3 storage classes section of the AWS documentation (https://
docs.aws.amazon.com/AmazonS3/latest/userguide/storage-class-intro.
html). Based on your data usage and access patterns, you should select a suitable class for your data. 
If you process the data with AWS Glue, Glue has options to exclude specific class objects and also has 
methods to change a storage class of objects. We’ll see the options and methods in the Excluding S3 
storage classes, archiving, and deleting objects with AWS Glue section.

Using S3 Lifecycle for managing object lifecycles

S3 Lifecycle runs automatic actions on your objects to manage objects in your storage based on your 
lifecycle configurations. You can set the lifecycle using the Management tab in your bucket view.

https://docs.aws.amazon.com/AmazonS3/latest/userguide/storage-class-intro.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/storage-class-intro.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/storage-class-intro.html
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Firstly, you need to set the scope of automatic actions, such as Limit the scope of this rule using 
one or more filters (filter-based action) or Apply to all objects in the bucket (applying to all objects 
action), from Choose a rule scope in the following screenshot. If you select filter-based actions, you 
can set the filtering condition, such as Prefix or Object tags, as follows:

Figure 5.4 – The condition of automatic lifecycle actions

Then, you define the actual lifecycle actions on your objects with which the lifecycle configuration is 
applied. There are two types of provided actions:

• Transition actions: These are defined when objects move to another storage class. You can set 
the number of days after which to move an object to other storage classes such as STANDARD-IA 
class after an object is put on Amazon S3. If you have old data that you never use or infrequently 
access, such as data that has passed 30 days since the data creation, you should consider setting 
this action. By setting this action that moves old objects into archival storage classes, such as 
STANDARD-IA, you can decrease the storage cost of Amazon S3.
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• Expiration actions: These are defined when objects expire or are deleted. You can set the 
number of days after which to expire or delete an object after the object is put on Amazon S3. 
If you have old data that was created some years ago, and you don’t need to access the data, you 
can remove that data by setting this action. By removing unnecessary data, you can decrease 
not only the storage usage but also the cost of storage usage.

You can choose one or more rules, such as changing a current storage class or removing objects from 
the list, on the page shown in the following screenshot. The first two actions are transition actions, 
while the others are expiration actions:

Figure 5.5 – The list of lifecycle actions

Please note that life cycle configurations are applied to not only new objects but all existing objects 
once you set the configuration. For more details about the S3 Lifecycle, please refer to https://
docs.aws.amazon.com/AmazonS3/latest/userguide/object-lifecycle-
mgmt.html. 

By setting S3 Lifecycle rules, we can manage the data lifecycle. In particular, there are two actions that 
you can configure for your Amazon S3 bucket. These actions are Transition, which changes the data 
storage class, and Expiration, which expires or deletes the data. These actions are triggered days after 
the object’s creation was set. Therefore, the S3 Lifecycle automatically archives your data and runs 
garbage collection without implementing custom code.

Next, we’ll look at the functionalities of Glue for skipping data with a specific storage class, transitioning 
a storage class of your data, and deleting your data using Glue ETL jobs.

https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-lifecycle-mgmt.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-lifecycle-mgmt.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-lifecycle-mgmt.html
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Excluding S3 storage classes, archiving, and deleting objects with AWS Glue

AWS Glue provides functionalities that are combined with S3 storage classes, and it can delete 
unnecessary objects. In particular, we’ll see the following functionalities that Glue provides regarding 
archiving and deleting data:

• Excluding S3 storage classes: AWS Glue ETL jobs can process data across multiple storage 
classes excluding specific storage classes.

• Transition of a storage class: Transition a storage class of files in the specified S3 path or that 
is pointed to by the database and table in the Glue Data Catalog.

• Purge objects: Delete files in the specified S3 path or that are pointed to by the database and 
table in the Glue Data Catalog.

Now, let’s take a look at them in detail.

Excluding S3 storage classes with the excludeStorageClasses option

You can filter the S3 storage classes in your AWS Glue ETL jobs to avoid failing to read data in specific 
classes such as GLACIER and DEEP_ARCHIVE. In particular, you can filter them by passing the 
excludeStorageClasses option to a DynamicFrame when creating it. For more details, 
please refer to https://docs.aws.amazon.com/glue/latest/dg/aws-glue-
programming-etl-storage-classes.html#aws-glue-programming-etl-
storage-classes-dynamic-frame.

Transitioning a storage class with the transition_s3_path or transition_table 
method

You can transition your file storage class to another class. When you want to archive specific partitions 
after running compaction on the data in the partitions, you can use this method and archive files in 
the partitions with partitionPredicate.

Here’s a simple script demonstrating how to run the transition_table method to transition 
objects in the specific partition (month=5). After running the script, all objects in the month=5 
partition are transitioned to the Glacier storage class:

# PySpark script to transition objects in the month=5 partition 
to GLACIER immediately.

glue_context.transition_table(

     database='db_name',

     table='table',

     transition_to='GLACIER'

     options={

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-storage-classes.html#aws-glue-programming-etl-storage-classes-dynamic-frame
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-storage-classes.html#aws-glue-programming-etl-storage-classes-dynamic-frame
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-storage-classes.html#aws-glue-programming-etl-storage-classes-dynamic-frame
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      'retentionPeriod': 0,

       'partitionPredicate': '(month==5)'})

You can filter objects by not only partition predicates but also retention periods. For more details 
about transition operations in Glue, please refer to https://docs.aws.amazon.com/
glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-
context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-
transition_table.

Deleting objects with the purge_s3_path or purge_table method

You can delete your files from Glue ETL jobs with the purge_s3_path or purge_table method. 
When you want to delete objects in a specific partition after running compaction on the data in the 
partition, you can use this method and delete the files in the partition with partitionPredicate. 
Additionally, you can remove partition values from the Glue Data Catalog.

Here’s a simple script demonstrating how to run the purge_table method to delete objects from 
the specific partition (month=5) and also delete the partition value from the Glue Data Catalog. 
After running the script, all objects in the month=5 partition are deleted and the partition value 
registered in Data Catalog is also deleted:

# PySpark script to delete objects in the month=5 partition 
immediately.

glue_context.purge_table(

    database='db_name',

    table_name='purge_table',

    options={

        'partitionPredicate': '(month==5)', 

        'retentionPeriod': 0})

You can filter objects by not only partition predicates but also retention periods. For more details about 
purge operations in Glue, please refer to https://docs.aws.amazon.com/glue/latest/
dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-
glue-api-crawler-pyspark-extensions-glue-context-purge_table.

Summary
In this chapter, we learned how to design the data layout to accelerate our analytic workloads. In 
particular, we learned about it by focusing on three parts, including how we store our data optimally, 
how we manage the number of files and each file size, and how we optimize our storage by working 
with Amazon S3. 

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-transition_table
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-transition_table
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-transition_table
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-transition_table
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-purge_table
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-purge_table
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-purge_table
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In the first part, we learned techniques to store our data optimally. These techniques include choosing 
file formats and compression types, understanding file splitability, and partitioning/bucketing. Then, 
we learned about data compaction to manage the number of files and each file size and to enhance 
analytic query performance. In the last part, we learned how to optimize our storage with Amazon S3 
and Glue DynamicFrames. You can effectively use your storage by archiving, expiring, and deleting 
your data with Amazon S3 Lifecycle configurations and the Glue DynamicFrame methods.

Managing the data in your data lake with techniques introduced in this chapter will solve a lot of 
problems such as slow queries, analytic costs, storage costs, and more. In Chapter 6, Data Management, 
we’ll see how we can manage data to match various use cases by diving into what kind of analysis we 
can do and who conducts the analysis by running queries.

Further reading
To learn more about what we’ve touched on in this chapter, please refer to the following resources:

• Apache Parquet: https://parquet.apache.org/docs/

• Apache ORC: https://orc.apache.org/specification/ORCv0/

• Apache Avro: https://avro.apache.org

• TPC-DS and its specification: http://www.tpc.org/tpcds/ and http://tpc.
org/tpc_documents_current_versions/pdf/tpc-ds_v3.2.0.pdf

• Improve query performance using AWS Glue partition indexes: https://aws.amazon.
com/blogs/big-data/improve-query-performance-using-aws-glue-
partition-indexes/

 � Video recording on YouTube: https://youtu.be/jyfJ1X_RaCs

• Effective data lakes using AWS Lake Formation, Part 1: Getting started with governed tables: 
https://aws.amazon.com/blogs/big-data/part-1-effective-data-
lakes-using-aws-lake-formation-part-1-getting-started-with-
governed-tables/

• Transitioning objects using Amazon S3 Lifecycle: https://docs.aws.amazon.
com/AmazonS3/latest/userguide/lifecycle-transition-general-
considerations.html

• Expiring objects using Amazon S3 Lifecycle: https://docs.aws.amazon.
com/AmazonS3/latest/userguide/lifecycle-expire-general-
considerations.html

https://parquet.apache.org/docs/
https://orc.apache.org/specification/ORCv0/
https://avro.apache.org
http://www.tpc.org/tpcds/
http://tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v3.2.0.pdf
http://tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v3.2.0.pdf
https://aws.amazon.com/blogs/big-data/improve-query-performance-using-aws-glue-partition-indexes/
https://aws.amazon.com/blogs/big-data/improve-query-performance-using-aws-glue-partition-indexes/
https://aws.amazon.com/blogs/big-data/improve-query-performance-using-aws-glue-partition-indexes/
https://youtu.be/jyfJ1X_RaCs
https://aws.amazon.com/blogs/big-data/part-1-effective-data-lakes-using-aws-lake-formation-part-1-getting-started-with-governed-tables/
https://aws.amazon.com/blogs/big-data/part-1-effective-data-lakes-using-aws-lake-formation-part-1-getting-started-with-governed-tables/
https://aws.amazon.com/blogs/big-data/part-1-effective-data-lakes-using-aws-lake-formation-part-1-getting-started-with-governed-tables/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-transition-general-considerations.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-transition-general-considerations.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-transition-general-considerations.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-expire-general-considerations.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-expire-general-considerations.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-expire-general-considerations.html


6 
Data Management

In the previous chapter, you learned how to optimize your data layout to accelerate performance in 
query engines and manage the data optimally to reduce costs. This is a really important topic, but 
it is just one aspect of a data lake. As the volume of data increases, a data lake is used by different 
stakeholders – not only data engineers and software engineers but also data analysts, data scientists, 
and sales and marketing representatives. Sometimes, the original data is not easy to use for these 
stakeholders because the raw data may not be structured well. To make business decisions based on 
data quickly and effectively, it is important to manage, clean up, and enrich the data so that these 
stakeholders can understand the data correctly, find insights from the data without any confusion, 
correlate them, and drive their business based on data.

In this chapter, you will learn how to manage, clean up, and enrich the data in typical data requirements, 
and how to achieve this using AWS Glue. AWS Glue provides various functionalities that allow you 
to implement ETL logic easily. In addition, Apache Spark has lots of capabilities for different data 
operations. With AWS Glue, you can take advantage of both, which will help you make your data lake 
effective in real-world use cases.

In this chapter, we will cover the following topics:

• Normalizing data

• Deduplicating records

• Denormalizing tables

• Securing data content

• Managing data quality
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Technical requirements
For this chapter, you will need the following resources:

• An AWS account

• An AWS IAM role

• An Amazon S3 bucket

All the sample code needs to be executed in a Glue runtime (for example, the Glue job system, Glue 
Interactive Sessions, a Glue Studio notebook, a Glue Docker container, and so on). If you do not have 
any preferences, we recommend using a Glue Studio notebook so that you can easily start writing 
code. To use a Glue Studio notebook, follow these steps:

1. Open the AWS Glue console.

2. Click AWS Glue Studio.

3. Click Jobs.

4. Under Create job, click Jupyter Notebook, then Create.

5. For Job name, enter your preferred job name.

6. For IAM Role, choose an IAM role where you have enough permission.

7. Click Start notebook job.

8. Wait for the notebook to be started.

9. Write the necessary code and run the cells on the notebook.

Let’s begin!

Normalizing data
Data normalization is a technique for cleaning data. There are different techniques for normalizing data 
that make it easy to understand and analyze. This section covers the following techniques and use cases:

• Casting data types and map column names

• Inferring schemas

• Computing schemas on the fly

• Enforcing schemas

• Flattening nested schemas

• Normalizing scale
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• Handling missing values and outliers

• Normalizing date and time values

• Handling error records

Let’s dive in!

Casting data types and map column names

In the context of data lakes, there can be a lot of different data sources. This may cause inconsistency 
in data types or column names. For example, when you want to join multiple tables where there is 
inconsistency, it can cause query errors or invalid calculations. To avoid such issues and make further 
analytics easier, it is a good approach to cast the data types and apply mapping to the data during the 
extract, transform, load (ETL) phase.

Let’s create a simple DataFrame as an example:

from pyspark.sql import Row

product = [

    {'product_id': '00001', 'product_name': 'Heater', 'product_
price': '250'},

    {'product_id': '00002', 'product_name': 'Thermostat', 
'product_price': '400'}

]

df_products = spark.createDataFrame(Row(**x) for x in product)

df_products.printSchema()

df_products.show()

The preceding code returns the following output. You will notice that there are three columns and 
that all of them are of the string type:

root

 |-- product_id: string (nullable = true)

 |-- product_name: string (nullable = true)

 |-- product_price: string (nullable = true)

+----------+------------+-------------+

|product_id|product_name|product_price|

+----------+------------+-------------+

|     00001|      Heater|          250|
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|     00002|  Thermostat|          400|

+----------+------------+-------------+

In natural analysis, you may want to calculate the average price for all products. To support such 
analysis use cases, the columns, such as product_price, should be converted from string 
into integer.

Apache Spark supports type casting in Spark DataFrames. You can cast the type as an integer and 
rename the column’s name from product_price to price by running the following code:

from pyspark.sql.functions import col

df_mapped_dataframe = df_products \

    .withColumn("product_price", col("product_price").
cast('integer')) \

    .withColumnRenamed("product_price", "price")

df_mapped_dataframe.printSchema()

df_mapped_dataframe.show()

The preceding code returns the following output. You will notice that the column’s name has been 
renamed to price and that the data type has been converted from string into integer, as 
expected:

root

 |-- product_id: string (nullable = true)

 |-- product_name: string (nullable = true)

 |-- price: integer (nullable = true)

+----------+------------+-----+

|product_id|product_name|price|

+----------+------------+-----+

|     00001|      Heater|  250|

|     00002|  Thermostat|  400|

+----------+------------+-----+

You can achieve the same thing with SQL syntax as well. The following code registers the df_products 
DataFrame as a Hive table and runs a SELECT query against the table:

df_products.createOrReplaceTempView("products")

df_mapped_sql = spark.sql("SELECT product_id, product_name, 
INT(product_price) as price from products")
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df_mapped_sql.printSchema()

df_mapped_sql.show()

The preceding code returns the following output. You will notice that you get the same result that 
you did with the DataFrame:

root

 |-- product_id: string (nullable = true)

 |-- product_name: string (nullable = true)

 |-- price: integer (nullable = true)

+----------+------------+-----+

|product_id|product_name|price|

+----------+------------+-----+

|     00001|      Heater|  250|

|     00002|  Thermostat|  400|

+----------+------------+-----+

In the preceding tutorial, you used a Spark DataFrame to cast column types and rename columns.

On the other hand, an AWS Glue DynamicFrame provides the ApplyMapping transform so that 
you can cast and apply the mapping of column names and data types. The following example shows 
how to use the ApplyMapping transform:

from pyspark.context import SparkContext

from awsglue.context import GlueContext

from awsglue import DynamicFrame

glueContext = GlueContext(SparkContext.getOrCreate())

dyf = DynamicFrame.fromDF(df_products, glueContext, "from_df")

dyf = dyf.apply_mapping(

    [

        ('product_id', 'string', 'product_id', 'string'),

        ('product_name', 'string', 'product_name', 'string'),

        ('product_price', 'string', 'price', 'integer')

    ]

)

df_mapped_dyf = dyf.toDF()
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df_mapped_dyf.printSchema()

df_mapped_dyf.show()

The preceding code returns the following output. As you can see, you get the same result that you 
did with the DataFrame:

root

 |-- product_id: string (nullable = true)

 |-- product_name: string (nullable = true)

 |-- price: integer (nullable = true)

+----------+------------+-----+

|product_id|product_name|price|

+----------+------------+-----+

|     00001|      Heater|  250|

|     00002|  Thermostat|  400|

+----------+------------+-----+

As you have learned, you can use either a Spark DataFrame or Glue DynamicFrame for data type 
casting and column mapping.

Inferring schemas

Apache Spark can infer schemas from the content of data. With schema inference, you can create  
a DataFrame without passing the static schema structure.

When you read a CSV file without schema inference, you can set the inferSchema option to 
False. It is disabled by default. You can use the following code to create a DataFrame by reading 
from one sample CSV file located on Amazon S3:

df_infer_schema_false = spark.read.format("csv") \

    .option("header", True) \

    .option("inferSchema", False) \

    .load("s3://covid19-lake/static-datasets/csv/
CountyPopulation/County_Population.csv")

df_infer_schema_false.printSchema()
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The preceding code returns the following output. You will notice that all of the columns are recognized 
as being of the string type:

root

 |-- Id: string (nullable = true)

 |-- Id2: string (nullable = true)

 |-- County: string (nullable = true)

 |-- State: string (nullable = true)

 |-- Population Estimate 2018: string (nullable = true)

When you set the inferSchema option to True, you must run following code:

df_infer_schema_true = spark.read.format("csv") \

    .option("header", True) \

    .option("inferSchema", True) \

    .load("s3://covid19-lake/static-datasets/csv/
CountyPopulation/County_Population.csv")

df_infer_schema_true.printSchema()

The preceding code returns the following output. You will notice that the Id2 and Population 
Estimate 2018 columns are registered as the integer type instead of the string type:

root

 |-- Id: string (nullable = true)

 |-- Id2: integer (nullable = true)

 |-- County: string (nullable = true)

 |-- State: string (nullable = true)

 |-- Population Estimate 2018: integer (nullable = true)

In this section, you learned that the inferSchema option manages the schema inference behavior 
to read CSV files.

It is a good idea to infer schemas from data when you do not want to define static schemas in advance 
and you want to define a schema from unpredictable data.

Computing schemas on the fly

A Spark DataFrame is a data representation in Apache Spark. It is powerful and widely used in a huge 
number of Spark clusters in various kinds of real-world use cases. A DataFrame is conceptually equivalent 
to a table, and it is optimized for relational database-like table operations such as aggregations and joins. 
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However, when you use a Spark DataFrame for ETL operations, you may face some typical issues. 
First, a DataFrame requires a schema to be provided before data is loaded. This can be a problem 
when you do not know or cannot predict the schema of the data in advance. Second, a DataFrame 
can have one schema per frame. This can be a problem when the same field in a frame has different 
types of values in multiple records. Even when you want to determine the type afterward, it is not 
possible. These issues often occur in messy data.

AWS Glue has a unique data representation called a DynamicFrame, which is similar to a Spark 
DataFrame. You can use it to convert a Spark DataFrame into a DynamicFrame and vice versa, but 
there are important differences between the two operations. First, in a Glue DynamicFrame, each record 
is self-describing. The Glue DynamicFrame computes a schema on-the-fly, so no schema is required 
initially. Second, a Glue DynamicFrame can have one schema per record, not per frame. The logical 
record in the DynamicFrame is called a DynamicRecord. When the same field in a DynamicFrame 
is of a different type in multiple DynamicRecords, the DynamicFrame allows you to determine the 
preferred types after loading the data.

Before trying DynamicFrame’s on-the-fly schema feature, you need to upload a sample file to your S3 
bucket and create a table on the Glue Data Catalog. Follow these steps:

1. Create a sample JSON Lines (JSONL) file:

{"id":"aaa","key":12}

{"id":"bbb","key":34}

{"id":"ccc","key":56}

{"id":"ddd","key":78}

{"id":"eee","key":"90"}

2. Upload the sample file to your S3 bucket (replace the path with your S3 path):

$ aws s3 cp sample.json s3://path_to_sample_data/

3. Create a Glue database:

$ aws glue create-database --database-input Name=choice

4. Create a Glue crawler on s3://path_to_sample_data/:

$ aws glue create-crawler --name choice --database 
choice --role GlueServiceRole --targets 
'{"S3Targets":[{"Path":"s3:// path_to_sample_data/"}]}'
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5. Run the crawler (replace the IAM role with yours):

$ aws glue start-crawler --name choice

6. After running the crawler, you will see the sample table in the catalog.

Here’s the schema of the sample table that was returned by the get-table AWS CLI command:

$ aws glue get-table --database-name choice --name sample 
--query Table.StorageDescriptor.Columns --output table

-------------------- 

|     GetTable     |

+-------+----------+

| Name  |  Type    |

+-------+----------+

|  id   |  string  |

|  key  |  string  |

+-------+----------+

Now, we’re all set to create a DynamicFrame. You can create a DynamicFrame from the table definition 
on the Glue Data Catalog by running the following code:

from pyspark.context import SparkContext

from awsglue.context import GlueContext

glueContext = GlueContext(SparkContext.getOrCreate())

dyf_sample = glueContext.create_dynamic_frame.from_catalog(

       database = "choice",

       table_name = "sample")

dyf_sample.printSchema()

The preceding code returns the following output. You will notice that the key column is registered as 
a choice type. This means that key could be either of the int or string type. This happened 
because the Spark DataFrame schema recognizes key as an int type, but the Glue Data Catalog 
recognizes key as a string type:

root

|-- id: string

|-- key: choice

|    |-- int

|    |-- string
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There are five records in the sample JSONL file. The values in the key field in the first four records 
are all integers, while at the end of the file, there is one record with a string value in that column. 

AWS Glue DynamicFrames allow you to determine the schema after loading the data by introducing 
the concept of a choice type. To query the key column or to save the frame, you need to resolve 
the choice type first using the resolveChoice transform method. For example, you can run 
the resolveChoice transform with the cast:int option to convert those string values 
into int values:

dyf_sample_resolved = dyf_sample.resolveChoice(specs = 
[('key','cast:int')])

dyf_sample_resolved.printSchema()

The output of printSchema is as follows:

root

|-- id: string

|-- key: int

You will notice that the key column is now recognized as int instead of choice or string.

As you have learned, DynamicFrames have unique on-the-fly schema capabilities and the choice 
type allows you to determine the schema after data load. This would be useful for ETL workloads 
where your data can include different data types.

Enforcing schemas

In an Apache Spark DataFrame, you need to set a static schema per frame. Similarly, in DynamicFrames 
you can enforce a static schema using the with_frame_schema method. 

Let’s create a new DynamicFrame using the example data located on Amazon S3:

from pyspark.context import SparkContext

from awsglue.context import GlueContext

glueContext = GlueContext(SparkContext.getOrCreate())

dyf_without_schema = glueContext.create_dynamic_frame_from_
options(

    connection_type = "s3", 

    connection_options = {

        "paths": ["s3://awsglue-datasets/examples/us-
legislators/all/events.json"]
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    }, 

    format = "json"

)

dyf_without_schema.printSchema()

The schema is automatically recognized, as shown in the following code. You will notice that the 
start_date, end_date, and identifier columns are recognized as strings:

Root

|-- classification: string

|-- name: string

|-- end_date: string

|-- identifiers: array

|    |-- element: struct

|    |    |-- scheme: string

|    |    |-- identifier: string

|-- id: string

|-- start_date: string

|-- organization_id: string

Now, let’s pass a static schema to the with_frame_schema method using the same data. Be 
careful not to pass the schema after schema computation. Do not execute the printSchema 
method before the with_frame_schema method since the printSchema method triggers 
schema computation and with_frame_schema is only available before schema computation:

from awsglue.gluetypes import Field, ArrayType, StructType, 
StringType, IntegerType

dyf_without_schema_tmp = glueContext.create_dynamic_frame_from_
options(

    connection_type = "s3", 

    connection_options = {

        "paths": ["s3://awsglue-datasets/examples/us-
legislators/all/events.json"]

    }, 

    format = "json"

)

schema = StructType([
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    Field("id", StringType()),

    Field("name", StringType()),

    Field("classification", StringType()),

    Field("identifiers", ArrayType(StructType([

            Field("schema", StringType()),

            Field("identifier", IntegerType())

        ])),

    ),

    Field("start_date", IntegerType()),

    Field("end_date", IntegerType()),

    Field("organization_id", StringType()),

])

dyf_with_schema = dyf_without_schema_tmp.with_frame_
schema(schema)

dyf_with_schema.printSchema()

The output of printSchema is now as follows:

root

|-- id: string

|-- name: long

|-- classification: string

|-- identifiers: array

|    |-- element: struct

|    |    |-- schema: string

|    |    |-- identifier: int

|-- start_date: int

|-- end_date: int

|-- organization_id: string

You will notice that the start_date, end_date, and identifier columns are now recognized 
as integers instead of strings. Schema enforcement for a DynamicFrame is useful when you want to 
use a DynamicFrame but you do not want to rely on on-the-fly schemas or schema inference.
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Flattening nested schemas

When you process unstructured/semi-structured data, you may see a schema that includes a deep 
nested struct or an array generated from applications. Here’s an example of a nested schema:

{

    "count": 2,

    "entries": [

        {

            "id": 1,

            "values": {

                "k1": "aaa",

                "k2": "bbb"

            }

        },

        {

            "id": 2,

            "values": {

                "k1": "ccc",

                "k2": "ddd"

            }

        }

    ]

}

Typically, for most query engines, a nested schema introduces additional complexity for analytics. 
Also, for humans, it is not easy to read. To overcome that, you can flatten the schema. AWS Glue’s 
Relationalize transform helps you convert a deep nested schema into a flat schema:

from pyspark.context import SparkContext

from awsglue.context import GlueContext

glueContext = GlueContext(SparkContext.getOrCreate())

dyf = glueContext.create_dynamic_frame_from_options(

    connection_type = "s3",

    connection_options = {"paths": ["s3://path_to_nested_
json/"]},

    format = "json"
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)

dyf.printSchema()

dyf.toDF().show()

The output of printSchema is now as follows:

root

|-- count: int

|-- entries: array

|    |-- element: struct

|    |    |-- id: int

|    |    |-- values: struct

|    |    |    |-- k1: string

|    |    |    |-- k2: string

The output of show is now as follows:

+-----+--------------------+

|count|             entries|

+-----+--------------------+

|    2|[{1, {aaa, bbb}},...|

+-----+--------------------+

Then, you can perform a Relationalize transform on this nested schema:

from awsglue.transforms import Relationalize

dfc_root_table_name = "root"

dfc = Relationalize.apply(

    frame = dyf, 

    staging_path = "s3://your-tmp-s3-path/", 

    name = dfc_root_table_name

)

dfc.keys()

The output of keys is now as follows:

dict_keys(['root', 'root_entries'])
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The Relationalize transform returns a DynamicFrameCollection object. Now, you have two 
DynamicFrames inside this collection. Let’s extract both:

dyf_flattened_root = dfc.select(dfc_root_table_name)

dyf_flattened_root.printSchema()

dyf_flattened_root.toDF().show()

The output is now as follows:

root

|-- count: int

|-- entries: long

+-----+-------+

|count|entries|

+-----+-------+

|    2|      1|

+-----+-------+

Then, extract the second DynamicFrame inside the collection:

dyf_flattened_entries = dfc.select('root_entries')

dyf_flattened_entries.printSchema()

dyf_flattened_entries.toDF().show()

The output is now as follows:

Figure 6.1 – Relationalized DynamicFrame
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If you want to rejoin these two DynamicFrames, run the following code:

df_flattened_root = dyf_flattened_root.toDF()

df_flattened_entries = dyf_flattened_entries.toDF()

df_joined = df_flattened_root.join(df_flattened_entries)

df_joined.printSchema()

df_joined.show()

The output will be as follows:

Figure 6.2 – Rejoined DynamicFrame

In this section, you learned that Relationalize returns a collection of DynamicFrames from 
deep nested data. It is useful for flattening nested data.

Normalizing scale

In the context of mathematics, machine learning (ML), or statistics, normalization is commonly 
used to prepare data on the same scale. Imagine that you have an Amazon review dataset and that 
each review has a star rating for an item. The value of the rating is 1 to 5 in the original data. On the 
other hand, most ML algorithms expect a value between 0 to 1. If you prefer to rescale data, you can 
use any typical normalization method, such as min-max normalization, mean normalization, and 
Z-score normalization.

AWS Glue DataBrew supports mechanisms such as mean normalization and Z-scale normalization. 
You can easily scale and normalize the values with a GUI.
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Handling missing values and outliers

Real-world data typically includes missing values or outliers, and they sometimes cause invalid trends 
in analysis or unexpected results in ML.

With AWS Glue jobs, you can use the FillMissingValues transform to handle missing values 
in the dataset. The FillMissingValues transform has been built on top of an ML algorithm. It 
detects null values and empty strings as missing values in a specific column and adds a new column 
with values that are automatically predicted by the ML algorithm, such as linear regression and 
random forest.

With AWS Glue DataBrew, you can fill missing values with predefined sets such as average, median, 
custom value, empty string, last valid value, and others. You can also detect outliers and replace them 
with the rescaled values.

Normalizing date and time values

Real-world data uses different notations of date and time. In the US, It is common to use the MM/
dd/yyyy format (for example, 12/25/2021), whereas in Europe, it is common to use the dd/MM/
yyyy format (for example, 25/12/2021). Since they can be confused with each other, it is important 
to convert international use cases into a unified format.

Unix time (also known as epoch time or POSIX time) is used in various systems. It is the number 
of seconds that have elapsed since the Unix epoch, excluding leap seconds. The Unix time of 00:00, 
December 25, 2021, in UTC is 1640390400. Since it is hard for a human to read, typically, it is 
converted into a human-readable timestamp format in queries or dashboards.

ISO 8601 is an international standard that covers the worldwide exchange and communication of date- 
and time-related data. For example, the ISO 8601 format for the date and time of 00:00, December 
25, 2021, in UTC is 2021-12-25T00:00:00+00:00.

In the case of international use cases, it is important to choose a timezone to show the data. Usually, 
an application needs to adjust the end user’s timezone. If you expect all the end users to be in a specific 
timezone, it may be also okay to store the timestamp within that specific timezone.

With AWS Glue, you can use any of Spark’s or Glue DynamicFrame’s methods to convert a specific 
date and time format into a timestamp type. Spark has various date and time functions, including 
unix_timestamp, date_format, to_unix_timestamp, from_unixtime, to_date, 
to_timestamp, from_utc_timestamp, and to_utc_timestamp. 
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The following is an example DataFrame that includes a timestamp record:

df_time_string = spark.sql("SELECT '2021-12-25 00:00:00' as 
timestamp_col") 

df_time_string.printSchema()

df_time_string.show()

The schema and the following data are returned by the preceding code:

root

 |-- timestamp_col: string (nullable = false)

+-------------------+

|      timestamp_col|

+-------------------+

|2021-12-25 00:00:00|

+-------------------+

Now, let’s convert the data type from a string type into a timestamp type using the DataFrame’s to_
timestamp method:

from pyspark.sql.functions import to_timestamp, col

 df_time_timestamp = df_time_string.withColumn(

    "timestamp_col", 

    to_timestamp(col("timestamp_col"), 'yyyy-MM-dd HH:mm:ss')

)

df_time_timestamp.printSchema()

df_time_timestamp.show()

The printSchema output is shown in the following code block. You will notice that the timestamp_
col column is now recognized as timestamp instead of string:

root

 |-- timestamp_col: timestamp (nullable = true)

+-------------------+

|      timestamp_col|

+-------------------+
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|2021-12-25 00:00:00|

+-------------------+

AWS Glue DynamicFrame also has the ApplyMapping transformation for casting values, including 
timestamps. The following code initiates Glue-related classes and converts the sample DataFrame 
into a DynamicFrame:

from pyspark.context import SparkContext

from awsglue.context import GlueContext

from awsglue import DynamicFrame

glueContext = GlueContext(SparkContext.getOrCreate())

dyf = DynamicFrame.fromDF(df_time_string, glueContext, "from_
df")

The following code finds columns whose names contain timestamp_col dynamically and converts 
the string value in the column into the timestamp type:

mapping = []

for field in dyf.schema():

    if field.name == 'timestamp_col':

        mapping.append((

            field.name, field.dataType.typeName(), 

            field.name, 'timestamp'

        ))

    else:

        mapping.append((

            field.name, field.dataType.typeName(), 

            field.name, field.dataType.typeName()

        ))

dyf = dyf.apply_mapping(mapping)

df_time_timestamp_dyf = dyf.toDF()

df_time_timestamp_dyf.printSchema()

df_time_timestamp_dyf.show()
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You will see the same result that you saw previously:

root

 |-- timestamp_col: timestamp (nullable = true)

+-------------------+

|      timestamp_col|

+-------------------+

|2021-12-25 00:00:00|

+-------------------+

Another typical date and time handling operation is to extract some values, such as the year, month, 
and day from the timestamp column dynamically. This is commonly done when you want to partition 
data into data lake storage based on the timestamp.

The following code extracts the year, month, and day values from the timestamp_col column:

from pyspark.sql.functions import year, month, dayofmonth

 df_time_timestamp_ymd = df_time_timestamp \

    .withColumn('year', year("timestamp_col"))\

    .withColumn('month', month("timestamp_col"))\

    .withColumn('day', dayofmonth("timestamp_col"))

df_time_timestamp_ymd.printSchema()

df_time_timestamp_ymd.show()

The preceding code returns the following output. You will notice that the DataFrame has three additional 
columns – year, month, and day – and that those columns contain the values that were extracted 
from the timestamp_col column:

root

 |-- timestamp_col: timestamp (nullable = true)

 |-- year: integer (nullable = true)

 |-- month: integer (nullable = true)

 |-- day: integer (nullable = true)

+-------------------+----+-----+---+

|      timestamp_col|year|month|day|

+-------------------+----+-----+---+
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|2021-12-25 00:00:00|2021|   12| 25|

+-------------------+----+-----+---+

With a Glue DataFrame, you can achieve the same by running the following code using the  
map function:

def add_timestamp_column(record):

    dt = record["timestamp_col"]

    record["year"] = dt.year

    record["month"] = dt.month

    record["day"] = dt.day

    return record

dyf = dyf.map(add_timestamp_column)

df_time_timestamp_dyf_ymd = dyf.toDF()

df_time_timestamp_dyf_ymd.printSchema()

df_time_timestamp_dyf_ymd.show()

The preceding code returns the following output:

root

 |-- timestamp_col: timestamp (nullable = true)

 |-- year: integer (nullable = true)

 |-- month: integer (nullable = true)

 |-- day: integer (nullable = true)

+-------------------+----+-----+---+

|      timestamp_col|year|month|day|

+-------------------+----+-----+---+

|2021-12-25 00:00:00|2021|   12| 25|

+-------------------+----+-----+---+

In this section, you learned that you can easily normalize the date/time format in both a Spark DataFrame 
and a Glue DynamicFrame. You can also extract year/month/value values from a timestamp. This is 
useful for time series data, as well as data layouts that use time-based partitioning.
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Handling error records

If the data is corrupted, Apache Spark or AWS Glue may not be able to read the records successfully. 
This can cause missing values and invalid results.

If you want to manage such situations, the Glue DynamicFrame class can detect error records. The 
following code detects the error records and aborts the job when the error rate exceeds the threshold:

import sys

from pyspark.context import SparkContext

from awsglue.context import GlueContext

from awsglue.job import Job

from awsglue.utils import getResolvedOptions

ERROR_RATE_THRESHOLD = 0.2

glue_context = GlueContext(SparkContext.getOrCreate())

dyf = glue_context.create_dynamic_frame.from_options(

    connection_type = "s3",

    connection_options = {'paths': ['s3://your_input_data_
path/']},

    format = "csv",

    format_options={'withHeader': False}

)

dataCount = dyf.count()

errorCount = dyf.errorsCount()

errorRate = errorCount/(dataCount+errorCount)

print(f"error rate: {errorRate}")

if errorRate > ERROR_RATE_THRESHOLD:

    raise Exception(f"error rate {errorRate} exceeded 
threshold: {ERROR_RATE_THRESHOLD}")

errorDyf = dyf.errorsAsDynamicFrame()

glue_context.write_dynamic_frame_from_options(

    frame=errorDyf,

    connection_type='s3',

    connection_options={'path': 's3://your_error_frame_path/'},
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    format='json'

)

In this section, you learned that Glue provides a set of capabilities that can help you handle typical 
error records. Based on your requirements, you can trigger an exception when the error rate exceeds 
the predefined threshold.

Deduplicating records
When you start analyzing the business data, you may find that it’s incorrect and that there are multiple 
different notations of the same record. 

The following example table contains duplicates:

Figure 6.3 – Customer table with duplicates

As you may have noticed, there are only four unique records in the preceding table. Two records have 
two different notations, which causes duplication. If you analyze the data with these kinds of duplicated 
records, the result may include unexpected bias, so you will get an incorrect result.

With AWS Glue, you can use the FindMatches transform to find duplicated records. FindMatches 
is one of the ETL transforms provided in the Glue ETL library. With the FindMatches transform, 
you can match records and identify and remove duplicate records based on the ML model.

Let’s look at the end-to-end matching process:

1. Register a table definition for your data in AWS Glue Data Catalog. You can use a Glue crawler, 
DDL, or the Glue catalog API to catalog your data.

2. Create new Glue ML transforms using FindMatches. You need to choose the table created 
in step 1, give primary keys, and tune the balance between Recall and Precision and Lower 
cost and Accuracy.
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3. Train the FindMatches model by providing a labeling file that represents a perfect mapping 
of the records. You can estimate the quality of the model by reviewing the match quality metrics 
and uploading better labeling files if you want to improve the quality.

4. Create and run an AWS Glue ETL job that uses your FindMatches transform.

You can find detailed steps in Integrate and deduplicate datasets using AWS Lake Formation (https://
aws.amazon.com/blogs/big-data/integrate-and-deduplicate-datasets-
using-aws-lake-formation-findmatches/).

Once you have completed the preceding steps, you will see the results shown in the following table: 

Figure 6.4 – Deduplicated customer table

After matching the datasets, you will see that the result table represents the source table’s structure 
and data, as well as one more column: match_id. Each of the matched records displays the same 
match_id value. By utilizing these match_id values, you can filter with only distinct values to 
get unique records.

In this section, you learned that you can easily take advantage of the ML model in the FindMatches 
transform and deduplicate the same records efficiently.

Denormalizing tables
In this section, we will look at an example use case. There is a fictional e-commerce company that 
sells products and has a website that allows people to buy these products. There are three tables stored 
in the web system – two dimension tables, product and customer, and one fact table, sales. 
The product table stores the product’s name, category, and price. The customer table stores 
individual customer names, email addresses, and phone numbers. These email addresses and phone 
numbers are sensitive pieces of information that need to be handled carefully. When a customer buys 
a product, that activity is recorded in the sales table. One new record is inserted into the sales 
table every time a customer buys a product.
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The following is the product dimension table:

Figure 6.5 – Product table

The following code can be used to populate the preceding sample data in a Spark DataFrame: 

df_product = spark.createDataFrame([

    (11, "Introduction to Cloud", "Ebooks", 15),

    (12, "Best practices on data lakes", "Ebooks", 25),

    (21, "Data Quest", "Video games", 30),

    (22, "Final Shooting", "Video games", 20)

], ['product_id', 'product_name', 'category', 'price'])

df_product.show()

df_product.createOrReplaceTempView("product")

The preceding code returns the following output:

Figure 6.6 – DataFrame for the Product table

The following is the customer dimension table:

Figure 6.7 – Customer table
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The following code can be used to populate the preceding sample data in a Spark DataFrame: 

df_customer = spark.createDataFrame([

    ("A103", "Barbara Gordon", "gordon@example.com", 
"117.835.2584"),

    ("A042", "Rebecca Thompson", "thompson@example.net", "001-
469-964-3897x9041"),

    ("A805", "Rachel Gilbert", "gilbert@example.com", "001-510-
198-4613x23986"),

    ("A404", "Tanya Fowler", "tanya@example.net", "(067)150-
0263")

], ['uid', 'customer_name', 'email', 'phone'])

df_customer.show(truncate=False)

df_customer.createOrReplaceTempView("customer")

The preceding code returns the following output:

Figure 6.8 – DataFrame for the Customer table

The following is the sales fact table (the purchased_by field is the foreign key for the uid 
field in the customer table):

Figure 6.9 – Sales table

The following code can be used to populate the preceding sample data in a Spark DataFrame: 

df_sales = spark.createDataFrame([

    (21, "A042", "2022-03-30T01:30:00Z"),
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    (22, "A805", "2022-04-01T02:00:00Z"),

    (11, "A103", "2022-04-21T11:40:00Z"),

    (12, "A404", "2022-04-28T08:20:00Z")

], ['product_id', 'purchased_by', 'purchased_at'])

df_sales.show(truncate=False)

df_sales.createOrReplaceTempView("sales")

The preceding code returns the following output:

Figure 6.10 – DataFrame for the Sales table

These tables are well-designed and normalized in the context of relational databases. However, this 
means that the data analyst always needs to join the tables for analysis. 

For example, if you want to find the names of customers who bought products in April, you need to 
join the customer and sales tables, then filter with the purchased_at column:

Spark.sql("SELECT customer_name, purchased_at FROM sales JOIN 
customer ON sales.purchased_by=customer.uid WHERE purchased_at 
LIKE '2022-04%'").show()

The preceding code returns the following output:

 

Figure 6.11 – Customers who bought products in April

It is not critical when the tables are small, but if the tables are large, you will spend an unnecessarily 
long time joining tables. In addition, joins can cause huge memory consumption in well-known 
analytic engines, including Apache Spark, and it sometimes causes out-of-memory (OOM) errors.
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Denormalization is one of the typical optimization techniques that has fewer joins and simpler queries. 
Once you denormalize the table by joining the source tables in advance, you won’t need to join the 
tables in the analysis phase, and your query syntax will be simpler. The disadvantage of denormalization 
is that you will need to have some redundancy in the data, and you will have to think about how to 
keep the denormalized table up to date.

Let’s denormalize the four preceding tables into a destination table:

df_product_sales = df_product.join(

    df_sales, 

    df_product.product_id == df_sales.product_id

)

df_destination = df_product_sales.join(

    df_customer, 

    df_product_sales.purchased_by == df_customer.uid

)

df_destination.createOrReplaceTempView("destination")

df_destination.select('product_
name','category','price','customer_
name','email','phone','purchased_at').show()

The following table shows some of the columns in the destination table:

 

Figure 6.12 – DataFrame for the Destination table

Once you have created the destination table, you can easily find the name of people who purchased 
products in April without joining all the relevant tables every time:

spark.sql("SELECT product_name,category,price,customer_
name,email,phone,purchased_at FROM destination WHERE purchased_
at LIKE '2022-04%'").show()

Here is the output of the preceding code:

The preceding code returns the following output: 

Figure 6.13 – The Destination table with customers who bought products in April 2022
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In this section, you learned that tables can be denormalized by joining them. This is useful for 
optimizing performance in analytics workloads as it avoids having multiple joins in queries. However, 
if you denormalize the tables and store them on data lakes, they will be a little bit harder to maintain 
because you need to repeat the denormalization process whenever the source tables are changed. You 
will need to decide on a direction based on your workload.

Securing data content
In the context of a data lake, security is a “job zero” priority. In Chapter 8, Data Security, we will dive 
deep into security. In this section, we cover basic ETL operations that secure data. The following 
common techniques can be used to hide confidential values from data:

• Masking values

• Hashing values

In this section, you will learn how to mask/hash values that are included in your data.

Masking values

In business data lakes, the data can contain sensitive data, such as people’s names, phone numbers, 
credit card numbers, and so on. Data security is an important aspect of data lakes. There are different 
approaches to handling such data securely. It is a good idea to just drop the sensitive data when you 
collect the data from data sources when you won’t use the sensitive data in analytics. It is also common 
to manage access permissions on certain columns or records of the data. Another approach is to mask 
the data entirely or partially when you want to keep it confidential but also keep the same format – for 
example, the number of digits or characters.

With AWS Glue, you can mask a specific column using Spark DataFrame’s withColumn method 
by replacing the text based on a regular expression:

from pyspark.sql.functions import regexp_replace

df_masked = df_destination.withColumn("phone", regexp_
replace("phone", r'(\d)', '*'))

df_masked.select('product_name','category','price','customer_
name','email','phone','purchased_at').show()
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Once you have masked the data, you will see the following output. You will notice that only the 
numbers have been replaced in the phone column:

Figure 6.14 – The Destination table contains masked phone numbers

In terms of personally identifiable information (PII) data, AWS Glue has a native capability for 
detecting the PII data dynamically based on the data. At the time of writing, it can detect the following 
16 entities:

• ITIN (US)

• Email

• Passport Number (US)

• US Phone 

• Credit Card

• Bank Account (US, Canada)

• US Driving License

• IP Address

• MAC Address

• DEA Number (US)

• HCPCS Code (US)

• National Provider Identifier (US)

• National Drug Code (US)

• Health Insurance Claim Number (US)

• Medicare Beneficiary Identifier (US)

• CPT Code (US)

If you want to detect the PII data and mask it based on the detected result, you can use the  
following code:

entities_filter = [] # Empty list means we detect all entities.

sample_fraction = 1.0 # 100% 



Securing data content 145

threshold_fraction = 0.8 # At least 80% of rows for a given 
column should contain the same entity in order for the column 
to be classified as that entity.

transformation_ctx = ""

stage_threshold = 0

total_threshold = 0

recognizer = EntityRecognizer()

results = recognizer.classify_columns(frame=dyf, entities_
filter=entities_filter, sample_fraction=sample_fraction, 
threshold_fraction=threshold_fraction, stageThreshold=stage_
threshold, totalThreshold=total_threshold)

for key in results:

    for recognized_value in results[key]:

        # Mask CREDIT_CARD, PHONE_NUMBER and IP_ADDRESS columns

        if recognized_value in ["CREDIT_CARD", "PHONE_NUMBER", 
"IP_ADDRESS"]:

            df = df.withColumn(key, regexp_replace(key, 
r'(\d)', '*'))

In this section, you learned that, with AWS Glue, you can easily mask your data. Glue’s PII detection 
helps you dynamically choose the confidential columns and mask them.

Hashing values

Another way to keep data secure but still make some analytic queries available is hashing. Hashing is 
the process of passing data to a hash function and converting it into the result. Hashed data is always the 
same length, regardless of the amount of original data. MD5 is one of the common hash mechanisms 
for returning a 128-bit checksum as a hex string of the value. SHA2 returns a checksum from the 
SHA-2 family (for example, SHA-224, SHA-256, SHA-384, or SHA-512) as a hex string of the value. 

These hashing algorithms are one-way, which means they can’t be reversed. One possible way to 
retrieve the original value from a hashed result is to brute-force it. A brute-force attack is commonly 
performed by generating all the possible values, making a hash of them, and then comparing the 
generated hashes with the original hash result.

Let’s compute a hash for one column in the table. Apache Spark supports hashing algorithms such as 
MD5, SHA, SHA1, SHA2, CRC32, and xxHash. Here, we will use SHA2 to hash the email column:

from pyspark.sql.functions import sha2

df_hashed = df_masked.withColumn("email", sha2("email", 256))
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df_hashed.select('product_name','category','price','customer_
name','email','phone','purchased_at').show()

Once you have hashed the data, you will see the following output. You will notice that only the email 
addresses have been hashed in the email column:

Figure 6.15 – The Destination table with hashed email addresses

If you want to integrate PII detection with hashing, you can use the following code:

entities_filter = [] # Empty list means we detect all entities.

sample_fraction = 1.0 # 100% 

threshold_fraction = 0.8 # At least 80% of rows for a given 
column should contain the same entity in order for the column 
to be classified as that entity.

transformation_ctx = ""

stage_threshold = 0 

total_threshold = 0

recognizer = EntityRecognizer()

results = recognizer.classify_columns(frame=dyf, entities_
filter=entities_filter, sample_fraction=sample_fraction, 
threshold_fraction=threshold_fraction, stageThreshold=stage_
threshold, totalThreshold=total_threshold)

for key in results:

    for recognized_value in results[key]:

        # Hash DRIVING_LICENSE, PASSPORT_NUMBER, and USA_ITIN 
columns using SHA-2

        if recognized_value in ["DRIVING_LICENSE", "PASSPORT_
NUMBER", "USA_ITIN"]:

            df = df.withColumn(key, sha2(key, 256))

In this section, you learned that, similar to masking, you can easily hash your data with AWS Glue.
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Managing data quality
When you build a modern data architecture from different data sources, the incoming data may 
contain incorrect, missing, or malformed data. This can make data applications fail. It can also result 
in incorrect business decisions due to incorrect data aggregations. However, it can be hard for you to 
evaluate the quality of the data if there is no automated mechanism. Today, it is important to manage 
data quality by applying predefined rules and verifying if the data meets those criteria or not.

Different frameworks can be used to monitor data quality. In this section, we will introduce two 
mechanisms: AWS Glue DataBrew data quality rules and DeeQu.

AWS Glue DataBrew data quality rules

Glue DataBrew data quality rules allow you to manage data quality to detect typical data issues 
easily. In this section, we will use a human resources dataset (https://eforexcel.com/wp/
downloads-16-sample-csv-files-data-sets-for-testing/).

Follow these steps to manage data quality with Glue DataBrew:

1. Create a data quality ruleset against your dataset.

2. Create data quality rules. You can define multiple data quality rules here – for example, a rule 
to make sure that row count is correct and expected, there are no duplicate records, and so on.

3. Create and run a profile job with the ruleset.

4. Inspect the data quality rule’s validation results.

If data quality issues are detected by the rules, you can run DataBrew jobs to clean up the data and 
rerun the data quality checks.

You can find detailed steps in Enforce customized data quality rules in AWS Glue DataBrew (https://
aws.amazon.com/blogs/big-data/enforce-customized-data-quality-
rules-in-aws-glue-databrew/).

DeeQu

DeeQu, an open source data quality library, addresses data quality monitoring requirements and 
can scale to large datasets. DeeQu is built on top of Apache Spark to define “unit test for data.” With 
DeeQu, you can populate data quality metrics and define data quality rules easily.

https://eforexcel.com/wp/downloads-16-sample-csv-files-data-sets-for-testing/
https://eforexcel.com/wp/downloads-16-sample-csv-files-data-sets-for-testing/
https://aws.amazon.com/blogs/big-data/enforce-customized-data-quality-rules-in-aws-glue-databrew/
https://aws.amazon.com/blogs/big-data/enforce-customized-data-quality-rules-in-aws-glue-databrew/
https://aws.amazon.com/blogs/big-data/enforce-customized-data-quality-rules-in-aws-glue-databrew/
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DeeQu version 2.x runs with Spark 3.1, as well as with AWS Glue 3.0 jobs. Follow these steps before 
running any DeeQu code:

1. Download the DeeQu 2.x JAR file from the Maven repository (https://mvnrepository.
com/artifact/com.amazon.deequ/deequ/2.0.0-spark-3.1).

2. Download the PyDeeQu 1.0.1 Wheel file from pypi.org (https://pypi.org/project/
pydeequ/).

3. Upload the JAR file and the Wheel file to your S3 bucket.

4. Configure library dependencies. When you use the Glue job system, configure the --extra_
jars and --extra_py_files parameters with the S3 paths of the JAR/Wheel files. When 
you use Glue Studio Notebook or Glue Interactive Sessions, configure %extra_jars and 
%extra_py_files, like so:

%extra_jars s3://path_to_your_lib/deequ-2.0.0-spark-
3.1.jar

%extra_py_files s3://path_to_your_lib/pydeequ-1.0.1-py3-
none-any.whl

5. First, let’s initialize SparkSession and generate some sample data:

import pydeequ

from pyspark.sql import SparkSession

spark = (SparkSession

    .builder

    .config("spark.jars.packages", pydeequ.deequ_maven_
coord)

    .config("spark.jars.excludes", pydeequ.f2j_maven_
coord)

    .getOrCreate())

df = spark.createDataFrame([

    (1, "Product A", "awesome thing.", "high", 2),

    (2, "Product B", "available at http://producta.
example.com", None, 0),

    (3, None, None, "medium", 6),

    (4, "Product D", "checkout https://productd.example.
org", "low", 10),

    (5, "Product E", None, "high", 18)

], ['id', 'productName', 'description', 'priority', 
'numViews'])

https://mvnrepository.com/artifact/com.amazon.deequ/deequ/2.0.0-spark-3.1
https://mvnrepository.com/artifact/com.amazon.deequ/deequ/2.0.0-spark-3.1
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6. Now, let’s run the analyzer to measure the metrics in the sample data:

from pydeequ.analyzers import *

analysisResult = AnalysisRunner(spark) \

    .onData(df) \

    .addAnalyzer(Size()) \

    .addAnalyzer(Completeness("id")) \

    .addAnalyzer(Completeness("productName")) \

    .addAnalyzer(Maximum("numViews")) \

    .addAnalyzer(Mean("numViews")) \

    .addAnalyzer(Minimum("numViews")) \

    .run()

analysisResult_df = AnalyzerContext.
successMetricsAsDataFrame(spark, analysisResult)

analysisResult_df.show()

The preceding code returns the following output:

+-------+-----------+------------+-----+

| entity|   instance|        name|value|

+-------+-----------+------------+-----+

|Dataset|          *|        Size|  5.0|

| Column|         id|Completeness|  1.0|

| Column|productName|Completeness|  0.8|

| Column|   numViews|     Maximum| 18.0|

| Column|   numViews|        Mean|  7.2|

| Column|   numViews|     Minimum|  0.0|

+-------+-----------+------------+-----+

7. Now, let’s apply a verification check to understand if the data meets the predefined quality rules:

from pydeequ.checks import *

from pydeequ.verification import *

check = Check(spark, CheckLevel.Warning, "Review Check")

checkResult = VerificationSuite(spark) \

    .onData(df) \

    .addCheck(
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        # we expect 5 row

        check.hasSize(lambda x: x == 5) \

        # should never be NULL

        .isComplete("id") \

        # should not contain duplicates

        .isUnique("id") \

        # should never be NULL

        .isComplete("productName") \

        # should only contain the values "high", 
"medium", and "low"

        .isContainedIn("priority", ["high", "medium", 
"low"]) \

        # should not contain negative values

        .isNonNegative("numViews") \

        # at least half of the descriptions should 
contain a url

        .containsURL("description", lambda x: x >= 0.5) \

        # half of the items should have less than 10 
views

        .hasApproxQuantile("numViews", ".5", lambda x: x 
<= 10)) \

    .run()

checkResult_df = VerificationResult.
checkResultsAsDataFrame(spark, checkResult)

checkResult_df.show()

The preceding code returns the following output:

+------------+-----------+------------+------------------
--+-----------------+--------------------+

|       check|check_level|check_status|          
constraint|constraint_status|  constraint_message|

+------------+-----------+------------+------------------
--+-----------------+--------------------+

|Review Check|    Warning|     
Warning|SizeConstraint(Si...|          Success|                    
|

|Review Check|    Warning|     
Warning|CompletenessConst...|          Success|                    
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|

|Review Check|    Warning|     
Warning|UniquenessConstra...|          Success|                    
|

|Review Check|    Warning|     
Warning|CompletenessConst...|          Failure|Value: 0.8 
does n...|

|Review Check|    Warning|     
Warning|ComplianceConstra...|          Success|                    
|

|Review Check|    Warning|     
Warning|ComplianceConstra...|          Success|                    
|

|Review Check|    Warning|     
Warning|containsURL(descr...|          Failure|Value: 0.4 
does n...|

|Review Check|    Warning|     
Warning|ApproxQuantileCon...|          Success|                    
|

+------------+-----------+------------+------------------
--+-----------------+--------------------+

When you want to see all the messages provided by the verification, you can run the 
following code: 

checkResult_df.show(truncate=False)

The preceding code returns the following output:

Figure 6.16 – DeeQU data quality check result

In this section, you learned that Glue DataBrew and DeeQu help you analyze and validate data quality 
in your dataset.
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Summary
In this chapter, you learned how to manage, clean up, and enrich your data using various functionalities 
available on AWS Glue and Apache Spark. In terms of normalizing data, you looked at several 
techniques, including schema enforcement, timestamp handling, and others. To deduplicate records, 
you experimented with using ML transforms with a sample dataset, while to denormalize tables, you 
joined multiple tables and enriched the data to optimize the analytic workload. When learning about 
masking and hashing values, you performed basic ETL to improve security. Moreover, you learned 
that Glue PII Detection helps you choose confidential columns dynamically. Finally, you learned how 
to manage data quality with Glue DataBrew data quality rules and DeeQu.

In the next chapter, you will learn about the best practices for managing metadata on data lakes.



7
Metadata Management

Just as with relational databases, AWS Glue relies on the concepts of databases and tables to organize 
and manage datasets. That said, these concepts are quite different in their execution. In a relational 
database, the data to be stored and its descriptors (such as the schema and comments, also known as 
metadata) are stored and managed together: there is no way to store data without describing it first, 
and there is no way to add metadata to already written data.

In big data environments, the storage and metadata layers are decoupled. There is no centralized 
storage system because of dataset size limitations, and data is typically dumped without a format onto 
distributed, large-scale systems such as Apache Hadoop or Amazon S3. This means we as users have 
to bring the metadata to the data wherever it is stored, cataloging the data and specifying its location, 
how to read it, and how to understand it (its schema). 

In the case of Glue, this centralized cataloging entity is known as the Glue Data Catalog, a serverless 
metadata repository for all datasets in your data lake. In this chapter, we will cover all aspects of the 
Data Catalog, including the following topics:

• Populating metadata – creating, updating, and deleting entries within the Data Catalog

• Maintaining metadata – automation and management features for the Data Catalog

• Partition management – avoiding low query execution times by managing your partitions

• Versioning and rollback – dealing with version management and changes within the Data Catalog

• Lineage –understanding the flow of data within your data lake

Upon completion of this chapter, you will know how to operate, manage, and maintain a successful 
catalog, enabling you to process data stored as described in previous chapters.
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Technical requirements
This chapter requires the following:

• The AWS command-line interface (CLI) (https://aws.amazon.com/cli/) installed 
in your environment 

• A Python interpreter and the boto3 library (https://aws.amazon.com/sdk-for-
python/) installed in your environment

Populating metadata
The first step of any Data Catalog is to populate it with databases and tables. AWS Glue provides 
both manual and automatic options for doing so, the latter being particularly useful to avoid the 
cumbersomeness of defining datasets from scratch. This section will explain how the Data Catalog 
works and will demonstrate how to interact with it in different ways.

Glue Data Catalog API

Just as in other AWS services, AWS Glue offers a fully fledged application programming interface 
(API; https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api.html) 
to interact with it, which includes the Data Catalog. Thus, operations such as creating a database or 
a table can be done through said API or any of its containers, such as the AWS CLI or any of the 
software development kits (SDKs). 

For instance, let’s start populating our catalog manually. The first step is to create a database, which we 
can do using the AWS CLI. The CLI Command Reference page (https://docs.aws.amazon.
com/cli/latest/reference/glue/index.html) has a complete list of all available CLI 
commands for Glue, which follow the same notation as API calls. In this case, the CreateDatabase 
API call is mirrored with the create-database CLI command, so that’s what we will use, as 
illustrated in the following code snippet:

aws glue create-database --database-input 
"{\"Name\":\"sampledb\"}"

Next, let’s create a table inside the database, for which we can use the create-table command. 
Please note that the create-table operation requires passing a TableInput object that 
determines all the properties of the table. This object can be defined using JavaScript Object 
Notation (JSON) notation. In this case, our table will have three columns (name and surname—of 
type string; and identifier (ID)—of type int) and will be stored in S3 as JSON files. The code 
is illustrated in the following snippet:

aws glue create-table \

        --database-name sampledb \

https://aws.amazon.com/cli/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api.html
https://docs.aws.amazon.com/cli/latest/reference/glue/index.html
https://docs.aws.amazon.com/cli/latest/reference/glue/index.html
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        --table-input  '{"Name":"sampletable", \

             "StorageDescriptor":{ "Columns":[ \

            {"Name":"name", "Type":"string"}, \

            {"Name":"surname", "Type":"string"}, \

            {"Name":"id", "Type":"int"}], \

            "Location":"s3://sample-path/", \

            "SerdeInfo":{"SerializationLibrary":"org.openx.
data.jsonserde.JsonSerDe"}}, \

            "Parameters":{"classification":"json"}}

Finally, let’s use an AWS SDK to create a partition inside the table. AWS offers a wide variety of SDKs 
(https://aws.amazon.com/tools/), but the easiest one to use is probably the Python one, 
also known as boto3 (https://boto3.amazonaws.com/v1/documentation/api/
latest/reference/services/glue.html). The official documentation (https://
boto3.amazonaws.com/v1/documentation/api/latest/reference/services/
glue.html) lists all available methods and how to use them, but they follow a very similar structure 
to that of the REpresentational State Transfer (REST) API. This time, we’ll be using the create_
partition method, which similarly to before requires passing a PartitionInput object that 
defines the properties of the partition. The code is illustrated in the following snippet: 

import boto3

glue_client = boto3.client('glue')

response = glue_client.create_partition(

    DatabaseName='sampledb',

    TableName='sampletable',

    PartitionInput={

        'Values': [

            '2019',

        ],

        'StorageDescriptor': {

            'Columns': [

                {

                    'Name': 'name',

                    'Type': 'string'

                },

                {

                    'Name': 'surname',

https://aws.amazon.com/tools/
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/glue.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/glue.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/glue.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/glue.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/glue.html
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                    'Type': 'string'

                },

                {

                    'Name': 'id',

                    'Type': 'int'

                }

            ],

            'Location': 's3://sample-path/year=2019/',

            'SerdeInfo': {

                'SerializationLibrary': 'org.openx.data.
jsonserde.JsonSerDe'

            }

        },

        'Parameters': {

            'classification': 'json'

        }

    }

)

The three methods we used to create the database, table, and partition respectively are equivalent and 
exchangeable, and there are no differences as to how they are represented in the AWS backend. This 
is because, as stated before, both the AWS CLI and any of the SDKs use REST API calls internally to 
interface with the service endpoint.

In this section, we discussed different ways of interacting with the Glue API through the AWS API. 
Next, we will discuss interacting with the API through Structured Query Language (SQL) statements, 
which might be more natural for data engineers or database administrators.

DDL statements

The most natural way of interacting with the Data Catalog for the majority of users is to use Data 
Definition Language (DDL) statements since that is similar to a relational SQL database. AWS Glue, 
however, does not offer any SQL interface to interact with the catalog directly—the only way to interact 
with it is through API calls. 

Because of this limitation, several external services and applications have been developed as a translation 
layer between the SQL language and the necessary API calls to run DDL statements on the Glue 
Data Catalog. In the following sections, we will cover services providing this capability within AWS; 
however, with the API being an open specification, literally any third-party SQL interpreter could 
interact with the Data Catalog.



Populating metadata 157

Apache Hive

Apache Hive (https://hive.apache.org/) is an open source project that delivers a data 
warehouse designed for the Hadoop ecosystem, allowing users to explore and query large datasets 
using a variation of the American National Standards Institute (ANSI) SQL language, known as the 
Hive Query Language (HiveQL). Hive relies on the Hive Metastore, a single-node metadata repository 
that holds all information about Hive tables—a concept very similar to that of the Glue Data Catalog.

Even though Hive is not directly related to Glue, AWS offers Hive-Glue compatibility through Amazon 
Elastic MapReduce (Amazon EMR) clusters (https://aws.amazon.com/emr/). This allows 
users to use the Glue Data Catalog in place of the Hive metastore, which effectively lets them run SQL 
queries on Glue tables through Hive. Users can launch EMR clusters with Hive-Glue compatibility 
(https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive-
metastore-glue.html) by adding the following configuration property at launch time:

[

  {

    "Classification": "hive-site",

    "Properties": {

      "hive.metastore.client.factory.class": "com.amazonaws.
glue.catalog.metastore.AWSGlueDataCatalogHiveClientFactory",

      "hive.metastore.schema.verification": "false"

    }

  }

]

This property effectively replaces the Hive metastore factory class with a custom one developed by 
AWS, which will interact with the Glue Data Catalog instead.

Once an EMR cluster has been launched with Glue Data Catalog integration, we can start Hive and 
begin running queries, as follows:

$> hive

Now let’s repeat the operations we ran through the REST API, this time with Hive. We start by creating 
a new database, like so:

CREATE DATABASE sampledb;

https://hive.apache.org/
https://aws.amazon.com/emr/
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive-metastore-glue.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive-metastore-glue.html
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We can then create our table within the database, as follows:

CREATE EXTERNAL TABLE sampledb.sampletable (

        name STRING,

        surname STRING,

        id INT

)

PARTITIONED BY (year STRING)

ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe'

LOCATION 's3://sample-path/'

And finally, we can add a partition to the created table, like so:

ALTER TABLE sampledb.sampletable 

ADD PARTITION (year='2019') 

LOCATION 's3://sample-path/year=2019/'

Please note that in order for these operations to succeed, the Identity and Access Management (IAM) 
role attached to the EMR cluster’s nodes must have the necessary permissions to do the equivalent Glue 
actions. For instance, when creating a database, the IAM role must have explicit permission to perform 
the CreateDatabase action (https://docs.aws.amazon.com/glue/latest/
dg/aws-glue-api-catalog-databases.html#aws-glue-api-catalog-
databases-CreateDatabase). This also extends to additional Glue Data Catalog features 
such as Key Management Service (KMS) encryption.

Even though this Hive-Glue compatibility works, there are certain limitations and considerations to 
take into account when using it, the most notable being these:

• Hive atomicity, consistency, isolation, and durability (ACID) transactions (which enable 
operations such as DELETE or UPDATE) are not supported.

• Hive cannot rename tables, as tables in Glue cannot be renamed.

• Even though users could theoretically create Hive-managed tables and they would appear in the 
Data Catalog, these tables are not accessible as their data would be stored in the Hive cluster’s 
local Hadoop Distributed File System (HDFS) storage. Therefore, it is recommended to use 
the EXTERNAL keyword for all of your tables.

To check a complete list of limitations and considerations, please refer to the public AWS documentation 

(https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive-
metastore-glue.html).

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-databases.html#aws-glue-api-catalog-databases-CreateDatabase
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-databases.html#aws-glue-api-catalog-databases-CreateDatabase
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-databases.html#aws-glue-api-catalog-databases-CreateDatabase
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive-metastore-glue.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive-metastore-glue.html
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Apache SparkTM

Apache Spark (https://spark.apache.org/) is an open source framework for big data 
processing, enabling the processing of large datasets over a cluster of compute nodes. Spark is part of 
the Hadoop ecosystem and, as such, is capable of interacting with tables defined in a Hive metastore. 
Spark is also offered as part of Amazon EMR clusters, and just as with Hive, AWS has developed specific 
integrations to enable Spark to interact with tables defined in the Glue Data Catalog.

Spark offers two main ways of dealing with data: programmatically via code, or through its own 
implementation of the ANSI SQL language, Spark SQL. Spark SQL is also the name of Spark’s SQL 
libraries and modules, which enable the use of SQL queries within Spark code and provide the spark-
sql read-eval-print loop (REPL) environment where queries can be executed interactively through 
a command-line terminal.

As the AWS documentation (https://docs.aws.amazon.com/emr/latest/
ReleaseGuide/emr-spark-glue.html) describes (and similarly to Hive), Glue-Spark 
integration can be enabled by passing the following configuration property to the EMR cluster at 
launch time:

[

  {

    "Classification": "spark-hive-site",

    "Properties": {

      "hive.metastore.client.factory.class": "com.amazonaws.
glue.catalog.metastore.AWSGlueDataCatalogHiveClientFactory"

    }

  }

]

This property effectively replaces the Hive metastore factory class used by Spark with a custom-
developed one that interacts with the Glue Data Catalog instead.

Once the cluster has been launched, we can run SQL queries easily by starting a REPL, as follows:

$ spark-sql

We can then repeat the same steps we did in the Glue Data Catalog API section within the REPL, as 
illustrated here:

CREATE DATABASE sampledb;

https://spark.apache.org/
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-glue.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-glue.html
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Creating a table is done in a similar fashion, as we can see here:

CREATE EXTERNAL TABLE sampledb.sampletable (

        name STRING,

        surname STRING,

        id INT

)

PARTITIONED BY (year STRING)

ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe'

LOCATION 's3://sample-path/'

And finally, adding a partition is again very similar, as illustrated here:

ALTER TABLE sampledb.sampletable 

ADD PARTITION (year='2019') 

LOCATION 's3://sample-path/year=2019/'

Just as with Hive, the IAM role attached to the EMR cluster nodes will need specific Glue permissions 
to perform operations that stem from the executed commands. 

Spark has very few differences from Hive in its SQL implementation and interpretation. Because of 
this, many of the Hive-Glue integration limitations mentioned earlier also apply to Spark. For a full 
list of them, please check the public AWS documentation (https://docs.aws.amazon.com/
emr/latest/ReleaseGuide/emr-spark-glue.html).

Amazon Athena

Athena (https://aws.amazon.com/athena/) is a serverless query service designed to 
enable SQL querying over datasets stored in S3. Since its purpose overlaps heavily with that of Glue’s, 
Athena was designed from an early stage to work with the Glue Data Catalog, enabling SQL querying 
over Glue tables. 

That said, there are certain limitations to the SQL queries you can run on the Data Catalog. Athena 
is based on Presto (https://prestodb.io/), an open source SQL engine developed by 
Facebook engineers, and thus it will be as powerful—in terms of querying—as Presto is. Presto uses 
PrestoSQL, an ANSI-compatible implementation of the SQL language that covers most, but not all, 
SQL language operations.

Let’s try to use Athena to perform the same operations we performed with the API: creating a database, 
creating a table inside the database, and adding a partition to said table. If you followed the instructions 
for Apache Hive, you’ll find that the queries are pretty much identical—since they are quite simple 
and both engines support the SQL language, there’s not much variation.

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-glue.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-glue.html
https://aws.amazon.com/athena/
https://prestodb.io/
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Creating a database can be done with a simple statement, as follows:

CREATE DATABASE sampledb;

When creating a table, there are two things to pay particular attention to, as outlined here:

• The EXTERNAL keyword must be added to the CREATE TABLE statement. This is inherited 
from the Apache Hive concept of managed tables and external tables; however, in Athena (and 
Glue), all tables are considered external.

• Just as we provided the location, serializer/deserializer (SerDe), and classification information 
to the table definition JSON in the previous examples, we need to tell Athena all this information 
in a similar fashion.

The CREATE TABLE statement then looks like this:

CREATE EXTERNAL TABLE sampledb.sampletable (

        name STRING,

        surname STRING,

        id INT

)

PARTITIONED BY (year string)

ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe'

LOCATION 's3://sample-path/'

Finally, let’s add a partition to the created table, just as before, like so:

ALTER TABLE sampledb.sampletable 

ADD PARTITION (year='2019') 

LOCATION 's3://sample-path/year=2019/'

Note how in this case, we didn’t have to specify the schema or the serialization properties of the 
partition. This is because Athena (by Presto’s design) expects all partitions of a table to have the same 
schema and properties as the table itself. Therefore, complex scenarios where the partition schema 
and properties evolve over time cannot use Athena or should update the table schema itself rather 
than individual partitions.

Another important thing to note is Athena includes an automatic partition detection mechanism built 
into the MSCK REPAIR TABLE statement. This will automatically identify all partitions in the 
location specified by the table’s location property, provided that they follow the Hive-style partitioning 
format (https://docs.aws.amazon.com/athena/latest/ug/partitions.
html). If not following this format, partitions will have to be added manually.

https://docs.aws.amazon.com/athena/latest/ug/partitions.html
https://docs.aws.amazon.com/athena/latest/ug/partitions.html
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Glue crawlers

If you followed the previous sections, you will have seen that populating metadata within the Data 
Catalog is not a hard task. That said, it can quickly turn into an extremely repetitive task for large 
data lakes, sometimes becoming unfeasible for a single engineer to map all datasets to Glue tables 
manually. Because of this, AWS developed Glue crawlers.

A Glue crawler is an AWS entity that will scan the contents of a given data location, automatically infer 
a schema from it, and define it as a table in the Glue Data Catalog. Crawlers are recursive, which means 
they will work with complex nested structures such as table partitions and can be run periodically 
to add partitions or update the schema of a table with new fields populated by new incoming data.

Because of their usefulness and ease of use, crawlers are the recommended way of populating the Data 
Catalog, even for small and simple setups. Running a crawler will have a small cost and finish within 
a matter of minutes, which is more comfortable and less error-prone than—for instance—defining a 
TableInput object to be used with a CLI command.

Crawlers can automatically infer schema from data stored in the following silos:

• Amazon S3 buckets and prefixes

• Amazon DynamoDB tables

• Amazon Redshift clusters

• Amazon Relational Database Service (Amazon RDS) databases

• Non-RDS-hosted relational databases (MariaDB, SQL Server, MySQL, Oracle, and PostgreSQL)

• MongoDB and Amazon DocumentDB databases

Depending on which silo is being crawled, the crawler will behave and perform in different ways, 
which we’ll discuss in the following sections.

Crawler behavior

The way a crawler determines the existence of a table or partition is critical to understanding how it 
works and avoiding possible issues. A malfunctioning crawler can break your data pipelines by updating 
a table definition with the wrong one, or it can pollute the Data Catalog by creating thousands of tables 
that should have been partitions of a large dataset.
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The way a crawler works depends on what type of data store it is analyzing, with behaviors falling into 
one of the three following categories:

• Java Database Connectivity (JDBC) data stores and document stores: For relational datasets 
(Amazon Redshift, Amazon Aurora, MariaDB, SQL Server, MySQL, Oracle, and PostgreSQL) 
and document stores (MongoDB and DocumentDB), the crawler will simply list databases and 
tables, and then retrieve each table’s schema by describing it. There isn’t much complexity to 
this setup, as it is pretty much just copying information over to the Data Catalog.  

• DynamoDB tables: By default, the crawler will scan all items in the specified table, at a rate 
specified by the user when creating a crawler. This rate is specified as a percentage of the total 
read capacity units of the table. Alternatively, if all records in the table can be assumed to have 
a similar schema, the user can configure the crawler to only analyze a sample of the table to 
avoid consuming unnecessary read capacity units.

• S3 datasets: Given an S3 location, the crawler will recursively analyze objects located within 
it and compare their schema. S3 crawler behavior is sufficiently complex that we’ve separated 
it into its own section, located right after this one.

Let’s discuss crawler behavior for S3 datasets in detail.

S3 crawler behavior

As stated earlier, when crawling an S3 location, the crawler will read the contents of objects located 
within it to infer their schema. Schema inference is carried out by an entity known as a classifier.

A classifier is a piece of software that the crawler will execute to determine which format a file has 
been written in. For instance, the comma-separated values (CSV) classifier determines whether a 
particular file is written in CSV format or not. Determining the format is important for two reasons, 
as outlined here:

• The crawler needs to know how to read the file. Plain-text file formats such as CSV are easy 
to read, but more complex file formats such as Parquet require the use of specific libraries.

• The SerDe information will be written on the resulting table in the Data Catalog, which will 
let other services and applications read the data properly. The term SerDe refers to the Java 
classes to be used to serialize (write) and deserialize (read) information to and from the file.

A crawler has a set of built-in classifiers (one per each supported format), and users can also define 
custom classifiers for certain file formats that require more tuning. A list of built-in classifier formats 
can be found in the public documentation (https://docs.aws.amazon.com/glue/
latest/dg/add-classifier.html#classifier-built-in).

https://docs.aws.amazon.com/glue/latest/dg/add-classifier.html#classifier-built-in
https://docs.aws.amazon.com/glue/latest/dg/add-classifier.html#classifier-built-in
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Whenever a crawler needs to infer the schema for an S3 object, it will run the object through all the 
classifiers, starting with the custom ones and following with the built-in ones. Upon completing its 
analysis, each classifier returns a value between 0 and 1 that determines the certainty the classifier has 
that the file belongs to its format. The first classifier to report a certainty of 1 is used as the format. If no 
classifier returns a 1 value, the one with the higher certainty value is used. Finally, if all classifiers return 
a 0 value, the crawler will set the table format to UNKNOWN and the schema inference process will fail.

The selected classifier will then be used to determine the file’s schema, based on the file format. The way 
this happens depends on how much schema information the file format inherently has, as explained 
in more detail here:

• For structured file formats (such as Avro, Optimized Row Columnar (ORC), or Parquet), the 
schema will simply be extracted from the file’s own metadata. 

• Semi-structured formats (such as JSON, Extensible Markup Language (XML), or Ion) will 
have their schema inferred by reading a sample of records and inferring the types of the fields.

• Log files (such as Apache logs, Linux kernel logs, or AWS CloudTrail logs) will all rely on the use 
of predefined Grok patterns (https://www.elastic.co/guide/en/logstash/
current/plugins-filters-grok.html).

• Non-structured file formats (such as CSV or any of its variations) will split records by a defined 
separator character and try to match each resulting field to the best-matching data type. Field 
names will be taken from the file’s header, if available.

Now, let’s go back to the crawler’s behavior. When crawling an S3 path, the crawler looks at the contents 
of the path as a recursive tree, where each node in the tree is a subfolder (or S3 prefix) within the 
target S3 path. The crawler will then navigate to the deepest node in the tree and analyze the schema 
of all S3 objects present there, using the classifier process explained before. 

After all schemas are determined, the crawler will then start comparing all identified schemas and group 
them together by similarity. There are four key factors to take into consideration here, as outlined here:

• File compatibility

• Schema similarity

• File similarity

• File group quantity

The following sub-sections will discuss each one of these factors.

File compatibility

Files must be compatible. This means they must use the same compression format and belong to the 
same format. For instance, a path with JSON and CSV files will not result in a single unified table as 
there would be no way to read all files simultaneously with the same SerDe information.

https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
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Schema similarity

Two schemas are considered similar if they have more than 70% fields present in both of them. For 
instance, take these two records:

{"id":1,"first_name":"Henrik","last_
name":"Paddington","country":"Ireland","city":"Dublin"}

{"id":2,"first_name":"James","last_
name":"Smith","country":"Canada","language":"English"}

In this example, the two records have five fields and only one of the fields is different, so there would 
be a 20% difference or 80% similarity between them. The crawler would consider them similar and 
place them in a group together. Now, let’s look at an opposite example, as follows:

{"id":1,"car_brand":"Toyota","model":"Yaris"}

{"id":2,"car_brand":"Audi","year":2009}

This time, there’s a total of three fields, with the last one being different for both (66% similar). The 
crawler would consider them different schemas, therefore placing them into separate groups.

File similarity

The same 70% similarity is applied to the number of files belonging to each schema in the tree node. 
Let’s exemplify this with two schemas, as follows:

Schema A

{"id":1,"first_name":"Henrik","last_
name":"Paddington","country":"Ireland","city":"Dublin"}

Schema B

{"id":2,"car_brand":"Audi","year":2009}

These two schemas only share one field out of six different ones, so they would be considered different 
by the crawler. Now, let’s assume two different distributions, as follows:

1. The S3 path contains eight files with schema A and two with schema B. This would mean 80% 
of files belong to the same schema, which is larger than the 70% threshold. The crawler will 
consider the path to have schema A, and ignore files with schema B. The ignored files will be 
notified to the user through CloudWatch logging, with the following message:

INFO: Some files do not match the schema detected. 
Remove or exclude the following files from the crawler 
(truncated to first 200 files):
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 sample-path/B1.json

sample-path/B2.json

The table creation process is also part of the logs and helps identify table creation API calls 
for audit purposes. You can see an example of this here:

INFO: Created table sampledata in database sampled

2. The S3 path contains seven files with schema A and three files with schema B. This time, the 
70% threshold would be hit, meaning the contents of the path are not homogeneous enough for 
the crawler to assume a single schema. In this case, the crawler would create an individual table 
for each file within the S3 path. The threshold being hit is notified to the user via CloudWatch 
logging. The code is illustrated in the following snippet:

[main] INFO com.amazonaws.services.glue.statetree.
detector.streaming.S3StreamingPartitionDetector - Minimum 
frequency threshold surpassed for aggregated file set: 
sample-path/

 [main] INFO com.amazonaws.services.glue.statetree.
detector.streaming.S3StreamingPartitionDetector - 
Clustered Schema Count: 7

This would also include details of conflicting schemas and their fields, alongside table creation messages 
for each table created.

File group quantity

There can only be a maximum of five groups at all times. A sixth group appearing will immediately 
stop the crawling process, with the crawler creating tables and/or partitions based on the information 
it had read up until that point.

The crawler will then apply this logic to each level in the recursive tree, going from its bottom to its top 
and comparing the resulting schemas at each level. At every level, only files or partitions (subfolders or 
prefixes) can be present. Having both at the same level will result in the schema detection process being 
interrupted, with the crawler writing results to the Data Catalog based on information obtained up 
until that point. Partitions must also follow Hive-style naming for them to be recognized as partitions 
of a table rather than individual tables within a common directory.

Now that we understand how schema detection behaves for different file formats, we’ll discuss how 
crawlers are executed and the different stages they go through.
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Crawler life cycle

In order to troubleshoot and manage crawlers, it is important to understand how they are executed. 
Crawlers have four different states, which cycle in the following order:

1. Ready: The crawler is waiting to be executed.

2. Starting: The crawler is waiting for data processing units (DPUs) to be allocated to run.

3. Running: The crawler is analyzing its target.

4. Stopping: The crawler is writing results to the Data Catalog.

Just as with many other AWS resources, the crawler generates AWS CloudWatch logs on every execution. 
Crawler logs include messages about the crawler’s state changes, issues encountered during execution, 
and results written to the Data Catalog.

Every instance of a crawler’s execution is known as a crawl and has an associated crawl ID that can be 
used to identify an execution uniquely. This crawl ID is not exposed by the AWS web user interface 
(UI) and can only be retrieved in the following two ways:

• By checking the crawler’s execution logs. Every log message written by a crawler execution will 
be preceded by its crawl ID, as in the following code example: 

[e6021d6f-8fc6-4ac7-96a2-07dee35ccf14] BENCHMARK: Running 
Start Crawl for Crawler cases-ddb

In the preceding example, the e6021d6f-8fc6-4ac7-96a2-07dee35ccf14 string would 
be the crawl ID.

• By using the Glue REST API (in any of its forms). The GetCrawler API call returns a 
Crawler object containing a LastCrawl object, which contains the MessagePrefix 
property. This is the same as the crawl ID.

Retrieving the crawl ID can also be useful in instances when contacting AWS Premium Support is 
necessary, as this will help AWS engineers easily identify an execution.

Even though all crawlers execute the same four stages, they can be configured to modify the behavior 
of each stage. In the following section, we will discuss these configuration options.

Crawler configuration

Crawlers have several configuration options that are critical to their functioning. These options 
determine the way crawlers behave when updating, deleting, or comparing the schema of tables. In 
the following sub-sections, we will go over each category of configuration options.
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Catalog update behavior

The following options modify what a crawler does when writing results to an already existing Data 
Catalog table. They are listed based on their name in the Glue console web UI:

• Update the table definition in the Data Catalog: This will update all properties of the table that 
have changed, including changes such as removing columns or changing data types. Because 
of the drastic changes it can apply, it is not recommended for production setups unless no 
changes to incoming data can be guaranteed.

• Add new columns only: This option will only add new columns if they are discovered in 
subsequent crawls. Recommended for setups where there is constant data ingestion with evolving 
fields, such as streaming data coming from a changing REST API endpoint, for instance.

• Ignore the change and don’t update the table: As the name implies, this will ignore all schema 
and property changes. Only new partitions will be added to the table. Recommended for most 
setups, as once the schema has been verified to work, it can be kept stable.

When configuring these options through the API, they can be found in the SchemaChangePolicy 
object inside the Crawler object. The UpdateBehavior property can be configured to the 
following values:

• UPDATE_IN_DATABASE for the Update the table definition in the Data Catalog option

• LOG for the Ignore the change and don’t update the table option

In order to achieve the Add new columns only setting, the UpdateBehavior option must be set to 
UPDATE_IN_DATABASE and the following section should be added to the crawler definition object:

"Configuration": "{\"Version\":1.0, \"CrawlerOutput\": 
{\"Tables\":{\"AddOrUpdateBehavior\":\"MergeNewColumns\"}}}

Catalog deletion behavior

In regard to what happens when the crawler doesn’t find an object already defined in the catalog, there 
are again three possible options, as follows:

• Delete tables and partitions from the Data Catalog: As the name implies, anything that’s not 
found will be deleted. Not recommended for production setups as it can result in accidental 
deletion.

• Ignore the change and don’t update the table in the Data Catalog: Nothing will happen.
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• Mark the table as deprecated in the Data Catalog: The table will be deprecated instead of deleted. 
A deprecated table is marked by a custom property added to the table parameters; however, 
it has no practical effect other than notifying users, and deprecated tables can still be queried 
and accessed normally. A deprecated table will have the following property in its definition:

"Parameters": {

            "DEPRECATED_BY_CRAWLER": "1642411200907"

}

Here, the value of the DEPRECATED_BY_CRAWLER property is the timestamp of the deprecation.

Table schema inheritance

When dealing with a partitioned table’s schema, we would typically assume the partitions of a table 
will have the same schema as the table itself. This assumption has, however, been challenged with 
the appearance of technologies such as REST APIs and streaming, where a schema can be evolving 
over time. A common use case would be REST API logs, where a new method or property might be 
added one day. If a table is partitioned by day, for example, usage logs for that API will suddenly have 
a new column starting on that partition, which means the partition-level schemas and the table-level 
one are not the same.

Some frameworks and query engines assume schema equality between a table and its partitions, and 
some provide the flexibility of having different schemas. As described in previous sections, Amazon 
Athena is an example of such a service, whereby trying to query a table with different table-level and 
partition-level schemas will result in an error. In order to tackle this issue automatically, crawlers can 
update the schema of the table’s partitions every time they run with the schema of the table itself. 

This can be configured by enabling the Update all new and existing partitions with metadata from 
the table option in the console, or by defining the option in the CrawlerOutput section of the 
Crawler object, like so:

"CrawlerOutput": {

      "Partitions": {"AddOrUpdateBehavior": "InheritFromTable" 
}

 }

Crawler behavior modification

As described earlier, schema similarity is one of the factors that a crawler considers in order to 
differentiate tables from partitions automatically. This, however, can result in situations where the 
crawler assumes two different schemas should be different tables, even though the user might want 
to have them as partitions. This is only possible as long as the schemas are compatible—that is, they 
don’t overlap or cause conflicts between each other. 
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Take these two schemas, for instance:

Schema A

{"id":1,"first_name":"Henrik","last_name":"Paddington"}

Schema B

{"car_brand":"Audi","year":2009}

Even though the schemas are not similar, they could still be unified under a single table if we combine 
them, as follows:

Unified schema

{"id":1,"first_name":"Henrik","last_name":"Paddington","car_
brand":"Audi","year":2009}

Querying the table would simply return NULL values on records that don’t have the column, and 
this would allow us to query everything under a single table rather than having to query two separate 
tables and join the results.

In order to tackle these situations, crawlers can be configured to ignore the similarity threshold and 
combine schemas whenever possible. This can be achieved by enabling the Create a single schema for 
each S3 path option in the console, or by adding the following property to the crawler definition object:

{

   "Version": 1.0,

   "Grouping": {

      "TableGroupingPolicy": "CombineCompatibleSchemas"}

}

Keep in mind not all schemas are compatible. Take the following example:

Schema A

{"id":1,"first_name":"Henrik","last_name":"Paddington"}

Schema B

{"id":true, "car_brand":"Audi","year":2009}

In this case, both Schema A and Schema B have an id field; however, in Schema A, it would 
be of an integer type, whereas in Schema B it would be of a Boolean type. This would cause a direct 
conflict when defining a table, so the crawler would be unable to combine them.
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On the other hand, the opposite can also happen. If two schemas are similar enough, they will be 
combined into a single table even if the user would expect them to be different tables being crawled at 
the same time. In order to avoid this, crawlers can be configured to take a given level of the recursive 
tree as the table level 1, at which schema merging will stop and tables will be output. 

This can be configured through the Table Level option in the AWS console, or by adding the following 
property to the crawler definition object:

{

   "Version": 1.0,

   "Grouping" = {

            TableLevelConfiguration = 2  

   }

}

Before schemas can be compared and analyzed in the ways described earlier, the crawler needs to be 
able to determine them. Some file formats may present challenges when it comes to this, which we 
will discuss in the following section.

Custom classifiers

Certain file formats have particularities that don’t allow for one-size-fits-all parsing. For instance, the 
CSV format has many variations of the character used to separate fields (tab-separated values (TSV), 
pipe-separated values (PSV), and many custom ones). When crawling nested formats such as XML 
or JSON, the user might want to parse only a subset of the tree rather than the whole structure.

In order to support these variations, users can create custom classifiers that allow them to modify the 
behavior of the default built-in classifiers. Custom classifiers are available for the following file formats:

• CSV: Allows for the configuration of column delimiters, quote symbols, file headers, and 
crawler behavior when encountering abnormalities.

• JSON: Allows you to specify a path in dot or bracket notation to only parse parts of each record.

• XML: Allows you to specify a root tag so that only information below it is parsed.

• Grok: Custom Grok expressions can be provided to parse log files not directly supported by 
Glue. Grok classifiers can also be used to parse custom text files without a strong format or 
that are not supported by other classifiers.

A crawler can have several custom classifiers attached to it, and they will be used in the same order 
they were attached when classifying files. 
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Maintaining metadata
There’s rarely a scenario in which Glue Data Catalog tables will be static entities defined once and 
never updated again. Whether your tables use partitioning and they need to be updated with new 
partition values, or you have a changing stream of incoming data that adds or modifies data types, 
you’ll want to keep updating and refining your Data Catalog entities. 

Glue provides several mechanisms to do so automatically without user interaction, although any of 
the methods described before can be used to update tables or partitions manually. Metadata can be 
automatically updated using crawlers or extract, transform, load (ETL) jobs, which we will discuss 
in this section.

Glue crawlers

Similar to how crawlers can define tables and partitions in the Data Catalog, they can also update 
them. Any subsequent runs of a successfully completed crawler will update objects the crawler initially 
defined as per the configuration options selected. There are several aspects to consider when using 
crawlers to maintain metadata.

Crawler behavior when re-crawling

For S3 targets, when a crawler is executed a second time (or any subsequent times after that), it will try 
to avoid re-analyzing all the contents of the S3 path, which saves both time and costs for the user. This 
is achieved by checking the start time of the last successful execution of the crawler and comparing that 
against the last modification time of all files within the S3 target path. Only files created or modified 
after the last start time will be crawled.

Scheduling

Crawlers can be set to execute on a regular schedule, allowing users to refresh their Data Catalog 
entities periodically. The crawler’s schedule is configured as part of its properties and can be specified 
via either the web console or the API. Even though the web console offers preconfigured options (such 
as weekly, hourly, or daily), crawler schedules are always expressed in cron notation, and choosing a 
preconfigured option will automatically generate a cron expression (https://en.wikipedia.
org/wiki/Cron).

The schedule is configured under the Schedule section of the Crawler object, as follows:

"Schedule": {

    "ScheduleExpression": "cron(08 11 ? * MON *)",

    "State": "SCHEDULED"

}

https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
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Even though schedules can be useful, some users prefer to update their Data Catalog definitions right 
after data has been pushed to the data lake, reducing the time it takes for new columns or changes to 
be updated. A common setup is to run crawlers right after ingestion has been completed, enabling 
new partitions within minutes. The following section will describe how to achieve that.

Automation

Crawlers can be automated in a variety of ways, and really any kind of custom automation can be 
developed thanks to the REST API. This section will discuss some of the most common automation 
options, typically based on other AWS services, as outlined here:

• Glue workflows: The Glue service itself offers the workflows feature (https://docs.aws.
amazon.com/glue/latest/dg/workflows_overview.html), which allows 
you to create complex step-based automations involving not just crawlers, but also ETL jobs 
and custom conditions. A very common setup is to run a Glue ETL job as an ingestion job, 
then run a crawler over the output location of the job if the ingestion was successful.

• AWS Step Functions: Similar to Glue workflows, AWS Step Functions (https://aws.
amazon.com/step-functions/) is a visual workflow service based on state machines 
that enables automation for many AWS service components, not just Glue ones. Step Functions 
allows for more complex integrations, such as running a crawler after an EMR cluster has 
completed running a job or running a crawler over the resulting Linux kernel logs of an Elastic 
Compute Cloud (EC2) instance.

• AWS Lambda: The fact that crawlers can be started and managed through the AWS SDK 
allows developers to write their own automation code if the previous workflow solutions don’t 
fit their use case. Lambda (https://aws.amazon.com/lambda/) is a serverless code 
service that can very easily run complex code-based workflows with a variety of conditions 
and inputs and outputs (I/Os).

Once again, given that the API can be accessed programmatically through the AWS CLI or any of the 
SDKs, the possibilities here are limitless. That said, there’s a particular scenario we wouldn’t recommend: 
Glue ETL job code. Even though we’ve proposed code-based services as an automation solution, and 
that you could potentially start a crawler programmatically as part of the code of a Glue ETL job, this 
is typically not recommended. Decoupling code and responsibilities from isolated components will 
make your workflows safer to run and easier to troubleshoot.

Incremental crawling

Even if the crawler will not re-analyze all files for every subsequent execution, there are still situations 
in which it can take increasingly longer for every execution. 

https://docs.aws.amazon.com/glue/latest/dg/workflows_overview.html
https://docs.aws.amazon.com/glue/latest/dg/workflows_overview.html
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/lambda/
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Take a streaming ingestion system, for instance: most data streaming platforms such as Amazon 
Kinesis (https://aws.amazon.com/kinesis/) will write files to S3 in periodical batches, 
often resulting in a large number of small files, which is not optimal for querying with most big data 
platforms. Most users would typically run a compaction system after files have been written, merging 
small files into larger ones; however, that means creating a new last modification timestamp that would 
cause the crawler to re-analyze the files, even if their schema has not changed.

In order to provide a way to avoid these situations, the incremental crawling feature was developed 
for crawlers. This feature will only crawl new folders within the target S3 path rather than checking 
modification timestamps, meaning already crawled partitions can be safely edited or compacted 
without affecting the crawler’s execution time. 

This option can be enabled by either of the following:

• Checking the Crawl new folders only option when editing a crawler’s configuration

• Setting RecrawlPolicy  to CRAWL_NEW_FOLDERS_ONLY  instead of  
CRAWL_EVERYTHING when using the API 

When enabling this feature, all crawler behavior options are changed to LOG, meaning the crawler 
will not alter schemas or delete objects automatically. Because of this, the crawler will also ignore any 
objects that have a schema sufficiently different from the already existing one. Thus, this feature is 
only recommended for stable schemas where variations are known to be rare.

S3 event-based crawling

If incremental crawling is not an option because of its limitations, there’s still another feature to 
accelerate crawling S3 targets. S3 offers the Event Notifications feature (https://docs.aws.
amazon.com/AmazonS3/latest/userguide/NotificationHowTo.html), which 
can trigger notifications upon a variety of events (such as creating a new S3 object). These notifications 
can then be configured to be sent to Amazon Simple Notification Service (Amazon SNS) topics 
(https://aws.amazon.com/sns/), Amazon Simple Queue Service (Amazon SQS) queues, 
or AWS Lambda functions (https://aws.amazon.com/lambda/), which essentially enables 
automation based on S3 changes.

When writing data to a new partition in a Glue table, enabling the S3 Event Notifications feature 
essentially creates a log of all new objects within the target location, which is essentially what the 
crawler needs to avoid re-crawling older files.

In order to enable this option, you will first need to create an SNS topic and an SQS queue to handle S3 
event notifications, then enable the option via either the web UI or by adding the SQS queue Amazon 
Resource Name (ARN) to the target definition object, as follows:

"S3Targets": [

    {

https://aws.amazon.com/kinesis/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/NotificationHowTo.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/NotificationHowTo.html
https://aws.amazon.com/sns/
https://aws.amazon.com/lambda/
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        "Path": "s3://sample-path/", "Exclusions": 
[], "EventQueueArn": "arn:aws:sqs:us-east-
1:123456789123:samplequeue"

    }

]

Crawlers are a viable option to automate metadata maintenance, but their execution needs to be 
started. If this is to happen right after an ETL job is executed, the ETL job itself can be used to update 
metadata without requiring a crawler execution. The following section will go over how to achieve that.

Updating Data Catalog tables from ETL jobs

When running Glue ETL jobs that write results to the Data Catalog, it is possible for them to not just 
write output data but also to update the catalog with its respective metadata. This means the job itself 
can add new partitions or modify the table’s schema without the need to run a crawler afterward or 
update the table manually.

This option is limited to only updating metadata with changes present in the data that is being written. 
Imagine a scenario where a single Data Catalog table is being updated with new data by two entities: 
a Glue ETL job and an EMR cluster. The metadata would only be updated with what the ETL job 
writes, and any changes made by the EMR cluster would not be reflected. This means the option is 
only suitable when the ETL job is the only entity writing to the target; otherwise, a crawler or manual 
updates will still be necessary.

ETL jobs can update the Data Catalog with the following:

• New tables

• New partitions being written to a table

• Schema changes being made to a table

Full instructions on how to enable these features, alongside code samples, can be found in the public 
AWS documentation (https://docs.aws.amazon.com/glue/latest/dg/update-
from-job.html).

Partition management
In the previous sections, we discussed how to automatically update and add partitions to tables. This 
means that with an easy setup, Glue is capable of adding partitions continuously as your dataset grows. 

For very large data lakes, however, this setup can easily run into issues. Glue supports up to 10 million 
partitions per table by default; however, having such a large number of partitions will increasingly 
lower your query execution times without proper management.

https://docs.aws.amazon.com/glue/latest/dg/update-from-job.html
https://docs.aws.amazon.com/glue/latest/dg/update-from-job.html
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Partition indexes

Let’s take the example of a table storing product sales information. The table is partitioned by product 
category, and even though the business started small and we had only a handful of categories, as we 
expanded and added external sellers, we are now in the tens of thousands of categories.

Our business analysts want to query data based on product families, and so their Glue ETL queries 
usually include a WHERE CATEGORY= clause, filtering by category. Every time the query is executed, 
Glue will have to list all product categories and filter out those that don’t match the filter. This means 
running GetPartitions API calls, which are paginated and can get expensive the more values 
we have to retrieve, slowing our queries down.

In order to avoid this, Glue introduced partition indexes. These indexes basically hold a list of partition 
values known to already exist in the table beforehand, speeding the filtering process up by a large 
margin since it won’t be necessary to retrieve all partitions and filter them.

Every Glue table can have up to three indexes defined for it, and once an index is created, Glue will 
validate all new partition values to ensure they belong to the right data type. Once an index has been 
created, all GetPartitions API calls can include a filter expression that Glue will try to match 
against the index. Limitations and considerations when using partition indexes can be consulted in 
the AWS public documentation (https://docs.aws.amazon.com/glue/latest/dg/
partition-indexes.html).

Versioning and rollback
The previous sections described automated and autonomous metadata management for Glue tables. 
This, however, can lead to unexpected changes in the Data Catalog that might break pipelines relying 
on it. Even when not relying on automated changes, a human error could also break a table definition 
by mistake. This section describes the versioning and rollback mechanisms in place in the Data Catalog, 
designed to avoid and recover from such scenarios.

Table versioning

The Glue Data Catalog has a versioning mechanism for tables. Every time an edit is made to the table 
(even if the table definition passed as the edit is the same as the already existing one), a new version 
will be created, identified by a monotonically increasing integer starting at 1. 

Only one table version can be active at any time, and only the active version can be accessed—it is 
not possible to read from a table specifying a previous version, for instance. At any time, the user can 
choose to pick an active version from all versions of a table; however, this operation can only be done 
through the AWS web console as there’s no API call to do it.

This mechanism allows for rollbacks in the case of an error, and also provides traceability for changes—
something critical when having both automated and manual entities modifying the catalog.

https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html
https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html
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Lake Formation-governed tables

AWS Lake Formation (https://aws.amazon.com/lake-formation/) is a managed 
data lake service that enables secure, row-level access security for tables defined in the Glue Data 
Catalog. Lake Formation has a wide variety of features, but for the purposes of this chapter, we will 
discuss governed tables. 

Governed tables are S3 tables managed by Lake Formation that provide an additional set of features not 
available to regular Glue tables. Two main differences occur when a table is governed, as outlined here:

• Transactions: Any operation made against the table will be encapsulated within a Lake Formation 
transaction, which includes both data and metadata. These transactions can be canceled and 
reverted if necessary, providing an automatic rollback mechanism for failures.

• Manifests: Lake Formation will keep a manifest of all S3 objects that represent the current 
dataset in the table. This means the S3 path specified as the location of the table can contain 
objects that are not part of the table. These objects can be part of a currently ongoing transaction 
that is not yet committed or could be data that has been deleted from the table.

These two key differences enable advanced features that regular Glue tables cannot provide, as  
outlined here:

• ACID transactions: Enable security and atomicity when multiple users are querying and 
inserting data into Data Catalog tables. 

• Automatic data compaction: As mentioned in previous sections, having large amounts of 
small objects can negatively impact the performance of query engines accessing Data Catalog 
tables. Lake Formation automatically compacts objects for governed tables to ensure proper 
performance.

• Automatic garbage collection: Lake Formation can automatically delete objects that are not 
part of the table to save on costs.

• Time-travel queries: Each governed table keeps a manifest of S3 objects that represent the data 
within it. This manifest is versioned and can be used to query previous versions of data within 
the table, without the need to load them back.

• Rollback mechanism: In the case of a failed transaction, both data and metadata can be rolled 
back to their previous state. If an ETL job failed in the middle of writing data, Lake Formation 
can automatically remove data that was written up until the failure. If a streaming job needs 
to add a column to a table to insert data but then fails before it finishes, the new column can 
be automatically removed.

https://aws.amazon.com/lake-formation/
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In order for a table to be governed by Lake Formation, its data needs to be stored in S3, and the 
S3 location must be registered with Lake Formation. Once that is done, a table can become Lake 
Formation-governed if any of the following actions are performed:

• Enabling the option in the Lake Formation web console when browsing or creating a table

• Setting the TableType property to GOVERNED through the Glue API

• Adding the property within TBLPROPERTIES in Athena, as follows:

TBLPROPERTIES (

  'table_type'='LAKEFORMATION_GOVERNED',

  'classification'='parquet'

)

Once a table is governed, the ways to interact with it change, with several important considerations 
to make, as follows:

• S3 objects within it should be considered immutable. Even though through S3 you could 
potentially upload a new version of an object, this will not update the Lake Formation manifest 
and thus could potentially break the table’s functionality. 

• Whenever data is written to the table, the UpdateTableObjects API must be called to 
update the manifest with the new S3 objects.

• In order to read from the table, any of the Lake Formation querying API calls should be used 
rather than simply reading from the S3 location. This will ensure the right S3 objects are queried, 
as well as applying the security access models defined in Lake Formation.

When it comes to metadata management, all operations should be handled through Lake Formation 
transactions. Several of the Glue APIs (listed in the official documentation at https://docs.
aws.amazon.com/lake-formation/latest/dg/transactions-metadata-
operations.html#trx-enabled-glue-apis) have been updated to include a transaction 
ID parameter, the value of which can be obtained with the Lake Formation StartTransaction 
API call. After the operation has been completed, the Lake Formation CommitTransaction 
API should be called to end the transaction. For instance, when creating a table, the user should do 
the following:

1. Call StartTransaction to obtain a transaction ID.

2. Run the CreateTable operation, passing the transaction ID as a parameter.

3. If the operation is successful, call CommitTransaction to commit it. If the operation 
failed for whatever reason, CancelTransaction should be called to revert the changes.

Lake Formation is a very powerful tool for metadata and access management. We recommend 
considering enabling Lake Formation to manage your Data Catalog whenever possible.
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Lineage
Data lineage is the process of visualizing and understanding the flow of data within your data lake. 
Lineage is critical for data engineers and analysts to understand how data is processed and transformed 
within the data lake. This section covers the tools Glue provides in regard to lineage.

Glue DataBrew

Glue DataBrew (https://aws.amazon.com/glue/features/databrew/) is a 
serverless data lineage tool integrated within the AWS Glue ecosystem. DataBrew provides a visual and 
interactive way of visualizing, transforming, and automating data processing within a Glue data lake. 

There are a few key components of DataBrew, as outlined here:

• Datasets: In order to work with data in DataBrew, it must be registered as a dataset. This can 
be an S3 location, a JDBC database, or a Glue table. 

• Projects: A project is a visualization environment that loads a sample of a dataset and allows 
you to apply transformations and see their results live. Once the user is happy with the results 
of the transformations, they can be written onto a recipe.

• Recipes: A recipe defines a set of transformations to be applied to a particular dataset.

• Jobs: DataBrew jobs apply recipes to a given dataset in an automated fashion. Jobs can be 
scheduled or automated in a way similar to that of Glue ETL jobs.

DataBrew also provides data discovery and analysis features that let users get additional insights into 
their datasets, as outlined here:

• Profile jobs collect statistics and summaries on a dataset, such as the distribution of unique 
values, or the number of null values in a column. These can be run periodically on a dataset, 
like regular jobs.

• Data quality rules are validation checks that can be attached to a profile job. These include 
factors such as duplicated rows, missing values, or outliers.

DataBrew enables easy data management and discovery for Glue users, which in combination with 
the features and utilities described in previous sections result in powerful metadata management.

https://aws.amazon.com/glue/features/databrew/
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Summary
In this chapter, we discussed all aspects of metadata management, such as Glue Data Catalog and 
how it stores metadata. We went over different methods of populating it both manually (such as with 
the AWS CLI or running DDL statements) and automatically (through crawlers and their schema 
discovery features). We also discussed metadata maintenance and how it can become an issue for large 
organizations. We went over different options to not just keep metadata up to date but also automate 
the process and decouple it from the logic of your ETL processes.

We talked about metadata versioning and how to roll back versions causing issues. We also discussed 
how Lake Formation can help with not just metadata rollbacks but also data ones, as well as the wide 
variety of features it offers. Finally, we talked about lineage and how Glue DataBrew can help you 
discover, analyze, and transform your datasets in a visual way.

With these concepts, you should be able to fully manage the metadata of your data lakes. However, as 
important as metadata is, a very crucial aspect of maintaining a data lake is keeping it secure. In recent 
years, many countries and organizations have passed laws mandating companies to be responsible for 
the data they gather and store. Because of this, the security of a data lake is a very important aspect to 
manage for any large enterprise. The following chapter will go over data security and all the options 
Glue offers to tackle it. 



8 
Data Security

At AWS, we like to say that security is "job zero," in that security is more important than even priority 
tasks. Glue has been built from the ground up with that tenet in mind, and that, together with all the 
security features of AWS services, makes data security an easy – but powerful – area to cover.

The Glue security model relies and builds upon concepts common to all AWS services, such as IAM 
roles, policies, and S3 encryption. Throughout this chapter, we’ll cover different approaches and 
configurations to ensure the security of your data lake and data pipelines. This will include dealing 
with concepts such as encryption (both in transit and at rest), logging, and retention. 

In this chapter, we will cover the following topics:

• Access control

• Encryption

• Network

Technical requirements
The code for this chapter can be found in this book’s GitHub repository at https://github.
com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue.

Access control
A large part of security is determining who can access data and in which ways. In this section, we will 
cover how to configure access control for all the components of a Glue data lake.

IAM permissions

Much like other AWS services, AWS Glue relies on IAM (https://aws.amazon.com/iam/) 
to provide access control for the service itself, meaning users need to be granted access for IAM to 
Glue operations to manage and retrieve elements of the data lake. 

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue
https://aws.amazon.com/iam/
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All IAM permissions depend on the resource’s specifications, which in AWS are uniquely identified 
through an Amazon Resource Name (ARN). Within Glue, only certain types of resources get ARN 
identifiers. Other resources, such as workflows, for instance, do not support the use of ARNs, so 
permissions cannot be granted on a resource-specific basis. For a complete list of resource ARNs, 
please refer to the following AWS documentation page: https://docs.aws.amazon.com/
glue/latest/dg/glue-specifying-resource-arns.html.

For Data Catalog resources, all permissions that have been granted to objects that depend on parents 
also need permission to access the parents. For instance, granting john access to glue:GetTable 
on the sales table will also require giving john access to the database and Data Catalog that holds 
the table. Additionally, all delete operations require the opposite: the user must also have permission 
to access all child objects. For instance, if john wants to delete the sales table, they will also need 
permission to delete all table versions and partitions present in the table.

Glue dependencies on other AWS services

AWS Glue relies on capabilities provided by other services, such as VPC networking or CloudWatch 
for logging. When using the AWS Web UI to configure Glue resources, it will list and filter results, 
which means access will also have to be granted to them to fully manage a data lake. This includes 
the following:

• IAM itself to list and assign IAM roles to Glue resources

• CloudWatch logs to list and read the execution logs of Glue resources

• VPC to list and assign network resources such as VPCs, subnets, and security groups to Glue 
resources

• S3 to list, read, and write buckets and objects

• Redshift to list and access clusters

• RDS to list and access databases

Without access to these permissions, the Web UI will often display error messages and incomplete 
results.

Resource-based versus identity-based policies

Within the AWS permissions model, IAM permissions policies can be attached to either a resource (an 
AWS component, such as an S3 bucket) or an identity (such as a user). With resource-based policies, 
the resource defines who can access or control it. Identity-based policies work the other way round: 
access to resources is defined by the permissions attached to a user or role.

https://docs.aws.amazon.com/glue/latest/dg/glue-specifying-resource-arns.html
https://docs.aws.amazon.com/glue/latest/dg/glue-specifying-resource-arns.html
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Resource-based policies allow you to compact all access rules down to a single document, whereas 
identity-based policies offer more flexibility and allow for individual user management. Typically, and 
unless you are managing a small set of resources and entities, identity-based policies are preferred 
since it’s easier to associate each user or IAM role with its permissions, rather than having to modify 
the permissions of all resources it has to access.

In the case of Glue, only the Data Catalog accepts policies – it is not possible to attach policies to Glue 
databases, tables, crawlers, or jobs. Let’s say you wanted to grant john access to the payments 
table in the sales database. You could achieve this with either a resource-based policy attached 
to your catalog, or an identity-based policy attached to john. Let’s compare how both are used in 
their JSON form:

• Resource-based policy: The following example showcases a JSON-formatted policy attached 
to a Glue Data Catalog. The policy grants john access to the glue:GetTable operation, 
but only against the payments table within the sales database:

{

  "Version": "2012-10-17",

  "Statement": [

    {

      "Effect": "Allow",

      "Action": [

        "glue:GetTable"

      ],

      "Principal": {"AWS": [

        "arn:aws:iam::account-id:user/john"

      ]},

      "Resource": [

        "arn:aws:glue:us-east-1:account-id:table/sales/
payments"

      ]

    }

  ]

}

• Identity-based policy: The following example showcases granting the same permissions but 
by attaching them to john rather than the Data Catalog itself:

{

  "Version": "2012-10-17",

  "Statement": [
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    {

      "Sid": "AccessPayments",

      "Effect": "Allow",

      "Action": [

        "glue:GetTable"       

      ],

      "Resource": "arn:aws:glue:us-east-1:account-
id:table/sales/payments"

    }

  ]

}

Managing access through a policy attached to your AWS account’s Data Catalog comes with two 
main limitations:

• Only one policy can be attached to the Catalog.

• This policy is limited to 10 KB. 

These limitations reinforce the fact that using resource-based policies is not recommended for large 
accounts or organizations, as the policy will be limited in size. There are additional limitations in 
the clauses that can be specified in the policy, which you can find in the AWS documentation at 
https://docs.aws.amazon.com/glue/latest/dg/glue-resource-policies.
html#overview-resource-policies.

Cross-account access

A very common strategy in large multi-account AWS organizations is to centralize all table definitions 
into a single Data Catalog, then use other secondary accounts to process the data in them. Much like with 
other AWS services, cross-account access is possible and can be configured through IAM permissions, 
both with resource-based and identity-based policies. 

Now, let’s assume that the Data Catalog holding the sales database and the payments table is 
stored in one AWS account (account A) and that john is located in another (account B). The following 
resource-based policy will have to be attached to the Data Catalog in account A:

{

  "Version": "2012-10-17",

  "Statement": [

    {

      "Effect": "Allow",

      "Action": [

https://docs.aws.amazon.com/glue/latest/dg/glue-resource-policies.html#overview-resource-policies
https://docs.aws.amazon.com/glue/latest/dg/glue-resource-policies.html#overview-resource-policies
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        "glue:GetTable"

      ],

      "Principal": {"AWS": [

        "arn:aws:iam::account-B:user/John"

      ]},

      "Resource": [

        "arn:aws:glue:us-east-1:account-A:catalog",      

        "arn:aws:glue:us-east-1:account-A:table/sales/payments"

      ]

    }

  ]

}

On top of that, the administrator of account B will have to grant john permission to run 
glue:GetTable on account A, as follows:

{

  "Version": "2012-10-17",

  "Statement": [

    {

      "Effect": "Allow",

      "Action": [

        "glue:GetTable"

      ],

      "Resource": [

        "arn:aws:glue:us-east-1:account-A:catalog",      

        "arn:aws:glue:us-east-1:account-A:table/sales/payments"

      ]

    }

  ]

}

For identity-based policies, the best way to achieve this is through IAM role assumption (https://
docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html). 
This mechanism allows a user or IAM role to assume the credentials and permissions of another IAM 
role. Cross-account access is granted by the owner of account A by creating an IAM role and modifying 
its trust policy to be allowed by john in account B. The owner of account B will then have to give 
john permission to assume the role in account A, after which john should have access to the table.

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
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Accessing cross-account Data Catalog resources is always done by giving a value to the CatalogId 
parameter, whether it is an API call, an AWS CLI command, or code in a Glue ETL job. Keep in mind 
that the ID of the Data Catalog is the same as the ID of the AWS account holding it. 

Unlike with S3 objects, cross-account tables and databases must be owned by the account hosting 
the Data Catalog rather than whoever created them. In the example given earlier, the AWS account 
holding the sales database will be the owner of any tables or databases created by john and will 
have immediate access to them.

Note that cross-account access has certain limitations, the most notable of which is the inability to 
use Glue crawlers with cross-account setups. For a complete list of the limitations, check out the 
AWS documentation at https://docs.aws.amazon.com/glue/latest/dg/cross-
account-access.html#cross-account-limitations.

Tag-based access control

IAM policies support the use of conditionals to determine which resources are affected by the permissions 
rule. A very common practice with AWS resources is to attach tags to them and make use of those 
tags to determine access and permissions. For instance, given an organization with two teams (sales 
and marketing), each team could tag their resources with a tag that specifies their team’s name and, 
through that, restrict access to only themselves. Tags can also have other management purposes, such 
as separating billing into groups or for automated resource management.

Tags are always expressed in the form of a key/value pair. AWS Glue supports the use of tags for some 
of its resources, including the following:

• Connections

• Crawlers

• ETL jobs

• Development endpoints

• ML transformations

• Triggers

• Workflows

Tags can be added to any of these resource types at creation time, but they can also be added or 
removed for as long as the resource exists. The following is an example of an IAM policy that allows 
access to an ETL job’s definition based on a tag with a "team" key and a "marketing" value:

{

   "Effect": "Allow",

   "Action": [

https://docs.aws.amazon.com/glue/latest/dg/cross-account-access.html#cross-account-limitations
https://docs.aws.amazon.com/glue/latest/dg/cross-account-access.html#cross-account-limitations
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     "glue:GetJob"

     ],

   "Resource": "*",

   "Condition": {

     "ForAnyValue:StringEquals": {

       "aws:ResourceTag/team": "marketing"

     }

   }

 }

This covers the Glue side of permissions management. In the next section, we’ll discuss managing 
permissions in terms of S3. 

S3 bucket policies

The previous sections described how to grant access to Glue resources. However, you will also need to 
restrict access to the data in your data lake. The process for this will vary, depending on where the data 
is stored. Java Database Connectivity (JDBC) databases can restrict access through user credentials 
and database permissions while DynamoDB tables can use IAM policies. In terms of S3 buckets, an 
effective way of restricting access is by using an S3 bucket policy.

S3 bucket policies are a form of resource-based access control where an IAM policy is attached to a 
bucket. This policy then determines what actions can be performed on objects within the bucket, and 
who can perform them. Only the bucket owner can attach a policy to the bucket, and the policy will 
only apply to objects owned by the bucket owner – not third accounts. For instance, the following is 
a bucket policy that’s been designed to give read access to a third AWS account:

{

    "Version": "2012-10-17",

    "Statement": [

        {

            "Sid": "AddCannedAcl",

            "Effect": "Allow",

            "Principal": {

                "AWS": [

                    "arn:aws:iam::111122223333:root",

                    "arn:aws:iam::444455556666:root"

                ]

            },

            "Action": [
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                "s3:PutObject",

                "s3:PutObjectAcl"

            ],

            "Resource": "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*"

        }

    ]

}

In the context of Glue, using S3 bucket policies means specific access rules will need to be granted 
– not to the users using Glue, but to the IAM roles attached to crawlers, ETL jobs, and development 
endpoints. 

S3 object ownership

When writing results with a Glue ETL job or development endpoint, the resulting objects will be 
owned by the account that owns the IAM role attached to said job or endpoint. In most scenarios, 
where your job or endpoint is writing to a bucket you own, this is meaningless as access will always 
be guaranteed. However, read access problems can arise when the destination S3 bucket is owned by 
a different AWS account.

When writing cross-account access, the objects will be in a bucket owned by a different account. 
However, each will have the writer account as its owner – resulting in access errors when they are read 
afterward. The best way to avoid this is by tackling the issue from both ends, as follows:

1. Set the right object owner when writing.

Your ETL job or development endpoint can be configured to write objects that are owned 
by the same owner as the bucket containing them, avoiding the problem. To do so, a special 
configuration property must be passed onto the Hadoop configuration object, like so:

sc = SparkContext()

glueContext = GlueContext(sc)

spark = glueContext.spark_session

job = Job(glueContext)

job.init(args['JOB_NAME'], args)

glueContext._jsc.hadoopConfiguration().set("fs.s3.canned.
acl", "BucketOwnerFullControl")

Any subsequent write operations after this configuration change will address  
the issue.

2. Forbid non-bucket-owned writes.
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You can also configure the S3 buckets in your data lake to reject any writes that don’t set the 
object owner properly. This will not modify the owner of already-existing objects, but it will 
cause any future incorrect writes to fail, forcing the writer to set permissions properly and 
avoid situations where data must be rewritten or reassigned to a different owner.

Such a configuration can be achieved by configuring the S3 bucket policy of your buckets. 
The following example shows how this can be done:

{

   "Version":"2012-10-17",

   "Statement":[

     {

       "Sid":"OnlyAllowBucketOwnerFullControl",

       "Effect":"Allow",

       "Principal":{"AWS":"1234567890"},

       "Action":"s3:PutObject",

       "Resource":"arn:aws:s3:::my-bucket/*",

       "Condition": {

         "StringEquals": {"s3:x-amz-acl":"bucket-owner-
full-control"}

       }

     }

   ]

}

With that, we have discussed permissions management from both the Glue and S3 perspectives. 
However, permissions can only be granted to whole tables without any other granularity. While this 
works, recent legal requirements that have been imposed by regulations around the world have caused 
use cases where users only have access to parts of a table valid. In the next section, we will discuss 
Lake Formation, an AWS service that provides such capabilities.

Lake Formation permissions

AWS Lake Formation is a service that provides data lake capabilities on AWS resources. Even though 
it is separate from AWS Glue and can be used independently, Lake Formation and Glue share the 
same Data Catalog and are designed to work together from the ground up.

Lake Formation provides a wide array of features to support and manage data lakes. However, in this 
chapter, we are going to focus on permissions. Lake Formation permissions are an additional layer on top 
of IAM permissions that can be used to control access to both data and metadata. Lake Formation also 
provides fine-grained access control to not just tables, but also the rows and columns within those tables. 
This is particularly powerful for any company or organization going through compliance regulations.
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When using Lake Formation, the data lake administrator decides which S3 locations and Data Catalog 
databases/tables are part of the data lake. For any request to any resource that is part of the data lake, 
the necessary permissions will have to be validated against both IAM and Lake Formation – otherwise, 
the request will fail. 

The Lake Formation permissions management system is very similar to that of relational databases, 
where permissions are granted or removed using the GRANT or REVOKE statements, respectively. 
Now, let’s discuss the different capabilities of Lake Formation and the permissions at different levels. 

Data Catalog permissions

Data Catalog permissions refer to the ability to manage, create, and delete resources within the Data 
Catalog. These can be granted to either databases or tables, with the option of adding row/column 
granularity when granting access to a table. Permissions can either be granted to IAM principals in 
your AWS account or principals in other accounts, giving them access to your databases, tables, and 
their underlying data.

Permission management is done through the GrantPermissions and RevokePermissions 
API calls, which take in the following parameters:

• Principal: The IAM principal that the operation involves. This can be an IAM user, an IAM 
role, or an AWS organization.

• Resource: The Data Catalog resource (database, table, or table subset) that the operation grants/
removes access to/from.

• Permissions: The list of operations being granted or revoked access. Lake Formation supports 
the following operations:

 � SELECT

 � ALTER

 � DROP

 � DELETE

 � INSERT

 � DESCRIBE

 � CREATE_DATABASE

 � CREATE_TABLE

 � DATA_LOCATION_ACCESS

 � CREATE_TAG

 � ALTER_TAG
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 � DELETE_TAG

 � DESCRIBE_TAG

 � ASSOCIATE_TAG

For instance, the following AWS CLI command grants SELECT permissions to john on the sales 
table in the payments database:

aws lakeformation grant-permissions --principal 
DataLakePrincipalIdentifier=arn:aws:iam::1234567890:user/john 
--resource '{

  "Table": {

    "CatalogId": "1234567890",

    "DatabaseName": "payments",

    "Name": "sales"

  }

}' --permissions DESCRIBE

In the next section, we’ll discuss how to manage permissions for large groups of entities, typically 
found in large organizations. 

Tag-based access control

Granting permissions to individual entities can quickly become tedious or repetitive to manage in 
organizations with large amounts of users and resources. This is a similar problem that happens when 
dealing with IAM permissions on large AWS accounts, and the typical recommendation is to group 
resources through tagging and then use those tags to determine access permissions. 

Lake Formation offers a very similar approach with tag-based access control (or LF-TBAC). This feature 
allows you to manage permissions on a larger scale by granting permissions to tags and then attaching 
those tags to all the resources that fall under the same permissions model. For instance, if the sales 
department within your company has upwards of 1,000 tables, giving john the right access to all of 
them can become problematic and also consume a very large amount of API calls. With LF-TBAC, 
all these tables can be tagged under the department: sales key/value pair, and then john 
can be granted access to the tag. All tables with the tag will immediately inherit the permissions of 
the associated tag, reducing the amount of management overhead.

Keep in mind that Lake Formation tags are different than regular AWS resource tags. Lake Formation 
tags only exist within the domain of Lake Formation and only serve the purpose of managing Lake 
Formation permissions. Resources can still be attached regularly to AWS resource tags and their IAM 
access can be managed through those tags, regardless of their Lake Formation tags.
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Granting permissions based on Lake Formation tags is similar to basing them on regular Lake Formation 
resources. For both the GrantPermissions and RevokePermissions API calls, the only 
difference is to specify a Lake Formation tag instead of a Lake Formation resource. For instance, to 
grant john select access on all tables with the department: sales tag, the following AWS CLI 
command can be executed:

aws lakeformation grant-permissions --principal 
DataLakePrincipalIdentifier=arn:aws:iam::1234567890:user/john 
--resource '{ 

    "LFTagPolicy": {

       "CatalogId":"1234567890",

       "ResourceType":"TABLE",

       "Expression": [{"TagKey": "department","TagValues": 
["sales]}]'

--permissions SELECT

With this, we’ve covered all there is to Data Catalog permissions. The next section will go over data 
permissions.

Data – S3 permissions set

Lake Formation also requires data lake administrators to set permissions for their data locations in S3. 
A user with permissions for a data location will not just be able to read data from that location, but 
also create databases and tables that point to it. Therefore, unless a user has a very particular use case 
where only metadata access is needed, most users will need data access on top of metadata access – if 
it’s not for data reading, it’s at least to be able to create and define tables.

Granting and revoking permissions to/from an S3 data location is no different than doing so to/from 
a Data Catalog resource, with the only difference being the resource parameter will have to be a data 
location rather than a catalog resource. The following AWS CLI command shows how to grant john 
access to an S3 location defined by its ARN resource:

aws lakeformation grant-permissions --principal 
DataLakePrincipalIdentifier=arn:aws:iam::1234567890:user/john 
--resource '{ 

    "DataLocation": {

       "CatalogId":"1234567890",

       "ResourceArn":"arn:aws:s3:::bucket_name/key_name"'

--permissions DATA_LOCATION_ACCESS

Notice how the permission being granted here is DATA_LOCATION_ACCESS rather than the usual 
SELECT or DESCRIBE. This is a static value that must always be used with data location permissions.
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Data location permissions can also be granted to a different account. The following  
code shows an example of the 1 2 3 4 5 6 7 8 9 0  account granting access to the  
0987654321 account:

aws lakeformation grant-permissions 

--principal DataLakePrincipalIdentifier=0987654321  

--permissions "DATA_LOCATION_ACCESS" 

--resource '{

    "DataLocation":{

"CatalogId":"1234567890",

"ResourceArn":"arn:aws:s3:::bucket_name/key_name "

}}

When granting cross-account access, the receiving account can also be permitted to grant access to 
others by itself. This can be done through the permissions-with-grant-option parameter 
of the API call, as shown here:

aws lakeformation grant-permissions 

--principal DataLakePrincipalIdentifier=0987654321  

--permissions-with-grant-option "DATA_LOCATION_ACCESS"

--permissions "DATA_LOCATION_ACCESS" 

--resource '{

    "DataLocation":{

"CatalogId":"1234567890",

"ResourceArn":"arn:aws:s3:::bucket_name/key_name "

}}

This concludes all Lake Formation features related to data security. In the next section, 
we’ll talk about the different aspects of encryption, and how they can be configured  
in Glue.

Encryption
Encryption is the basis of all data security policies, as it ensures critical data cannot fall into the hands of 
potential attackers. In recent years, encryption has also taken increased importance because of compliance and 
personal data protection regulations. AWS Glue offers several features to support encrypting your data both 
at rest and in transit. This section will cover all encryption options and features while providing examples and  
best practices.
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Encryption at rest

When it comes to encryption at rest in Glue, it can happen at three different levels:

• Encrypting the metadata that defines your data lake, which is handled by Glue itself

• Encrypting the data auxiliary to executing Glue resources

• Encrypting the data within your data lake

In this section, we will go through each level. For encryption, Glue relies on AWS Key Management 
Service (KMS), an AWS service that provides serverless hosting and management of encryption 
keys. All encryption features support the use of KMS keys. However, Glue only supports symmetric 
ones – keys that are used to both encrypt and decrypt data. When specifying KMS keys for any of 
the encryption features, make sure you enter the ARN of a symmetric key as Glue will not validate 
whether it is symmetric or not before attempting to encrypt or decrypt, resulting in potential failures 
down the line. 

Metadata encryption

Glue is capable of encrypting all metadata in your Data Catalog using a KMS key. This covers the 
following catalog objects:

• Databases

• Tables

• Table versions

• Partitions

• Connections

• User-defined functions

Metadata encryption works as a toggle (either it is enabled or not). Despite that, encryption only 
takes effect for objects created after it has been enabled and doesn’t happen retroactively. Let’s say the 
following happens:

1. john creates a Glue table (table A) in the Data Catalog.

2. The AWS account administrator enables Glue metadata encryption.

3. john creates another Glue table (table B) in the Data Catalog.

4. The AWS account administrator disables Glue metadata encryption.

In this scenario, table A would not be encrypted (even after the administrator has enabled encryption) 
and table B would be encrypted (even after the administrator has disabled encryption).
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Additionally, Glue can encrypt passwords that have been used for Glue connections using a KMS key. 
This can be different from the one used for the Data Catalog. This will ensure connection passwords are 
encrypted when stored in AWS, and that any entity requesting them must also have IAM permissions 
to run kms:Decrypt on the KMS key used to encrypt the data.

Data Catalog and connection password encryption can be enabled using either the AWS Web Console 
or the SDK/CLI through the PutDataCatalogEncryptionSettings API call. This call 
takes parameters in the following structure:

{

  "EncryptionAtRest": {

    "CatalogEncryptionMode": "DISABLED"|"SSE-KMS",

    "SseAwsKmsKeyId": "string"

  },

  "ConnectionPasswordEncryption": {

    "ReturnConnectionPasswordEncrypted": true|false,

    "AwsKmsKeyId": "string"

  }

}

If no KMS key is specified for either of the encryption options, Glue will use the service’s default 
encryption key (aws/glue). To access any encrypted objects, the requesting entity (whether it 
is an IAM user or an IAM role) will need to have IAM permissions to use the kms:Decrypt, 
kms:Encrypt, and kms:GenerateDataKey API calls, allowing access to the KMS key that 
was used for encryption. 

If a non-default key was configured to encrypt the Data Catalog and it is deleted from the AWS 
account, all objects encrypted by it will become non-decryptable permanently. Always make sure to 
manage KMS keys properly.

Auxiliary data encryption

When running Glue resources such as crawlers or ETL jobs, data is generated in the form of execution 
logs and job bookmarks. Even though this data may seem harmless at first, more often than not, it 
will contain critical information such as table column names or data samples, which can represent 
data leaks. Glue also supports encrypting these data sources so that your data lake is properly secured 
and fully compliant with regulations.

Encrypting Glue resources is always handled through Glue security configurations. A security 
configuration is a set of defined encryption rules that can be attached to a Glue crawler, a Glue ETL 
job, or a Glue development endpoint, determining how logs and bookmarks are encrypted for them.
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Security configurations can be created through the CreateSecurityConfiguration API 
call, which takes parameters in the following structure:

{

  "S3Encryption": [

    {

      "S3EncryptionMode": "DISABLED"|"SSE-KMS"|"SSE-S3",

      "KmsKeyArn": "string"

    }

    ...

  ],

  "CloudWatchEncryption": {

    "CloudWatchEncryptionMode": "DISABLED"|"SSE-KMS",

    "KmsKeyArn": "string"

  },

  "JobBookmarksEncryption": {

    "JobBookmarksEncryptionMode": "DISABLED"|"CSE-KMS",

    "KmsKeyArn": "string"

  }

}

For the specified KMS keys to be used, the account administrator must grant AWS KMS IAM 
permissions to the roles used for Glue resources. This process is described in the KMS documentation at 
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-
log-data-kms.html. 

Data encryption

The process of encrypting the data that resides in your data lake will be a task shared between all silos or 
services involved: your RDS-backed tables will have to use RDS encryption (https://docs.aws.
amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html). 
DynamoDB offers similar encryption-at-rest capabilities (https://docs.aws.amazon.com/
amazondynamodb/latest/developerguide/EncryptionAtRest.html) and any 
S3 bucket can benefit from S3 encryption (https://docs.aws.amazon.com/AmazonS3/
latest/userguide/bucket-encryption.html). 

That said, Glue offers some additional features when writing data as part of the output of an ETL job. 
ETL jobs can be configured to write either S3-encrypted or KMS-encrypted output when the target 
is an S3 location, ensuring all the results of your jobs are protected, regardless of the configuration 
present at the storage layer. 

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-encryption.html
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ETL job data encryption can be enabled in two ways, depending on the type of encryption. Let’s look 
at these two encryption types, as follows:

• S3-based encryption (SSE-S3) is configured by passing a property to the ETL job definition, 
either at the time of creation (CreateJob) or when editing it (UpdateJob). This property 
is defined inside the DefaultArguments property of the job:

"DefaultArguments": {

    "—TempDir": "s3://path/ ",

    "—encryption-type": "sse-s3",

    "—job-bookmark-option": "job-bookmark-disable",

    "—job-language": "python"

}

• KMS-based encryption (SSE-KMS) is configured by creating a security configuration and 
attaching it to the ETL job, similar to how log and bookmark encryption work. 

If both options are configured simultaneously, KMS encryption will be used over S3. For 
security configurations to take effect within an ETL job, the Job.init() statement must 
be executed within the job’s code:

job = Job(glueContext) 

job.init(args['JOB_NAME'], args)

This covers all the features and aspects of at-rest encryption. In the next section, we’ll discuss encryption 
in transit. 

Encryption in transit

Glue relies on Secure Sockets Layer (SSL) encryption for encryption in transit, which means 
connections to other AWS services (such as when reading or writing to S3 or DynamoDB) are made 
securely and are encrypted. For non-AWS connections (such as when connecting to a JDBC database), 
Glue supports enforcing SSL connections, which will cause the crawler or ETL job trying to use the 
connection to fail if connecting over SSL doesn’t work. 

Enforcing an SSL connection also allows you to configure the usage of custom SSL certificates to 
authenticate the connection, which allows users to connect securely to JDBC databases using a 
proprietary certificate that hasn’t been publicly validated. The connection can also be configured to pass 
values to the SSL_SERVER_CERT_DN (for Oracle databases) or hostNameInCertificate 
(for SQL Server databases) parameters of the target database, which allows you to configure custom 
distinguished names and domain names for the database server, respectively.
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FIPS encryption

AWS offers service endpoints that use cryptographic modules compliant with Federal Information 
Processing Standards (FIPS) rather than standard SSL for communication. If the purposes of your 
Glue usage must meet such a standard, Glue offers FIPS-compliant endpoints for all North American 
regions, including GovCloud ones.

Development endpoint connections

Glue offers development endpoints, (https://docs.aws.amazon.com/glue/latest/
dg/dev-endpoint.html), which can be used to create a static development environment in the 
cloud that users can log into and use to develop and test scripts for ETL jobs. Development endpoints 
can be accessed via SSH and do not support authentication through a user/password combination – 
only SSH keys are supported. The use of SSH for communication also ensures all traffic between your 
local computer and the development endpoint is encrypted.

When creating a development endpoint, you must provide one or more public keys. These will be 
used to authenticate users logging in. If the development endpoint is going to be shared among several 
users, it is within best practices to create individual key pairs for each one and pass all public keys to 
the development endpoint, thus avoiding having to share SSH keys between users.

Once the endpoint is up and running, the UpdateDevEndpoint API call allows you to add new 
keys and delete unused ones. Reviewing and rotating SSH keys is a good practice that will prevent 
unwanted access to the development endpoint.

With this, we’ve covered all aspects of encryption in AWS Glue. In the next section, we’ll discuss 
network security, which handles the security of all communications happening between Glue resources 
and external ones.

Network
Even though AWS Glue is a serverless service, understanding its network infrastructure and how it 
connects to resources is a critical part of guaranteeing your data’s security and your organization’s 
compliance. By default, Glue will always attempt to use the less public route to direct network traffic. 
However, it is crucial to understand how this routing works to avoid public calls that could compromise 
your information.

https://docs.aws.amazon.com/glue/latest/dg/dev-endpoint.html
https://docs.aws.amazon.com/glue/latest/dg/dev-endpoint.html
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Glue network architecture

Much like with other AWS services, all AWS Glue resources are stored and executed in internal  
AWS accounts that are not accessible or part of any public infrastructure. This includes your Data 
Catalog, crawlers, ETL jobs, development endpoints, triggers, and workflows. This is shown in the 
following diagram: 

Figure 8.1 – AWS resources within the AWS cloud
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If a Glue resource needs access to an S3 location, this communication happens privately and internally 
through the AWS infrastructure, as shown in the following diagram:

Figure 8.2 – AWS resources communicating through the AWS cloud

However, connecting to any other resource will require Glue to set up a bridge between its internal 
infrastructure and your AWS VPC. To make this happen, whenever a Glue resource is in execution, 
Glue will create Elastic Network Interfaces (ENIs) in your VPC and attach them to the nodes running 
your Glue resource – a process known as requester-managed network interfaces (https://docs.
aws.amazon.com/AWSEC2/latest/UserGuide/requester-managed-eni.html).

Let’s say you want to run a crawler to automatically detect the schema of your MySQL database, which 
is running in an EC2 instance in your account. Since you followed security best practices, this EC2 
instance is running in a private subnet within your VPC, which means it is not accessible over the 
public internet. When you run your Glue crawler, Glue will create ENIs in your VPC, assign private 
IP addresses to them, and attach them to the nodes that execute the crawler process in the internal 
AWS infrastructure. Once the crawler finishes running, the ENIs will be detached and deleted, and 
their IP addresses will be released. The following diagram shows how this works: 

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/requester-managed-eni.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/requester-managed-eni.html
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Figure 8.3 – AWS resources communicating with resources in a user’s VPC

This process allows Glue to securely and privately connect to other resources in your AWS account 
without ever leaving the internal AWS infrastructure. To carry it out, though, Glue will need several 
parameters, such as the location of your database (VPC and subnet), proper security clearance to 
access it (security groups), and a way to authenticate within your database. All these parameters are 
supplied as part of a Glue connection.

Glue connections

A Glue connection is a set of configuration parameters that define the location and way of accessing 
an external resource so that Glue can automate its access. These parameters include the following:

• VPC and subnet combination.

• One or more security groups.

• If authentication is required, all the necessary parameters for it. These include  
the following:

 � The JDBC URL, which can include parameters to be passed onto the database

 � Username and password combination
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When creating a Glue connection, you must also specify its type. There are as many types as there 
are supported connection targets:

• JBDC: Connects to a relational database that supports JBDC

• MongoDB: Connects to a MongoDB or DocumentDB cluster

• Kafka: Connects to an Apache Kafka cluster

In addition to the previous types, there are also three special connection types:

• Network: This connection will simply specify a VPC and subnet without any other parameters. 
This is designed to route connections through a VPC rather than connecting to a specific 
resource within it.

• Marketplace: This connection specifies parameters for connectors that have been obtained 
through the AWS marketplace.

• Custom: This connection specifies parameters for custom connectors that have been created 
by you.

Attaching a connection to a Glue resource will cause the resource to automatically infer its properties 
when it is being executed. For instance, a crawler will automatically know which subnet and database 
to connect to and will have the right security groups to do so. 

Network configuration requirements and limitations

For connections to work properly, certain requirements must be met. Let’s look at a few of these 
requirements, as follows:

• At least one of the security groups that’s attached to the connection must include a self-
referencing inbound rule that allows all traffic. Even though such a wide permission may seem 
like a security issue, permission will only be granted to incoming – not outgoing – connections, 
and will only take effect between resources that have the security group attached. This rule is 
necessary to allow proper communication between all Glue resources.

• When creating ENIs to attach to Glue resources, only private IP addresses will  
be granted to them to guarantee their security. If your resources need to connect  
to endpoints over the public internet, the lack of public IP addresses will make  
it impossible.

• When creating a development endpoint, any attached security groups will need to include 
access to TCP port 22 to allow for SSH logins – otherwise, the endpoint will be inaccessible.

• Connections to databases will require the involved security groups to allow the necessary 
traffic. For instance, if you’re connecting to a MySQL database, you will need to allow traffic 
on TCP port 3306.



Network 203

In the next section, we’ll discuss the requirements and considerations to connect to resources on the 
public internet. 

Connecting to resources on the public internet

As mentioned in the previous section, Glue resources will only get private IP addresses, which makes 
them unable to communicate with a resource on the public internet. Although this can be a benefit 
in terms of security, there are situations in which you might be interested in connecting over the 
public internet, such as trying to reach a resource in your on-premise network or reading data from 
a publicly-accessible API. There are two ways to make this possible:

• VPC endpoints: If this public communication is necessary for reaching an AWS service (for 
instance, making an API call to AWS Secrets Manager in your ETL job code to retrieve credentials), 
you can use VPC endpoints (https://docs.aws.amazon.com/vpc/latest/
privatelink/vpc-endpoints.html) to route it through AWS infrastructure instead 
of the public internet. This is shown in the following diagram:

Figure 8.4 – Connecting over a VPC endpoint

Deploying a VPC endpoint in a subnet and updating its associated route table will direct 
traffic internally, allowing you to communicate with AWS services securely.

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints.html
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• NAT Gateways: If, instead of an AWS service, you are trying to reach a public resource over the 
internet, the only solution is to grant your resources a public IP address to communicate. VPC 
NAT Gateways (https://docs.aws.amazon.com/vpc/latest/userguide/
vpc-nat-gateway.html) are NAT translation resources offered by AWS VPC that 
multiplex private IP addresses behind a public one, assigned to the gateway itself. The following 
diagram shows how such a connection happens:

Figure 8.5 – Connecting through a NAT Gateway

When using NAT Gateways, resources can initiate connections to the public internet. However, the 
opposite can’t happen, which means they are still protected in your private subnet.

This covers all the ways of connecting to resources through the public internet. Next, we’ll discuss 
other ways to connect to resources offered by AWS VPC.

VPC peering

VPC peering (https://docs.aws.amazon.com/vpc/latest/peering/what-is-
vpc-peering.html) is a VPC feature that allows traffic between two VPCs by simply adding 
routes between them as if they were part of the same network. This feature allows you to solve a variety 
of challenges that can affect your Glue connectivity.

Managing IP address pools

As mentioned previously, each ENI that’s created by Glue will be assigned an IP address from the 
subnet it resides in. The amount of IP addresses is directly proportional to the number of nodes that 
are part of the resource – for instance, in the case of ETL jobs, it will depend on the number of DPUs 
or workers you assigned to the job.

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html


Network 205

There are certain situations in which there may not be enough IP addresses for the resource to run 
properly. For instance, your VPC subnet could have a small range, or it could already have a large 
number of resources running within it. Alternatively, you may want to run a large ETL job that requires 
a significant number of addresses.

VPC peering allows you to solve this challenge by creating a new VPC subnet dedicated to Glue 
resources receiving IP addresses. Since communication between the VPCs is as if they were part of 
the same, Glue will be able to work without issues and the original VPC or its resources won’t have 
to be modified. 

Connecting to cross-account resources

VPC peering also allows you to create a peering relationship between VPCs in different accounts. This 
allows for easy cross-account, private connections where a Glue resource can connect to a database 
owned by a different account in the same organization, for instance. 

Connecting to cross-region resources

VPC peering can also bridge two VPCs placed in different regions, allowing for private connections 
through the AWS infrastructure and avoiding complicated setups to connect to resources in  
other regions.

AWS PrivateLink

AWS PrivateLink (https://docs.aws.amazon.com/whitepapers/latest/
aws-vpc-connectivity-options/aws-privatelink.html) is a VPC service that 
allows you to publish an endpoint into a VPC, ensuring that traffic between clients on the VPC and 
the endpoint is always routed through the internal AWS infrastructure and never goes through the 
public internet. PrivateLink can be used in Glue setups to, for example, publish an endpoint to a JDBC 
database in the VPC where Glue resources run. PrivateLink endpoints can be published cross-account 
and cross-region, enabling solutions for complex setups.

Connecting to resources in your on-premise network

Glue is also capable of reaching resources in your local network, allowing, for instance, you to crawl 
your self-hosted JDBC databases. Just like with any other public resource, Glue can connect through 
the public internet via a public endpoint; however, this is not a good approach in terms of security. 
There are several AWS services and products that can help tackle this issue:

• AWS Direct Connect (https://aws.amazon.com/directconnect/) is an AWS 
service that can establish a direct link between your on-premise data center and the AWS 
infrastructure. This is a benefit not just in terms of security, but also that it can provide greatly 
increased speeds and lower latency, which makes it easier to transfer datasets, for instance.

https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/aws-privatelink.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/aws-privatelink.html
https://aws.amazon.com/directconnect/
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• AWS Site-to-Site VPN (https://docs.aws.amazon.com/vpn/latest/s2svpn/
VPC_VPN.html) allows you to create VPN connections between your on-premise network 
and your AWS VPC. This will still route traffic over the public internet, but it will be encrypted 
and protected as per the specifications of the VPN software of your choice.

• AWS Managed VPN (https://docs.aws.amazon.com/whitepapers/latest/
aws-vpc-connectivity-options/aws-managed-vpn.html) is similar to Site-
To-Site VPN in that it uses a VPN solution to encrypt traffic, but this software is managed and 
deployed by AWS. This may reduce or eliminate the technical overhead of managing such a solution.

• Finally, the AWS Snow Family (https://aws.amazon.com/snow/) is 
an alternative solution to establishing network links. These are hardware products 
that can be delivered to your premises and allow you to copy and deliver your datasets  
to AWS, who will then upload them to your account. This is a more effective solution if you are 
intending to upload your data to AWS and stop using your on-premises network.

This covers all the options and features for network security. Now, let’s summarize this chapter. 

Summary
In this chapter, we discussed all the aspects of security within AWS Glue. We talked about limiting 
access through IAM permissions on both Glue and S3 and how to extend this through different AWS 
accounts. We also talked about fine-grained access permissions through AWS Lake Formation.

We discussed how encryption works and how Glue relies on AWS KMS keys to encrypt and decrypt 
data. We also discussed all the entities within Glue that can be encrypted. We saw different options 
for auditing access to Glue resources.

Finally, we discussed how Glue works in terms of networking and discussed the different architectures 
and AWS services that can be used to access resources over networks, including best practices when 
it comes to connecting over the public internet.

This covers all aspects of security in terms of Glue within your AWS account. The next chapter will 
also be related to security and permissions to some degree, as it will talk about data sharing and best 
practices to let others access your Glue resources.

https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/aws-managed-vpn.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/aws-managed-vpn.html
https://aws.amazon.com/snow/
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Data Sharing 

When you build a cloud-native data platform at scale on AWS, you may want to share your data 
with multiple stakeholders under governance. Today, data sharing is one of the key topics in data 
democratization for making business decisions driven by data and driving business. Typically, the 
data platform is used by different users, such as data engineers, business analysts, and data scientists. 

For example, data engineers own the data platform and maintain it, business analysts generate a daily 
report that represents business revenue and end user activities, and data scientists may want to unveil 
complex data patterns and build a data model for their applications. In such situations, these users can 
belong to different business units and organizations. For enterprise data platforms, democratizing and 
sharing data with different organizations under data governance securely is a high-demand requirement. 

In this chapter, you will learn about three common data sharing strategies and characteristics, and 
how you can share your data on AWS using AWS Glue and AWS Lake Formation through a step-by-
step tutorial with sample data. After completing this chapter, you will be able to design a data sharing 
model by choosing a strategy that fits your use case. You will also gain some hands-on skills to build 
a data sharing mechanism for your data platform.

In this chapter, we will cover the following topics:

• Overview of data sharing strategies

• Sharing data with multiple AWS accounts using S3 bucket policies and Glue catalog policies

• Sharing data with multiple AWS accounts using AWS Lake Formation permissions

Technical requirements
For this chapter, you need the following resources:

• An AWS account

• An AWS IAM role

• The AWS CLI
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Overview of data sharing strategies
At the time of writing, depending on the organizations and use cases, there are different ways to share 
data. There are three typical strategies for sharing data:

• Single tenant

• Hub and spoke

• Data mesh

In this section, you will learn about each of these strategies and discuss their backgrounds, challenges, 
and benefits.

Single tenant

Data lakes have become a popular approach for people who want to store and query data in a centralized 
repository. It allows you to store all the structured data, semi-structured data, and unstructured data 
at any scale. Here, cloud storage such as Amazon S3 fits well with data lakes because there are no data 
size limits. You do not need to convert your data into a predefined fixed schema in advance. Instead, 
you can just ingest data as-is. When you want to analyze the data, you can easily convert the data into 
your preferred schema on the fly, then analyze it on top of the data lake. 

The simplest use case is a single-tenant data platform. In this model, you will have all the components 
in a single AWS account that is, an Amazon S3 bucket for data lake storage, AWS Glue Data Catalog 
as a metadata store, Amazon Athena as the query engine, and more. To achieve data governance, you 
can just focus on IAM permissions; you do not need to think about ways to share data across multiple 
AWS accounts. This is simple and good for getting started, or for small use cases where you only have 
a few stakeholders in your organization. 

However, in real-world use cases, you may have multiple AWS accounts. This is because AWS best 
practices recommend that you segregate your resources and workloads into multiple AWS accounts 
to isolate resources and ownership, categorize workloads, and reduce the blast radius when things go 
wrong. For such use cases, you will need to think about how organizations can collaborate through 
the data, and how you can share the data across different AWS accounts.

The following screenshot shows how the single-tenant model works with two consumer applications 
in the same account. 
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Figure 9.1 – Single-tenant model

In the single-tenant model, you must use one AWS account for all the components – that is, ingesting 
data from data sources, storing data in data lakes, cataloging data, and consuming/analyzing data.

Hub and spoke

The hub-and-spoke model was introduced to achieve a cross-organization data platform. In this 
model, a central “hub” account hosts all the data and metadata and shares it with multiple consumer 
accounts. Consumer accounts receive the shared data and metadata and run analytic workloads on 
their compute resources, such as Amazon Athena, Amazon Redshift, and so on. This centralized hub 
model is intended to simplify both data engineering operations and end user experiences. For data 
engineers who manage the data platform, the operational cost is not significant when they need to 
manage a single data platform as a “hub.” For end users, all the data and metadata is stored in a single 
hub so that end users have good visibility of the data. It won’t require deep technical expertise just to 
consume the data, so it can also reduce training costs. 

Typically, there are different stakeholders in the data platform. There can be multiple data sources owned 
by different teams. There can also be different consumers who analyze the data and make decisions. 
The central data engineering team is responsible for managing the data lake in the following ways:

• Collecting data from the different data sources

• Enriching data to meet business requirements

• Ingesting the data into the data lakes

• Orchestrating components to extract, transform, and load data
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• Maintaining the end-to-end data flow

• Ensuring that the data platform meets business SLAs, such as data freshness, data accuracy, 
cost, and so on

However, the central team has the problem of managing data through this kind of central data platform. 
Since the data pipeline is owned by the central team but data sources are owned by other teams, it 
is hard for the central team to understand the specific needs of a data domain. This can cause issues 
in terms of ownership and accountability. In addition, there is the challenge of scaling. For example, 
you may need to transport data into the hub account, even though it is already on cloud storage. 
Furthermore, you may also require intervention from the central data engineering team when you 
want to add more datasets or change the way you enrich and validate the data.

The following diagram shows how the hub-and-spoke model works with a single hub account and 
two consumer accounts: 

Figure 9.2 – Hub-and-spoke model

Data mesh

A data mesh is a design pattern that addresses the challenges of scaling, ownership, and accountability 
that the hub-and-spoke model often faces by introducing the data-as-a-product paradigm. The data 
mesh strategy is designed to overcome these challenges by allowing the data owner teams to build 
and publish the data as a product and making the teams accountable for the data. 
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A data mesh defines how you organize and deliver data as a product. The data is published by the data 
owner and shared with the consumers. A data mesh also provides federated access across consumers in 
different teams and organizations through a central catalog in the mesh account. Each organization will 
be a data owner who is responsible for maintaining the end-to-end data flow by building, operating, 
and serving the data products. They are also responsible for maintaining the data quality by monitoring 
and resolving any data. Data accountability lies with the data owner.

Data product owner teams are responsible for maintaining the data catalog regularly so that it’s up-to-
date and keeping the data discoverable and searchable on the catalog. These are the domain experts of 
the datasets in both the content and the data platform. When usage increases, the consumers of the 
data product may report some data issues, such as increased data latency and missing records. The data 
product team is the only team that can solve these data issues because they understand the context of 
the data, know the architecture of the data processing pipeline, and can identify the procedure to fix 
the issues. This reduces the overall friction for the data flow, where the data product team is responsible 
for the datasets and is accountable for the consumers, although the central data engineering team tends 
to be responsible for the dataset and accountable for the consumers in the traditional hub-and-spoke 
model. With the data mesh model, it is natural for them to keep the reliability of the data flow and 
the quality of the data, and improve the end-to-end data flow.

However, the data mesh model may not be the right pattern for your use case, and sometimes, it can 
be overkill since it brings more complexity than the hub-and-spoke model. You need to carefully 
validate whether your use case fits the data mesh pattern or not. 

The following diagram shows how the data mesh model works with multiple accounts:

Figure 9.3 – Data mesh model
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You can find more background information and reference architectures in the Design a data mesh 
architecture using AWS Lake Formation and AWS Glue blog (https://aws.amazon.com/
blogs/big-data/design-a-data-mesh-architecture-using-aws-lake-
formation-and-aws-glue/).

Sharing data with multiple AWS accounts using S3 bucket 
policies and Glue catalog policies
In this section, you will learn how to share your data with multiple AWS accounts using an S3 bucket 
policy and a Glue catalog policy.

When your use case is simple, and you want to share your data with a small number of accounts, it 
is possible to grant data access in S3 bucket policies (https://docs.aws.amazon.com/
AmazonS3/latest/userguide/bucket-policies.html) and metadata access in 
Glue catalog resource policies (https://docs.aws.amazon.com/glue/latest/dg/
glue-resource-policies.html). You will set these up in the following sections.

Scenario 1 – sharing data from one account with another using S3 
bucket policies and Glue catalog policies

In the following scenario, there are two accounts – the producer account and the consumer account. 
Here, the producer account wants to share its table with the consumer account, and the consumer 
account wants to run SELECT queries against the shared table on Amazon Athena.

Prerequisite – S3

Let’s look at the prerequisite for setting up the S3 resources. Follow these steps in the producer account:

1. Create a sample JSON Line (JSONL) file called product_customer_sales.json:

{"product_name":"Introduction to 
Cloud","category":"Ebooks","price":15,"customer_
name":"Barbara Gordon","email":"gordon@example.
com","phone":"117.835.2584","purchased_at":"2022-04-
21T11:40:00Z"}

{"product_name":"Best practices on data 
lakes","category":"Ebooks","price":25,"customer_name":"Tanya 
Fowler","email":"tanya@example.net","phone":"(067)150-
0263","purchased_at":"2022-04-28T08:20:00Z"}

{"product_name":"Data Quest","category":"Video 
games","price":30,"customer_name":"Rebecca 
Thompson","email":"thompson@example.net","phone":"001-469-964-

https://aws.amazon.com/blogs/big-data/design-a-data-mesh-architecture-using-aws-lake-formation-and-aws-glue/
https://aws.amazon.com/blogs/big-data/design-a-data-mesh-architecture-using-aws-lake-formation-and-aws-glue/
https://aws.amazon.com/blogs/big-data/design-a-data-mesh-architecture-using-aws-lake-formation-and-aws-glue/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-policies.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-policies.html
https://docs.aws.amazon.com/glue/latest/dg/glue-resource-policies.html
https://docs.aws.amazon.com/glue/latest/dg/glue-resource-policies.html


Sharing data with multiple AWS accounts using S3 bucket policies and Glue catalog policies 213

3897x9041","purchased_at":"2022-03-30T01:30:00Z"}

{"product_name":"Final Shooting","category":"Video 
games","price":20,"customer_name":"Rachel 
Gilbert","email":"gilbert@example.com","phone":"001-510-198-
4613x23986","purchased_at":"2022-04-01T02:00:00Z"}

2. Create a simple-datalake-<your-producer-account-id> S3 bucket in your 
preferred region using the AWS CLI (replace the <your-producer-account-id> 
placeholder with your AWS account ID):

$ BUCKET_NAME="simple-datalake-<your-producer-account-id>"

$ aws s3api create-bucket --bucket ${BUCKET_NAME} --create-
bucket-configuration LocationConstraint=us-west-2

If you choose us-east-1, please remove the --create-bucket-configuration 
parameter.

3. Upload files to the S3 bucket by copying the sample data to your bucket:

$ aws s3 cp product_customer_sales.json s3://${BUCKET_NAME}/
simple_datalake/pcs/

With that, you have copied the sample data to your S3 bucket.

Prerequisite – Glue

Let’s look at the prerequisite for setting up the Glue resources. Follow these steps in the producer account:

1. Create a database called simple_datalake in Glue Data Catalog by running the CREATE 
DATABASE DDL on Athena:

CREATE DATABASE simple_datalake

2. Create a pcs table in Glue Data Catalog by running the CREATE TABLE DDL on Athena 
(replace the <your-producer-account-id> placeholder with your AWS account ID):

CREATE EXTERNAL TABLE simple_datalake.pcs(

  product_name string, 

  category string, 

  price int,

  purchased_at string,

  customer_name string, 

  email string, 

  phone string)
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ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe' 

STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.
TextInputFormat' 

OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.
HiveIgnoreKeyTextOutputFormat'

LOCATION 's3://simple-datalake-<your-producer-account-id>/
simple_datalake/pcs/'

TBLPROPERTIES ('classification'='json')

Please note that databases, tables, and partitions can be created in different ways. This time, we chose 
to run DDL on Athena to simplify the scenario. Of course, you can use the following as well:

• The Glue Data Catalog API

• A Glue crawler

• A Glue job

• DDL

Now, there is the new pcs table in the simple_datalake database. You can query the table like so:

SELECT * FROM simple_datalake.pcs

You will see four sample records in the result set:

Figure 9.4 – The SELECT query’s result in the pcs table
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Configuring S3 bucket policies and Glue Catalog resource policies

Follow these steps to configure S3 bucket policies and Glue catalog resource policies so that you can 
share data from one account to another:

1. [Producer] Grant permission on the Glue Catalog resource policy.

The producer will need to share the table on AWS Glue Data Catalog by introducing 
the following resource policy (replace the <your-producer-account-id> and 
<your-consumer-account-id> placeholders with your AWS account IDs):

{ 

    "Version": "2012-10-17",

    "Statement": [

        {

            "Effect": "Allow",

            "Action": [

               "glue:GetDatabase",

                "glue:GetDatabases",

                "glue:GetTable",

                "glue:GetTables",

                "glue:GetTableVersion",

                "glue:GetTableVersions",

                "glue:GetPartition",

                "glue:GetPartitions",

                "glue:BatchGetPartition",

                "glue:SearchTables"

            ],

            "Principal": {

                "AWS": [

                    "arn:aws:iam::<your-consumer-account-
id>:root"

                ]

            },

            "Resource": [

               "arn:aws:glue:us-west-2:<your-producer-account-
id>:table/simple_datalake/pcs",

                "arn:aws:glue:us-west-2:<your-producer-account-
id>:database/simple_datalake",

                "arn:aws:glue:us-west-2:<your-producer-account-
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id>:catalog"

           ]

        }

    ]

 }

Save the preceding JSON as catalog-policy.json and run the following command 
to put the resource policy in your Glue Catalog:

$ aws glue put-resource-policy --policy-in-json file://./
catalog-policy.json --enable-hybrid TRUE --region us-west-2

2. [Producer] Grant permission on the S3 bucket policy.

If the producer account wants to grant read-only access to your pcs table, which is located 
at s3://simple-datalake-<your-producer-account-id>/simple_
datalake/pcs/, to the consumer account, the S3 bucket will need to be configured 
with the following S3 bucket policy (replace the <your-producer-account-id> 
and <your-consumer-account-id> placeholders with your AWS account IDs):

{

   "Version": "2012-10-17",

    "Statement": [

        {

            "Effect": "Allow",

            "Principal": {

                "AWS": [

                   "arn:aws:iam::<your-consumer-account-
id>:root"

                ]

            },

            "Action": [

                "s3:GetObject"

            ],

            "Resource": "arn:aws:s3:::simple-datalake-<your-
producer-account-id>/simple_datalake/pcs/*"

        },

        {

            "Effect": "Allow",

            "Principal": {

                "AWS": [
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                    "arn:aws:iam::<your-consumer-account-
id>:root"

                ]

            },

            "Action": [

                "s3:ListBucket"

            ],

            "Resource": "arn:aws:s3:::simple-datalake-<your-
producer-account-id>"

        }

    ]

 }

Save the preceding JSON as bucket-policy.json and run the following 
command to put the bucket policy in your S3 bucket (replace the <your-producer-
account-id> placeholder with your AWS account ID):

$ aws s3api put-bucket-policy --bucket simple-datalake-<your-
producer-account-id> --policy file://./bucket-policy.json

3. [Consumer] Connect to the Glue Data Catalog shared by the producer:

I. Open the Athena console.

II. Click Data sources.

III. At the top right, click Connect data source.

IV. In the Data source selection section, click S3 - AWS Glue Data Catalog, then Next.

V. In the AWS Glue Data Catalog section, click AWS Glue Data Catalog in another account.

VI. For Data source details, enter the following information:

 � Data source name: Enter producer_catalog

 � Catalog ID: Enter the AWS account ID of the producer account ID

VII. Click Next, then Create data source.
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Now. you can select the new producer_catalog data source instead of the default of 
AwsDataCatalog in the Athena query editor in the consumer account. Run Athena 
from the consumer account, as follows: 

Figure 9.5 – The SELECT query’s result in the consumer account

To summarize, we configured the producer account to grant permissions on the Glue Catalog resource 
policy and grant permissions on the S3 bucket policy. After that, we configured the consumer account 
to register the new data source in Athena so that it points to the producer’s Glue Data Catalog. You 
will notice that there was no need to create/update any of the Glue catalog resources on the consumer 
account side. All the changes in the producer account will be visible and accessible without you needing 
to perform any manual operations in the consumer account.

This model works in simple use cases and is easy to understand. However, there are some challenges, 
as follows:

• First, you need to maintain both S3 bucket policies and Glue Data Catalog resource policies 
every time you want to grant or revoke access. 

• Second, you need to manage permissions at the S3 object (file) level, even if your daily operation 
may be SQL style. When you know only tables and run only SQLs, you may not know about 
the underlying files you are touching in your queries. However, when you manage permissions 
in an S3 bucket policy, you need to find the underlying files under the target table and manage 
the relationship between the logical table and the physical files on S3. In addition, you cannot 
manage permissions at a more granular level, such as the column level or row level, since the 
S3 bucket policy can only be defined at the file level. 

• Third, S3 bucket policies are limited to 20 KB in size, while Glue Data Catalog resource policies 
are limited to 10 KB in size. If you want to have a central place to manage all the permissions and 
have more flexibility in terms of granularity, you should try using Lake Formation permissions.
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In the next section, you will learn about a scalable way to achieve cross-account data sharing using 
AWS Lake Formation permissions.

Sharing data with multiple AWS accounts using AWS Lake 
Formation permissions
In this section, you will learn how to share data with multiple AWS accounts using AWS Lake  
Formation permissions.

Lake Formation permission model

As you learned in the previous section, there are challenges in managing S3 bucket policies and Glue 
Data Catalog resource policies. AWS Lake Formation is the service that is designed to overcome 
those challenges and simplify data platform management. Lake Formation provides a central layer for 
defining, classifying, tagging, and managing fine-grained access control to the AWS Glue Data Catalog 
and Amazon S3 locations. The permission model is designed in an RDBMS-like style so that you can 
grant permissions on databases, tables, or columns instead of S3 objects. Once you have granted access 
to tables with Lake Formation permissions, Lake Formation automatically manages both data access 
and metadata access under the hood, so you don’t need to manually take care of granting individual 
data access and metadata access.

Lake Formation cross-account sharing

The AWS Lake Formation permission model also simplifies cross-account configurations. With Lake 
Formation permissions, you can easily secure and manage data lakes across multiple AWS accounts 
at scale. 

In terms of Lake Formation cross-account access control, there are two different approaches to sharing 
your databases and tables with another account:

• One approach is to use Lake Formation’s named resource-based access control

• The other is to use Lake Formation’s tag-based access control. This is a recommended approach.

Lake Formation tag-based access control is recommended because of its scalability and maintainability. 
We will look at these options in detail in the following sections.
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Lake Formation named resource-based access control

Lake Formation named resource-based access control is a configuration option that manages permissions 
based on specific Data Catalog resources such as databases, tables, and columns. In this access control 
model, you can grant or revoke permissions on Lake Formation resources using the resource names. You 
can learn more by reading Cross-Account Access: How It Works: https://docs.aws.amazon.
com/lake-formation/latest/dg/crosss-account-how-works.html.

We only recommend using named resource-based access control when you prefer granting permissions 
explicitly to individual resources. It works with a small number of resources, but if you have a large 
number of resources, then you should use Lake Format tag-based access control.

Lake Formation tag-based access control

Lake Formation tag-based access control is a configuration option that manages permissions based on 
logical attributes called LF-tags, instead of specific resources. It requires two separate configurations: 
LF-tag – Data Catalog resources (databases, tables, and columns), and LF-tag – Lake Formation 
principals (IAM users, roles, SAML users, and QuickSight users). First, LF-tags need to be configured 
on Data Catalog resources. Second, you must grant and revoke permission on the LF-tag (instead 
of specific Data Catalog resources) to Lake Formation principals. With these configurations, Lake 
Formation allows you to access those resources when the LF-tag that the principal has permission on 
matches the LF-tag that the resource has. 

LF-tag-based access control is efficient and useful in environments that are growing rapidly. Imagine 
a scenario where there are five databases, and each database has 10 tables. There are three different 
organizations, and each organization has specific visibility per table. Today, a new employee joins your 
organization, and you need to grant the required permissions as a data lake administrator. Without 
LF-tag-based access control, you need to grant access to five individual databases and 50 tables for this 
user. With LF-tag-based access control, all you need to do is grant access to the LF-tag that matches the 
organization’s permission for this user. LF-tag-based access control also helps with situations where 
resource-based policies become too complicated as you will need far fewer permission configurations 
than in traditional resource-based access control. 

You can learn more about tag-based access control by reading Easily manage your data lake at scale 
using AWS Lake Formation Tag-based access control: https://aws.amazon.com/blogs/
big-data/easily-manage-your-data-lake-at-scale-using-tag-based-
access-control-in-aws-lake-formation/.

We recommend Lake Formation tag-based access control for the following use cases:

• You have a large number of Data Catalog resources (databases, tables, and columns) and 
principals (IAM users, roles, and more) that you need to grant access to

• You want to manage data access based on logical attributes or classifications of data

• You want to grant permissions dynamically, especially for new tables and principals
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To learn more, please read Securely share your data across AWS accounts using AWS Lake Formation: 
https://aws.amazon.com/blogs/big-data/securely-share-your-data-
across-aws-accounts-using-aws-lake-formation/.

Scenario 2 – sharing data from one account with another using 
Lake Formation Tag-based access control

In this scenario, we will use Lake Formation tag-based access control to share tables. There are two 
accounts: the producer account and the consumer account. Here, the producer account wants to 
share its table with the consumer account, and the consumer account wants to run SELECT queries 
on the shared table:

Figure 9.6 – Architecture of scenario 2
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In addition to the preceding use case, there is a security requirement to hide specific columns from the 
consumer. The table has seven columns: product_name, category, price, purchased_at, 
customer_name, email, and phone. The producer wants to share this table with the consumer 
account for business reasons but does not want to share either the email or phone columns since 
they contain sensitive information. On the other hand, the consumer wants to grant access to this 
shared pcs table to people that belong to the analyst decision. You can achieve this by following 
the steps in the next section.

Prerequisite – S3

The following prerequisite is required to set up the S3 resources. Follow these steps in the producer 
account:

1. Create a sample JSONL file called product_customer_sales.json:

{"product_name":"Introduction to 
Cloud","category":"Ebooks","price":15,"customer_
name":"Barbara Gordon","email":"gordon@example.
com","phone":"117.835.2584","purchased_at":"2022-04-
21T11:40:00Z"}

{"product_name":"Best practices on data 
lakes","category":"Ebooks","price":25,"customer_name":"Tanya 
Fowler","email":"tanya@example.net","phone":"(067)150-
0263","purchased_at":"2022-04-28T08:20:00Z"}

{"product_name":"Data Quest","category":"Video 
games","price":30,"customer_name":"Rebecca 
Thompson","email":"thompson@example.net","phone":"001-469-964-
3897x9041","purchased_at":"2022-03-30T01:30:00Z"}

{"product_name":"Final Shooting","category":"Video 
games","price":20,"customer_name":"Rachel 
Gilbert","email":"gilbert@example.com","phone":"001-510-198-
4613x23986","purchased_at":"2022-04-01T02:00:00Z"}

2. Create a standard-datalake-<your-producer-account-id> S3 bucket in 
your preferred region using the AWS CLI (replace the <your-producer-account-id> 
placeholder with your AWS account ID):

$ BUCKET_NAME="standard-datalake-<your-producer-account-id>"

$ aws s3api create-bucket --bucket ${BUCKET_NAME} --create-
bucket-configuration LocationConstraint=us-west-2

If you choose us-east-1, please remove the --create-bucket-configuration 
parameter.
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3. Upload the files to the S3 bucket by copying the sample data to your bucket:

$ aws s3 cp product_customer_sales.json s3://${BUCKET_NAME}/
standard_datalake/pcs/

With that, you’ve copied the sample data to your S3 bucket. In the next section, you will set up a Glue 
table for this file on S3.

Prerequisite – Glue

The following prerequisite is required to set up various Glue resources – that is, the Glue database, 
Glue table, and its partitions – so that you can use them in the subsequent sections. Follow these steps 
in the producer account:

1. Create a standard_datalake database on Glue Data Catalog by running the CREATE 
DATABASE DDL on Athena:

CREATE DATABASE standard_datalake

Create a pcs table on Glue Data Catalog by running the CREATE TABLE DDL on 
Athena (replace the <your-producer-account-id> placeholder with your AWS 
account ID):

CREATE EXTERNAL TABLE standard_datalake.pcs(

  product_name string, 

  category string, 

  price int,

  purchased_at string,

  customer_name string, 

  email string, 

  phone string)

ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe' 

STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.
TextInputFormat' 

OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.
HiveIgnoreKeyTextOutputFormat'

LOCATION 's3://standard-datalake-<your-producer-account-id>/
standard_datalake/pcs/'

TBLPROPERTIES ('classification'='json')

With that, all the required Glue resources, the standard_datalake database, and the pcs table 
have been set up. You will use these resources in a sample dataset on your data lake.



Data Sharing 224

Prerequisite – Lake Formation and IAM

The following prerequisite is required to set up baseline configurations for the Lake Formation resources. 
Follow these steps in both the producer account and the consumer account:

1. First, you must create a Data Lake Administrator if you do not have one. The Data Lake 
Administrator is an IAM user or an IAM role that has special privileges on Lake Formation 
resources. You will use this in the subsequent steps: https://docs.aws.amazon.com/
lake-formation/latest/dg/getting-started-setup.html#create-
data-lake-admin.

2. Next, you must update your default Lake Formation settings to migrate from traditional 
IAM-only access control to Lake Formation access control.

3. Sign in to the Lake Formation console using the Data Lake Administrator.

4. In the left menu, under the Data catalog category, click Settings. You will see the following 
settings:

Figure 9.7 – Updating the default permissions for Lake Formation resources

5. Deselect the Use only IAM access control for new databases and Use only IAM access control 
for new tables in new databases checkboxes.

6. Click the Save button.

Once you have done this, all your new databases and the new tables in those new databases will start 
following the Lake Formation access control model. Before updating this setting, special Lake Formation 
permissions are granted for IAM_ALLOWED_PRINCIPAL (any principals that are allowed through 
IAM authorization) on your databases and tables to keep backward compatibility. After updating the 
setting, the default permissions will be revoked, so you need to grant Lake Formation permission on 
those databases and tables expressly.

Next, to enable Lake Formation access control on the tables located in the standard-datalake-
<your-producer-account-id> S3 bucket, follow these steps in the producer account:

1. From the left menu, under the Register and ingest category, click Data lake locations.

2. Click Register location. You will see the following output: 
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Figure 9.8 -- Register location

3. For Amazon S3 path, enter s3://standard-datalake-<your-producer-
account-id>/.

4. Click the Register location button.

Now, all the Glue tables under this data lake location will start following Lake Formation access control.

Follow these steps in the consumer account:

1. Open the IAM console.

2. Create the DataAnalyst user by attaching the AmazonAthenaFullAccess AWS 
managed policy.

Now, all the IAM and Lake Formation resources have been successfully configured.
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Step 1 – configuring Glue catalog policies

The producer needs to share the table on AWS Glue Data Catalog by introducing the following 
resource policy (replace the <your-producer-account-id> and <your-consumer-
account-id> placeholders with your AWS account IDs):

{

    "Version": "2012-10-17",

    "Statement": [

        {

            "Effect": "Allow",

            "Action": [

                "glue:*"

            ],

            "Principal": {

                "AWS": [

                    "arn:aws:iam::<your-consumer-account-
id>:root"

                ]

            },

            "Resource": [

                "arn:aws:glue:us-west-2:<your-producer-account-
id>:table/*",

                "arn:aws:glue:us-west-2:<your-producer-account-
id>:database/*", 

               "arn:aws:glue:us-west-2:<your-producer-account-
id>:catalog"

            ],

            "Condition": {

                "Bool": {

                    "glue:EvaluatedByLakeFormationTags": true

                }

            }

        }

    ]

 }
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You will notice that the preceding policy is a coarse-grained policy that allows glue:* actions for 
any databases and tables in the producer account. This lets Lake Formation manage fine-grained access 
control. This is still safe because the glue:EvaluatedByLakeFormationTags condition 
forces consumers to be authorized by Lake Formation permissions.

Save the preceding JSON as catalog-policy-lf.json and run the following command to 
put the resource policy in your Glue Catalog:

$ aws glue put-resource-policy --policy-in-json file://./
catalog-policy-lf.json --enable-hybrid TRUE --region us-west-2

Note that if you want to keep the existing policy you created in the previous section, you need to 
merge the catalog policies, as follows:

{

    "Version": "2012-10-17",

    "Statement": [

        {

            "Effect": "Allow",

            "Action": [

                "glue:GetDatabase",

                "glue:GetDatabases",

                "glue:GetTable",

                "glue:GetTables",

                "glue:GetTableVersion",

                "glue:GetTableVersions",

                "glue:GetPartition",

                "glue:GetPartitions",

                "glue:BatchGetPartition",

                "glue:SearchTables"

            ],

            "Principal": {

                "AWS": [

                    "arn:aws:iam::<your-consumer-account-
id>:root"

                ]

            },

            "Resource": [

                "arn:aws:glue:us-west-2:<your-producer-account-
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id>:table/simple_datalake/pcs",

                "arn:aws:glue:us-west-2:<your-producer-account-
id>:database/simple_datalake",

                "arn:aws:glue:us-west-2:<your-producer-account-
id>:catalog"

            ]

        },

        {

            "Effect": "Allow",

            "Action": [

                "glue:*"

            ],

            "Principal": {

                "AWS": [

                    "arn:aws:iam::<your-consumer-account-
id>:root"

               ]

           },

            "Resource": [

                "arn:aws:glue:us-west-2:<your-producer-account-
id>:table/*",

               "arn:aws:glue:us-west-2:<your-producer-account-
id>:database/*",

                "arn:aws:glue:us-west-2:<your-producer-account-
id>:catalog"

            ],

            "Condition": {

                "Bool": {

                    "glue:EvaluatedByLakeFormationTags": true

                }

            }

        }

    ]

 }

With that, your Glue Catalog policy has been successfully configured.
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Step 2 – configuring Lake Formation permissions (producer)

Next, let’s configure Lake Formation permissions using Lake Formation tags. This will allow you to 
publish your table from the producer account to the consumer account. Follow the steps provided in 
the following sections in the producer account.

Defining an LF-tag

Follow these steps to create a new LF-tag:

1. Sign in to the Lake Formation console using the Data Lake Administrator user.

2. From the left menu, under the Permissions category, click LF-tags under Administrative 
roles and tasks.

3. Click the Add LF-tag button. You will see the following output:

Figure 9.9 – Add LF-Tag

4. For Key, enter Confidentiality, and for Values, enter private and public. Then, 
click Add LF-tag.

Now, you have a new LF-tag called Confidentiality that has two different values: private 
and public. We will use this LF-tag to manage access to the sample dataset.
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Attaching an LF-tag

Attach the LF-tag that contains the public value to your standard_datalake database and 
update the value from public to private for the email and phone columns to indicate that 
this column contains sensitive data. Now, follow these steps:

1. From the left menu, under the Data catalog category, click Databases.

2. Select the standard_datalake database and, from the Actions menu, click Edit LF-tags.

3. Click Assign new LF-Tag to enter a new key and its value. You will see the following output: 

Figure 9.10 – Edit LF-Tags: standard_datalake

4. Add the Confidentiality key and the public value.

5. Click Save.

6. Then, select the standard_datalake database and click View tables.

7. Click the link to the pcs table.

8. Under Schema, click Edit schema.

9. Select the checkboxes for the email and phone columns and click Edit tags. You will see 
the following output:
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Figure 9.11 – Edit LF-Tags: review_body

10. Update the value of the Confidentiality key from public to private.

11. Click Save.

12. Click Save as new version.

The Confidentiality LF-tag and its public value have been configured to the standard_
datalake database, and also recursively applied to the pcs table automatically. After that, the 
LF-tag’s values were updated from public to private for the email and phone columns. 
This means that those who have Confidentiality=public LF-tag permissions can view all 
the columns except the email and phone columns.

Granting LF tag permission to the consumer account

Follow these steps to grant LF-tag permission to the consumer:

1. From the left menu, under the Permissions category, click LF-tag permissions under 
Administrative roles and tasks.

2. Click Grant. You will see the following output:
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Figure 9.12 – Grant LF-tag permissions

3. For Principals, select External accounts.

4. For AWS account or AWS organization, enter the consumer account ID and press Enter.

5. For LF-Tag permission scope, choose the Confidentiality key and the public value.

6. For LF-tag permissions, select Describe.

7. Click Grant.
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Now, the Confidentiality LF-tag is visible from the consumer account and can be used to 
define data permissions that can share the data with the consumer account. 

Granting data permission to the consumer account

Follow these steps to grant data permission using the Confidentiality LF-tag:

1. From the left menu, under Permissions, click Data lake permissions.

2. Click Grant. You will see the following output:

Figure 9.13 – Grant data permissions
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3. For Principals, choose External accounts.

4. For AWS account or AWS organization, enter the consumer account ID and press Enter.

5. For LF-tags or catalog resources, select Resources matched by LF-Tags (recommended).

6. Select Confidentiality as the key and public as the value.

7. For Database permissions, select Describe under Database permissions and Describe under 
Grantable permissions.

8. For Table permissions, select Select and Describe under Table permissions and select Select 
and Describe under Grantable permissions.

9. Click Grant.

With that, the data permission that uses the LF-tag has been configured. 

Step 3 – configuring Lake Formation permissions (consumer)

Complete the following steps in the consumer account.

Creating a database

In this section, you will create a new database in the consumer account to add a resource link that 
points to the producer account. A resource link is a configuration that links to a local or shared 
database or table. It is required when you want to share your tables among multiple accounts. You 
can create a resource link with any preferred name to avoid name conflicts in a consumer account. 
Follow these steps:

1. Sign in to the Lake Formation console using the Data Lake Administrator user.

2. From the left menu, under Data catalog, click Databases.

3. Click Create database.

4. Select Database; do not select Resource link here.

5. For Name, enter standard_datalake_consumer.

6. Click Create database.

Creating a resource link under the database

Follow these steps to create a resource link pointing to the pcs table in the producer account:

1. From the left menu, under Data catalog, click Databases. You will see the standard_
datalake database that was shared from the producer account.

2. Select the standard_datalake database and click View tables.
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3. Select the pcs table and, in the Actions menu, click Create resource link. You will see the 
following output:

 

Figure 9.14 – Create resource link

4. For Resource link name, enter pcs_link.

5. For Database, select standard_datalake_consumer.

6. Click Create.

Now, you can query the shared table in the consumer account using the Data Lake Administrator 
user. Open the Athena query editor and choose AwsDataCatalog under the Data Source. Run 
the following query on the Amazon Athena console:

SELECT * FROM standard_datalake_consumer.pcs_link
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As shown in the following screenshot, there will be four sample records in the result set:

Figure 9.15 – The SELECT query’s result executed by the Data Lake 

Administrator user in the consumer account

You will notice that the records do not have either the email column or the phone column. This 
is because you marked the columns with an LF-tag where Confidentiality is private, and 
you only granted access to the consumer with an LF-tag where Confidentiality is public, 
not with an LF-tag where Confidentiality is private.

Defining an LF-tag

If you want to manage granular permissions for the IAM users and roles inside the consumer account, 
you can define a separate LF-tag and grant data permissions to the IAM users and roles using it. You 
will learn how to do this in the next few sections.

Note that Lake Formation tags are defined as resources in a single account, so LF-tags created in the 
producer account are not available to the consumer account. This means that the consumer account 
cannot use the producer account’s LF-tag when granting access to the resource links. If you want to 
manage granular permissions for the IAM users and roles inside the consumer account, you need to 
create new LF-tags in the consumer account and grant separate permissions by using the new LF-tags 
on the resource links. 

In this scenario, imagine that there are two different job roles in the consumer account – analyst and 
engineer – and you want to manage the visibility of the data based on these job roles. 
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Follow these steps to define a separate set of LF-tags:

1. Sign in to the Lake Formation console using the Data Lake Administrator user.

2. From the left menu, under the Permissions category, click LF-tags under Administrative 
roles and tasks.

3. Click Add LF-tag. You will see the following output:

Figure 9.16 – Add LF-Tag

4. For Key, enter Division.

5. For Values, enter analyst and engineer.

6. Click Add LF-tag.

With that, you have defined a separate set of LF-tags: the key is Division and the values are 
analyst and engineer.
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Attaching an LF-tag

Follow these steps to attach the separate Division LF-tag to the Data Catalog resources:

1. From the left menu, under Data catalog, click Databases.

2. Select the standard_datalake_consumer database and, from the Actions menu, 
click Edit LF-tags.

3. Click Assign new LF-Tag. You will see the following output:

Figure 9.17 – Edit LF-Tags: standard_datalake_consumer

4. Add the Division key and the analyst value

5. Click Save.

With that, your standard_datalake_consumer database has been configured with the 
Division LF-tag.

Granting LF-tag permission to the IAM user in the consumer account

Follow these steps to grant LF-tag permission to the IAM users who reside in the consumer account 
to achieve granular access control:

1. From the left menu, under the Permissions category, click LF-tag permissions under 
Administrative roles and tasks.

2. Click Grant. You will see the following output:
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Figure 9.18 – Grant LF-tag permissions

3. For Principals, select IAM users and roles.

4. For IAM users and roles, select the DataAnalyst IAM user.

5. For LF-Tag permission scope, select the Division key and the analyst value.

6. For LF-tag permissions, select Describe. Then, click Grant.
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Granting data permission to the IAM user in the consumer account

Follow these steps to grant data permission using the LF-tag to the IAM users in the consumer account:

1. From the left menu, under Permissions, click Data lake permissions. 

2. Click Grant. You will see the following output:

Figure 9.19 – Granting data permissions to DataAnalyst
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3. For Principals, select IAM users and roles.

4. For IAM users and roles, select the DataAnalyst IAM user.

5. For LF-tags or catalog resources, select Resources matched by LF-Tags (recommended).

6. Select the Division key and the analyst value.

7. For Database permissions, select Describe under Database permissions and Describe under 
Grantable permissions.

8. For Table permissions, select Select and Describe under Table permissions and Select and 
Describe under Grantable permissions.

9. Click Grant.

Now, DataAnalyst can query against the shared pcs table through the pcs_link resource 
link. As shown in the following screenshot, there will be four sample records in the result set:

Figure 9.20 – The SELECT query’s result executed by DataAnalyst in the consumer account

As you can see, the records do not contain the email and phone columns. With that, you’ve 
configured cross-account Lake Formation permissions using Lake Formation LF-tags and confirmed 
that they work as expected on Athena queries.
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Summary
In this chapter, you learned about three common data sharing strategies: single-tenant, hub-and-spoke, 
and data mesh. You also learned how to share data with different accounts using AWS Glue and AWS 
Lake Formation, as well as the benefits of doing so. At this point, you can design your data sharing 
model by choosing the strategy that fits your use case. You also gained hands-on skills in building  
a data sharing mechanism for your data platform.

In the next chapter, you will learn how to manage the data processing pipeline end to end.
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Data Pipeline Management 

Our data is composed of a lot of data types, such as IoT device logs, user logs, web server logs, and 
business reports. This data is generally stored in multiple data sources, such as relational databases, 
NoSQL databases, data warehouses, and data lakes, based on your applications, business needs, and 
rules. In this situation, there might be cases where you must obtain aggregated data results for user 
analysis, cost reports, and building machine learning models. To obtain the results, you may need to 
implement data processing flows to read data from multiple data sources by using a programming 
language, SQL, and so on. We usually call these flows data pipelines. 

Recent pipeline flows consist of extracting data from data sources, transforming the data on computing 
engines, and loading the data into other data sources. This kind of pipeline is called an extract, 
transform, and load (ETL) pipeline, and it is used in a lot of cases. Additionally, the extract, load, 
and transform (ELT) and extract, transformation, load, and transformation (EtLT) patterns are 
used these days. 

As you grow your data and data sources, the number of data pipelines increases. This can usually cause 
problems in scaling data pipelines, such as how you can build, operate, manage, and maintain pipelines. 
Therefore, effectively building and using data pipelines is one of the keys to effectively utilizing and 
operating your data for the growth of your company, organization, and team.

To tackle these problems, in this chapter, we’ll look at data pipelines and the best practices to manage 
them. In particular, this chapter covers the following topics:

• What are data pipelines?

• Selecting the appropriate data processing services for your analysis

• Orchestrating your pipelines with workflow tools

• Automating how you provision your pipelines with provisioning tools

• Developing and maintaining your data pipelines
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Technical requirements
For this chapter, if you wish to follow some of the walkthroughs, you will require the following:

• Internet access to GitHub, S3, and the AWS console (specifically the console for AWS Glue, 
Amazon Step Functions, Amazon Managed Workflows for Apache Airflow, AWS CloudFormation, 
and Amazon S3)

• A computer with Chrome, Firefox, Safari, or Microsoft Edge installed and the AWS Command 
Line Interface (AWS CLI)

Note
You can use not only the AWS CLI but also AWS CLI version 2. In this chapter, we have used the 
AWS CLI (not version 2). You can set up the AWS CLI (and version 2) by going to https://
docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-
started.html. 

You will also need an AWS account and an accompanying IAM user (or IAM role) with sufficient 
privileges to complete this chapter’s activities. We recommend using a minimally scoped IAM policy 
to avoid unnecessary usage and making operational mistakes. You can find the IAM policy for this 
chapter in this book’s GitHub repository at https://github.com/PacktPublishing/
Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter10. 
This IAM policy includes the following access:

• Permissions to create a list of IAM roles and policies for creating a service role for an AWS 
Glue ETL job.

• Permissions to read, list, and write access to an Amazon S3 bucket.

• Permissions to read and write access to Glue Data Catalog databases, tables, and partitions.

• Permissions to read, list and write access to Glue ETL Jobs, Crawlers, Triggers, Workflows  
and Blueprints.

• Permission to read, list and write access to AWS Step Functions resources.

• Permission to read, list and write access to Amazon Managed Workflows for Apache Airflow 
(MWAA) resources.

• Permissions to read, list and write access to AWS CloudFormation resources.

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter10
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter10
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If you haven’t set up the following resources, create or install necessary resources by following  
AWS documents:

• An S3 bucket for reading and writing data by AWS Glue. If you haven’t had it yet, you can create 
one by going to the AWS console (https://s3.console.aws.amazon.com/s3/
home) and choosing Create bucket. You can also create a bucket by running the aws s3api 
create-bucket --bucket <your_bucket_name> --region us-east-1 
AWS CLI command.

• The environment for Glue Blueprints. If you haven’t set it up yet, you need to install the relevant 
modules and SDKs to use Glue Blueprints. Please refer to https://docs.aws.amazon.
com/glue/latest/dg/developing-blueprints-prereq.html.

• The Amazon Managed Workflows for Apache Airflow (MWAA) environment. If you haven’t set 
it up yet, you need to create the environment from the MWAA console (https://console.
aws.amazon.com/mwaa/home#environments). Please refer to https://docs.
aws.amazon.com/mwaa/latest/userguide/get-started.html. At the 
time of writing, the latest Airflow version in MWAA is 2.2.2. This is the version we used.

What are data pipelines?
We generally use the word pipeline for a set of elements that are connected in a process, such as oil 
pipelines, gas pipelines, marketing pipelines, and so on. In particular, an element that is put into  
a pipeline is moved out via defined routes in a pipeline as output.

In computing, a data pipeline (or simply a pipeline) is referred to as a set of data processing elements 
that are connected in some series. Through a data pipeline, a set of elements are moved and transformed 
from various sources into destinations based on your implementation. A data pipeline usually consists 
of multiple tasks, such as data extraction, processing, validation, ingestion, pre-processing for machine 
learning use, and so on. Regarding the input and output of data pipelines, for example, the input is 
application logs, server logs, IoT device data, user data, and so on. The output of a data pipeline is 
analysis reports, a dataset for machine learning. The following diagram shows an example of a pipeline:

Figure 10.1 – A data pipeline that writes processed logs to an Amazon Redshift table

https://s3.console.aws.amazon.com/s3/home
https://s3.console.aws.amazon.com/s3/home
https://docs.aws.amazon.com/glue/latest/dg/developing-blueprints-prereq.html
https://docs.aws.amazon.com/glue/latest/dg/developing-blueprints-prereq.html
https://console.aws.amazon.com/mwaa/home#environments
https://console.aws.amazon.com/mwaa/home#environments
https://docs.aws.amazon.com/mwaa/latest/userguide/get-started.html
https://docs.aws.amazon.com/mwaa/latest/userguide/get-started.html
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In this example, server logs are stored in S3 as raw data and are processed into an analysis report, 
then written to Amazon Redshift. 

Usually, we run multiple pipelines as workflows by using scripts or automation tools. This creates 
various processed data to meet the various needs of multiple teams across multiple environments, 
such as multiple systems, programming languages, and so on.

Why do we need data pipelines?

We build and use data pipelines to process data and get results so that we can use the data further. 
Let’s take a look at some popular use cases of data pipelines:

• Data aggregation: Through data pipelines, your data is processed and aggregated to generate 
a result that meets customer, team, and organization needs, such as analysis reports, cost usage 
reports, user activity reports, and so on. After processing the data via data pipelines, it’s stored 
in various places, such as databases, data warehouses, and so on. If necessary, the aggregated 
data can be processed and combined with other aggregated data to generate a new report.

• Data cleansing: This use case is usually used for the raw data in your storage, such as application 
logs, user activity logs, server logs, IoT device data, and so on. Raw data often includes corrupted 
or garbage records. If you transform the raw data into data that other members such as analysts 
can process and visualize, you need to clean the raw data and also transform the data so that it 
matches your data source interface. For example, if analysts run analytic queries for a company’s 
data warehouse, you need to transform the data into a new format so that it is compatible with 
the data warehouse schema.

• Data anonymization: Sensitive records in your data are masked and transformed as a password 
through data pipelines. This process aims to provide privacy protection. This type of data pipeline 
often consists of multiple tasks that process sensitive information based on various levels of 
privacy. For example, let’s say that some data may include a user ID that must be masked for 
one team. However, another team needs that record, so the data doesn’t need to be processed.

Now that we’ve looked at some data pipeline use cases, others are available. Data pipelines are widely 
used to process and transform data into a new form of data for future use.

How do we build and manage data pipelines?

So far, we’ve seen that a data pipeline is a set of data processing flows that consist of elements of data 
processing and data storage. We’ve also seen that data pipelines are used for data aggregation, cleansing, 
anonymization, and more.
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To achieve this kind of data processing with pipelines, you need to design and build pipelines. 
Additionally, you need to update and maintain your pipelines based on your needs and data, such 
as organization/team updates, data schema changes, system updates, and so on. To effectively build 
and manage your data pipelines, you must understand the four main components of data pipeline 
management. We will cover these in the following sub-sections.

Selecting data processing services for your analysis

When you build a pipeline that extracts/writes data from/to your data storage, such as Amazon 
S3, relational databases, data warehouses, and so on, as a first step, you need to determine which 
data processing engines or services you use and how you process the data with them. To select data 
processing services, you need to consider things such as data usage, data format, data processing time, 
data size (which you try to process), and the relevant requirements such as the service latency, usability, 
flexibility, and so on. We’ll cover the details of selecting data processing services in the Selecting the 
appropriate data processing services for your analysis section.

Orchestrating data pipelines with workflow tools

After building data pipelines combined with data processing services and your data sources, you may 
need to automate running your pipelines as a workflow to easily and safely run them without manual 
work. For example, you can create a scheduled-based workflow that automatically runs multiple 
pipelines, including multiple data processing jobs and multiple data sources, every morning. To run 
these pipelines, you don’t need to manually run them one by one. You’ll learn how to orchestrate your 
pipelines and workflow tools in the Orchestrating your pipelines with workflow tools section.

Automating how you provision your data pipelines and workflows

You can automatically run multiple data pipelines as a workflow with workflow tools. So, how can 
you build and manage multiple workflows if you have a lot of workflows? For example, let’s assume 
you need to build hundreds of data pipelines that consist of the same data processing but various data 
sources. You can’t imagine creating those pipelines each by one.

For this kind of use case, you can provision pipelines and workflows by using a template you define 
resources in with various provisioning tools, which we’ll look at in the Automating how you provision 
your pipelines with provisioning tools section. Additionally, using provisioning tools, you can not only 
automate provisioning resources but also manage your resources via a template. By defining your 
pipeline resources with a template without manual operations in GUI applications, you can manage 
them with a versioning system and safely deploy them on your system by applying tests.
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Developing and maintaining data pipelines

To build data pipelines and the relevant components, you also need to think about how you build them. 
In particular, you need to continuously update them without bugs based on company/organization/
team requirements, business needs, and so on. To achieve effective development cycles, a good solution 
is to apply the software practices of continuous integration (CI) and continuous delivery (CD) to 
your data pipeline development process. These concepts help with problem detection, productivity, 
release cycles, and so on. You learn how to utilize these concepts in your data pipelines development 
and management in the Developing and maintaining your data pipelines section. You’ll learn how to 
develop Glue ETL jobs locally and how to deploy the ETL jobs and workflows in your environment 
in the section.

Next, we will cover four topics that we’ve looked at previously in terms of building and managing data 
pipelines using AWS Glue and combining it with other AWS services.

Selecting the appropriate data processing services for 
your analysis
One of the most important steps in using data processing pipelines is selecting the data processing 
services that meet the requirements for your data. In particular, you need to pay attention to 
the following:

• Whether your computing engine can process the data with the fastest speed you can allow

• Whether your computing engine can process all your data without any errors

• Whether you can easily implement data processing

• Whether the resource of your computing engine can easily be scaled as the amount of data 
increases (for example, you can scale it without making any changes to your code)

For example, if your data processing service doesn’t have more memory capacity than your data, what 
does the computing engine do to your job? Having less memory capacity can cause out-of-memory 
(OOM) issues in your processing jobs and cause job failures. Even if you can process the data with 
that small memory capacity, it will slow down your data processing compared to processing the data 
in memory since you need to put some data aside in your disk to avoid issues. As another example, 
assuming that your job processes your data with a single node, what happens to your processing job 
in the future if the amount of data increases? You may need to scale up or scale out your computing 
resource for the engine as the job will need more time to process data as the amount of data increases. 
Then, when your computing engine reaches its limits in terms of its processing capabilities, you may 
need to select another computing engine that can process your data.
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AWS provides multiple data processing services, such as AWS Lambda, AWS Glue, Amazon Athena, 
Amazon EMR, and more to match your environment’s use cases and needs. In this section, we’ll walk 
through each AWS-provided service for building data pipelines. Then, you’ll learn how to choose the 
engine that satisfies your needs.

AWS Batch

AWS Batch is a fully managed service for running batch computing workloads based on your 
definition. Computing resources for AWS Batch are managed by AWS instead of customers. AWS 
Batch automatically provisions the resources and also optimizes your workload distribution based 
on workloads.

To run your batch computation, you must submit a unit of work, such as a shell script, a Linux 
executable, or a Docker container image, to AWS Batch. This definition is handled as a job. You can 
also flexibly define how jobs run – in particular, how many resources, such as CPU and memory, will 
be used, how many concurrency jobs will run, when AWS Batch executes jobs, and so on.

To use AWS Batch as a data processing service, you need to create a unit of work, a resource definition, 
and job scheduling. It runs on a single instance that you specify, so you need to care about resource 
limits such as memory, CPU, and so on. For more details about AWS Batch, please refer to https://
docs.aws.amazon.com/batch/latest/userguide/what-is-batch.html.

Amazon ECS

Amazon Elastic Container Service (ECS) is a fully managed container orchestration service based 
on your container in a task definition. ECS also provides a serverless option, which is called AWS 
Fargate. Using Fargate, you don’t need to manage resources, handle capacity planning, or isolate 
container workloads for security purposes.

Using ECS, all you need to do is build Docker images. After building these Docker images, you can 
deploy and run your images on ECS. You can also use this service as not only an application service 
but also as a data processing engine for big data. For example, you can deploy Apache Spark clusters, 
Kinesis Data Streams consumers, and Apache Kafka consumers by building Docker images.

Regarding container resources, ECS provides a wide variety of container instance types that are 
provided by Amazon EC2. Therefore, allocated resources such as memory and vCPUs are based on 
your instance images. Please refer to https://docs.aws.amazon.com/AmazonECS/
latest/developerguide/ECS_instances.html regarding container instances.

AWS Lambda

AWS Lambda is a serverless computing service that runs your implemented code as Lambda functions 
on AWS-managed high-availability resources. All you need to do is write your code with a supported 
programming language, such as Python, Java, Node.js, Ruby, Go, or .NET, and a custom runtime.

https://docs.aws.amazon.com/batch/latest/userguide/what-is-batch.html
https://docs.aws.amazon.com/batch/latest/userguide/what-is-batch.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_instances.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_instances.html
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Based on requests to Lambda, Lambda runs your defined Lambda functions with scaling automatically 
to respond to the requests. It can respond to up to 1,000 per second. You can use Lambda for a lot of 
use cases. The following are some examples:

• It can process batch-based data stored in S3

• It can process streaming-based data from streaming data sources such as DynamoDB Streams, 
Kinesis Data Streams, Managed Streaming Kafka, and others.

• It can work as an orchestrator of data pipelines to run data processing services such as AWS 
Glue, Amazon Athena, Amazon EMR, and others.

In addition to implementing the Lambda function code, you can set Lambda’s resource configuration 
as follows:

• Memory (MB): This determines the amount of memory that’s available for your Lambda 
function. You can set this value between 128 MB and 10,240 MB. Regarding CPUs, they are 
linearly in proportion to the amount of memory that’s been configured (at 1,769 MB, a function 
has the equivalent of 1 vCPU).

• Timeout (seconds): This determines the Lambda execution timeout. If a function’s execution 
exceeds this timeout, its execution is stopped. You can set this value to a maximum of 15 minutes.

Additionally, you can set asynchronous invocation, function concurrency, and so on.

As we’ve discussed, Lambda can be used in a lot of use cases and situations based on its implementation 
style. Therefore, it might be good to start using Lambda as a data processing service if you don’t have a 
big data software environment such as Apache Hadoop, Apache Spark, and so on. Note that Lambda 
has memory limitations and that sometimes, duplicate invocation occurs.

Amazon Athena

Amazon Athena is a serverless query service. It allows you to run standard SQL queries for various 
data sources, such as CSV, JSON, Apache Parquet, Apache ORC, and so on, which are stored in 
your data stores, such as Amazon S3, JDBC/ODBC resources, and so on. Athena is based on Presto 
(https://prestodb.io), which provides a distributed SQL engine. This is useful for running 
ad hoc queries to obtain the analytical results of your data. 

The Athena console provides an interactive view for users to easily run SQL queries, as shown in the 
following screenshot:

https://prestodb.io
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Figure 10.2 – Obtaining analytic data results by running a SQL query from the Athena console

In addition to the console, you can access Athena with APIs (https://docs.aws.amazon.
com/athena/latest/APIReference/Welcome.html), SDKs (https://aws.
amazon.com/getting-started/tools-sdks/), and more. 

Athena can work with Glue Data Catalog as a Hive-compliant resource. Using Athena, you can create 
and read tables in/from the Data Catalog. If you need a data processing pipeline, you can build it 
with Athena. For example, you can build a simple pipeline so that Athena extracts data from S3 after 
creating a table with a Glue crawler, then writes the aggregated data to S3 using the access to Athena. 
This pipeline can be built by implementing a script that automates Athena queries and running the 
StartQueryExecution API (https://docs.aws.amazon.com/athena/latest/
APIReference/API_StartQueryExecution.html) with AWS SDKs.

Athena charges your queries based on their data scanning size in terabytes. For more details about 
pricing, please refer to https://aws.amazon.com/athena/pricing/.

NOTE – Athena Service Quotas
When using Athena, you need to consider that Athena has default query quotas. For more 
information about service quotas, please refer to https://docs.aws.amazon.com/
athena/latest/ug/service-limits.html.

https://docs.aws.amazon.com/athena/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/athena/latest/APIReference/Welcome.html
https://aws.amazon.com/getting-started/tools-sdks/
https://aws.amazon.com/getting-started/tools-sdks/
https://docs.aws.amazon.com/athena/latest/APIReference/API_StartQueryExecution.html
https://docs.aws.amazon.com/athena/latest/APIReference/API_StartQueryExecution.html
https://aws.amazon.com/athena/pricing/
https://docs.aws.amazon.com/athena/latest/ug/service-limits.html
https://docs.aws.amazon.com/athena/latest/ug/service-limits.html
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AWS Glue ETL jobs

In AWS Glue ETL jobs, you can choose from Spark, Spark Streaming, and a Python shell. We’ll 
look at these types here.

Spark 

In terms of Spark, you can run Apache Spark applications as Glue jobs (hereafter, Glue Spark jobs) and 
process your data within Glue and Spark frameworks. To run Glue Spark jobs, you don’t need to set 
up any resources for the computation. However, you need to implement scripts to process your data 
with Scala, Python (called PySpark), or SQL (called SparkSQL). Glue and Spark also provide many 
methods so that data processing can be enabled easily with a few pieces of code. The Data ingestion 
from streaming a data source section in Chapter 3, Data Ingestion, describes what Glue Spark is and 
how to use it. In Glue Spark jobs, you can choose a worker type that defines the memory, vCPUs, 
and disk size of each worker. Worker type is determined by your processing workloads, such as 
Standard for general use cases, G.1X for memory-intensive jobs, and G.2X for machine learning 
(ML) transform jobs.

Each worker type has a fixed allocated memory, vCPUs, and disk. At the time of writing, the details 
shown in the following table about these allocated resources are correct:

Figure 10.3 – Allocated resources of each worker type

In addition to the worker types, you need to set the number of workers, which defines how many 
workers with a specific worker type concurrently process your data.

The worker type and the number of workers define the capacity of the Glue computing resource 
(in other words, the Spark cluster) for your job. Specifically, they define how much memory and 
disk the job can use and how much concurrency the job processes. For example, when you set 10 
G.1X workers to your Glue Spark job, the job can use a maximum of 160 GB memory, 40 vCPUs, 
and 640 GB disk for your entire Spark cluster.
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Note – Data Processing Units (DPUs) and Maximum Capacity
The number of DPUs defines how many resources are allocated to your job. You are charged 
based on the DPUs you use in your job (please refer to https://aws.amazon.com/
glue/pricing/ for more information). A DPU has 4 vCPUs with compute capacity and 
16 GB of memory. 

The maximum capacity is the same as the number of DPUs (for example, if you set 10 DPUs, 
the maximum capacity is also 10). When you choose Glue 1.0 and the Standard worker type, 
you need to set the Maximum capacity option instead of the Number of workers option.

Using Glue Spark jobs, you can use a distributed processing engine based on Spark, process your data 
with a lot of data processing methods, easily scale computing resources by changing the number of 
workers, and more.

Spark Streaming

Spark Streaming is one of the modules in Apache Spark for processing streaming data. This is different 
from Spark, which is typically used for batch jobs. Spark Streaming is used for streaming jobs for 
Glue (hereafter, Glue Streaming jobs). You can also implement Glue Streaming jobs with Scala, 
Python, or SQL, similar to Glue Spark jobs. The Data ingestion from streaming a data source section in  
Chapter 3, Data Ingestion, describes what Glue Streaming is and how to use it.

Regarding worker types and the number of workers for Glue Streaming jobs, you can configure them 
in the same way as you configure Glue Spark jobs. If you process the streaming data from streaming 
sources such as Amazon Kinesis Data Streams, Apache Kafka, and others, you can use this type. You 
are charged based on the DPUs per second you used in your job.

Python shell

If you select the Python shell type, you can run pure Python scripts, not PySpark, as Glue jobs (hereafter, 
Python shell jobs) on the Glue environment. Similar to the other Glue job types, you don’t need to set 
up any resources for the computation. The Data ingestion from the Amazon S3 object store section in 
Chapter 3, Data Ingestion, describes what a Python shell is and how to use one.

Regarding worker types and the number of workers, you can only set the maximum capacity or DPUs 
for a Python shell job, not the worker types and number of workers. In particular, you can set the value 
to 0.0625 (the default DPU value) or 1. In addition to this, Python shell jobs can be integrated with 
other Glue components such as crawlers and Glue Spark jobs using a Glue workflow (which we’ll see 
later in this chapter). You can also configure the job’s timeout. The default is 48 hours.

When you don’t need distributed processing via Spark jobs but you have a long-running job that, for 
example, simply checks multiple objects in S3 and deletes some objects based on a condition, you can 
use this type. You are charged based on the DPUs per second you selected (0.0625 or 1) in your job.

https://aws.amazon.com/glue/pricing/
https://aws.amazon.com/glue/pricing/
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Amazon EMR

Amazon EMR (hereafter, EMR) provides a cluster management platform where you can run multiple 
big data-related applications such as Apache Hadoop, Apache Spark, Apache Hive, Presto/Trino, 
Apache HBase, Apache Flink, TensorFlow, and others in their latest versions. In addition to these 
applications, EMR also provides a lot of functionalities such as steps, bootstrap actions, and cluster 
configuration. We’ll provide a summary of EMR here.

When you run multiple software applications, you don’t always need to call each service API or log in 
each console/interactive shell. You can run these applications via EMR Steps (https://docs.aws.
amazon.com/emr/latest/ManagementGuide/emr-work-with-steps.html), 
which runs applications on your behalf by adding your application implementation to EMR Steps. 

You can also configure your cluster, such as its size, EC2 instance types, multiple versions of applications 
that match your needs, and so on. You can also add the software that you need to create an EMR 
cluster via the EMR Bootstrap action (https://docs.aws.amazon.com/emr/latest/
ManagementGuide/emr-plan-bootstrap.html). This can be defined by implementing 
scripts and setting these scripts when creating the cluster. It’s also possible to connect to AWS Glue 
Data Catalog.

Compared to AWS Glue, EMR enables you to provide various flexible options for selecting applications, 
cluster size, cluster scaling, cluster nodes, customizing the cluster node system, and so on. Furthermore, 
you can choose a cluster running environment from Amazon EC2 (EMR on EC2), Amazon EKS 
(EMR on EKS), AWS Outposts, and Serverless (this is a preview feature). However, note that EMR is 
not serverless except for EMR Serverless, so you need to manage clusters yourself.

Regarding EMR pricing, you are charged based on your running node type and running duration. 
For more details, please refer to https://aws.amazon.com/emr/pricing/.

Orchestrating your pipelines with workflow tools
After selecting the data processing services for your data, you must build data processing pipelines 
using these services. For example, you can build a pipeline similar to the one shown in the following 
diagram. In this pipeline, four Glue Spark jobs extract the data from four databases. Then, each job 
writes data to S3. In terms of the data stored in S3, the next Glue Spark job processes the four tables’ 
data and generates an analytic report:

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-work-with-steps.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-work-with-steps.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-bootstrap.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-bootstrap.html
https://aws.amazon.com/emr/pricing/
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Figure 10.4 – A pipeline that extracts data from four databases, stores S3, 

and generates an analytic report by the aggregation job

So, after building a pipeline, how do you run each job? You can manually run multiple jobs to extract 
multiple databases. Once this has happened, you can run the job to generate a report. However, this 
can cause problems. One such problem is not getting a result if you run the generating report job 
before all the extracting jobs are completed. Another problem is that it will take a long time to generate 
a report if one of the extracting jobs takes a lot of time. 

To avoid these problems, you can orchestrate pipelines with workflow tools such as AWS Glue 
workflows, AWS Step Functions, Apache Airflow, and others. Workflow tools for big data pipelines 
generally orchestrate not only multiple jobs but also multiple pipelines.

Recent modern workflow tools, such as the ones mentioned previously, represent the flow of jobs and 
the dependencies of jobs in a pipeline as a graph – in particular, a directed acyclic graph (DAG). A 
DAG has direction for each edge, but no directed cycles. In a cycle graph, the first and last edges are 
equal. The following diagram shows a DAG that represents the workflow example from earlier in this 
section, which involved generating a report pipeline:

Figure 10.5 – A DAG workflow for generating a report pipeline
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Using workflow tools, you can manage multiple jobs and pipelines as one workflow. Regarding the 
example of generating a report, a workflow tool can run each job, which may include extracting data 
from multiple databases, waiting for each job to complete, and generating a report. Thus, you don’t 
need to run each job manually.

In this section, we’ll walk through the workflow tools that AWS provides and learn how to combine 
them with the data processing services we looked at in the Selecting the appropriate data processing 
services for your analysis section:

• AWS Glue workflows

• AWS Step Functions

• Amazon Managed Workflows for Apache Airflow (MWAA)

First, we’ll look at AWS Glue workflows.

Using AWS Glue workflows

AWS Glue workflows allow you to create workflows that combine dependent Glue functionalities such 
as crawlers and ETL jobs as an orchestrator. In particular, Glue workflows execute crawlers and ETL 
jobs using Glue Trigger, which triggers crawlers and ETL jobs based on your configuration, such as 
on-demand, scheduled, or conditional, or via an EventBridge trigger. More information was provided 
in the Triggers section of Chapter 2, Introduction to Important AWS Glue Features. In addition to the 
role of the orchestrator, Glue workflows allow you to monitor each workflow component’s status, such 
as the success of ETL jobs, the failure of crawler runs, and so on.

To learn how we can configure and run Glue workflows, let’s orchestrate a simple data pipeline by 
building a pipeline and using Glue workflows.

Example – orchestrating the pipeline that extracts data and generates a 
report using Glue workflows

In this example, we’ll create a data pipeline that generates a customer reviews count report by aggregating 
each marketplace review in the Amazon Customer Reviews dataset (https://s3.amazonaws.
com/amazon-reviews-pds/readme.html). Then, we’ll run this pipeline by creating  
a workflow. This workflow will run the pipeline by doing the following:

1. The Glue workflow will trigger the crawler (ch10_1_example_workflow_acr), which 
analyzes a table schema of the sales data and populates a table in Glue Data Catalog.

2. After running the crawler, the workflow will trigger the ETL job (ch10_1_example_
workflow_gen_report), which will generate a report by computing sales by each  
product category and year. Then, the job will populate the report table in the Data Catalog.

Let’s start by creating the data pipeline.

https://s3.amazonaws.com/amazon-reviews-pds/readme.html
https://s3.amazonaws.com/amazon-reviews-pds/readme.html
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Step 1 – creating a data pipeline with a Glue crawler and an ETL job

We'll download product sales data and create the Crawler which populates a table in the Data Catalog 
based on the table schema of the sales data. Follow these steps:

1. Download the product sales data (sales-data.json) on your local machine from https://
github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-
AWS-Glue/blob/main/Chapter10/sales-data.json Once downloading is 
completed, upload the file to your Amazon S3 bucket using the command; aws s3 cp sales-data.
json s3://<your-bucket-and-path>/sales or from the S3 console ( https://s3.console.
aws.amazon.com/s3/buckets)

2. Access Crawlers (https://console.aws.amazon.com/glue/home?region=us-
east-1#catalog:tab=crawlers) on the AWS Glue console and choose Add crawler.

3. Type ch10_1_example_workflow as the crawler’s name and click Next.

4. Choose Data stores for Crawler source type and Crawl all folders for Repeat crawls of S3 
data stores. Then, click Next.

5. Choose Specified path in my account in the Crawl data in section and specify s3://<your-
bucket-and-path>/sales/ that is the data location of sales-data.json for Include path. Then, 
click Next.

6. Set No for Add another data store.

7. Choose your IAM role for this crawler. You can also create an IAM role by clicking Create an 
IAM role. 

8. Set Run on demand for Frequency.

9. Choose your database to create the report table in and type example_workflow_ in Prefix 
added to tables (optional) for the table.

10. Then, review your crawler’s configuration. If everything is OK, click Finish.

NOTE: Specification of table name created by Crawler
The table name that Crawler creates is determined as <Prefix><The deepest path 
that you specified in Include path>. For example, if you set example_
workflow_ to Prefix, and s3://<your-bucket-and-path>/sales/ to Include 
path, Crawler creates the table with its name example_workflow_sales.

At this point, you will see the ch10_1_example_workflow crawler on the console. 

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/sales-data.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/sales-data.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/sales-data.json
https://s3.console.aws.amazon.com/s3/buckets
https://s3.console.aws.amazon.com/s3/buckets
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=crawlers
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=crawlers
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Now, let’s create an ETL job to process the dataset and create a report table. Follow these steps:

1. Download the Glue job script from this book’s GitHub repository (https://github.
com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-
Glue/blob/main/Chapter10/workflow-tools/glue-workflows/
ch10_1_example_workflow_gen_report.py).

2. Open Jobs in the AWS Glue Studio console (https://console.aws.amazon.com/
gluestudio/home?region=us-east-1#/jobs). Then, choose Spark script editor 
in the Create job section and Upload and edit an existing script in the Options section. Now, 
upload the job script by clicking Choose file:

Figure 10.6 – The view for creating a Glue job in AWS Glue Studio

3. After uploading the ch10_1_example_workflow_gen_report.py, click Create.

4. Type ch10_1_example_workflow_gen_report as the job’s name and choose your 
IAM Role for running the Glue job.

5. Scroll down the page and set Requested number of workers to 3, Job bookmark to Disable, 
and Number of retries to 0.

6. Then, set each of your S3 bucket paths, using the details shown in the following screenshot:

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/glue-workflows/ch10_1_example_workflow_gen_report.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/glue-workflows/ch10_1_example_workflow_gen_report.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/glue-workflows/ch10_1_example_workflow_gen_report.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/glue-workflows/ch10_1_example_workflow_gen_report.py
https://console.aws.amazon.com/gluestudio/home?region=us-east-1#/jobs
https://console.aws.amazon.com/gluestudio/home?region=us-east-1#/jobs


Orchestrating your pipelines with workflow tools 259

Figure 10.7 – Setting a script, Spark event logs, and temporary locations

7. Scroll down the page and set s3://crawler-public/json/serde/json-serde.
jar to Dependent JARs path.

8. Save the job.

Now that you’ve created the data pipeline, you will create a workflow by using the crawler and glue 
job you created.
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Step 2 – creating a workflow

Let’s create a workflow that will manage the crawler and ETL job that you created in Step 1 – creating 
a data pipeline with a Glue crawler and an ETL job. Follow these steps:

1. Open Workflows in the AWS Glue console (https://console.aws.amazon.com/
glue/home?region=us-east-1#etl:tab=workflows;workflowView=w
orkflow-list) and click Add workflow.

2. Set ch10_1_example_workflow_gen_report as the workflow’s name and set the 
following workflow run properties:

I. Key: datalake_location, Value: s3://<your-bucket-and-path>; this 
is the report data S3 path.

II. Key: database, Value: <the db name which you set to the Crawler 
you created in Step 1>; this is the table of the Amazon Customer Review 
dataset.

III. Key: table, Value: example_workflow_sales; this table is created by the 
crawler and its name is set to this value.

IV. Key: report_year, Value: 2021; In this example, 2021 is set as the value.

3. Then, click Add workflow at the bottom of the page.

4. After adding the workflow, you can create a Glue trigger to run your workflow. Click Add trigger:

Figure 10.8 – Adding a trigger to the workflow

5. Go to the Add new tab, type ch10_1_example_workflow_ondemand_start as 
the workflow’s name, and set On demand for Trigger type. Then, click Add.

https://console.aws.amazon.com/glue/home?region=us-east-1#etl:tab=workflows;workflowView=workflow-list
https://console.aws.amazon.com/glue/home?region=us-east-1#etl:tab=workflows;workflowView=workflow-list
https://console.aws.amazon.com/glue/home?region=us-east-1#etl:tab=workflows;workflowView=workflow-list


Orchestrating your pipelines with workflow tools 261

6. At this point, you will be able to see the first trigger in the Graph tab. Let’s add the Crawler 
first. Click Add node, as shown in the following screenshot:

Figure 10.9 – Adding a node to the workflow

7. Go to the Crawlers tab, specify the ch10_1_example_workflow crawler, and click Add.

8. You will see the crawler in your workflow diagram. Now, create a new trigger to run the ETL 
job. Click Add trigger in the workflow diagram.

9. In the Add new tab, type ch10_1_example_workflow_event_gen_report as a 
new trigger name. Set Event as its trigger type and Start after ALL watched event as its trigger 
logic. Then, click Add.

10. The following screenshot shows the additional trigger that starts running ETL jobs. To set the 
job for this trigger, click Add node:

Figure 10.10 – Adding a new Glue job node to the workflow
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11. Go to the Jobs tab, specify the ch10_1_example_workflow_gen_report job, and 
click Add.

Once you’ve configured the workflow, you will see the following diagram in the Graph tab:

Figure 10.11 – The workflow diagram

Now, you’re ready to run the workflow! This is what we’ll do in the next step.

Step 3 – running the workflow

You can run the workflow via the Glue console. Follow these steps:

1. Go back to the workflow in the Glue console and choose your workflow (ch10_1_example_
workflow_gen_report). Then, choose Actions and click Run.

2. After starting the workflow, you can see the workflow’s running status by going to View run 
details in the History tab.

3. Once the workflow has finished running, you will see each node’s status, as shown in the 
following diagram (this workflow run may take around 4 or 5 minutes):
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Figure 10.12 – The completed graphical workflow

The workflow run is now completed. Finally, let’s check the result.

Step 4 – checking the result

By running this workflow, two tables were created by the crawler and the ETL job, and the reviews 
count report was provided as output in the S3 bucket you specified as datalake_location in 
Step 2 – creating a workflow. Let’s have a look at these resources:

• The two tables that were created (you can see these tables in the Glue Data Catalog at https://
console.aws.amazon.com/glue/home#catalog:tab=tables):

 � example_workflow_sales: This was created by the crawler; that is, ch10_1_
example_workflow. This table contains the table schema of the sales data.

 � example_workflow_sales_report: This was created by the ETL job; that is, 
ch10_1_example_workflow_gen_report. This table has the table schema which 
includes, reported year as a partition key.

• The generated report data in the S3 bucket. The ETL job writes the report data in the S3 path 
as s3://<your-specified-bucket-and-path>/serverless-etl-and-
analysis-w-glue/chapter10/example-workflow/report/. You can view 
the following bucket path and data by using the AWS CLI command:

$ aws s3 ls s3://<your-bucket-path>/serverless-etl-
and-analysis-w-glue/chapter10/example-workflow/report/ 
--recursive

https://console.aws.amazon.com/glue/home#catalog:tab=tables
https://console.aws.amazon.com/glue/home#catalog:tab=tables
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YYYY-MM-dd 01:23:45        799 <path>/serverless-etl-and-
analysis-w-glue/chapter10/example-workflow/report/report_
year=2021/run-xxxxxxxxxx-part-block-0-0-r-00113-snappy.
parquet

• The ETL job output in the CloudWatch logs. You can access the log link from the Glue Studio 
console by choosing Output logs in the Runs tab. The page will redirect you to the CloudWatch 
Logs console. Choose the Spark driver task ID that doesn’t have an underscore (_) in the name 
of the Log stream; that is, jr_ea5565f6e248aa49dbbb….

You will see the following generated report. This report shows the product sales by each 
category in 2021:

Figure 10.13 – The Glue job’s output in the Spark driver task log

In this section, we’ve done the following:

• Created a pipeline that is composed of a crawler and an ETL job:

 � The crawler populates a table in the Data Catalog

 � The ETL job generates a report by referring to the table data

• Created the workflow, which consists of two triggers for running the crawler and the ETL job. 
This workflow runs each component in the pipeline.

• Run the workflow and checked the result.

In this example, we learned that Glue workflows allow you to run data pipelines that consist of multiple 
crawlers and jobs. However, you may think that it’s a bit hard to build multiple workflows that have 
multiple triggers/crawlers/ETL jobs because you need to set each component one by one. This can be 
solved by using provisioning tools such as AWS CloudFormation, Glue Blueprints, and so on. We’ll 
look at these tools in the Automating how you provision your pipelines with provisioning tools section. 
Next, we’ll look at another workflow tool: AWS Step Functions.
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Using AWS Step Functions

AWS Step Functions is a serverless orchestration service that allows you to combine multiple AWS 
services such as AWS Lambda, AWS Glue, and so on. It can also be used to orchestrate and run multiple 
data pipelines, including multiple AWS data processing services and their related data storage. You 
can define workflows with Step Functions’ graphical console, which visualizes your workflows.

Step Functions consists of state machines and tasks. Let’s look at them in more detail:

• A state machine is a workflow. 

• A task is a state (or a step) in a workflow. This state represents a single unit of work that’s 
performed by a state machine.

To define a Step Functions workflow, you must create a state machine that has and combines multiple 
tasks, such as invoking a Lambda function, starting a Glue job run, running an Athena query, and so on.

Step Functions can handle AWS Glue APIs and you can create ETL workflows via Step Functions. 
Next, we’ll orchestrate the same data pipeline that we built in the previous Glue workflows example 
by building a workflow with Step Functions.

Example – orchestrating the pipeline that extracts data and generates  
a report using Step Functions 

In this example, we’ll create the same data pipeline that we did in the Example – orchestrating the 
pipeline that extracts data and generates a report using Glue workflows section. Then, we’ll orchestrate 
the pipeline with Step Functions’ workflow. This pipeline will generate a product sales report by 
computing sales by each product category and year.

The Step Functions’ workflow runs the pipeline by doing the following:

1. Step Functions’ workflow triggers the crawler (ch10_2_example_workflow_acr), 
which analyzes a table schema of the sales data and populates a table in Glue Data Catalog.

2. After starting the crawler, the workflow polls the crawler’s running status. If it confirms that 
the crawler has finished running, it triggers the ETL job (ch10_2_example_workflow_
gen_report), which generates a report by computing sales by each product category and 
year. Then the job populates the report table in the Data Catalog.

First, let’s create the pipeline.
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Step 1 – creating a data pipeline with a Glue crawler and an ETL job

In this example, we’ll create the crawler and the ETL job. These will have the same configuration as the 
crawler (ch10_1_example_workflow) and ETL job (ch10_1_example_workflow_
gen_report) we created in the Example – orchestrating the pipeline that extracts data and generates 
a report using Glue workflows section. If you haven’t created the crawler and ETL job, please refer to 
that section. Follow these steps:

1. Go to Crawlers (https://console.aws.amazon.com/glue/home?region=us-
east-1#catalog:tab=crawlers) in the AWS Glue console and choose ch10_1_
example_workflow. Then, choose Duplicate crawler from the Action tab.

2. Type ch10_2_example_workflow as the crawler’s name and choose Output in the 
left pane.

3. In the crawler’s Output view (in the left pane), type example_workflow_sfn_ in Prefix 
added to tables (optional) for the table.

4. After reviewing the crawler’s configuration, click Finish. 

5. Next, you must create the Glue job. Before creating the job, download the Glue job script from this 
book’s GitHub repository (https://github.com/PacktPublishing/Serverless-
ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-
tools/step-functions/ch10_2_example_workflow_gen_report.py).

6. Open the job in the AWS Glue Studio console (https://console.aws.amazon.
com/gluestudio/home?region=us-east-1#/jobs). Then, choose the ch10_1_
example_workflow_gen_report job and choose Clone job from the Actions tab to take over 
the previous job configuration.

7. On the Job details tab, type ch10_2_example_workflow_gen_report as the job’s name. 
Confirm that the script’s filename is ch10_2_example_workflow_gen_report.py.

8. On the Script tab, copy the downloaded job script to the editor. Then, click Save to save the job.

Next, we’ll create a Step Functions state machine by combining it with a Glue crawler and an ETL job.

Step 2 – creating a state machine

In this step, we’ll create a step machine that orchestrates a Glue crawler and an ETL job:

1. Before creating the job, download the state machine definition from this book’s GitHub 
repository (https://github.com/PacktPublishing/Serverless-ETL-
and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-
tools/step-functions/ch10_2_example_sfn.json).

2. Open the AWS Step Functions console (https://console.aws.amazon.com/
states/home#/statemachines) and click Create state machine.

https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=crawlers
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=crawlers
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10_2_example_workflow_gen_report.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10_2_example_workflow_gen_report.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10_2_example_workflow_gen_report.py
https://console.aws.amazon.com/gluestudio/home?region=us-east-1#/jobs
https://console.aws.amazon.com/gluestudio/home?region=us-east-1#/jobs
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10_2_example_sfn.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10_2_example_sfn.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10_2_example_sfn.json
https://console.aws.amazon.com/states/home#/statemachines
https://console.aws.amazon.com/states/home#/statemachines
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3. On the Define state machine page, click Write your workflow in code and then Standard in 
the Type section. Then, copy the downloaded definition to the script editor (by clicking the 
Reload button, you can see the visualized workflow, as shown in the following screenshot). 
After copying the script, click Next:

Figure 10.14 – Defining the state machine

As we’ve discussed, this state machine polls the crawler’s running status periodically (every 
20 seconds). After that, the state machine starts the ETL job.

4. On the Specify details page, type ch10_2_example_workflow_sfn as the state machine’s 
name and click Create new role (the IAM Role that includes the necessary permission is created 
by AWS). Regarding the Logging section, by default, logging configuration is not enabled. If 
necessary, you can set any log level such as ALL, ERROR, and so on.

When you scroll down the page, you may see a notification about insufficient permissions 
that states “Permissions for the following action(s) cannot be auto-generated ….” After creating 
the state machine, we’ll add these permissions to the IAM Role.

5. Click Create state machine. Upon doing this, the state machine you defined will be created.
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6. To add the insufficient permission to the IAM Role for the state machine, open the IAM 
console (https://console.aws.amazon.com/iamv2/home#/policies) and 
create a new IAM policy. Copy the policy file in this bok’s GitHub repository (https://
github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-
AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/
ch10-2-sfn-additional-glue-policy.json). After creating the policy, attach 
it to the IAM Role.

Now, you’re ready to run the workflow. We’ll do this in the next section via the Step Functions console. 

Step 3 – running the state machine

Let’s run the workflow. In this step, we’ll run it manually from the Step Functions console. You can also 
invoke the state machine via the StartExecution API (https://docs.aws.amazon.
com/step-functions/latest/apireference/API_StartExecution.html). 
Follow these steps:

1. Go back to the Step Functions console, choose the ch10_2_example_workflow_sfn 
state machine, and click Start execution.

2. Specify the following input to the state machine. You can copy the input from this book’s GitHub 
repository: https://github.com/PacktPublishing/Serverless-ETL-and-
Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/
step-functions/ch10_2_input.json. Note that we need to replace the values of 
--datalake_locaiton and --table. These parameters are processed by the state 
machine and passed to the ETL job as job parameters:

Figure 10.15 – The input to the state machine

https://console.aws.amazon.com/iamv2/home#/policies
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10-2-sfn-additional-glue-policy.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10-2-sfn-additional-glue-policy.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10-2-sfn-additional-glue-policy.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10-2-sfn-additional-glue-policy.json
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10_2_input.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10_2_input.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10_2_input.json
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3. After starting the execution, you will be able to see the running status of each task. Once the 
execution has finished, you will see the following diagram:

Figure 10.16 – The completed workflow diagram

Now, let’s check out the result of executing the workflow.

Step 4 – checking the result

Here, we get the same result that we got in the Orchestrating the pipeline that extracts data and generates 
a report by Glue workflows section. Therefore, we won’t look at the result in detail here, but we will 
look at the output:

• Two tables were created in the Data Catalog:

 � example_workflow_sfn_sales: This was created by ch10_1_example_
workflow crawler.

 � example_workflow_sfn_sales_report: This was created by the ch10_2_
example_workflow_gen_report job.
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• The report data was generated in the S3 path as s3://<your-specified-bucket-
and-path>/serverless-etl-and-analysis-w-glue/chapter10/
example-workflow-sfn/report/.

• The ETL job’s output shows the sales data of each category and year in CloudWatch Logs. You 
can access this log from the Glue job, as we’ve seen previously.

In this example, we learned that Step Functions also provides running data pipelines that consist of 
multiple crawlers and jobs, similar to what Glue workflows provide. Using Step Functions, you can 
manage your workflows using a JSON-like template. This can make it easier to build and manage 
workflows compared to manually creating workflows via a GUI application because all you need to 
do is manage your templates.

Step Functions supports not only AWS Glue but also other AWS services such as AWS Lambda, 
Amazon Athena, and others. By using Step Functions, you can create various workflows by combining 
multiple AWS services. 

Now, let’s look at Amazon Managed Workflows for Apache Airflow (MWAA) one of many available 
workflow tools.

Using Amazon Managed Workflows for Apache Airflow 

MWAA is a distributed orchestration service that provides programmatic workflow management. 
MWAA is based on Apache Airflow (https://airflow.apache.org), whose resources 
are managed by AWS. Airflow runs workflows that are expressed as DAGs, as defined by Python. By 
defining workflows as DAGs, Airflow orchestrates and schedules your workflows. We won’t explain 
the details of Airflow in this book, but you can refer to the public Airflow documentation if you want 
to learn more: https://airflow.apache.org/docs/apache-airflow/stable/
concepts/index.html.

You can use MWAA to create workflows that combine not only AWS Glue but also other AWS services, 
such as Amazon Athena, Amazon EMR, and others. Next, we’ll learn how to combine MWAA with 
AWS Glue by creating the same workflow that we created in the previous two examples.

Example – orchestrating the pipeline that extracts data and generates  
a report using MWAA

In this example, you’ll learn how to use MWAA as a workflow tool for Glue by creating the same 
workflow and pipeline that you created for Glue workflows and Step Functions. In the workflow, 
MWAA runs a crawler. After completing the crawler run, it starts an ETL job. If you haven’t set up 
the MWAA environment yet, please refer to https://docs.aws.amazon.com/mwaa/
latest/userguide/get-started.html (this document link is also provided in the 
Technical requirements section).

https://airflow.apache.org
https://docs.aws.amazon.com/mwaa/latest/userguide/get-started.html
https://docs.aws.amazon.com/mwaa/latest/userguide/get-started.html
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Step 1 – creating a data pipeline with a Glue crawler and an ETL job

First, download the Glue job script from this book’s GitHub repository at https://github.
com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/
blob/main/Chapter10/workflow-tools/mwaa/ch10_3_example_workflow_
gen_report.py. The crawler and the ETL job that you will create here will be the same ones that 
you created in Step 1 – creating a data pipeline with a Glue crawler and an ETL job in the Example – 
orchestrating the pipeline that extracts data and generates a report using Glue workflows section. You’ll 
create the following resources with updating configuration:

• Crawler (ch10_3_example_workflow): Create this crawler by replicating ch10_2_
example_workflow_acr crawler. Update the table prefix that the crawler creates 
from example_workflow_sfn_ to example_workflow_mwaa_.

• ETL job (ch10_3_example_workflow_gen_report): Create this job by copying 
the ch10_2_example_workflow_gen_report job. Update the job script from 
ch10_2_example_workflow_gen_report.py to ch10_3_example_workflow_
gen_report.py (this can be downloaded from the aforementioned GitHub repository).

Now that you’ve created the crawler and job, you must set up the workflow via MWAA.

Step 2 – creating a workflow with MWAA

To create and run the DAG, you need to upload the DAG file that’s been written in Python to the S3 bucket 
that is specified for your MWAA environment. The DAG file (ch10_3_example_workflow_
dag.py) can be downloaded from this book’s GitHub repository at https://github.com/
PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/
main/Chapter10/workflow-tools/mwaa/ch10_3_example_workflow_dag.
py. After downloading it, upload it to the DAG location in your S3 bucket.

After uploading the DAG file, you will see the ch10_3_example_workflow_mwaa workflow 
from Airflow UI. Now, you can trigger this workflow by using the Trigger button in the Actions 
column in the Airflow UI.

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/mwaa/ch10_3_example_workflow_gen_report.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/mwaa/ch10_3_example_workflow_gen_report.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/mwaa/ch10_3_example_workflow_gen_report.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/mwaa/ch10_3_example_workflow_gen_report.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/mwaa/ch10_3_example_workflow_dag.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/mwaa/ch10_3_example_workflow_dag.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/mwaa/ch10_3_example_workflow_dag.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/mwaa/ch10_3_example_workflow_dag.py
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Step 3 – checking the result

After running the workflow, you will see the following DAG execution result from the Airflow UI. In 
particular, you will see if the DAG was successful or not, as well as concrete components such as the 
sales_crawl task (which is ch10_3_example_workflow crawler-run) and gen_report 
(which is ch10_3_example_workflow_gen_report job-run):

Figure 10.17 – The DAG’s execution result in Airflow UI

You will also see each of the component’s results, as follows:

• The example_workflow_mwaa_sales table is created by the sales_crawl task.

• The example_workflow_mwaa_sales_report table is created by the gen_report 
task.

• The gen_report task also writes the data in your specified S3 path.

By walking through this basic example, you’ve learned that you can also use MWAA as a workflow 
tool for Glue. Using MWAA, you can programmatically manage your workflows with Python. This can 
also make it easier to build and manage workflows compared to manually creating them. Additionally, 
you can provision workflows more safely by adding testing code steps (such as unit tests, integration 
tests, and so on) to your development life cycle. 
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As Step Functions does, MWAA supports not only Glue but also other AWS services, such as Amazon 
Athena, Amazon EMR, and others. You can find more examples of creating workflows, including Glue 
by MWAA in the AWS Glue public document and AWS big data blog posts. If you’re interested in this 
example, please refer to the Further reading section at the end of this chapter.

As you’ve seen, several workflow tools, such as Glue workflows, Step Functions, and MWAA, can 
run your pipeline components step by step based on your workflow’s definition, such as scheduling, 
on-demand, and so on. However, you need to create pipeline components before building and running 
workflows. If you need to create pipelines that consist of a lot of components, it’s not easy to manually 
create, update, and replicate the pipelines, which you did in each of the preceding examples. To make 
these operations easy, you can use another tool that builds resources on your behalf. This tool is 
generally called provisioning tools. We’ll look at this in the next section.

utomating how you provision your pipelines with 
provisioning tools
In the previous section, Orchestrating your pipelines with workflow tools, you learned how to orchestrate 
multiple pipelines and automate how they run with one tool. Using workflow tools for multiple pipelines 
can not only avoid human error but can also help you understand what pipelines do.

Note that as your system grows, you will build a lot of pipelines, and then you will build workflows 
to orchestrate them. If you have a lot of workflows as your system grows, you may need to consider 
how you should manage them. If you manually build several workflows and deploy them on your 
system, similar to how you would build and run pipelines manually, you may build some workflows 
that contain bugs. You can do this by specifying incorrect data sources, connecting incorrect pipeline 
jobs, and so on. As a result, this will corrupt your data and system, and pipeline job failures will occur 
due to broken workflows being deployed.

So, how can you avoid these kinds of errors when building workflows? One of the solutions involves 
using provisioning tools such as AWS CloudFormation (https://aws.amazon.com/
cloudformation/), AWS Glue Blueprints (https://docs.aws.amazon.com/glue/
latest/dg/blueprints-overview.html), Terraform (https://www.terraform.
io), which is provided by Hashicorp, and others. 

https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/glue/latest/dg/blueprints-overview.html
https://docs.aws.amazon.com/glue/latest/dg/blueprints-overview.html
https://www.terraform.io
https://www.terraform.io
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Provisioning tools generally deploy resources defined in the template, which you specify as JSON, 
YAML, and so on. Here’s a simple example template of AWS CloudFormation, which creates the 
glue_db database and then the glue_table table in your Glue Data Catalog:

Figure 10.18 – An example of a CloudFormation template

As mentioned previously, in this example, by using provisioning tools, you can manage your pipelines 
and workflows as a template that’s in JSON, YAML format, and so on. In addition to this, there are 
provisioning tools that allow you to define and manage your pipelines and workflows as code. For 
example, you can define your data pipelines with popular programming languages, and you can also 
safely deploy them by running your resource definition code. AWS Glue provides this programmatic 
resource definition functionality via AWS Glue Blueprints. Other tools are provided by AWS for 
this purpose, such as AWS Cloud Development Kit (AWS CDK), which automatically creates 
CloudFormation templates based on your code. 

In this section, you’ll learn how to build and manage your workflows and pipelines with provisioning 
tools. Specifically, we’ll focus on the following two services, which are provided by AWS:

• AWS CloudFormation

• AWS Glue Blueprints

First, we’ll look at AWS CloudFormation.
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Provisioning resources with AWS CloudFormation

AWS CloudFormation allows you to model and set up AWS resources with a template where you 
define the necessary resources. CloudFormation mainly provides the following features for users:

• Simplifying your resource management: All you need to do is create or update a template. 
Based on this template, CloudFormation sets up resources for your environment on your behalf. 

• Quickly replicating your resources: Once you have defined a template, by reusing it, you can 
create or update your resources over and over.

• Controlling and tracking changes in your resources: By defining your resources as a text-based 
file (we’ve been calling this a template), you can control and track your resources.

You can define the resources that you want to deploy, and related resource properties in a template in 
JSON or YAML format. In CloudFormation, defined resources in a template are handled as a single 
unit. This unit is called a stack. If you want to change your running resources and update a stack, you 
can create sets of your proposed changes before making changes to them. These sets are called change 
sets. They allow you to see how your running resources change before you update them.

By using CloudFormation for your data pipelines, you can build data pipeline resources such as data 
processing services, workflows, and more with a template. Additionally, CloudFormation can track 
changes in your pipeline resources. Once you have defined data pipelines and workflows in a template, 
you don’t need to manually create or update pipelines with GUI tools. Therefore, CloudFormation helps 
not only easily provision resources but also avoid human error, such as workflow misconfiguration 
and incorrectly setting data processing engines.

CloudFormation covers a lot of AWS services, including Glue. Through a template, you can set up Glue 
resources such as databases, tables, crawlers, jobs, and more. To learn more about the Glue resources 
that CloudFormation covers, please refer to https://docs.aws.amazon.com/glue/
latest/dg/populate-with-cloudformation-templates.html.

Now, let’s learn how to set up a schedule-based data pipeline that consists of Glue ETL jobs and Glue 
workflows by defining resources in a CloudFormation template.

Example – provisioning a Glue workflow using a CloudFormation template

In this example, you will extend the data pipeline that you created in the Orchestrating your pipelines 
with workflow tools section. In particular, you will provision the ch10_4_example_cfn_ Glue 
workflow by CloudFormation (this workflow has been omitted in each component name in the 
following diagram). This workflow runs each component in the pipeline as follows:

1. The ondemand_start component triggers the acr crawler, which populates a table based 
on the sales data.

https://docs.aws.amazon.com/glue/latest/dg/populate-with-cloudformation-templates.html
https://docs.aws.amazon.com/glue/latest/dg/populate-with-cloudformation-templates.html
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2. After crawler-run is completed, event_run_partitioning triggers the 
partitioning job. This job extracts the data from the Amazon Customer Reviews dataset 
and writes the data to the S3 path with year and month-based partitioning.

3. Once the partitioning job has finished running, event_run_gen_report triggers 
the gen_report job. This job generates the same report that the job in the Orchestrating 
your pipelines with workflow tools section did:

Figure 10.19 – The Glue workflow graph you’ll create via CloudFormation 

Let’s create this workflow using CloudFormation.

Step 1 – putting ETL job scripts in your S3 bucket

Before provisioning the resources via CloudFormation, copy the necessary job scripts to your S3 
bucket by using the S3 console or the aws s3 cp <your_local_script_location> 
s3://<your-bucket-and-path>/ AWS CLI command. You can download these job scripts 
from the following GitHub repository links:

• https://github.com/PacktPublishing/Serverless-ETL-and-
Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-
tools/cloudformation/ch10_4_example_cf_partitioning.py

• https://github.com/PacktPublishing/Serverless-ETL-and-
Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-
tools/cloudformation/ch10_4_example_cf_gen_report.py

Next, you’ll provision the crawler, ETL jobs, and workflow.

Step 2 – provisioning triggers, the crawler, ETL jobs, and the workflow via  
a CloudFormation template

You can provision the resources in this book’s GitHub repository with a CloudFormation template 
(https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-
with-AWS-Glue/blob/main/Chapter10/provisioning-tools/cloudformation/
ch10_4_example_cf.yml). Follow these steps:

1. Open the CloudFormation console (https://console.aws.amazon.com/
cloudformation/home) and click Create stack, then With new resources (standard), 
at the top right of the page.

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/cloudformation/ch10_4_example_cf_partitioning.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/cloudformation/ch10_4_example_cf_partitioning.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/cloudformation/ch10_4_example_cf_partitioning.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/cloudformation/ch10_4_example_cf_gen_report.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/cloudformation/ch10_4_example_cf_gen_report.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/cloudformation/ch10_4_example_cf_gen_report.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/cloudformation/ch10_4_example_cf.yml
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/cloudformation/ch10_4_example_cf.yml
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/cloudformation/ch10_4_example_cf.yml
https://console.aws.amazon.com/cloudformation/home
https://console.aws.amazon.com/cloudformation/home
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2. Choose Template is ready and upload your downloaded YAML file (ch10_4_example_
cf.yml).

3. Follow each description and type in the necessary information. Then, click Next so that you can 
provision the resources. It will take a few minutes to create resources via the CloudFormation stack:

Figure 10.20 – The AWS Management console view for filling in parameters
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4. Once resource provisioning has been completed, the stack’s status will appear as CREATE_
COMPLETE on the CloudFormation console. 

Next, you will check the provisioned resources.

Step 3 – checking the provisioned resources

You will see the following resources that have been provisioned by the CloudFormation stack on the 
Glue console:

• Triggers:

 � ch10_4_example_cf_ondemand_start

 � ch10_4_example_cf_event_run_partitioning

 � ch10_4_example_cf_event_run_gen_report

• Crawler: ch10_4_example_cf

• ETL jobs:

 � ch10_4_example_cf_partitioning

 � ch10_4_example_cf_gen_report

• Workflow: ch10_r_example_cf

This workflow visualizes the same diagram as the one shown in Figure 10.43.

You can also run this workflow by choosing Run from the Actions menu in the Glue console (https://
console.aws.amazon.com/glue/home#etl:tab=workflows). In addition to the 
same generated reports that we got in the previous section, the pipeline also replicates the Amazon 
Customer Reviews dataset to the S3 bucket that you specified as the CloudFormation stack parameter. 
In particular, you will be able to see the replicated files by using the following AWS CLI command:

$ aws s3 ls s3://<your-bucket-and-path>/serverless-etl-and-
analysis-w-glue/chapter10/example-cf/data/ --recursive

YYYY-MM-dd 01:23:45        XXXX <path>/serverless-etl-and-
analysis-w-glue/chapter10/example-cf/data/category=grocery/
year=2021/month=6/run-xxxxxxxxxx-part-block-0-0-r-xxxxx-snappy.
parquet

https://console.aws.amazon.com/glue/home#etl:tab=workflows
https://console.aws.amazon.com/glue/home#etl:tab=workflows
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In this example, you learned that CloudFormation helps with the resource provisioning process. If you 
create that workflow and pipeline on the AWS Glue console, you need to create and configure at least 
seven components – that is, three triggers, one crawler, two ETL jobs, and this workflow. Additionally, 
if you try to replicate this workflow too many times, the process will be difficult (for example, if you 
replicate this into 10 workflows, you need to set up at least 70 components). However, if you create a 
CloudFormation template and create resources using that template, it becomes easier to set up multiple 
workflows compared to setting up each workflow manually from the Glue console.

You can find more examples of Glue resource provisioning by CloudFormation in the AWS Glue 
public document and AWS big data blog posts. If you’re interested in such examples, please refer to 
the Further reading section at the end of this chapter.

Provisioning AWS Glue workflows and resources with AWS Glue 
Blueprints

AWS Glue Blueprints allows you to create and share AWS Glue workflows by defining your workflow 
as a single blueprint, which is similar to using a template. In particular, you can build pipelines by 
specifying Glue ETL jobs, a crawler, and related parameters that are passed to your Glue jobs, crawlers, 
workflows, and so on in your blueprint. Based on a blueprint, Glue Blueprints automatically generate 
workflows. Therefore, you don’t need to manually set up workflows from the AWS Glue console.

To create a blueprint, you need to define the following components and package them as a ZIP archive file:

• A layout file implemented by Python: You can define crawlers, ETL jobs, and the relevant 
workflow, including your pipeline logic, in this file. When the layout file is run by Glue, your 
defined workflows are returned and generated. 

• A configuration file: You need to set the function name that returns workflows and is defined 
in the layout file. You can set relevant workflow components such as the workflow names, data 
types, user input properties, and so on.

• ETL job scripts and the relevant files (optional): Here, you can specify the location of your 
ETL job scripts to create them and specify the relevant files in the layout to process them.

Let’s look at a basic example of a blueprint that consists of a layout file (layout.py) and a configuration 
file (blueprint.cfg). By applying this blueprint for Glue, the workflow that contains an ETL 
job, sample_etl_job_bp, will be created. The job’s configuration, such as the Glue job’s script 
location, Glue job role, worker type, and so on, is set by the implementation in the layout.py 
file. Additionally, you can set any Glue job script location by parameterizing the script location that’s 
defined in ScriptLocation, in parameterSpec, in blueprint.cfg.
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The following code shows the Glue workflow and component definitions in layout.py:

def generate_layout(user_params, system_params):

    etl_job = Job(

        Name=»sample_etl_job_bp",

        Command={

            «Name»: «glueetl", 

            «ScriptLocation": user_params['ScriptLocation'], 

            «PythonVersion": "3"},

        Role=»your_glue_job_role",

        WorkerType="G.1X",

        NumberOfWorkers=5,

        GlueVersion="3.0")

    return Workflow(Name="sample_worflow_bp", 
Entities=Entities(Jobs=[etl_job]))

The following code shows the Glue workflow parameter configuration in blueprint.cfg:

{

    «layoutGenerator": "project.layout.generate_layout",

    «parameterSpec": {

        «ScriptLocation": {

            «type»: «S3Uri»,

            «collection»: false,

            «description»: «Specify the S3 path to store your 
glue job script.»

        }

    }

}

After creating a workflow with this blueprint, you will be able to see the workflow in the AWS Glue 
console, as shown in the following screenshot:
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Figure 10.21 – A workflow that includes an ETL job generated by a blueprint

Using Glue Blueprints, you can easily create, replicate, and manage your workflow by implementing a 
layout file with Python and a configuration file with JSON. The AWS Glue public document (https://
docs.aws.amazon.com/glue/latest/dg/blueprints-overview.html) shows 
what Glue Blueprints is, as well as what your job role needs to do based on three patterns of personas, 
such as Developer, Administrator, and Data Analyst. Next, you will set up the scheduled-based workflow 
that you tried to set up in the Provisioning a Glue workflow using a CloudFormation template section. 
You will do so by implementing a blueprint that includes a layout file and the necessary configuration.

Example – provisioning a Glue workflow using Glue Blueprints

In this example, by using Glue Blueprints, you will build the same workflow and pipeline that you 
did in the Provisioning a Glue workflow using a CloudFormation template section. In particular, the 
following resources will be provisioned via Glue Blueprints:

• Workflow: ch10_5_example_bp: This generates a report by running the necessary 
crawler and ETL jobs

• Triggers:

 � ch10_5_example_bp_ondemand_start: The entry point of the workflow. This 
triggers the ch10_5_example_bp crawler

https://docs.aws.amazon.com/glue/latest/dg/blueprints-overview.html
https://docs.aws.amazon.com/glue/latest/dg/blueprints-overview.html
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 � ch10_5_example_bp_event_run_partitioning: This triggers the ch10_5_
example_bp_partitioning job

 � ch10_5_example_bp_event_run_gen_report: This triggers the ch10_5_
example_bp_gen_report job

• Crawler: ch10_5_example_bp: This populates a table based on the Amazon Customer 
Reviews dataset

• ETL jobs:

 � ch10_5_example_bp_partitioning: This extracts the dataset and writes the data 
to S3 with year and month-based partitioning

 � ch10_5_example_bp_gen_report: This generates the sales report

To create and provision those resources, complete the following steps.

Step 1 – downloading and uploading the blueprint package

Download the ZIP-archived package from this book’s GitHub repository: https://github.
com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/
blob/main/Chapter10/provisioning-tools/blueprints/chapter10_5_
example_bp.zip. This package includes the following layout, configuration, and relevant job 
scripts. You can also view the content of each script in this book’s GitHub repository (https://
github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-
Glue/tree/main/Chapter10/provisioning-tools/blueprints/scripts):

• layout.py

• blueprint.cfg

• ch10_5_example_bp_partitioning.py 

• ch10_5_example_bp_gen_report.py

In this example, the two job scripts (ending with .py) are copied to the S3 location that you specify 
with layout.py. After downloading the ZIP package, upload it to your S3 bucket.

Step 2 – provisioning triggers, the crawler, ETL jobs, and the workflow via the 
blueprint

Now, you’re ready to provision the resources. First, you need to set up the blueprint. Follow these steps:

1. Access Blueprints in the Glue console (https://console.aws.amazon.com/
glue/home#etl:tab=blueprints) and click Add blueprint.

2. Type ch10_5_example_bp as the blueprint’s name and specify the S3 path where you 
uploaded the package. Then, click Add blueprint.

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/blueprints/chapter10_5_example_bp.zip
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/blueprints/chapter10_5_example_bp.zip
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/blueprints/chapter10_5_example_bp.zip
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/blueprints/chapter10_5_example_bp.zip
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter10/provisioning-tools/blueprints/scripts
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter10/provisioning-tools/blueprints/scripts
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter10/provisioning-tools/blueprints/scripts
https://console.aws.amazon.com/glue/home#etl:tab=blueprints
https://console.aws.amazon.com/glue/home#etl:tab=blueprints
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Once the blueprint’s status is active, you must create the workflow. Follow these steps:

1. Click Create workflow on the Blueprints page.

2. Type in the necessary information, as shown in the following screenshot. Then, click Next so 
that you can provision the resources. After that, click Submit:

Figure 10.22 – Workflow configuration
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3. Once the blueprint successfully creates the ch10_5_example_bp workflow, go to View 
in the Actions menu in the Blueprints console. You will see the following output:

Figure 10.23 – Blueprint run status

Next, you will check the provisioned resources.

Step 3 – checking the provisioned resources

First, you can check the resources that have been created – that is, the workflow, triggers, the crawler, 
and the ETL jobs. The workflow visualizes the same graph as the one shown in Figure 10.43.

You can also run this workflow in the Glue console (https://console.aws.amazon.com/
glue/home#etl:tab=workflows). Similar to what happened in the Provisioning a Glue 
workflow using a CloudFormation template section, the workflow replicates the Amazon Customer 
Reviews dataset to the specified S3 bucket and generates the report.

Blueprints also make provisioning resources easier than setting up resources manually from the 
Glue console. In addition to this basic example, you can try out more advanced examples by going to 
the GitHub repository provided by AWS: https://github.com/awslabs/aws-glue-
blueprint-libs/tree/master/samples.

Developing and maintaining your data pipelines
Finally, let’s learn how to grow and maintain data pipelines. Your requirements and demands for data 
are always changing based on your company’s growth, market behaviors, business matters, technological 
shifts, and more. To meet the requirements and demands for data, you need to develop and update 
your data pipelines in a short period. Additionally, you need to care about the mechanism for detecting 
problems in your data pipeline implementations, safe pipeline deployment to avoid breaking your 
pipelines, and so on. For these considerations, you can apply the following system and concepts to 
your data pipeline development cycles. These are based on DevOps practices:

• Version control systems (VCSs): You can track changes, roll back code, trigger tests, and so 
on. Git is one of the most popular VCSs (more precisely, a distributed VCS).

• Continuous integration (CI): This is one of the software practices for building and testing all 
the changes on your system and integrating them only after successful tests.

https://console.aws.amazon.com/glue/home#etl:tab=workflows
https://console.aws.amazon.com/glue/home#etl:tab=workflows
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• Continuous delivery (CD): This is similar to the concept of CI but is an extension of the concept. 
CI is usually for a single code base, while CD is for your systems. CD aims to continuously 
check if components, systems, and infrastructures have been prepared for production. The 
deployment usually needs explicit approvals. Sometimes, the deployment process is automated, 
which means that committed changes are instantly deployed on production after all tests are 
successfully passed. This automatic deployment is called continuous deployment.

There are a lot of references to deployment pipelines (NOT data pipelines), including the CI/CD 
process, such as about what CI/CD is, how to build CI/CD pipelines, and so on. Furthermore, actual 
deployment pipelines depend on company, organization, team, and system environments. Therefore, 
we won’t cover the deployment process in this section. However, we will look at the basic development 
process of data pipelines by focusing on AWS Glue and the related tools we’ve seen so far:

• Developing AWS Glue ETL jobs locally

• Deploying your AWS Glue ETL jobs

• Deploying your workflows and pipelines using provisioning tools such as Infrastructure as 
Code (IaC) 

First, you will learn how to develop Glue ETL jobs locally.

Developing AWS Glue ETL jobs locally

AWS Glue provides various local development environments for effectively coding Glue ETL job scripts. 
You can use various environments for your local development. Let’s take a look at each module quickly:

• AWS Glue ETL Library: You can download the ETL library on your desktop and develop 
Glue ETL jobs using Python or Scala. The public documentation (https://docs.aws.
amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.
html) shows how to use the library. 

• Docker images for Glue ETL: You can also use the ETL jobs with Docker images (https://
hub.docker.com/r/amazon/aws-glue-libs) provided by AWS. At the time of 
writing, up to Glue 3.0 is supported. We won’t cover the steps to develop Glue ETL jobs with a 
Docker image, but you can refer to the concrete steps that use PyCharm by going to https://
aws.amazon.com/blogs/big-data/developing-aws-glue-etl-jobs-
locally-using-a-container/. 

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html
https://hub.docker.com/r/amazon/aws-glue-libs
https://hub.docker.com/r/amazon/aws-glue-libs
https://aws.amazon.com/blogs/big-data/developing-aws-glue-etl-jobs-locally-using-a-container/
https://aws.amazon.com/blogs/big-data/developing-aws-glue-etl-jobs-locally-using-a-container/
https://aws.amazon.com/blogs/big-data/developing-aws-glue-etl-jobs-locally-using-a-container/
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• Interactive Session: This is one of the Glue functionalities that allows you to develop Glue ETL 
jobs easily. You can interactively develop your ETL job scripts on Jupyter Notebook by connecting 
the Glue ETL job system. In the Glue Studio console, you can set up Jupyter Notebook and use 
it for development purposes. Furthermore, AWS Glue provides a Python module so that you 
can connect from your local desktop to the Glue job system and use the interactive session. 
You can install the module via pip from https://pypi.org/project/aws-glue-
sessions/. Please refer to the public document for details about the setup steps: https://
docs.aws.amazon.com/glue/latest/dg/interactive-sessions.html.

Note – Local Development Restrictions
When you use the local library, at the time of writing, the JobBookmarks, Glue parquet writer, 
and FillMissingValues/FindMatches transforms in Glue ML are not supported. You need to 
use them within the Glue job system.

Regarding the Glue ETL job development cycle, Interactive Session is one of the ways to start checking 
how you process data, how you can implement Glue job scripts, and so on. If you already have Jupyter 
Notebook, you can use it on the Glue Studio console by uploading it to the console. You can also 
use Glue ETL Library and Docker images for your Glue ETL jobs development cycle to write tests, 
implement code, commit changes, build a package, and more.

Next, you will learn how to deploy your developed Glue ETL job code in the Glue job system.

Deploying AWS Glue ETL jobs 

In this section, you’ll learn how to deploy Glue ETL jobs by applying changes to your code base. When 
you initially create or update your ETL jobs, the following two styles are considered:

• Update your job scripts and relevant packages in the S3 location: In this style, you define the 
ETL jobs first. Then, you continuously update the scripts and packages in the S3 location that 
you specified as a script filename, Python library path, dependent Jars path, and/or reference 
files path in your ETL jobs. 

• Deploy your Glue jobs: In addition to updating job scripts and packages, you can deploy your 
Glue job by using provisioning tools. We’ll look at this in the next section.

For both styles, you can create a CI/CD pipeline and make it take on the following challenges while 
developing ETL jobs:

• Continuous development with unit and integration tests

• Continuous integration and build

• Testing ETL jobs for actual (small) datasets

https://pypi.org/project/aws-glue-sessions/
https://pypi.org/project/aws-glue-sessions/
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• Testing the quality of datasets

• Delivering ETL jobs in test and production environments

For these challenges, AWS provides developer tools (https://aws.amazon.com/
tools/#DevOps_and_Automation) such as AWS CodeCommit, AWS CodePipeline, AWS 
CodeBuild, and others. You can build CI/CD pipelines by combining these tools. There is a variety 
of AWS-provided tools to help with the development process, but we will cover the ones mentioned 
previously as they are often used in the ETL jobs development process to create a basic pipeline. Let’s 
take a quick look at each tool and how to use it in the ETL jobs development process.

• AWS CodeCommit: This is an AWS-managed version control service. You can use it as a code 
repository to manage your job scripts using Git. CodeCommit can also integrate with other 
AWS tools such as AWS CodeBuild, AWS CodePipeline, AWS Lambda, and others.

• AWS CodeBuild: This is an AWS-managed build service. By using CodeBuild, you can compile 
your code, run tests, and create artifacts for deployment. CodeBuild covers various environments, 
such as operating systems (Amazon Linux 2, Ubuntu, and Windows Server 2019), programming 
language runtimes (Java and Python), build tools ( Apache Maven and Gradle), and so on. 
You can also specify your custom image as a build environment. CodeBuild supports not only 
CodeCommit as a source provider but also Amazon S3, GitHub, BitBucket, and more. You can 
build, test, and create an updated ETL job script in this process.

• AWS CodePipeline: This is an AWS-managed continuous delivery service. By defining release 
pipelines, CodePipeline automates the pipelines, including build, test, and deploy. For CodePipeline, 
you define the source, build, and deploy stages. For the source stage, you can specify your code 
repository and its branch, such as AWS CodeCommit, Amazon ECS, Amazon S3, GitHub, and 
so on. For the build stage, you can select AWS CodeBuild or Jenkins. For the deploy stage, you 
can select a deployment provider, such as AWS CloudFormation, AWS ECS, or Amazon S3. 
For example, if you select Amazon S3 as your deployment provider, CodePipeline delivers your 
job scripts in your ETL job’s S3 location. Then, you can run the updated job.

By using these tools, you can effectively develop Glue ETL jobs in a CI/CD pipeline.

Note – Data Quality Tests
AWS provides Deequ (https://github.com/awslabs/deequ), an open source 
data quality unit test tool. This tool checks whether your data is malformed or corrupted, and 
then computes quality metrics of your data. Please refer to the Managing data quality section 
in Chapter 6, Data Management, to learn how to use Deequ with Glue. If you wish to consider 
data quality tests for your data processing, please refer to the following blog post: https://
aws.amazon.com/blogs/big-data/test-data-quality-at-scale-
with-deequ/. This describes how to use it within Apache Spark.

Now, let’s learn how to deploy workflows and pipelines.

https://aws.amazon.com/tools/#DevOps_and_Automation
https://aws.amazon.com/tools/#DevOps_and_Automation
https://github.com/awslabs/deequ
https://aws.amazon.com/blogs/big-data/test-data-quality-at-scale-with-deequ/
https://aws.amazon.com/blogs/big-data/test-data-quality-at-scale-with-deequ/
https://aws.amazon.com/blogs/big-data/test-data-quality-at-scale-with-deequ/
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Deploying workflows and pipelines using provisioning tools such 
as IaC 

In this section, you’ll apply the concept of the CI/CD pipeline for AWS Glue ETL jobs to the data pipelines 
and workflows you’ve developed. You can also manage the development process of your workflows, 
data pipelines, and relevant components such as Glue ETL jobs, Glue crawlers, and so on using CI/CD 
pipelines. In particular, you can use template-based workflows or provisioning tools to automatically 
deploy and manage your data processing infrastructure. This infrastructure management is based on 
IaC, which applies software development practices to infrastructure automation. By managing your 
infrastructure based on code, you can automate building or changing your infrastructure quickly and 
safely within CI, CD, and so on. 

Regarding workflows and data pipelines, you can build, test, and deploy workflows and their relevant 
components in CI/CD pipelines by developing template-based files or provisioning tools such as AWS 
Step Functions, JSON templates, AWS CloudFormation, YAML templates, MWAA Python DAGs, 
Blueprint Python code, and more. 

Let’s take a quick look at the example from the Provisioning AWS Glue workflows and resources with 
AWS Glue Blueprints section. There, you defined workflows, a crawler, and Glue ETL jobs in the 
same repository and deployed each component. Blueprints allows you to programmatically manage 
workflows and the relevant components. Therefore, you can manage workflows, crawlers, and ETL 
jobs in the same repository as a data pipeline resource. You can also add tests for Blueprints, not just 
ETL job scripts. Then, you can build, test, and deploy the Blueprints code and ETL job scripts at the 
same time in a CI/CD pipeline that contains your data processing infrastructure. This can make your 
development process safer and faster compared to manually validating your infrastructure code.

Summary
In this chapter, you learned how to build, manage, and maintain data pipelines. As the first step of 
constructing data pipelines, you need to choose your data processing services based on your company/
organization/team, supported software, cost, your data schema/size/numbers, your data processing 
resource limit (memory and CPU), and so on. 

After choosing the data processing service, you can run data pipeline flows using workflow tools. 
AWS Glue provides AWS Glue workflows as workflow tools. Other tools you can use for this process 
include AWS Step Functions and Amazon Managed Workflows for Apache Airflow. We looked at 
each tool by covering examples. 

Then, you learned how to automate provisioning workflows and data pipelines with provisioning tools 
such as CloudFormation and AWS Glue Blueprints.
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Finally, you learned how to develop and maintain workflows and data pipelines based on CI and CD. To 
achieve this, AWS provides a variety of developer tools such as AWS CodeCommit, AWS CodeBuild, and 
AWS CodePipeline. You also learned how to safely deploy workflows and data pipelines based on IaC. 

In the next chapter, you will learn to monitor your data platform and also learn about its specific 
components like AWS Glue.

Further reading
To learn more about what was covered in this chapter, take a look at the following resources:

• Examples of provisioning Glue resources by AWS CloudFormation:

 � https://docs.aws.amazon.com/glue/latest/dg/populate-with-
cloudformation-templates.html

 � Build a serverless event-driven workflow with AWS Glue and Amazon Eventbridge: https://
aws.amazon.com/jp/blogs/big-data/build-a-serverless-event-
driven-workflow-with-aws-glue-and-amazon-eventbridge/

• An example of creating workflows using AWS Glue and MWAA: https://aws.amazon.
com/blogs/big-data/building-complex-workflows-with-amazon-
mwaa-aws-step-functions-aws-glue-and-amazon-emr/

https://docs.aws.amazon.com/glue/latest/dg/populate-with-cloudformation-templates.html
https://docs.aws.amazon.com/glue/latest/dg/populate-with-cloudformation-templates.html
https://aws.amazon.com/jp/blogs/big-data/build-a-serverless-event-driven-workflow-with-aws-glue-and-amazon-eventbridge/
https://aws.amazon.com/jp/blogs/big-data/build-a-serverless-event-driven-workflow-with-aws-glue-and-amazon-eventbridge/
https://aws.amazon.com/jp/blogs/big-data/build-a-serverless-event-driven-workflow-with-aws-glue-and-amazon-eventbridge/
https://aws.amazon.com/blogs/big-data/building-complex-workflows-with-amazon-mwaa-aws-step-functions-aws-glue-and-amazon-emr/
https://aws.amazon.com/blogs/big-data/building-complex-workflows-with-amazon-mwaa-aws-step-functions-aws-glue-and-amazon-emr/
https://aws.amazon.com/blogs/big-data/building-complex-workflows-with-amazon-mwaa-aws-step-functions-aws-glue-and-amazon-emr/




Section 3 –  
Tuning, Monitoring, Data 

Lake Common Scenarios, and 
Interesting Edge Cases

Here, you will learn various ways to monitor and troubleshoot an AWS Glue job. You will also learn 
about different ways to consume data after it is processed by AWS Glue and apply the concepts 
introduced in this book to real-world data transformation scenarios.

This section includes the following chapters:

• Chapter 11, Monitoring

• Chapter 12, Tuning, Debugging, and Troubleshooting

• Chapter 13, Data Analysis

• Chapter 14, ML Integration

• Chapter 15, Architecting Data Lakes for Real-World Scenarios and Edge Cases





11 
Monitoring

In the previous chapter, you learned how to build and manage your data pipeline with AWS Glue in 
detail. With that knowledge, you are now able to build a data platform powered by AWS Glue. Cool! 
But this is not the end of your work with the data platform. It is just the starting point. 

Imagine that you have built your data platform using AWS Glue. If your data platform does not 
meet the predefined business requirements, end users will be confused and won’t be able to make 
a reasonable decision based on the data. If your data platform gives outdated results, the decisions 
made based on the data will also be outdated. If your data platform is too slow, end users won’t be 
able to make timely decisions and could lose business opportunities. If your data platform does not 
check data quality and accuracy, no one can use it for critical decisions. If no end users query your 
data platform due to a lack of knowledge, your data platform is meaningless. 

To monitor the preceding situations, you need to have some visibility of what’s going on, what situations 
need to be detected, and how to react to them. It is crucial to monitor your data platform to make 
and keep it valuable.

In this chapter, we will start with the bigger perspective of monitoring the entire data platform before 
diving deep into specific components such as AWS Glue. Through the topics discussed in this chapter, 
you will learn how to monitor your data platform and improve your data platform efficiently. Then, 
you will dive deep into how to monitor AWS Glue jobs, crawlers, and catalogs, and also learn how to 
monitor other services such as Amazon Athena, Amazon Redshift, and more.

In this chapter, we will cover the following topics:

• Defining a service-level agreement (SLA) for a data platform

• Monitoring the SLA of a data platform

• Managing the components of a data platform

• Analyzing usage
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Defining an SLA for a data platform
When operating a data platform, it is essential to define a healthy state for the entire data platform and 
maintain that state. Think about what kind of state the data platform should be in. It would be good 
to define an SLA as an indicator of health. This SLA does not always need to be communicated to end 
users but is used as an internal indicator to measure whether your data platform is healthy or not.

The basic strategy is to maintain a certain data platform state where the SLA is met and then recover 
to the normal state when it fails. In other words, monitoring is performed to understand when the 
platform has deviated from a normal state to an abnormal state, and recovery is performed to return 
the data platform from an abnormal state to a normal state, as illustrated in the following diagram:

Figure 11.1 – The monitoring cycle

Now, I would like to look at an example of how to define the health of a data platform. First, there are 
a few key perspectives of a data platform to consider:

• The freshness of the data

• The accuracy of the data

• The performance of the queries

• The overall cost of the data platform

Regarding the normal state of the freshness of data, one approach to define the normal state is to 
determine a criterion, such as how long it can take from generating the data to the data being ready 
for queries. An example SLA is a one-hour threshold for the latency between the event timestamp 
and the timestamp that you can start querying from. 

Another approach for defining the normal state of the freshness of data is to determine a deadline for 
data to be ready for queries. For example, let’s say you have a business meeting at a fixed slot every 
week, and you need to create a report to use for that meeting. In this scenario, the normal state can 
be defined based on the fact that the data becomes available by the specified deadline. An example 
SLA is that data needs to be ready by 9:00 a.m. every Wednesday. 

You can also think of health criteria and SLAs in terms of data accuracy, performance, cost, and more. 
You will need to organize your SLAs based on your use cases and your requirements.
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In this section, you learned how to define a good SLA for your data platform. In the next section, we 
will learn how to monitor the defined SLA of your data platform.

Monitoring the SLA of a data platform
Let’s think about the implementation of a mechanism to monitor the health of a data platform. There 
are two common strategies to identify the state of a data platform:

• Fact-based approach: Inspect the end user activities and retrieve the metrics.

• Simulation-based approach:  Simulate the end user activities and measure  
the metrics.

To monitor performance and cost SLAs, you can inspect the end user activities from the metrics 
and log messages. For Amazon Athena, you will see a variety of metrics including query planning 
time and total execution time via Amazon CloudWatch (https://docs.aws.amazon.
com/athena/latest/ug/query-metrics-viewing.html) or Amazon Athena’s 
query history (https://docs.aws.amazon.com/athena/latest/ug/querying.
html#queries-viewing-history). For Amazon Redshift, you can rely on system tables: 
SVL_QUERY_SUMMARY (https://docs.aws.amazon.com/redshift/latest/dg/
using-SVL-Query-Summary.html) and SVL_QUERY_REPORT (https://docs.
aws.amazon.com/redshift/latest/dg/using-SVL-Query-Report.html).

To monitor the SLA on the freshness and the accuracy of data, you can retrieve an end user’s query 
results or simulate end user queries to get the latest status. Typically, a simulation-based approach 
is more useful because you can be flexible in terms of which value you rely on and how frequently 
you monitor the state. It is similar to synthetic monitoring (https://en.wikipedia.org/
wiki/Synthetic_monitoring) for web applications and systems.

For example, you can run queries to select records that have been ordered by timestamp  
to extract the latest record to see how much latency you have in your data platform.  
Here’s an example Athena query to extract the latest record using ORDER BY  based on  
the date column:

Figure 11.2 – An Athena query example to monitor data freshness

https://docs.aws.amazon.com/athena/latest/ug/query-metrics-viewing.html
https://docs.aws.amazon.com/athena/latest/ug/query-metrics-viewing.html
https://docs.aws.amazon.com/redshift/latest/dg/using-SVL-Query-Summary.html
https://docs.aws.amazon.com/redshift/latest/dg/using-SVL-Query-Summary.html
https://docs.aws.amazon.com/redshift/latest/dg/using-SVL-Query-Report.html
https://docs.aws.amazon.com/redshift/latest/dg/using-SVL-Query-Report.html
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As you learned in Chapter 9, Data Sharing, you can also monitor and manage data accuracy by defining 
data quality rules. Data quality rules allow you to populate data quality metrics and identify whether 
your data meets predefined criteria. You can use the result of data quality checks in your monitoring 
system for your data platform. 

In this section, you learned how to monitor an overall data platform. Next, we will cover how to 
monitor each component of your data platform.

Monitoring the components of a data platform
Data platforms can consist of multiple components: data ingestion jobs, ETL jobs, data crawlers, 
data catalogs, ad hoc query engines, BI dashboards, and more. In order to detect potential issues that 
can affect an end user’s experience, it is recommended that you monitor the individual components 
of your data platform. Here’s a list of key topics to monitor AWS Glue and its related components:

• Monitoring overall statistics

• Monitoring state changes

• Monitoring delay

• Monitoring performance

• Monitoring common failures

• Monitoring log messages

In the following sub-sections, we will look at each of these key topics in detail. 

Monitoring overall statistics

For AWS Glue jobs, Glue Studio gives you an aggregated view of the overall statistics, as shown in 
the following screenshot. This is useful for monitoring the trends of an entire AWS account/region:
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Figure 11.3 – Monitoring with Glue Studio

Monitoring state changes

For AWS Glue jobs, crawlers, and data catalogs, you can configure the Amazon EventBridge rules 
(https://docs.aws.amazon.com/glue/latest/dg/automating-awsglue-
with-cloudwatch-events.html) to monitor state changes, including job failures, crawler 
failures, and table partition updates. The rule also triggers an Amazon SNS topic, AWS Lambda 
function, and other supported services to perform actions for automation, notification, and recovery.

For Amazon Athena queries, you can configure the Amazon EventBridge rules (https://docs.
aws.amazon.com/athena/latest/ug/athena-cloudwatch-events.html) to 
monitor query state changes including query failures.

Monitoring delay

For AWS Glue jobs, you can configure a timeout threshold for job duration, stop the job to avoid 
further charges, and trigger Amazon EventBridge rules for further actions.

For Amazon Athena queries, you can use CloudWatch metrics, such as TotalExecutionTime 
(https://docs.aws.amazon.com/athena/latest/ug/query-metrics-
viewing.html), and configure a CloudWatch alarm for those metrics.

Additionally, you can configure scan size limits for your workgroup (https://docs.aws.
amazon.com/athena/latest/ug/workgroups-benefits.html) to cancel queries 
that exceed the specified threshold to avoid any delay due to an unexpected amount of data.

https://docs.aws.amazon.com/glue/latest/dg/automating-awsglue-with-cloudwatch-events.html
https://docs.aws.amazon.com/glue/latest/dg/automating-awsglue-with-cloudwatch-events.html
https://docs.aws.amazon.com/athena/latest/ug/athena-cloudwatch-events.html
https://docs.aws.amazon.com/athena/latest/ug/athena-cloudwatch-events.html
https://docs.aws.amazon.com/athena/latest/ug/query-metrics-viewing.html
https://docs.aws.amazon.com/athena/latest/ug/query-metrics-viewing.html
https://docs.aws.amazon.com/athena/latest/ug/workgroups-benefits.html
https://docs.aws.amazon.com/athena/latest/ug/workgroups-benefits.html
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Monitoring performance

For AWS Glue Spark jobs, you can monitor CloudWatch metrics. To monitor further details and tune 
the performance of the jobs, it is highly recommended that you enable Spark UI and use it: 

Figure 11.4 – The event timeline on Spark UI

With Spark UI, you can identify how the Spark driver/executor works for your data,  
what Spark DAG and the physical plan look like, how much memory is consumed per executor, 
and more. It helps you to identify bottlenecks and optimize performance. You will learn more about 
performance tuning techniques in Chapter 12, Tuning, Debugging, and Troubleshooting.

Monitoring common failures

For AWS Glue Spark jobs, AWS Glue job run insights (https://docs.aws.amazon.com/
glue/latest/dg/monitor-job-insights.html) that help you to troubleshoot and 
solve common job failures based on predefined rules extracted from common failure scenarios. It 
will give you the following insights:

• The line number of your job script

• Any exceptions

• Root cause analyses

• Recommended actions to solve the issue

https://docs.aws.amazon.com/glue/latest/dg/monitor-job-insights.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-job-insights.html
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It will help you solve common issues even if you do not have expertise in AWS Glue and Apache Spark.

To enable job insights, you need to select Generate job insights for your Glue Spark job in the Glue 
Studio console, or the API/SDK, before running the job:

Figure 11.5 – Generate job insights

When your job with job insights fails, you can see failure details such as the line number, the last Spark 
action executed, and concise time-ordered events from the Spark driver and executors in Amazon 
CloudWatch Logs.

Monitoring log messages

For AWS Glue jobs, log messages for stdout/stderr are written into Amazon CloudWatch Logs. 
If you enable continuous logging (https://docs.aws.amazon.com/glue/latest/
dg/monitor-continuous-logging.html), Spark driver/executor logs are also written 
into Amazon CloudWatch Logs.

If you want to use an application-specific custom logger, you can retrieve the logger from GlueContext 
and use it in the Glue job script, as follows:

from awsglue.context import GlueContext

from pyspark.context import SparkContext

glueContext = GlueContext(SparkContext.getOrCreate())

logger = glueContext.get_logger()

logger.info("info log message")

logger.warn("warn log message")

logger.error("error log message")

Additionally, the custom logger writes into CloudWatch Logs via continuous logging.

You can also enable debug logging in Spark. This is useful for detailed troubleshooting. For 
SparkContext sc, you can set the log level using the following code:

sc.setLogLevel("DEBUG")

For SparkSession spark, you can set the log level using the following code:

spark.sparkContext.setLogLevel("DEBUG")

https://docs.aws.amazon.com/glue/latest/dg/monitor-continuous-logging.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-continuous-logging.html
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In this section, you learned how to monitor individual components (such as Glue, Athena, and more) 
on your data platform. Next, we will go over the general concept of analyzing end user activities on 
your data platform.

Analyzing usage
Due to the nature of a data platform, it is not practical to build it once and leave it as it is without any 
updates. This is because data volume, velocity, and variety increase day by day. Also, how the data 
is consumed and utilized can often vary. It is practical to build a platform based on the minimum 
requirement, start using it, measure end user activities, and continuously improve it based on end 
user feedback.

After you release the data platform to end users, you might see issues such as  
the following:

• Less usage than expected

• Less adoption in specific teams

• Too many escalations from end users

To make the data platform useful for your end users, you need to maintain and keep improving the 
platform by tracking and analyzing end user activities.

Let’s look at how user activity can be measured for each type of activity. For example, if it is a simple 
data reference, it can be recorded and measured in the Amazon S3 server access logs, AWS CloudTrail, 
and more. From a query execution perspective, it’s a good idea to look at the query log for each service. 
For Amazon Athena, 45 days of query history are recorded. From this evidence, you can gather the 
following insights:

• Common query patterns

• Popular tables/datasets

• Unique users

• Queries per user/team/organization

Other than that, with end user escalations, you can notice a lack of documentation.

For example, if you see too few unique users or too small a number of queries being made by a user/
team/organization, it is possible that the stakeholders have not been notified correctly, the queries 
are not well documented, and more. 

It is important to continuously evolve the data platform without leaving it as it is. Here is a diagram 
that shows you how analysis and improvement go hand-in-hand:
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Figure 11.6 – Continuous improvement

As you can see in the preceding diagram, once you build a data platform, you should analyze usage 
and gather user feedback. Based on the usage and the feedback, you can take appropriate actions such 
as adding more datasets, increasing the number of analysis engines that are supported, enhancing 
documentation, promoting the data platform, improving usage policy, and more.

In this way, you can build a truly usable data platform by iteratively developing and operating it 
through repeated evaluation and improvement. 

Summary
In this chapter, you learned how to monitor your entire data platform and your AWS Glue components 
and related services. Additionally, you learned how to analyze end user activities. Monitoring is 
essential to keep an SLA and also continuously improve a data platform. Now you should be able 
to define a reasonable SLA based on the requirement and implement a mechanism to monitor your 
data platform efficiently.

In the next chapter, you will learn more details about how to tune, debug, and troubleshoot issues 
when using AWS Glue.





12
Tuning, Debugging, and 

Troubleshooting

In the previous chapter, we explored some of the fundamental concepts involved in monitoring AWS 
Glue workloads, such as defining and monitoring service-level agreements (SLAs) of the data platform, 
as well as monitoring components of the data platform such as overall statistics, state changes, delay, 
performance, common failures, and log messages. We also explored how we can analyze usage using 
logs emitted by different AWS services based on the use case. 

Based on the insights gained by monitoring AWS Glue workloads or downstream applications, we 
will be able to understand whether our workload is running optimally and whether we have over- or 
under-provisioned resources, and determine whether there is room for improvement. We can tune and 
enhance our workflows to obtain better performance and thereby save time and resources required 
by the components of our data integration workflow.

Upon completing this chapter, you will be able to explain how we can tune AWS Glue workloads to 
ensure we are taking full advantage of the resources we are allocating to our workloads. You will also 
be able to troubleshoot/debug some of the common issues we encounter in AWS Glue.

In this chapter, we will look at the following topics:

• Tuning AWS Glue workloads

• Troubleshooting and debugging common issues in AWS Glue extract, transform, load (ETL)

Now, let’s explore some of the mechanisms we can use to tune our AWS Glue workloads based on the 
insights gathered by monitoring AWS Glue workloads or downstream applications and query engines.
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Tuning AWS Glue workloads
Based on our discussions in the previous chapter, we already know that AWS Glue is a serverless data 
integration service wherein different components are bundled with a number of optimizations that 
cover most use cases—most being the operative word here. The optimizations already in place may 
not be the perfect fit for our use case, and they can be further improved to get the most out of the 
resources we are allocating. 

It is still up to us to monitor workloads and implement optimizations where necessary to ensure that 
we are making use of resources efficiently. The performance of any Glue component is dependent on  
a number of factors such as input data, resources allocated, configuration, and the actual workflow itself. 

Now, let’s discuss some of the tuning mechanisms we can use to optimize different components of 
AWS Glue. 

Tuning AWS Glue crawlers

As discussed in the previous section, the performance of a Glue component depends on factors such 
as input data, configuration, resources allocated, and the workflow itself. Similarly, for AWS Glue 
crawlers, the performance of the crawler run depends on a number of factors. Some key factors that 
influence the performance of an AWS Glue crawler run are noted here: type of input data store, number 
of items or objects to crawl/scan, and crawler configuration.

For instance, let’s consider an AWS Glue crawler run where the crawler is crawling data in an Amazon 
Simple Storage Service (Amazon S3) location. In this case, if the directory structure is complex, 
the location contains a lot of small files/objects, and sampling/incremental crawl configurations are 
disabled, then the crawler would obviously be slower as it has to read a huge number of individual 
objects to infer a schema, build metadata, and populate the Data Catalog. In such cases, there are  
a number of optimizations we can implement to reduce the latency of a crawler run. 

If the Amazon S3 location contains a large number of objects, we can specify the sample size parameter 
in the crawler configuration. It is important to note that while specifying sample size may improve 
the crawler runtime, this won’t impact the time taken by the query engine to read source data. To 
improve the query runtime as well, we can run an ETL job to compact the data and reduce the number 
of files/objects. This can be achieved by using coalesce() or repartition() transforms in 
Apache Spark. 

Similarly, if we are crawling Amazon DynamoDB, MongoDB, and Amazon DocumentDB data 
stores, we can implement sampling to reduce the amount of data scanned by using the Enable data 
sampling option. 
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If a dataset in an Amazon S3 data store is constantly growing and if the schema remains unchanged, the 
only reason to run a crawler on this dataset would be to register new partitions. In such cases, we can 
use the Incremental Crawl feature to only crawl new data that was written to an Amazon S3 location. 
When this feature is enabled, the Glue crawler keeps track of the lastModifiedTimeStamp 
value of Amazon S3 objects and determines whether the objects need to be crawled. 

The compute infrastructure provisioned for crawlers is completely managed on the service side, and 
we do not have any control over the compute capacity allocated. So, the only optimizations we can 
apply for crawlers are configuration changes and input data optimization. 

Now that we know how to improve crawler runtime, let’s take a look at how we can tune AWS Glue 
ETL job performance.

Tuning the performance of AWS Glue Spark ETL jobs

Based on our discussions in the previous chapters, it is clear to us that we can monitor AWS Glue ETL 
jobs and gather job execution insights using a number of avenues—AWS CloudWatch metrics, logs 
written by AWS Glue ETL jobs, Spark UI, and AWS Glue job insights. Each of these tools/utilities 
provides different types of insights into job execution. We can use insights gathered from different 
tools/utilities to tune and optimize the job to make sure we are utilizing the resources efficiently. 

The bottlenecks in an AWS Glue ETL job could be because of a number of reasons—for instance, 
there could be demanding stages or straggling tasks that are impeding the performance of the entire 
job. We can monitor ETL job metrics to identify such bottlenecks and implement optimizations. That 
being said, it is important to note that there is no one-size-fits-all approach to optimizing ETL jobs, 
and the series of steps required to optimize a particular job may be different from the ones required 
to optimize another job. Let’s consider a few example scenarios to understand this better. 

Optimizing ETL jobs with a straggler task

Consider an ETL job that has a non-uniform workload distribution that may be caused by a data skew 
(also known as a hot partition issue), and one of the tasks is processing a huge portion of the dataset. 
This doesn’t just mean that the job is slow because one task in a particular executor is processing most 
of the data while the other executors are idle; there are chances that the jobs might fail with out-of-
memory (OOM) or disk space issues if the amount of data being processed exceeds the resource 
allocation of the executor node.

Now that we know the importance of addressing the straggler task issue, how do we identify whether 
our ETL job run is experiencing this issue? We can monitor the driver and executor memory and 
central processing unit (CPU) CloudWatch metrics emitted by the job run to see whether all executors 
are busy. 
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If we notice that just one executor is busy and the rest of the executors are idle, then we have a bottleneck 
in our ETL job that needs to be addressed. Since the metrics emitted to CloudWatch have timestamps, 
we can use these timestamps to check the timeline in Spark event history logs (Spark UI) to identify 
operations being carried out by the ETL job around that time and focus on optimizing that particular 
section of our ETL. If event history logs are not available, we can check the Spark driver logs available 
in the /aws-glue/jobs/error log group in AWS CloudWatch Logs. 

Let’s say that in our example scenario here, we have a straggler task because of data skew and one 
task is processing most of the dataset, and we have identified that issue was happening during the 
JOIN operation. One way to solve this issue is to redistribute the workload across all executors by 
repartitioning the dataset based on the join key before performing the JOIN operation, as follows: 

repartitionedDF = dataframe0.repartition(100,"JOIN_Key")

Here, we have identified dataframe0 to contain a data skew that is affecting JOIN performance. 
To mitigate the issue, we are repartitioning the dataset into 100 partitions and distributing the dataset 
using the JOIN_Key key. Now, when we perform the JOIN operation in the next step, the operation 
will be distributed across different executors and not handled by just one executor.

Data skew is just one of the scenarios that can cause straggler task issues. There may be other use cases 
where this kind of issue can occur. The idea here is to identify such bottlenecks and make sure the 
workload is distributed and the resources allocated to the job are being used efficiently.

Optimizing ETL jobs with too many tasks

In the previous section, we discussed the issue where one or a few tasks were slowing down the job 
by processing a large volume of data. In this section, we will be looking at the other side of the coin 
where we have too many tasks for the job to execute and not enough resources. 

Truth be told, this is one of the most common issues we face while executing a Glue ETL job. There are 
a number of use cases where a Glue ETL job can end up with too many tasks in the directed acyclic 
graph (DAG) and takes a long time to finish executing. 

For instance, based on our discussions in the previous chapters, we know that by default, Spark uses 
a 1:1 mapping with the number of input partitions and the number of files/objects in the data source 
if the size of the file is less than the block size for the file format. If the file format and compression 
codec combination used is splittable, then the number of partitions created is equivalent to the number 
of splits generated. If the file format and the compression codec used cannot be split (for example, 
JavaScript Object Notation (JSON) data compressed in gzip format), then we have a much bigger 
problem as individual files have to be read by the ETL job and decompressed in memory before any 
operation can be performed.
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If our data source has a large number of small files, Spark will eventually create a large number of tasks 
to read the data store, and the number of tasks that can be run in parallel is restricted by the number 
of CPU cores available. Having a large number of input files not only slows down the job due to the 
input/output (I/O) effort involved but can also potentially cause the job to fail as the metadata of the 
files in the data store is tracked by the driver and stored in driver memory before it is ingested into the 
ETL job. If the data store has too many files, there is a possibility that the driver memory gets filled 
up with file metadata and there is no memory available to actually execute the ETL job.

The solution to this problem is to reduce the number of tasks created by reading the input files in groups, 
perform compaction on the source data to reduce the number of files, or use predicate pushdown 
filtering to only read the data relevant to our ETL job. 

We have discussed the option of reading input files in larger groups in Chapter 3, Data Ingestion, using 
the Grouping feature in AWS Glue ETL. This option essentially overrides Spark’s default behavior by 
reading multiple files in the same input partition, thereby reducing the number of tasks created. While 
this is a very useful feature to optimize our ETL job, there are still limitations to this feature, the main 
one being that this feature does not support Optimized Row Columnar (ORC), Parquet, and Avro 
file formats. In such cases, we can resort to the option of compacting our source data. 

Now, compaction can be done in a number of different ways. The most common approach to compact 
a dataset is to use another ETL job and output a lower number of partitions. While Apache Spark is the 
preferred choice by a majority of data engineers, source data can also be compacted using a number 
of other tools and frameworks, such as Apache Hive, Presto, and s3-dist-cp.

If the dataset is in Parquet format and a catalog table for the dataset is registered in AWS Lake Formation 
as a GOVERNED table, we can use the built-in feature of Lake Formation to perform compaction. You 
can follow the steps available in the AWS Lake Formation documentation (https://docs.aws.
amazon.com/lake-formation/latest/dg/data-compaction.html) to enable data 
compaction on a partitioned Parquet dataset registered as a governed table in AWS Lake Formation. 

If grouping or compaction is not an option, we can use predicate filtering to filter out unnecessary 
data when a dynamic frame is being created. We can use the push_down_predicate parameter 
to perform predicate filtering. This parameter will be evaluated when the data is being read and only 
Amazon S3 objects matching the predicate expression are used in the ETL job. This is quite a powerful 
feature in optimizing an ETL job. Consider a use case where you are analyzing a dataset of almost a 
decade to identify sales trends for a particular month. There is no need to read the entire dataset as 
we are focusing on a particular month. In such cases, we can use predicate pushdown to push the 
filter onto the storage level and only read the relevant dataset. 

https://docs.aws.amazon.com/lake-formation/latest/dg/data-compaction.html
https://docs.aws.amazon.com/lake-formation/latest/dg/data-compaction.html
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Now, let’s assume that in the same ETL job, we are reading the dataset using a catalog table, and the 
dataset is partitioned based on year, month, day, and hour. Even though we have optimized 
our data read operation by implementing predicate pushdown, the metadata for the entire table is 
pulled into the ETL job before Spark filters out unnecessary partitions. To avoid this, we can specify 
an additional catalogPartitionPredicate parameter that offloads the filtering of catalog 
partitions to the AWS Glue service, and only the catalog partitions matching the predicate expression 
are returned. This will reduce the I/O effort required in performing a getPartition() API call 
and matching the predicate expression specified in the push_down_predicate parameter. 

The catalog partition predicate feature uses the partition keys registered as an index in the table 
configuration to perform filtering at the data catalog level, and it is much quicker to perform filtering 
at the catalog level compared to fetching all partitions registered in the table and performing filtering 
within the ETL job. You can refer to the AWS Glue documentation (https://docs.aws.
amazon.com/glue/latest/dg/aws-glue-programming-etl-partitions.
html#aws-glue-programming-etl-partitions-cat-predicates) to learn more 
about pushdown predicates in AWS Glue ETL. 

One of the other reasons why an AWS Glue ETL job would end up with a lot of tasks is that we are 
using a transformation that is generating a large number of tasks. In such cases, identify the operation 
causing the bottleneck, restrict the number of tasks created, and ensure we have enough compute 
resources to handle the tasks. 

If the number of tasks created is way too high, we may end up exhausting the driver memory as the 
Spark driver is responsible for tracking tasks created, and an increase in the number of tasks increases 
driver memory consumption. This will eventually cause the ETL job to fail with OOM errors. 

Optimizing JDBC- and MongoDB-based ETL jobs

In this section, we will take a look at different optimization techniques to improve the performance 
of ETL jobs when reading from Java Database Connectivity (JDBC) and MongoDB data stores. 

One of the biggest selling points of Apache Spark is that it offers a framework to ingest and reshape 
data in a distributed environment. However, when reading from a JDBC data store, Spark relies on 
the user to provide a partitioning strategy to read the data in parallel. If the user does not specify the 
number of partitions or the column(s) to partition by, Spark uses a single JDBC connection to read 
the entire table, and this can slow down the entire ETL job significantly. We have discussed how we 
can address this specific issue using hashpartitions in the Data ingestion from JDBC data stores 
section of Chapter 3, Data Ingestion. 

In the same chapter, we have also discussed how we can use the fetchSize parameter to fetch 
rows from the JDBC data store in batches instead of fetching the entire table in one round trip. When 
we set the fetchSize parameter, this will be passed down to JDBC PreparedStatement 
and informs the driver of the number of rows to fetch per round trip. This parameter is extremely 
helpful in tuning the amount of data transferred, thereby reducing the pressure on executor memory. 

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-partitions.html#aws-glue-programming-etl-partitions-cat-predicates
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-partitions.html#aws-glue-programming-etl-partitions-cat-predicates
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-partitions.html#aws-glue-programming-etl-partitions-cat-predicates
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If we are not interested in the entire table when reading from a JDBC data store, we can pass a SELECT 
query with a predicate expression using the query parameter. 

For example, if we are just interested in values less than 100 in the id column, we can do the following 
in our ETL script: 

connection_postgres_options = {

    "url": "jdbc:postgresql://HOSTNAME:5432/gluetest",

    "query": "select * FROM test where id < 100",

    "dbtable": "test",

    "secretId":"glue/postgres_test_db",

    "ssl": "true",

    "sslmode": "verify-full",

    "customJdbcDriverS3Path": "s3://S3_BUCKET/ postgresql.jar",

    "customJdbcDriverClassName": "org.postgresql.Driver"}

datasource0 = glueContext.create_dynamic_frame.from_options(

    connection_type="postgresql",

    connection_options=connection_postgres_options

)

As you can see, we still fetch all the columns using SELECT * in our query, but we are reducing the 
data fetched by using a WHERE condition. If we want to filter out any of the columns, we can do so 
using AWS Glue/Apache Spark transforms.

Similarly, when reading a MongoDB/DocumentDB data store, by default AWS Glue will read the 
entire collection. We can define a JSON string that denotes MongoDB’s aggregation pipeline, and this 
will ensure that the filtering and aggregation operations defined in the pipeline string are performed 
at a MongoDB level instead of through a Spark ETL job. You can see an illustration of this in the 
following code snippet:

pipelineJSON = "{'$match': {'type': 'peach'}}"

mongo_options = {

    "uri": "MONGO_CONN_STR",

    "database": "test",

    "pipeline": pipelineJSON,

    "collection": "fruits",

    "username": "mongodb_test",

    "password": "XXXXXXX"

}

dynamic_frame = glueContext.create_dynamic_frame.from_options(
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    connection_type="mongodb",

    connection_options=mongo_options

)

In the preceding example, we are filtering documents by the type column name with the value 
"peach". We can perform more advanced operations using MongoDB aggregation pipelines—for 
example, filtering documents with fields that contain data of a specific type, as follows: 

pipelineJSON = "{'$match': {'creationDate': {'$type': 'date'}, 
'uid': {'$type': 'string'}}}"

Here, we are filtering documents based on the data type of the creationDate and uid fields. We 
are essentially ignoring documents that don’t have values matching the data type specified. 

Pipeline aggregations are incredibly helpful, both in reducing the amount of data read and ensuring 
the data being read conforms to a specific schema. There are other optimizations we can apply while 
reading data from MongoDB data stores, such as defining a partitioner class and configuration options 
for the partitioner class selected. The values for these configuration options are to be selected based 
on the use case. If our use case does not require a specific partitioner class to be defined, we can let 
the connector use the default options. 

We can find a list of partitioner classes and configuration options supported in the AWS Glue 
documentation (https://docs.aws.amazon.com/glue/latest/dg/aws-glue-
programming-etl-connect.html#aws-glue-programming-etl-connect-
mongodb).

In this section, we discussed how we can tune the performance of a Glue Spark ETL job in specific 
use cases. For our discussion, we explored two to three scenarios here. There are a number of other 
optimizations we haven’t discussed related to performance tuning, as it is a vast topic and largely 
depends on the specific use case and the performance bottleneck we are trying to address. 

A rule of thumb here is to ensure that we are using compute resources efficiently by distributing the 
workload evenly, we have enough compute resources allocated to complete our ETL job, and we do 
not have too many pending tasks/operations waiting for resources to be allocated or blocked by a 
certain action within the ETL job. 

Now that we have seen different optimization techniques for some of the use cases related to AWS 
Glue Spark ETL jobs and AWS Glue crawlers, let’s take a look at some common issues we face while 
executing our AWS Glue workloads and how we can solve them. 

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-mongodb
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-mongodb
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-mongodb
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Troubleshooting and debugging common issues in AWS 
Glue ETL
While AWS Glue makes it easy to implement data integration workloads using different components/
microservices, depending on the user configuration and use case we may encounter a number of 
issues. In this section, we will discuss some common issues we may encounter while working with 
AWS Glue and different methods to solve those specific issues one by one.

ETL job failures

A Glue ETL job can fail for a number of reasons. Most job failures can be attributed to issues with 
configuration or resource provisioning, depending on the use case. Let’s explore some common issues 
we may come across while working with Glue ETL. 

OOM errors

When working with a large volume of data, it is not uncommon for us to run into OOM errors. OOM 
errors can appear in both drivers and executors, depending on the use case. How we approach the 
issue largely depends on where exactly the issue is occurring, whether in the driver or the executor.

Driver OOM

The Apache Spark driver is responsible for a number of things: executing user code, translating it to a 
DAG, coordinating with the cluster manager, distributing the workload to executors, and coordinating 
with all executors to ensure tasks are scheduled and executed successfully. As you might have guessed 
by now, most of these operations are carried out in memory. 

Some common reasons for the driver to run out of memory are listed here: 

• A large number of input files

• A large number of dynamic frames and transformations being defined, causing driver stack 
space to overflow

• A large amount of data being brought into the driver

• Too many tasks being generated as part of ETL code

If the Spark driver OOM is caused by a large number of input files’ metadata being tracked in the driver, 
we can avoid such situations by enabling the useS3ListImplementation option in AWS Glue 
ETL. This option will inform AWS Glue to cache file lists in batches instead of all file metadata being 
cached in memory all at once. It is a best practice to use this option with job bookmarking enabled to 
ensure we are not fetching metadata for files that are not necessary for our job run. 
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It is imperative to ensure that the source code is optimized as well and not just the input dataset. For 
instance, collect() or count() statements are widely used by users to print information to logs 
while authoring and debugging ETL scripts. However, it is important to make sure we remove these 
statements when we finish authoring such scripts. Methods such as collect() and count() 
collect results on the driver and consume memory, which eventually leads to Spark driver OOM 
issues. We need to focus especially on collect() calls as they are extremely notorious for causing 
driver OOM issues. 

The logic behind this is simple—when we are working on a sample dataset, we are bringing in a few 
rows to the driver when we call collect(). However, when we are running the same code on a large 
dataset, we end up bringing a huge volume of data into the driver memory, and this leads to driver OOM. 

If we are seeing stack overflow errors in the Spark driver, this means that we are adding too many 
operations into the Spark DAG. This can happen when we are creating new DynamicFrames in a loop 
and performing different transformations on each of these DynamicFrames. For example, if we are 
reading all JDBC tables in a database in the same ETL job and there are hundreds of tables, this will 
end up causing Spark to build a DAG so large that it can no longer fit into the stack memory space. 

In such cases, the recommendation would be to author the script in such a way that the table names 
are read from job parameters and multiple instances of the same job are being executed concurrently. 
The getResolvedOptions() utility method in AWS Glue is extremely helpful in such use cases 
to read job parameters in our ETL script. You can refer to the AWS Glue documentation (https://
docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-
extensions-get-resolved-options.html) to read more about this utility method and 
view instructions on how to use it. 

If we are encountering driver OOM issues because too many tasks were created, the recommendation 
would be to replace the ETL code causing this issue with more optimized code. For example, this is 
known to happen when we use reduceByKey() in our ETL code. Here, the goal is to ensure that 
the number of tasks is not too high for the driver to keep track of.

Now that we have seen some use cases that can cause Spark driver OOM, let’s explore some use cases 
that can cause executor OOM. 

Executor OOM

Similar to driver OOM, executor OOM can cause job failures as well. Most executor OOM errors can 
be typically resolved by scaling (vertical or horizontal, depending on the use case) resources assigned 
to the AWS Glue ETL job. However, a more sensible approach would be to examine the root cause of 
the issue before we blindly allocate more resources to the ETL job. 

Executor OOMs can occur for a number of reasons, and the first step in addressing these issues is to 
identify which operation in our ETL job is causing executor OOM errors. The Spark UI, CloudWatch 
metrics, and CloudWatch Logs are extremely helpful in addressing executor OOM issues. 

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-get-resolved-options.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-get-resolved-options.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-get-resolved-options.html
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One of the common causes of executor OOM is that the task is processing a large amount of data that 
cannot fit into executor memory. If this is the case, the solution would be to optimize data load and 
ensure it is being done in parallel. The approach used to achieve this differs based on the data store 
we are working with. 

For Amazon S3 data stores, the number of partitions is determined by data layout. If it is possible to 
optimize data layout before running Glue ETL. If our data store has large, unsplittable files, no amount 
of horizontal scaling will help. The recommendation here would be to optimize the data layout before 
using Glue ETL to transform the data. 

As discussed in the earlier sections of this chapter, JDBC reads using DynamicFrames can be parallelized 
using hashpartitions and hashfields/hashexpressions. If we are using Spark 
DataFrames instead of dynamic frames, we will have to use numPartitions, partitionColumn, 
lowerBound, and upperBound parameters for JDBC reads. You can read more about these 
parameters in the Apache Spark documentation (https://spark.apache.org/docs/
latest/sql-data-sources-jdbc.html).

If an executor OOM issue is happening with the DynamoDB read, the number of partitions created 
during the read operation is defined by the dynamodb.splits parameter, and the solution would 
be to increase the number of splits. While increasing the number of splits reduces the amount of data 
read per split, we also need to make sure that we have allocated enough workers to our ETL job to 
avoid tasks being backlogged in a pending state. 

Executor OOMs can happen after the data read during transformations as well, and not just during data 
reads. In such cases, the best approach would be to identify the operation that was being performed 
when the Spark executor ran out of memory. Both Spark UI and driver logs can be helpful in these 
situations. If the executor OOM occurs during JOIN operations, we can try converting Glue dynamic 
frames to Spark DataFrames. AWS Glue dynamic frames are based on resilient distributed datasets 
(RDDs), and RDD joins may result in more data shuffling than a DataFrame join. We can also reduce 
shuffle operations by repartitioning based on the join key just before performing a JOIN operation. 
This will essentially reduce the amount of shuffling required to perform a JOIN operation. This 
method can be used to reduce shuffling when we are writing partitioned data as well, in which case 
we would be repartitioning based on partition keys instead of JOIN keys. 

You can refer to the AWS Big Data Blog post titled Optimize memory management in AWS Glue, 
available at https://aws.amazon.com/blogs/big-data/optimize-memory-
management-in-aws-glue/, for more detailed information on different OOM use cases and 
how we can mitigate issues. 

The Apache Spark framework has a number of query optimization techniques built into the Spark 
SQL engine: Catalyst Optimizer (used for query plan optimization for Spark SQL queries), Project 
Tungsten (focuses on optimizing memory and CPU utilization by Spark), and Adaptive Query 
Execution (AQE—reoptimizes and adjusts query plans based on runtime metrics), to name a few. 
These optimizations are enabled by default in Spark depending on the Spark version being used. 

https://spark.apache.org/docs/latest/sql-data-sources-jdbc.html
https://spark.apache.org/docs/latest/sql-data-sources-jdbc.html
https://aws.amazon.com/blogs/big-data/optimize-memory-management-in-aws-glue/
https://aws.amazon.com/blogs/big-data/optimize-memory-management-in-aws-glue/
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AQE and AWS Glue
AQE was made available in the Apache Spark 3.0 release and is available for use in AWS Glue 
3.0 (Apache Spark 3.1.1). We can use the spark.sql.adaptive.enabled configuration 
parameter to enable AQE in AWS Glue ETL 3.0.

In this section, we discussed different causes of OOM errors in both the Spark driver and the executor 
and how we can address issues in each of those scenarios. In the upcoming sections, let’s explore  
a few other common reasons why an ETL job would fail. 

Permission issues

An AWS Glue ETL job can fail for permission issues originating from different sources. For instance, 
a job could fail because it is missing permissions to call a specific API in the Identity and Access 
Management (IAM) policy or it might be missing permissions to the AWS Key Management Service 
(AWS KMS) encryption key, permissions to Amazon S3 data stores, and Lake Formation catalog 
permissions. The only way to correctly debug permission issues is to check ETL job driver logs and find 
the stack trace containing the error message and check the operation that failed and the originating 
service. For instance, let’s consider the following error message: 

botocore.exceptions.ClientError: An error occurred 
(AccessDeniedException) when calling the GetAuthorizationToken 
operation: User: arn:aws:sts:: xxxxxxxxxxxx:assumed-role/
AWSGlueServiceRole-roleName/GlueJobRunnerSession is not 
authorized to perform: ecr:GetAuthorizationToken on resource: *

In the preceding error message, it is clear that the IAM role being used by the AWS Glue ETL 
job (AWSGlueServiceRole-roleName) does not have enough permissions to call the 
ecr:GetAuthorizationToken action. The solution here would be to grant permissions in 
the IAM policy for this action on resource *. This is known to happen when a Glue ETL job is getting 
an Elastic Container Registry (ECR) container image for a Marketplace connector.

Let’s take a look at another error message here: 

org.apache.hadoop.hive.ql.exec.DDLTask. 
MetaException(message:Insufficient Lake Formation permission(s) 
on s3://BUCKET/path (Service: AWSGlue; Status Code: 400; Error 
Code: AccessDeniedException; Request ID: xxxxxxxx-xxxx-xxxx-
xxxx-xxxxxxxxxxxx; Proxy: null))

In this particular error message, we can see that the IAM role is missing permissions to the Amazon 
S3 path in AWS Lake Formation. For instance, if an Amazon S3 path is managed by Lake Formation 
and the IAM role used by the job hasn’t been granted permission to access this path, we will run into 
such errors. The solution here would be to grant permissions to relevant Amazon S3 locations in 
AWS Lake Formation. 
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Similarly, let’s take a look here at another error message: 

The ciphertext refers to a customer master key that does not 
exist, does not exist in this region, or you are not allowed 
to access. (Service: AWSKMS; Status Code: 400; Error Code: 
AccessDeniedException; Request ID: 336e2c35-88b7-4859-ba2a-
da4e2bb9f5c3; Proxy: null)

The issue here is with the AWS KMS key in use. The best approach, in this case, would be to check 
AWS CloudTrail event history for events from the kms.amazonaws.com event source and check 
the key and the API being called. Once you have these pieces of information, make sure the IAM role 
being used by AWS Glue has the necessary permissions in both the AWS IAM policy and the AWS 
KMS key policy to perform the action in question.

Now that we know how to identify and mitigate permission issues, let’s take a look at other issues that 
can cause AWS Glue ETL job failures. 

Disk space-related error – No space left on device

This error message relates to the local disk space usage on the executor node. Spark uses the local 
disk for a number of reasons, and one of the most common use cases is that when the Spark executor 
memory is full, it starts spilling the content to the disk, and this can cause the disk attached to the 
executor node to fill up and cause job failures. 

If the job failed because of this reason, the first step is to identify the root cause of the issue. If the 
issue was caused because of memory spilled to the disk, we can try using a bigger worker type (try a 
G.1X or G.2X worker type). 

If the issue is still occurring, we can try to increase the number of shuffle partitions by tuning the 
spark.sql.shuffle.partitions Spark configuration parameter—this will redistribute the 
workload better. We can try to use the AWS Glue S3 shuffle service feature to write shuffle data to the 
Amazon S3 location. There’s a downside to this approach as well. Considering the S3 location is being 
used for shuffle spills, the I/O effort required to read and write shuffle data is significantly higher—
Amazon S3 reads/writes are computationally more expensive than memory/disk reads and writes. You 
can refer to the AWS Big Data Blog post titled Introducing Amazon S3 shuffle in AWS Glue (https://
aws.amazon.com/blogs/big-data/introducing-amazon-s3-shuffle-in-
aws-glue/) for a detailed explanation of how the AWS Glue S3 shuffle service works.

If none of these options works, we can implement bounded execution to limit the amount of data 
processed within an ETL job run and process the data in multiple batches. You can refer to the Workload 
partitioning with bounded execution for Amazon S3 data stores section of Chapter 3, Data Ingestion 
for more information on the Bounded execution feature. 

https://aws.amazon.com/blogs/big-data/introducing-amazon-s3-shuffle-in-aws-glue/
https://aws.amazon.com/blogs/big-data/introducing-amazon-s3-shuffle-in-aws-glue/
https://aws.amazon.com/blogs/big-data/introducing-amazon-s3-shuffle-in-aws-glue/
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Amazon S3 503 Slow Down errors

This is one of the most common errors we may come across when working with large datasets. This 
issue happens when AWS Glue ETL sends a large amount of application programming interface 
(API) requests to Amazon S3 API servers and the requests get throttled. 

Amazon S3 API servers impose the following API limits by default: 3500 PUT/COPY/POST/DELETE 
or 5500 GET/HEAD requests per second per prefix in a bucket (reference: https://docs.aws.
amazon.com/AmazonS3/latest/userguide/optimizing-performance.html). 

Now, to resolve this issue, we have to identify whether we are being throttled during read operations 
or write operations and try to reduce the number of API requests being made from our ETL job. This 
can be achieved by checking the stack trace captured in the AWS CloudWatch logs for the job run 
and looking for the S3 operation being performed (for example, listBucket, putObject, or 
getObject). Depending on the operation being performed, there are a number of approaches we 
can take—depending on the use case—to reduce the number of API calls. 

For instance, we can limit the number of files being read and thereby reduce the number of API 
requests made by using predicate pushdown filters and bounded execution. 

If we are experiencing this issue during write, some of the ways we can fix this issue are noted here: 
we can redistribute the workload across different prefixes by introducing a new partition key in the 
data target, or we can reduce Spark partitions by using coalesce() or repartition() before 
writing the dataset. For Parquet data writes, we can use an EMR File System (EMRFS) S3-optimized 
committer to perform writes using a multi-part upload strategy that uses a smaller number of Amazon 
S3 API calls.

Essentially, the idea here is to identify the operation that is getting throttled and reduce the number 
of API calls being made using different strategies, depending on the use case. You can refer to the 
AWS Big Data Blog article titled Best practices to optimize data access performance from Amazon EMR 
and AWS Glue to Amazon S3 (https://aws.amazon.com/blogs/big-data/best-
practices-to-optimize-data-access-performance-from-amazon-emr-
and-aws-glue-to-amazon-s3/), which discusses the Amazon S3 503 SlowDown issue 
in detail and outlines possible solutions for different use cases. 

Now that we know how to identify the root cause of some common issues in AWS Glue ETL and how 
to address these options, it is clear from our discussion that the procedure to address any of these 
issues has something in common—we start by investigating the root cause of the issue by looking at 
the metrics and logs from different sources and looking at the error message(s) available. Consider the 
source of the error message (APIs/AWS service errors, data plane errors—errors thrown by libraries 
within Glue components), the type of error (for example, permissions; throttling), and then identify 
the cause of the error message (usually outlined in the form of error codes or messages). 

https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance.html
https://aws.amazon.com/blogs/big-data/best-practices-to-optimize-data-access-performance-from-amazon-emr-and-aws-glue-to-amazon-s3/
https://aws.amazon.com/blogs/big-data/best-practices-to-optimize-data-access-performance-from-amazon-emr-and-aws-glue-to-amazon-s3/
https://aws.amazon.com/blogs/big-data/best-practices-to-optimize-data-access-performance-from-amazon-emr-and-aws-glue-to-amazon-s3/
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Once we have the root cause, we identify the offending component or configuration and replace it 
with an appropriate source code or configuration fix and test the application. A similar approach can 
be used to tune and troubleshoot any component of AWS Glue, and not just AWS Glue ETL jobs. As 
mentioned in our earlier discussions, developing and maintaining a data integration workflow is an 
iterative process and often requires a lot of retries before we can come up with a fully functioning 
workflow that is suitable for our use case. 

Summary
In this chapter, we discussed some of the options available at our disposal to tune AWS Glue Spark 
ETL jobs and AWS Glue crawlers based on the use case and understood how the procedure to tune 
a Glue ETL job or Glue crawler depends on data layout (input data type, partitioning structure, 
compression codec), crawler/job configuration, and downstream application/query engines. During 
our discussion on ETL job tuning, we explored different use cases and learned how to identify ETL jobs 
with straggler tasks and demanding stages and how we can optimize performance. We also discussed 
how to optimize ETL jobs with too many tasks and JDBC-/MongoDB-based ETL jobs to ensure we 
are using the resources allocated to the job to run quite efficiently. 

We also outlined some common issues we may come across while working with an AWS Glue Spark 
ETL job and discussed different methods or steps to take to identify and mitigate such issues. It is 
important to note that while we discussed different issues we may encounter while working with Glue 
ETL, this is not an exhaustive list, and we may run into other issues. That being said, the approach to 
debug or mitigate an issue remains the same for any issue encountered. AWS Support Engineering 
is known to publish Knowledge Center articles addressing specific issues for different AWS services 
based on common trends in support cases raised by AWS customers. A list of Knowledge Center 
articles addressing specific issues related to AWS Glue can be found at https://aws.amazon.
com/premiumsupport/knowledge-center/#AWS_Glue.

In the next chapter, we will be discussing some of the concepts of data analysis, such as running ad 
hoc queries using Amazon Athena and Amazon Redshift Spectrum. We will be exploring how we can 
take advantage of AWS Lake Formation-governed tables and run time-travel queries, and how we can 
perform near-real-time analysis using AWS Glue streaming. We will also be exploring how we can 
visualize data using Amazon QuickSight and how we can use an elastic/OpenSearch stack to search 
our dataset. This will help us understand how we can efficiently use the data output from AWS Glue 
with different downstream applications and query engines.

https://aws.amazon.com/premiumsupport/knowledge-center/#AWS_Glue
https://aws.amazon.com/premiumsupport/knowledge-center/#AWS_Glue
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In the previous chapter, we looked at the various buckets of Glue job expectation messages, why they 
occur, and how to handle them.

We learned about the impact of data skewness, how that can adversely impact job execution, and the 
techniques you can use to fix it. Additionally, we looked at some of the common reasons for Out-of-
Memory (OOM) errors and the out-of-the-box mechanisms that are available in AWS Glue to handle 
them. Some of these tools and techniques can be used to be more effective in resource utilization in 
a pay-as-you-go cloud-native world. These techniques can not only be used for efficient processing 
but also help you reduce the processing time in a world that increasingly needs answers as quickly 
as possible.

But the question is, why put in all this effort? Why process data? This brings us to our current topic. 
One of the reasons for processing data is to analyze it. You might want to analyze the data to look at 
the larger picture or perhaps visualize the data in a way that makes some vital information stand out. 
Alternatively, you might want to search for a specific piece of information from a large pile, or you 
might want to check out the journey of a certain data item as it morphs from one state into another as 
a result of various factors that influence it. Sometimes, data is also processed for feature engineering 
to enable better predictions from Machine Learning (ML) models.

Each of the possibilities of data analysis listed earlier requires a special kind of processing. For example, 
the processing required for feature engineering is going to be different from the processing required 
for creating BI visualizations. Similarly, a search requirement on unstructured data might be better 
fulfilled if the data is stored as a NoSQL object, and a BI report might work better if the data is stored 
in a Relational Database Management System (RDBMS) data warehouse in Kimball’s star format.
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In this chapter, we will learn how AWS Glue can be used for diverse transformations, each suited for 
a specific objective. We will start by creating a sample dataset. This dataset will be used across the 
sections of this chapter. Then, we will dive into the common tools used for data analysis in the world 
of AWS. AWS Glue is often used to write this data. Then, we will look into Transactional Data Lakes 
and see how we can leverage technologies such as Apache Hudi and Delta Lake to upsert data in a 
data lake. We will follow this up with the mechanism used to write data in AWS Lake Formation’s 
governed tables. Then, we will venture into the streaming area and use native Glue’s method to consume 
streaming data, be it from Apache Kafka or Amazon Kinesis. Additionally, we will look at how we can 
use Hudi’s DeltaStreamer in Glue to consume data from Apache Kafka. Finally, we will try to insert 
data into an OpenSearch domain and query it through OpenSearch Dashboards.

In this chapter, we will be covering the following topics:

• Creating Marketplace connections

• Creating the CloudFormation stack

• The benefit of ad hoc analysis and how a data lake enables it

• Creating and updating Hudi tables using Glue

• Creating and updating Delta Lake tables using Glue

• Inserting data into Lake Formation’s governed tables

• Consuming streaming data using Glue

• Glue’s integration with OpenSearch

• Cleaning up

We will start by creating some Marketplace connections. These Marketplace connections will be used 
as input into the CloudFormation template. The CloudFormation template that is shipped with this 
chapter will create 12 Glue jobs, an Amazon Redshift cluster, an Amazon MSK cluster, and an Amazon 
OpenSearch domain. Additionally, we will use all of the network plumbing and any other resources 
that might be required to understand the chapter.

Note
While I have taken care to use the minimum number of resources required for the execution of 
the code shipped with this chapter, please use your judgment to implement the CloudFormation 
template. Please delete the stack as soon as you have understood the concepts, and please take 
care when changing the network setting of the CloudFormation template to suit the needs 
of your organization. The CloudFormation template shipped with this chapter is built with a 
general requirement in mind. These requirements might not align with the guidelines of your 
organization. The reader bears the responsibility for any issues resulting from the implementation 
of the CloudFormation template, such as network and security compliance issues or the cost 
implications of creating the CloudFormation stack.
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Creating Marketplace connections
We are going to create Marketplace connections for the Glue Hudi connector, the Glue Delta Lake 
connector, and the OpenSearch connector. We will be using these connectors in our code samples, 
and the names of these connectors will be used as input to the CloudFormation stack.

Creating the Glue Hudi connection

Let’s begin by creating the Glue Hudi connection:

1. Navigate to AWS Marketplace (https://aws.amazon.com/marketplace/), 
search for the Apache Hudi Connector for AWS Glue product, and click on 
Continue to Subscribe:

Figure 13.1 – Subscribe to Apache Hudi Connector for AWS Glue

2. Click on Accept Terms:

Figure 13.2 – Accept the terms

https://aws.amazon.com/marketplace/
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3. After some time, when your request has been processed, the Continue to Configuration button 
will be enabled. Click on it:

Figure 13.3 – The Continue to Configuration button

4. Select Glue 3.0 as the Fulfillment option setting, select 0.9.0 (Feb 16, 2022) as the Software 
version setting, and click on the Continue to Launch button that is present in the upper-right 
corner of the screen:

Figure 13.4 – Fill in the required options
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5. Click on the Usage instructions link:

Figure 13.5 – Launch the software

6. Click on the Activate the Glue connector from AWS Glue Studio link:

Figure 13.6 – Activating the Glue connector
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7. Give a name to the connection, and then click on the Create connection and activate 
connector button. Make a note of the name of the connection. This will be one of the inputs 
to the CloudFormation template:

Figure 13.7 – Create a connection

Now we will follow the same process for creating Delta Lake and Amazon OpenSearch connections. 
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Creating a Delta Lake connection

Search for Delta Lake Connector for AWS Glue in the Marketplace. We will use 1.0.0-2 
(Feb 14, 2022) as the Software version setting and Glue 3.0 as the Fulfilment option setting. Make a 
note of the name you give to the connection. This name will be an input to the CloudFormation template.

Creating an OpenSearch connection

Search for Elasticsearch Connector for AWS Glue in the Marketplace. Use the one 
owned by Amazon Web Services. We will use 7.13.4-2 (Feb 14, 2022) as the Software version setting 
and Glue 3.0 as the Fulfilment option setting. Make a note of the name you give to the connection. 
This name will be an input to the CloudFormation template:

Figure 13.8 – Elasticsearch Connector for AWS Glue

Now we will be creating a CloudFormation stack. The stack will create all the network elements such 
as VPCs, subnets, and security groups along with Glue jobs and other resources such as a Redshift 
cluster, an OpenSearch cluster, and an MSK cluster. These resources will help you to successfully 
execute the Glue jobs associated with various sections of this chapter.

Creating the CloudFormation stack
First, let’s go through the prerequisites for this section. 

Prerequisites for creating the CloudFormation stack

Make sure that the Amazon OpenSearch, Delta Lake, and Apache Hudi connections have been 
created. Also, make sure that you have a KeyPair. This KeyPair will be used to connect to one of the 
EC2 instances created by the CloudFormation template.
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The CloudFormation template will create IAM roles and policies, too. These roles and policies are 
required for the jobs to function. Please review the definition of these roles, policies, networks, and 
security groups, and ensure that they align with the standards of your organization. In the following 
sections, first, we will create the stack and then create the dataset. 

Creating the stack

The CloudFormation stack creates 61 resources. These resources can be found in the Resources tab 
of the CloudFormation stack.

Import the template in CloudFormation and enter the name of the stack, the name of the Apache 
Hudi Marketplace connection, the name of the Delta Lake Marketplace connection, the name of the 
Amazon OpenSearch connection, the username and password for both the Redshift master user 
and the Amazon OpenSearch master user, the IP of your laptop, and the KeyPair that will be used 
to connect to the EC2 created by the CloudFormation (CFn). Keep the default settings for the rest 
of the parameters. 

Please note that the password for Amazon OpenSearch master user must have at least 8 characters: 
one uppercase character, one lowercase character, one number, and one of the #$! special characters. 
The password for the Redshift master user must have at least 8 characters: one uppercase character, 
one lowercase character, and one number. Special characters are not allowed.

After the CloudFormation stack has been created, follow the next section to create a dataset.

Creating a dataset

Before we start looking at various techniques for data analysis, let’s start by creating a basic dataset 
to work with.

Navigate to the AWS Glue Studio console (https://console.aws.amazon.com/
gluestudio/home), check the checkbox next to the 01 - Seed data job for Data Analysis Chapter 
job, and click on the Run Job button:

Figure 13.9 – The AWS Glue Studio console

https://console.aws.amazon.com/gluestudio/home
https://console.aws.amazon.com/gluestudio/home


The benefit of ad hoc analysis and how a data lake enables it 327

The CloudFormation template shipped with this chapter will have created this job and the associated 
resources, such as the S3 bucket, the IAM roles and policies, and the AWS Glue Catalog database, 
that are required to run the job.

Now you can go to the AWS Glue Studio monitoring page (https://console.aws.amazon.
com/gluestudio/home?#/monitoring) and check the status of the job. Note that you might 
see a lag for a few seconds for the job execution to be reflected on the AWS Glue Studio monitoring 
page (https://console.aws.amazon.com/gluestudio/home?#/monitoring):

Figure 13.10 – Checking the status of the jobs

The successful completion of this job will create an employees table in chapter-data-
analysis-glue-database.

Now that we have some data, let’s understand the past and current patterns of data analysis.

The benefit of ad hoc analysis and how a data lake enables it 
Before the start of the data lake pattern, organizations used to offload their data into a data warehouse 
for analysis. This involved creating an Extraction, Transformation, and Load (ETL) pipe. Creating 
ETL pipes, moving the data into a warehouse, and creating reports take a substantial amount of time 
and resource investment. By the time all of this has finished, the requirements will have changed 
because of the change in the business over a period of time. Sometimes, business users discovered 
that they didn’t get what they ordered and that there was a gap in requirement and implementation. 

https://console.aws.amazon.com/gluestudio/home?#/monitoring
https://console.aws.amazon.com/gluestudio/home?#/monitoring
https://console.aws.amazon.com/gluestudio/home?#/monitoring
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For example, a business user could request sales data, resulting in the IT team moving the sales data 
into the warehouse. However, the sales data in the warehouse might not be of the grain that the 
business user needs or does not include the sales data from all the sources of sales information. All 
of this involves a massive amount of rework.

With the advent of data lakes, organizations moved from code to configuration. Unlike a data warehouse, 
which requires the creation or modification of an ETL job, bringing a new source into the data lake 
usually involves adding a configuration to existing pipes. This is possible because the first layer of a 
data lake is generally the raw or the bronze layer and, usually, involves an extract and load job. Data 
is brought into this layer in a business-agnostic fashion. Since there is no transformation involved, 
the same jobs can be reused to bring in newer sources.

This hugely reduces the time required to make the data available, as bringing it from a new source to the 
data lake no longer requires any development effort and is, now, purely an operations ticket. However, 
this data in the raw/bronze layer is generally in the format of the source and is not standardized. This 
brings about the need for a semi-processed layer. This is generally called the silver layer. 

Generally, the transformation between the bronze layer and the silver layer is also business agnostic. 
This is because the silver layer is considered the single source of truth for all downstream systems. 
We don’t know what requirements we might have in the future. Hence, transforming the data in any 
way creates a possibility of not being able to transform it differently if we get such a requirement in 
the future. 

However, the transformation from bronze to silver includes common sense operations such as 
partitioning, compression, the addition of audit columns, and creating derived fields. All of these 
operations are coded such that the jobs remain reusable for any new sources that we might have 
to bring in. The transformed data can be easily pulled by all the downstream systems that need it. 
Additionally, the transformations are designed to provide traceability to the ops team if they have to 
troubleshoot some data inconsistency in the downstream systems.

By now, we understand that the data is made available in the silver bucket using reusable code, but 
how do we access this data? That is where the central metadata catalog comes in. The AWS Glue Data 
Catalog can be the central repository of metadata, and the metadata can either be updated from within 
the Glue jobs or using AWS Glue crawlers. Other services, such as Amazon Athena and Amazon EMR, 
can also update the AWS Glue Data Catalog. The AWS Glue Data Catalog (https://docs.aws.
amazon.com/glue/latest/dg/components-overview.html#data-catalog-
intro) is also accessible from other AWS services such as Amazon EMR, Amazon RDS, Amazon 
Redshift Spectrum, Amazon Athena, and any application that is compatible with the Apache Hive 
metastore. Additionally, you can configure the AWS Glue Data Catalog of a different AWS account 
(https://docs.aws.amazon.com/athena/latest/ug/data-sources-glue-
cross-account.html).

https://docs.aws.amazon.com/athena/latest/ug/data-sources-glue-cross-account.html
https://docs.aws.amazon.com/athena/latest/ug/data-sources-glue-cross-account.html
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With this feature, business analysts do not have to wait for the creation of the ETL pipelines for the 
data to be available in the warehouse but can directly query the silver bucket using the AWS Glue Data 
Catalog. This enables them to do an analysis of the data and understand exactly which transformation 
has to be formalized and coded into the ETL pipelines and brought to the warehouse. This saves a 
lot of IT effort.

Now, that we understand the tangible benefit of ad hoc analysis and how a data lake enables it, let’s look 
at the two primary means of computing in AWS that are used for ad hoc analysis. They are Amazon 
Athena and Amazon Redshift Spectrum.

Amazon Athena

Amazon Athena is a serverless interactive query service, based on the Presto platform, that can leverage 
the AWS Glue Data Catalog for getting the table metadata. Because Amazon Athena is serverless, 
there is no infrastructure to set up or manage. 

While we will primarily use Amazon Athena for querying purposes, it can do a lot more than just 
that. We will spend the next few paragraphs learning about some of the most important features of 
Amazon Athena and what makes it so powerful. We discuss these features because Amazon Athena 
is one of the most important and widely used tools for data exploration and analysis in the AWS 
world. Having a good understanding of Amazon Athena is going to be important to be effective in 
data exploration on AWS.

Amazon Athena uses an asynchronous query arrangement. When a user submits a SQL query, 
Amazon Athena uses a hot cluster to execute the query and then writes the processed result into a 
temporary S3 location. Then, these results are read and returned to the client. You can use the AWS 
portal to use Amazon Athena, or you can also use the Athena JDBC driver (https://docs.aws.
amazon.com/athena/latest/ug/connect-with-jdbc.html) in any application, 
such as SQL Workbench (https://www.sql-workbench.eu/downloads.html), that 
supports a JDBC connection. Additionally, you can use the identities stored in Okta for configuring 
federated access to Athena using JDBC and Lake Formation (https://docs.aws.amazon.
com/athena/latest/ug/security-athena-lake-formation-jdbc-okta-
tutorial.html). You can also use Microsoft’s Azure Active Directory (AD) or Ping Identity’s 
PingFederate for authentication. Additionally, you can choose to use the Amazon Athena ODBC 
drivers (https://docs.aws.amazon.com/athena/latest/ug/connect-with-
odbc.html).

Recently, Amazon Athena upgraded to version 2 of the Athena engine, which is based on Presto 
0.217. This brings new features and performance enhancements to the JOIN, ORDER BY, and 
AGGREGATE operations.

https://docs.aws.amazon.com/athena/latest/ug/connect-with-jdbc.html
https://docs.aws.amazon.com/athena/latest/ug/connect-with-jdbc.html
https://www.sql-workbench.eu/downloads.html
https://docs.aws.amazon.com/athena/latest/ug/security-athena-lake-formation-jdbc-okta-tutorial.html
https://docs.aws.amazon.com/athena/latest/ug/security-athena-lake-formation-jdbc-okta-tutorial.html
https://docs.aws.amazon.com/athena/latest/ug/security-athena-lake-formation-jdbc-okta-tutorial.html
https://docs.aws.amazon.com/athena/latest/ug/connect-with-odbc.html
https://docs.aws.amazon.com/athena/latest/ug/connect-with-odbc.html
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The integration with the AWS Glue Data Catalog allows the creation of a unified metadata repository 
across multiple AWS services. While the AWS Glue Data Catalog is generally used for the unified 
metadata store, you can also connect Athena to an external Hive metastore (https://docs.
aws.amazon.com/athena/latest/ug/connect-to-data-source-hive.html).

In Amazon Athena, most results are delivered within seconds, and you are charged based on the 
amount of data scanned by the query (https://aws.amazon.com/athena/pricing/). 
Because you are charged for the amount of data scanned, you can greatly reduce your bills by following 
the best practices related to compression and partitioning that were introduced in Chapter 5, Data 
Layout. Also, you can use Amazon Athena workgroups to track costs, and control and set limits on 
each workgroup to control costs. You can also add tags to these workgroups and then use Tag-Based 
IAM access policies (https://docs.aws.amazon.com/athena/latest/ug/tags-
access-control.html) to control permissions. 

Amazon Athena query metrics can be published to CloudWatch. Then, these metrics can be used to 
create alarms that can trigger actions based on the alarms. Also, you can also use the Explain Analyze 
(https://docs.aws.amazon.com/athena/latest/ug/athena-explain-
statement.html) statement in Amazon Athena to get the computational cost of each operation 
in a SQL query.

Additionally, Amazon Athena can use the fine-grained access control rules set up in your AWS Lake 
Formation. AWS Lake Formation allows administrators to configure column-, row-, and even cell-
level permissions (https://docs.aws.amazon.com/lake-formation/latest/
dg/data-filtering.html).

Amazon Athena also supports Atomicity, Consistency, Isolation, and Durability (ACID) transactions 
to allow for DML operations such as inserts, updates, and deletes along with the ability to time travel. 
This ACID transaction feature (https://docs.aws.amazon.com/athena/latest/
ug/acid-transactions.html) is based on the open source Apache Iceberg (https://
iceberg.apache.org/). Additionally, Amazon Athena supports read operations on AWS Lake 
Formation governed tables and Apache Hudi tables (https://docs.aws.amazon.com/
athena/latest/ug/querying-hudi.html).

Apart from querying the data in S3, you can also query the data in other data stores such as Amazon 
CloudWatch Logs, Amazon DynamoDB, Amazon DocumentDB, and Amazon RDS, and JDBC-compliant 
relational data sources, such as MySQL and PostgreSQL, under the Apache 2.0 license using Amazon 
Athena Federated Query feature (https://docs.aws.amazon.com/athena/latest/
ug/connect-to-a-data-source.html). Prebuilt Athena data source connectors exist 
for these sources. You can also deploy your own connector to connect to a data source (https://
docs.aws.amazon.com/athena/latest/ug/connect-to-a-data-source-
lambda.html).

https://docs.aws.amazon.com/athena/latest/ug/connect-to-data-source-hive.html
https://docs.aws.amazon.com/athena/latest/ug/connect-to-data-source-hive.html
https://aws.amazon.com/athena/pricing/
https://docs.aws.amazon.com/athena/latest/ug/tags-access-control.html
https://docs.aws.amazon.com/athena/latest/ug/tags-access-control.html
https://docs.aws.amazon.com/athena/latest/ug/athena-explain-statement.html
https://docs.aws.amazon.com/athena/latest/ug/athena-explain-statement.html
https://docs.aws.amazon.com/lake-formation/latest/dg/data-filtering.html
https://docs.aws.amazon.com/lake-formation/latest/dg/data-filtering.html
https://docs.aws.amazon.com/athena/latest/ug/acid-transactions.html
https://docs.aws.amazon.com/athena/latest/ug/acid-transactions.html
https://iceberg.apache.org/
https://iceberg.apache.org/
https://docs.aws.amazon.com/athena/latest/ug/querying-hudi.html
https://docs.aws.amazon.com/athena/latest/ug/querying-hudi.html
https://docs.aws.amazon.com/athena/latest/ug/connect-to-a-data-source.html
https://docs.aws.amazon.com/athena/latest/ug/connect-to-a-data-source.html
https://docs.aws.amazon.com/athena/latest/ug/connect-to-a-data-source-lambda.html
https://docs.aws.amazon.com/athena/latest/ug/connect-to-a-data-source-lambda.html
https://docs.aws.amazon.com/athena/latest/ug/connect-to-a-data-source-lambda.html
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Amazon Athena is also used in combination with AWS Step Functions (https://aws.amazon.
com/step-functions/) to create a data processing pipeline that is orchestrated in AWS 
Step Functions and processed using Amazon Athena. These data processing pipelines can use  
User-Defined Functions (UDFs) (https://docs.aws.amazon.com/athena/latest/
ug/querying-udf.html) in Amazon Athena for reusable and standardized processing that 
has to be used multiple times within the same pipeline or across multiple pipelines. Additionally, the 
same USING EXTERNAL FUNCTION syntax that was used with UDFs can be used to run the ML 
inference using Amazon SageMaker (https://aws.amazon.com/sagemaker/). Now, 
let’s look at some of the Amazon Athena features that can help us be more efficient in querying data.

You can create views in Athena to simplify the querying process for less SQL-savvy resources and to 
ensure consistent results for common queries.

Often, data exploration requires parsing nested structures and arrays. Amazon Athena supports both 
of these and can also parse a JSON object. This flexibility to parse complex structures helps Amazon 
Athena enable data exploration on less-than-perfect data. Amazon Athena also supports queries on 
geospatial data. The input data should be in WKT (Well-known text) format or JSON-encoded 
geospatial data format. Amazon Athena can also be configured to query AWS CloudTrail logs, Amazon 
CloudFront logs, Classic Load Balancer logs, Application Load Balancer logs, Amazon VPC flow logs, 
and Network Load Balancer logs. 

Additionally, you can parameterize the queries that are used more often. This is done using the PREPARE 
and EXECUTE statements (https://docs.aws.amazon.com/athena/latest/ug/
querying-with-prepared-statements.html). You also have the option to save the 
queries per workgroup.

Querying in Athena

In the previous section, we learned about the various features of Athena that can help to simplify data 
exploration in AWS. In this section, we will look at a simple example for querying the data.

Run the following query in your Athena console. You should be able to see the data inserted in the 
01 - Seed data job for Data Analysis Chapter job in the Creating a dataset section:

SELECT * FROM "AwsDataCatalog"." chapter-data-analysis-glue-
database"."employees" order by emp_no;

https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://docs.aws.amazon.com/athena/latest/ug/querying-udf.html
https://docs.aws.amazon.com/athena/latest/ug/querying-udf.html
https://aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/athena/latest/ug/querying-with-prepared-statements.html
https://docs.aws.amazon.com/athena/latest/ug/querying-with-prepared-statements.html
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You will see the following output:

Figure 13.11 – Query output in the Athena console

So far, we have created sample data using Glue jobs, we have learned about the various features for 
data exploration in Athena, and we have also queried our sample data through Athena.

Next, we will look at another tool for exploring data in Amazon S3.

Amazon Redshift Spectrum

Redshift Spectrum is a feature within the Redshift toolset. It is a mechanism used to query S3 data by 
employing massive parallelism to query the data on a big data scale. The feature also enables Redshift 
to offload a part of the query compute such as aggregation and filtering to the spectrum layer. Just like 
Athena, Amazon Redshift Spectrum can query data from the AWS Glue Data Catalog or an external Hive 
metastore. So, tables created in the AWS Glue Data Catalog can be accessed within Redshift through 
Redshift Spectrum using an external schema. Later in this section, we will check a related example.

Users can also partition the data, and the intelligent spectrum layer can prune those partitions when 
users query for the specific data within the partitions. Because the data lives externally, the same data 
can be accessed in multiple Redshift clusters through the spectrum layer. Other big data technologies 
such as Hudi can be used to create a transactional data lake. Redshift supports Copy-on-Write 
(CoW) Hudi tables (https://hudi.apache.org/docs/concepts.html#copy-
on-write-table). Check out the documentation (https://docs.aws.amazon.com/
redshift/latest/dg/c-spectrum-external-tables.html#c-spectrum-
column-mapping-hudi) for supported Hudi versions. We will discuss Hudi tables in more 
detail in the following sections. Updates to the CoW Hudi tables are available in Redshift through 
the Spectrum layer. 
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Additionally, you can query Delta Lake (https://delta.io/) tables through Redshift Spectrum. 
The data from Redshift Spectrum can be joined with the data maintained within Redshift. You can 
also use data handling options (https://docs.aws.amazon.com/redshift/latest/
dg/t_setting-data-handling-options.html) to define Spectrum’s behavior when 
it finds unexpected values in the columns of external tables. Spectrum supports the row and column 
level rules that have been set up for your data lake security for governed tables. Additionally, data in S3 
accessed via Spectrum can be used to hydrate the materialized views in Redshift (https://docs.
aws.amazon.com/redshift/latest/dg/materialized-view-overview.html). 

One of the major improvements in Spectrum, which was introduced a few years ago, was the support 
for bloom filters. A bloom filter is a probabilistic, memory-efficient data structure that accelerates join 
queries. Redshift decides on its own whether to use the bloom filter for a query at runtime. Spectrum 
supports modern BI tools by enabling you to query for complex and nested data types (https://
docs.aws.amazon.com/redshift/latest/dg/tutorial-query-nested-
data.html) such as structs, arrays, or maps in S3 data. 

Now that we understand Redshift Spectrum, let’s create an external schema in Redshift to query the 
table that we created using the 01 - Seed data job for Data Analysis Chapter job in the Creating  
a dataset section. 

The CloudFormation template shipped with this chapter creates a role cal led 
HandsonSeriesWithAWSGlueRSRole and a Redshift cluster to enable us to use Amazon Redshift 
Spectrum to query the data from S3. Please navigate to the IAM console (https://console.aws.
amazon.com/iamv2/home#/roles/details/HandsonSeriesWithAWSGlueRSRole) 
and check out the definition of this role to ensure that it is compliant with your organization. This 
role will be used by Amazon Redshift to access the AWS Glue Data Catalog: 

1. Go to the Redshift SQL workbench console (https://console.aws.amazon.com/
sqlworkbench/home?#/client). 

2. Click on the Redshift cluster created by the CloudFormation template. You can get this from 
the RedshiftClusterId key of the Outputs tab of the CloudFormation stack:

Figure 13.12 – The Redshift cluster in Redshift query editor v2

https://delta.io/
https://docs.aws.amazon.com/redshift/latest/dg/t_setting-data-handling-options.html
https://docs.aws.amazon.com/redshift/latest/dg/t_setting-data-handling-options.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/tutorial-query-nested-data.html
https://docs.aws.amazon.com/redshift/latest/dg/tutorial-query-nested-data.html
https://docs.aws.amazon.com/redshift/latest/dg/tutorial-query-nested-data.html
https://console.aws.amazon.com/sqlworkbench/home?#/client
https://console.aws.amazon.com/sqlworkbench/home?#/client
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3. Select the Database user name and password option and enter the username and password 
entered during the creation of the CloudFormation stack. You can keep the default value of 
dev for the Database field. Click on the Create connection button:

Figure 13.13 – The Database username and password options

4. Make sure that the dev database has been selected at the top:

Figure 13.14 – Selecting the dev database



The benefit of ad hoc analysis and how a data lake enables it 335

5. Enter the following command, and click on the Run button:

create external schema chapter_data_analysis_schema 
from data catalog database 'chapter-data-analysis-glue-
database' region '<region>'  iam_role 'arn:aws:iam::<aws_
account_id>:role/HandsonSeriesWithAWSGlueRSRole';

Replace region and aws_account_id in the preceding command.

Here, database is the AWS Glue Data Catalog database. This database was created 
through the CloudFormation stack.

6. Now, expand the dev database. You should notice the chapter_data_analysis_schema 
schema underneath it. Now you should be able to see the employees table created in the 
Creating a dataset section:

 

Figure 13.15 – Expanding the dev database option

7. Run the following SELECT query to see the data loaded into the Glue Data Catalog table:

SELECT * FROM "dev"."chapter_data_analysis_
schema"."employees" order by emp_no;
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The output is as follows:

Figure 13.16 – Data in the Glue Data Catalog table

Alright, so we saw how the data written in S3 can be accessed by both Redshift and Athena for analysis. 
But what if the data had to be updated? One mechanism is to overwrite, that is, truncate and then 
load the table. In some cases, this approach can be expensive. We can probably come up with a more  
cost-optimized approach where we, first, partition the table and then only overwrite a partition. 
However, this approach comes with its own drawbacks. 

For this approach to work, the newer updates will have to be limited to only a few of the partitions 
because if the newer updates are across partitions, then all of the partitions will have to be overwritten. 
As you might have noticed, creating a logic to upsert data in a data lake can become quite complex 
very quickly. An alternative is to use open source solutions such as Hudi and Delta Lake to make the 
data lake more transactional. Solutions such as Hudi bring additional benefits, such as the ability to 
create Merge on Read (MoR) or CoW (tables along with the ability to only query the incremental 
data and time travel.

In order to simplify the process of using these open source technologies, the AWS Glue team came 
up with AWS Glue custom connectors (https://aws.amazon.com/about-aws/whats-
new/2020/12/aws-glue-launches-aws-glue-custom-connectors/).

In this chapter, we will use quite a few Marketplace Glue connectors. Previously, you created Apache 
Hudi, Delta Lake, and OpenSearch connections in the Creating Marketplace connections section. Now 
we will use Apache Hudi and Delta Lake connections for upserting data in the S3 data lake.

https://aws.amazon.com/about-aws/whats-new/2020/12/aws-glue-launches-aws-glue-custom-connectors/
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-glue-launches-aws-glue-custom-connectors/
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Creating and updating Hudi tables using Glue
Apache Hudi is an open source data management tool that was initially developed by Uber. Its superpower 
is enabling incremental data processing in a data lake. The Apache Hudi format is supported by a wide 
range of tools on AWS such as AWS Glue, Amazon Redshift, Amazon Athena, and Amazon EMR.

The CloudFormation template, for this chapter, creates two Hudi batch jobs. They are 02 - Hudi 
Init load for Data Analysis Chapter and 03 - Hudi Incremental load 
for Data Analysis Chapter. Both of these jobs use the Hudi connection created in the 
Creating the Marketplace connections section. Additionally, these jobs accept the target bucket as an 
input parameter. This input parameter is prepopulated by the CloudFormation template. Navigate to 
the job details page of the 02 - Hudi Init load for Data Analysis Chapter job 
(https://console.aws.amazon.com/gluestudio/home?#/editor/job/02%20
-%20Hudi%20Init%20load%20for%20Data%20Analysis%20Chapter/details) 
to check out the configurations for the job.

Now we will execute the Glue Hudi jobs to create Hudi tables in the Glue Data Catalog:

1. Navigate to the AWS Glue Studio console (https://console.aws.amazon.com/
gluestudio/home?#/jobs), check the checkbox next to 02 - Hudi Init load for Data 
Analysis Chapter, and click on the Run Job button.

2. Now you can go to the AWS Glue Studio monitoring page (https://console.aws.
amazon.com/gluestudio/home?#/monitoring) and check the status of the job. 
You might see a lag of a few seconds for the execution to show up on the monitoring page:

Figure 13.17 – Viewing the job status

3. After the job finishes, this job will create a Hudi table, and you will be able to query it in Athena 
using the following query:

SELECT emp_no, name, department, city, salary FROM 
"AwsDataCatalog"."chapter-data-analysis-glue-
database"."employees_cow" order by emp_no;

https://console.aws.amazon.com/gluestudio/home?#/jobs
https://console.aws.amazon.com/gluestudio/home?#/jobs
https://console.aws.amazon.com/gluestudio/home?#/monitoring
https://console.aws.amazon.com/gluestudio/home?#/monitoring
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The results are as follows:

Figure 13.18 – The query results for the Hudi table

4. Now, let’s say that Jeff got a raise along with a transfer to Cincinnati. Additionally, let’s say that 
Jeff ’s new salary is 75,000. Run the 03 - Hudi Incremental load for Data Analysis Chapter 
job just as you ran the previous one. This job will help to update the information in the 
employees_cow table. Note that the value of salary=75000 and city=Cincinnati 
for emp_no=3 is hardcoded in this job.

5. Go to the go the AWS Glue Studio monitoring page (https://console.aws.amazon.
com/gluestudio/home?#/monitoring) and check the status of the job. You might 
see a lag of a few seconds for the execution to show up on the monitoring page:

Figure 13.19 – Monitoring the status of the 03 - Hudi Incremental load for Data Analysis Chapter job

https://console.aws.amazon.com/gluestudio/home?#/monitoring
https://console.aws.amazon.com/gluestudio/home?#/monitoring
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6. After the successful completion of the job, run the query on the employees_cow table in 
Amazon Athena again. You will notice that the record has been updated:

SELECT emp_no, name, department, city, salary FROM 
"AwsDataCatalog"."chapter-data-analysis-glue-
database"."employees_cow" order by emp_no;

The results are as follows:

Figure 13.20 – The updated table

We just saw the use of Apache Hudi for upserting the data in a lake and querying the upserted data 
in Athena. Now we will try to upsert the data using the Delta Lake connection created in the Creating 
Marketplace connections section.

Creating and updating Delta Lake tables using Glue
Delta Lake is also an open source framework that was initially developed by Databricks. Similar to 
Hudi, Delta Lake is also supported by Spark, Presto, and Hive among many others.
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We will now execute the 04 - DeltaLake Init load for Data Analysis Chapter job to create a Delta Lake 
table. The 04 - DeltaLake Init load for Data Analysis Chapter job was created by the CloudFormation 
template executed earlier:

1. Run the Glue job: 04 - DeltaLake Init load for Data Analysis Chapter. Notice in the job 
script that we are using Spark SQL to create a table definition in the Glue Catalog for the Delta 
Table. Here is the Spark SQL statement from the code of the 04 - DeltaLake Init load for Data 
Analysis Chapter job:

spark.sql("CREATE TABLE `chapter-data-analysis-
glue-database`.employees_deltalake (emp_no int, 
name string, department string, city string, 
salary int) ROW FORMAT SERDE 'org.apache.hadoop.
hive.ql.io.parquet.serde.ParquetHiveSerDe' STORED 
AS INPUTFORMAT 'org.apache.hadoop.hive.ql.io.
SymlinkTextInputFormat' OUTPUTFORMAT 'org.apache.hadoop.
hive.ql.io.HiveIgnoreKeyTextOutputFormat' LOCATION 
'"+tableLocation+"_symlink_format_manifest/'")

Also, notice that we have put /tmp/delta-core_2.12-1.0.0.jar in the Python 
lib path argument. This can be seen in the following screenshot:

Figure 13.21 – Running the 04 - DeltaLake Init load for Data Analysis Chapter job
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Additionally, we generate symlink_format_manifest from within the Glue job. 
This helps us to read the table from Athena or Presto.

2. Go to the AWS Glue Studio monitoring page (https://console.aws.amazon.com/
gluestudio/home?#/monitoring) and check the status of the job. Once the job is 
complete, go to Athena, and execute the following statement: 

SELECT * FROM "AwsDataCatalog"."chapter-data-analysis-
glue-database"."employees_deltalake" order by emp_no;

You will notice that the data has been inserted into the Glue Catalog table and can be 
queried through Athena, as shown in the following screenshot:

Figure 13.22 – The result of the executed statement

3. Now, let’s say that we want to update city to Cincinnati and salary to 70000 for 
emp_no = 3. Run the 05 - DeltaLake Incremental load for Data Analysis Chapter job 
and let it finish. The value of salary=75000 and city=Cincinnati for emp_no=3 
is hardcoded into this job.

https://console.aws.amazon.com/gluestudio/home?#/monitoring
https://console.aws.amazon.com/gluestudio/home?#/monitoring
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4. Run the following query in Athena and notice that the data for emp_no = 3 has changed:

SELECT * FROM "AwsDataCatalog"."chapter-data-analysis-
glue-database"."employees_deltalake" order by emp_no;

The results are as follows:

 

Figure 13.23 – The updated data for emp_no = 3 

In this section, we saw how we can create and update tables and data in the Glue Data Catalog using 
Delta Lake. Now we will look at how we can insert data into governed tables.

Inserting data into Lake Formation governed tables
Governed tables are packed with a lot of features such as ACID transactions, automatic data compaction 
for faster query response times, and time travel queries. Now we will go through the process of creating 
Lake Formation governed tables using Glue jobs:

1. Go to the Outputs tab of the CloudFormation stack and grab the S3 path for the 
LakeFormationLocationForRegistry key.
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2. Go to AWS Lake Formation (https://console.aws.amazon.com/lakeformation/
home) and register the S3 location, from step 1, with Lake Formation, as shown in the following 
screenshot:

Figure 13.24 – Registering the location

The format of this path is s3://<target_s3_bucket>/employees_
governed_table/. Make sure that you register it in the same region where you created 
the Cloud Formation stack.

Note that you should use the AWSServiceRoleForLakeFormationDataAccess 
role. This role has been granted access to the KMS key so that we can query the governed 
table successfully.

https://console.aws.amazon.com/lakeformation/home
https://console.aws.amazon.com/lakeformation/home
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3. Go to Data locations  tab in Lake Formation and grant privi leges f rom 
s3://<target_s3_bucket>/employees_governed_table/ to 
HandsonSeriesWithAWSGlueJobRole. You will have to paste the s3://<target_
s3_bucket>/employees_governed_table/ path inside the Storage locations 
textbox and select HandsonSeriesWithAWSGlueJobRole from the IAM users and roles 
drop-down list:

 

Figure 13.25 – The Data locations tab

4. Run the 06 - Governed Table Create Table for Data Analysis Chapter job from Glue Studio, 
just as you ran the previous jobs. This job will create employees_governed_table in 
chapter-data-analysis-glue-database. After the job has been successfully 
completed, you should be able to see the table in Athena. 

5. Now we will load this table with data. Execute the 07 - Governed Table Init Load for Data 
Analysis Chapter job. This code starts a transaction, loads the data, and then commits it.

6. After the job finishes, you will now be able to query the data in Athena. Run the following 
command:

SELECT * FROM "AwsDataCatalog"."chapter-data-analysis-
glue-database"."employees_governed_table" order by emp_
no; 

The following screenshot shows the data in the employees_governed_table table:
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Figure 13.26 – Data in the employees_governed_table table

In this section, we saw how governed tables can be used to ingest data in a data lake. The Glue job 
used to ingest the data ran as a batch. In fact, in this chapter, all of the jobs that have been executed 
so far have been batch jobs. These jobs include the jobs related to both Hudi and Delta Lake. Next, 
we will look at how to stream ingestion jobs.

Consuming streaming data using Glue
Now that we understand how Glue works in batch mode, let’s understand the process of updating the 
data coming through a stream.

The CloudFormation stack creates a Managed Streaming for Apache Kafka (MSK) cluster for this 
purpose. You will have to create a Glue connection for this MSK cluster. It is important that you name 
this connection as chapter-data-analysis-msk-connection. This connection is used 
in the jobs that follow. These jobs get the Kafka broker details from the connection.
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Creating chapter-data-analysis-msk-connection

We will execute Glue jobs to load data into an MSK topic and also consume data from the topic. Both 
of these jobs require broker information and other details about the MSK cluster. Now we will create 
an MSK connection in Glue. Please ensure that you put the name of the connection as chapter-
data-analysis-msk-connection. This is because the Glue jobs have been preconfigured 
to use this name as the connection name:

1. Navigate to the Connections page in the AWS Glue console (https://console.aws.
amazon.com/glue/home?#catalog:tab=connections), and then go to the 
Connections section.

2. Click on the Add connection button.

3. Set Connection type as Kafka and put Connection name as chapter-data-analysis-
msk-connection. Select the MSK cluster created using CloudFormation in the Select MSK 
cluster drop-down list and ensure that the Require SSL connection flag has been checked. 
Click on Next:

Figure 13.27 – Setting up the properties

https://console.aws.amazon.com/glue/home?#catalog:tab=connections
https://console.aws.amazon.com/glue/home?#catalog:tab=connections
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4. Select the VPC ID, one of the private subnet IDs, and a security group, and click on Next. You 
should be able to get all of these values from the Outputs tab of the CloudFormation stack. 
Click on Finish: 

Figure 13.28 – Setting up access

Now that we have created an MSK connection in Glue, we will load data into a topic in the MSK 
cluster. Later, we will consume data from the topic through Glue streaming jobs.

Loading and consuming data from MSK using Glue

Run the Python shell’s 08 - Kafka Producer for Data Analysis Chapter job. This job will use 
chapter-data-analysis-msk-connection, as created in the preceding section, and 
load data into the MSK cluster. 
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This job uses the AWS wrangler whl file and the kafka-python whl file to read the data from 
the S3 path and load it into Kafka. Both of these whl files have been copied in the S3 bucket of your 
account through the CloudFormation template and have been configured in the Glue Python shell 
job. This job creates a chapter-data-analysis topic and then loads data into it.

After the job has successfully finished, you will have the data in the MSK cluster. Now we should 
execute the Glue streaming jobs to consume the data from the topic.

Glue streaming job as a consumer of a Kafka topic

First, we will check out the traditional micro-batch pattern that is commonly employed to consume 
streaming data using Glue. 

Start the 09 - Kafka Consumer for Data Analysis Chapter job. This is a Spark streaming job that 
consumes data from the chapter-data-analysis topic. It micro-batches the processing 
using the forEachBatch (https://docs.aws.amazon.com/glue/latest/dg/
aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-
glue-api-crawler-pyspark-extensions-glue-context-forEachBatch) 
method of GlueContext. 

The forEachBatch method micro-batches the streaming dynamic frame. In the 09 - Kafka Consumer 
for Data Analysis Chapter job, the micro-batch is 10 seconds. Each micro-batch is processed in the 
processBatch method. In the 09 - Kafka Consumer for Data Analysis Chapter job, we write 
the micro-batch into a Hudi table just as we had written one in the batch operation.

Notice that the processing of these micro-batches was no different from the processing of the Hudi 
batch jobs shared earlier. Essentially, this means that the process can be applied to consume a stream 
in other formats such as Delta Lake using the batch code for the Delta Lake shared earlier.

After a couple of minutes of execution, you should see the employees_cow_streaming table 
under chapter-data-analysis-glue-database. You should be able to query it in 
Athena using the following query:

SELECT emp_no,name,department,city,salary FROM 
"AwsDataCatalog"."chapter_data_analysis"."employees_cow_
streaming" order by emp_no;

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-forEachBatch
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-forEachBatch
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-forEachBatch
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The results are as follows:

Figure 13.29 – The results of the query

In this section, we used a streaming Glue job to consume data from a Kafka topic. In the next section, 
we will use the Hudi DeltaStreamer (https://hudi.apache.org/docs/hoodie_
deltastreamer/) utility to consume data from the same Kafka topic.

Hudi DeltaStreamer streaming job as a consumer of a Kafka topic

Now that we have seen the traditional micro-batch method used to consume streaming sources in Hudi 
tables using Glue, let’s look at the mechanism of using Hudi DeltaStreamer to consume streaming data.

Run the 10 - DeltaStreamer Kafka Consumer for Data Analysis Chapter job. Just as in the previous 
job, this also uses the Hudi connection. However, notice that the dependent JARs path has been set to 
/tmp/*. This is required to ensure that the right classes are available on the classpath. While some 
of the configurations are similar to the configurations of the Hudi jobs that we created up till now, 
the DeltaSteamer job requires the schema files for the source and target. Since our use case is about 
replicating data, our source and target schema has the same file. The structure of this avro schema 
file is as follows:

{

  "type":"record",

  "name":"employees",

  "fields":[{

https://hudi.apache.org/docs/hoodie_deltastreamer/
https://hudi.apache.org/docs/hoodie_deltastreamer/
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     "name": "emp_no",

     "type": "int"

  }, {

     "name": "name",

     "type": "string"

  }, {

     "name": "department",

     "type": "string"

  },{

     "name": "city",

     "type": "string"

  },{

     "name": "salary",

     "type": "int"

  },{

     "name": "record_creation_time",

     "type": "float"

  }

]}

This file is written into your S3 bucket through CloudFormation, and the 10 - DeltaStreamer Kafka 
Consumer for Data Analysis Chapter job is configured to use this avro schema file.

Once the job has been executing for 2–3 minutes, you should be able to see and query the employees_
deltastreamer table in chapter-data-analysis-glue-database, in Athena, using 
the following query:

SELECT emp_no,name,department,city,salary FROM 
"AwsDataCatalog"."chapter-data-analysis-glue-
database"."employees_deltastreamer" order by emp_no;
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The result is as follows:

Figure 13.30 – The 10 - DeltaStreamer Kafka Consumer for Data Analysis Chapter job results

Now we have our traditional Glue streaming and DeltaStreamer jobs running. This means that if we 
add new data to our MSK topic, the data will be consumed by both of our jobs. Now we will load CDC 
data into our topic. Our streaming jobs should consume and process the data. Our query through 
Athena should be able to show the updated data in the processed tables since our streaming jobs are 
using Hudi.

Creating and consuming CDC data through streaming jobs on Glue

Now, we will load CDC data into the MSK topic.

Run the 11 - Incremental Data Kafka Producer for Data Analysis Chapter job. This job adds the 
following CDC data to the chapter-data-analysis topic:

{"emp_no": 3,"name": "Jeff","department": "Finance","city": 
"Cincinnati","salary": 70000,"record_creation_time":now}

This job uses the same whl files as the 08 - Kafka Producer for Data Analysis Chapter job.
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As soon as the job finishes, you should be able to see the update in both the employees_
deltastreamer and employees_cow_streaming tables. The following screenshot shows 
the result in the employees_deltastreamer table:

Figure 13.31 – The results of the employees_deltastreamer table

The following screenshot shows the result in the employees_cow_streaming table:

Figure 13.32 – The results of the employees_cow_streaming table
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Since our Glue streaming jobs are configured to consider emp_no as the record key, it will automatically 
update city and salary to the new values.

Note
Please shut down the Glue Streaming job so that you do not incur any additional charges.

Now we will discuss the process of loading the Amazon OpenSearch domain using Glue.

Glue’s integration with OpenSearch
Now, let’s focus on a search use case. Let’s say that you were interested in searching through log data. 
Amazon OpenSearch could be your answer to that. Originally, it was forked from Elasticsearch and 
comes with a visualization technology called OpenSearch Dashboards. OpenSearch Dashboards has 
been forked from Kibana. OpenSearch can work on petabytes of unstructured and semi-structured 
data. Additionally, it can auto-tune itself and use ML to detect anomalies in real time. Auto-Tune 
analyzes cluster performance over time and suggests optimizations based on your workload.

For the purpose of this chapter, we will use our employee data as the source and show how we can 
load the data into OpenSearch. Then, we will visualize the data in OpenSearch Dashboards.

The CloudFormation template creates a secret that stores the OpenSearch domain’s user ID and 
password. The Marketplace connection created by you using the OpenSearch connector should have 
this secret configured in it. This is because the Glue job will use this secret to authenticate against the 
OpenSearch domain. Now we will set the secret in the Glue OpenSearch connection:

1. Navigate to the Connectors tab of the AWS Glue Studio console (https://console.aws.
amazon.com/gluestudio/home?#/connectors) and then go to the OpenSearch 
connection that you created earlier. This connection should be in the Connections section.

https://console.aws.amazon.com/gluestudio/home?#/connectors
https://console.aws.amazon.com/gluestudio/home?#/connectors


Data Analysis354

2. Click on the Edit button: 

Figure 13.33 – Editing the connection details

3. Go to the Connection access section and select ChapterDataAnalysisOSSecret from the drop-
down list. Then, click on the Save changes button. ChapterDataAnalysisOSSecret is created 
by the CloudFormation template. The values of the OpenSearch master user and password 
supplied during the Cloud Formation stack have been stored in this secret:
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Figure 13.34 – Filling in the connection properties

4. Run the 12 - OpenSearch Load for Data Analysis Chapter job. On the successful completion of 
this job, the employee information will be available in the employees index of the OS domain.

5. Now that we have data in our OS domain, it’s time to access that. The CloudFormation template 
has created a Windows EC2 instance for you to check the data. First, you will need the password 
to the EC2 instance. Run the following command to retrieve the password:

aws ec2 get-password-data --instance-id <instance_id_
of_windows_ec2_instance> --priv-launch-key <key_file_
selected_during_the_creation_of_the_cloudformation_stack> 
--query PasswordData | tr -d '"'



Data Analysis356

You can get the instance ID from the InstanceIDOfEC2InstanceForRDP key in 
the Outputs tab of the CloudFormation stack.

6. Now, navigate to your remote desktop client and use the public IP address of the EC2 instance. Use 
the password from the preceding step and Administrator as the username to log in. You can 
get the public IP address of the EC2 instance from the PublicIPOfEC2InstanceForRDP 
key in the Outputs tab of the CloudFormation stack. 

If you had keyed in the correct IP address of your laptop in the ClientIPCIDR parameter 
of the CloudFormation stack, then a security group rule to allow a Remote Desktop Protocol 
(RDP) connection from your laptop on port 3389 should already be in place.

7. Install your favorite browser on the EC2 instance after logging in, and then open the OpenSearch 
Dashboards URL. You can get this URL from the OpenSearchDashboardsURL key in 
the Outputs tab of the CloudFormation stack.

8. Use the username and password entered for the OpenSearch domain during the 
creation of the CloudFormation stack. Additionally, you can also retrieve it from the 
ChapterDataAnalysisOSSecret secret in the AWS Secrets Manager (https://
console.aws.amazon.com/secretsmanager/home). 

9. Click on the Explore on my own link, select the Private radio button in the Select your tenant 
popup, and then click on the Confirm button:

Figure 13.35 – Selecting the private tenant option

https://console.aws.amazon.com/secretsmanager/home
https://console.aws.amazon.com/secretsmanager/home
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10. Click on Query Workbench from the left-hand pane:

Figure 13.36 – Query Workbench

11. Run the following query in the Query editor window. You will notice that the data is available 
in OpenSearch to use:

select * from employees order by emp_no;
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The following screenshot shows the data:

Figure 13.37 – The results in the Query editor window

In this section, we inserted data from Glue into OpenSearch and then queried it from OpenSearch 
Dashboards.

Cleaning up
Delete the CloudFormation stack and remove the registration of the S3 location in AWS Lake Formation 
along with the Data locations permissions that were granted manually for the governed tables part.
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Summary
In this chapter, we learned how data in the data lake can be consumed through both Athena and 
Redshift. Then, we saw how we can create transactional lakes using technologies such as Hudi and 
Delta Lake. We then checked various mechanisms for consuming streaming sources in Glue using 
the forEachBatch method and Hudi DeltaStreamer. Finally, we checked how the ElasticSearch 
connector from the AWS Glue connector offerings can be used to push data into an OpenSearch 
domain and consumed through OpenSearch Dashboards. This chapter familiarized you with the 
most common patterns of data analysis and ETL using AWS Glue.

In the next chapter, we will learn about ML. We will find out more about the strengths and weaknesses 
of SparkML and SageMaker and when to use each of those tools.
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Machine learning (ML) is one of the cornerstones of today’s computing for any software-related 
company. ML models are capable of making predictions or deductions based on past experience, provided 
as training data. This enables a wide variety of applications with large benefits to any organization.

Because it relies on training data, ML is closely tied to data mining, data processing, and, in general, 
any kind of extract, transform, load (ETL) process. Training data must be properly cleaned, formatted, 
and classified before it can be fed to a model – a process that greatly affects the effectiveness of the 
model itself. Because of this, services such as AWS Glue offer ML-specific features and integrations, 
catered to making ML easier and more effective to use.

Training data preparation is not the only relationship ML has with ETL processes – it can also be used 
to enhance and provide new transformations within the processes themselves, enabling new capabilities 
that were not possible before. ML models can be used, for instance, to automatically detect duplicate 
data or to tag columns in datasets based on specific properties.

In this chapter, we will cover the following topics:

• Glue ML transformations

• SageMaker integration

• Developing ML pipelines with Glue

By the end of this chapter, you will understand how ML transformations work with Glue, how to 
combine Glue and SageMaker effectively to power all your ML needs, and how to deploy an ML 
pipeline in the AWS cloud using Glue.
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Technical requirements
For this chapter, the only requirement is that you have access to this book’s GitHub repository page 
(https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-
with-AWS-Glue). 

Glue ML transformations
As mentioned previously, ML is not just an entity that reads the output data from ETL processes, but 
also one that powers its transformations. ML models enable a wide variety of operations that were 
not possible before due to computer intelligence limitations.

Because of this, Glue started to offer ML powered-operations with specific purposes under the ML 
transforms feature. As the name suggests, ML transforms are specific kinds of Glue transforms that 
are powered by ML models but must be trained and prepared before they can be used. Once they are 
ready, they can be called from your ETL job’s code, just like other Glue transforms.

At the time of writing, Glue has only released one ML transform, FindMatches, which will automatically 
find duplicated records within a dataset. Even though this seems like a simple task (most ETL engines 
could provide this by simply comparing records and checking if they are equal, or if they share a 
primary key), ML allows for duplicate detection, even in scenarios where records don’t have the same 
identifier or primary key, or when all the fields are not the same. 

The FindMatches operation enables use cases that were not possible or considerably harder before, 
such as fraud detection (where a user may have created a duplicate account while trying to avoid a 
ban) or finding duplicates in a product catalog (where two entries may have different capitalization 
or spelling but refer to the same product). 

As mentioned earlier, ML transforms must be trained, which means you will need sample training data, 
but the transformation must be fine-tuned to the specifics of your dataset and use case. ML transforms 
also abstract most of the logic that goes into training an ML model, enabling data engineers to take 
advantage of ML without necessarily being experts on it.

In this section, we’ll go through the life cycle of an ML transform. We’ll learn how to create one, train 
it, and use it in ETL jobs. 

Creating an ML transform

Before the training stage, an ML transform must be created and configured according to the desired 
results. To create an ML transform, you must provide the following:

• Job configuration parameters: Just like with ETL jobs, the transform will need an IAM role, 
resource configuration, and security configurations. 

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue
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• Source dataset parameters: The dataset to be read, plus the column within it to be used as a 
primary key.

• ML tuning parameters: As with other ML models, the transformation can be configured to 
favor precise or non-strict results, where the non-strict configuration would give more results 
but also a larger number of false positives. A Glue ML transform also allows the user to decide 
between spending extra resources to make the transform more accurate or saving costs by 
having fewer results at the cost of less accuracy.

Once these have been set, the transform is created and is set to the Needs training state. Transforms in 
this state cannot be used in ETL jobs, as they are required to go through the model training process first. 

Training an ML transform

ML transforms follow a supervised learning mechanism called labeling. Within ML, data labeling is 
a mechanism by which a human actor provides context to a dataset so that a machine can learn and 
understand it. For instance, when creating an image object recognition ML model, a human could 
take a set of pictures and label them based on the object shown in them (for example, “car”, “bicycle”, 
or “orange”). This labeling can be as simple or as complex as required, and with it, the ML model can 
understand the context of what it is trying to recognize based on the labels.

The same mechanism applies here. When training an ML transform, Glue will take a sample of the 
records of the specified input dataset and provide it in a pre-formatted CSV file in an S3 path of the 
user’s choice. The user can then download the file, inspect the records, and label them accordingly by 
filling out the label column in the CSV file. For instance, let’s say we have the following sample records:

Figure 14.1 – Sample records with an empty label column
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The labeling should look like this, considering we are trying to identify duplicated records:

Figure 14.2 – Sample records with a filled label column

As you can see, the labeling process consists of setting the same label identifier for records that refer 
to the same book, even if the records are slightly different in terms of title or authors. This process is 
quite literally teaching the ML model how different records refer to the same entity.

There are several considerations regarding how this works:

• The value of the label column can be anything (a number, a letter, or a word), so long as it 
is consistent and the same for equal rows.

• The file will also contain a second column called labeling_set_id. This column identifies 
different groups of rows with their own, separate labeling. Label values can be repeated across 
different labeling sets without causing a match.

• The file you upload to S3 for Glue to take as labels must be a UTF-8-encoded CSV file, the 
columns of which must be the same as the source dataset’s, plus the label and labeling_
set_id columns.

Once the labeling file is ready, it can be uploaded to S3 and provided to Glue so that it can train the 
transform’s model. Upon being uploaded, Glue can perform two calculations:

• Transform quality estimation: This is an estimation of how good the transform is at doing its 
job, as specified by several percentage values.

• Column importance: This calculation determines how relevant the columns in the dataset are 
to the success of the transform. Irrelevant columns can be omitted and the transform would 
still be able to find matches. 
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The labeling process is repeatable and can be done an unlimited number of times. If the results of 
the quality estimation process (or the results of your ETL jobs that rely on the ML transform) are not 
good enough, the labeling process can be repeated to improve the accuracy of the model through 
human curation.

Using an ML transform

Once the transform has been trained at least once, it will change status to Ready for use. A transformation 
in this state can be used within ETL jobs. The FindMatches ML transform can be used in two modes: 
regular and incremental. Let’s start by looking at a regular invocation:

findmatches_result = FindMatches.apply(

frame = my_dynamic_frame, 

transformId = "tfm-d03f274ad2f0136dacc5bcb54deced1eea54371a", 
transformation_ctx = "findmatches")

As you can see, the transform simply needs the DynamicFrame to apply the transformation to, as well 
as the ID of the trained transformation. The result of this operation (findmatches_result) will 
be a DynamicFrame with the same schema as the input one, but with two added columns:

• match_id: If the ML model considers two rows are the same, they will have the same value 
for this column – for instance, two matching rows may have a match_id value of 2, whereas 
a different pair of matching rows may have a value of 3.

• match_confidence_score: This represents a number between 0 and 1 that estimates 
the quality of the decision made by the model.

Using these two columns, a pipeline could automatically cull duplicated records, provided that the 
confidence score is high enough, for example. 

Using FindMatches in this way lets users detect duplicates in a dataset. However, it can cause 
challenges. If new records were to come in and had to be matched against the previous ones, they 
would have to be added to the already-existing table, and the transform would have to be executed 
against the entire dataset. This approach is doable but will increase the execution time and resource 
consumption as the dataset becomes larger. Because of this, Glue provides an incremental way of 
using a transform: 

findincrementalmatches_result = FindIncrementalMatches.apply(

existingFrame = my_dynamic_frame, 

incrementalFrame = my_incremental_data, 

transformId = "tfm-d03f274ad2f0136dacc5bcb54deced1eea54371a", 
computeMatchConfidenceScores = true, 

transformation_ctx = "findincrementalmatches")
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When using FindIncrementalMatches, several parameters must be provided:

• existingFrame: This represents the already existing and cleaned dataset.

• incrementalFrame: This represents the batch of new records that must be matched 
against the already-existing ones.

• transformId: This is the ID of the trained transformation.

• computeMatchConfidenceScores: A Boolean value that determines whether the 
match_confidence_score column should be generated or not.

Using FindIncrementalMatches allows for faster, easier, and less resource-intensive match 
detection and should always be used for incremental setups.

Running ML training tasks and ML ETL jobs

Training an ML model and using ML-based transformations is a resource-intensive task that often 
requires additional memory. Because of this, it is always recommended to use larger EC2 instance 
types, or in the case of Glue resources, worker types. When training an ML transformation or running 
an ML-based ETL job, we recommend always using the G.2X worker type unless you know the task 
is simple and small in advance.

SageMaker integration
Amazon SageMaker is AWS’s primary service for ML development. It provides a set of tools and 
features that lets users handle all the stages of the ML development pipeline, from data collection and 
preparation to model deployment and hosting. 

Just like any other ML tool, SageMaker relies on the concept of model training to get models up to 
the accuracy level expected from them. And as we mentioned previously, training ML models usually 
requires large amounts of data to be prepared and processed. Because of this, SageMaker offers native 
integration with Apache Spark (https://docs.aws.amazon.com/sagemaker/latest/
dg/apache-spark.html), which provides model-training capabilities using an AWS-tailored 
version of Spark. 

One of the most important features SageMaker offers is serverless notebooks (https://docs.aws.
amazon.com/sagemaker/latest/dg/nbi.html). A notebook instance is a serverless 
EC2 instance that runs Jupyter (https://jupyter.org), a web-based code execution service 
that lets users run code and visualize results interactively through the concept of notebooks. Code 
running in notebooks can be written in a variety of languages and use as many external libraries and 
frameworks as necessary, including Apache Spark. That said, the code within the notebook is usually 
executed locally unless a framework provides the capabilities to do otherwise.

https://docs.aws.amazon.com/sagemaker/latest/dg/apache-spark.html
https://docs.aws.amazon.com/sagemaker/latest/dg/apache-spark.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi.html
https://jupyter.org
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To execute SageMaker features using Apache Spark jobs in a proper cluster environment, SageMaker 
offers AWS Glue integration. This allows users to execute Spark code written in a SageMaker notebook 
in a Glue Development Endpoint rather than locally within the notebook instance – which is always 
recommended to take advantage of Spark’s concurrent execution model. 

Glue-integrated SageMaker notebooks have the following limitations and considerations:

• They can only be launched from the Glue web console.

• The Development Endpoint they attach to must be launched in a VPC.

• Just like with ETL jobs, the security group attached must contain a self-referencing inbound 
rule that allows all traffic. This ensures that communication between the notebook and the 
endpoint, as well as between all the nodes of the endpoint, is possible.

Once a notebook has been launched, the Sparkmagic kernel can be used to run code within the 
Development Endpoint. Even though this feature was originally designed to run the SageMaker Spark 
library, you can also use it to interactively run and debug your regular ETL job code in a notebook easily.

In the next section, we’ll discuss ways to orchestrate the elements we discussed previously into a 
pipeline using Glue and SageMaker.

Developing ML pipelines with Glue
The combination of SageMaker’s model-hosting features and libraries, plus Glue’s data preparation 
and orchestration features, allow you to create complex and highly-configurable ML pipelines. In this 
architecture, each service is responsible for different roles:

• Glue handles data handling and orchestration. Data handling includes extraction, processing, 
preparation, and storage. Orchestration refers to the overall execution of the pipeline itself.

• SageMaker handles all ML-related tasks such as model creation, training, and hosting.

Several components are critical to this, as follows:

• Glue workflows are the main form of orchestration in Glue. Workflows allow users to define 
graph-based chains of crawlers, ETL jobs, and triggers, and to see their execution visually in 
the web console.

• Python Shell jobs are a sub-class of Glue ETL jobs that are designed to run plain Python 
scripts instead of PySpark ones. They are similar to AWS Lambda functions but come with 
fewer restrictions since they don’t have a time or memory limit. Python Shell jobs are typically 
used to automate tasks in an ETL pipeline using the AWS SDK or to run any code that does 
not need the capabilities of Spark in a cheaper, faster-to-launch environment.
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• SageMaker Model hosting allows users to create an ML model and host it in the AWS cloud. 
Users don’t have to worry about managing hardware or infrastructure to hold the model, and 
SageMaker provides tools to train and access the model in different ways.

A Glue-based ML pipeline would consist of a workflow where the following steps take place:

1. Data extraction: A Spark-based Glue ETL job obtains data from a source and stores it in 
intermediate, temporary storage, such as S3. 

2. Data preparation: A second Spark-based Glue ETL job takes the output of Step 1 and prepares 
the dataset for ML usage using ETL transformations.

3. Model creation and training: Using the AWS SDK, a Glue Python Shell job creates an ML 
model hosted in SageMaker and starts a SageMaker training job using the dataset that was 
created in Step 2. Once the model has been trained, a SageMaker inference endpoint is created 
to let other applications use the model.

Interaction with the workflow (starting it and notifying its completion) can be handled with Amazon 
SQS queues and messaging (https://aws.amazon.com/sqs/).

Parts of the pipeline could be replaced by other services if Glue’s capabilities are not enough, although 
orchestration would have to be handled with a different feature since Glue workflows only orchestrate 
Glue resources. The following are some examples:

• The data extraction phase could be handled by any other ETL service in AWS, such as Amazon 
EMR, AWS Batch, or AWS Data Exchange.

• The data preparation phase could potentially be handled better by AWS Glue DataBrew,  
a service specifically designed for visual data preparation. Alternatively, you could also use 
Amazon EMR or AWS Batch.

• Pipeline orchestration can be handled by AWS Step Functions, CloudWatch events, or even 
Lambda functions.

With this, we’ve discussed everything about ML data pipelines using Glue.

Summary
In this chapter, we discussed all aspects of ML within AWS Glue. We talked about Glue ML transforms, 
what they are, how they are trained, and how they can be used. We also discussed AWS SageMaker and 
how it can integrate with Glue resources to accelerate the execution of ML code in notebooks. Finally, 
we analyzed reference architectures and services for ML pipelines using AWS Glue and SageMaker. 

These concepts should have given you a complete overview of how Glue can be used for ML purposes, 
and how Glue can fit into your ML architecture in the AWS cloud. In the next chapter, we will talk 
about the data lake architecture and designing use cases for real-world scenarios.

https://aws.amazon.com/sqs/
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Architecting Data Lakes  

for Real-World Scenarios  
and Edge Cases

We are now well versed in the concept of a data lake, a centralized repository that allows you to store 
all your structured and unstructured data at any scale. Since a data lake primarily focuses on storage, 
it does not require as much processing power as other methods (such as the data warehouse), making 
it easier, faster, and more cost-effective to scale up as data volumes grow.

The data lake is not just a repository – it requires a well-designed data architecture, along with proper 
planning and management. As it is driven by a data-based design, it helps you rapidly ingest raw data 
before any business requirements come into the picture. There are a variety of tools you can use for 
ingesting raw data into a data lake, including ETL tools such as Ab Initio, Informatica, and DataStage.

This chapter mainly covers practical examples of real-world data problems that exhibit certain 
bottlenecks and how to overcome these. By the end of this chapter, you should be familiar with 
common data problems, such as various ETL optimization techniques you can apply with AWS Glue 
to handle large volumes of data, handling a large number of small files, common performance issues 
with join operations involving fact and dimension tables, and how you design a data layout for highly 
selective queries with AWS Glue.

In this chapter, we’re going to cover the following main topics:

• Running a highly selective query on a big fact table using AWS Glue

• Dealing with Join performance issues with big fact and small dimension tables in ETL workloads

• Solving Join problems involving big fact and big dimension tables using AWS Glue
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• Reducing time on read operations involving large-dimension tables using AWS Glue grouping

• Solving S3 eventual consistency problems and faster writes to Amazon S3 for large fact table 
datasets using AWS Glue

Technical requirements
To follow along with the examples in this chapter, you will need the following: 

• Access to GitHub, S3, and the AWS console (specifically AWS Glue, AWS Lake Formation, 
and Amazon S3).

• A computer with Chrome, Safari, or Microsoft Edge installed and the AWS command-line 
interface (AWS CLI): 

 � Regarding the AWS CLI, you can use not only the AWS CLI but also AWS CLI version 
2. In this chapter, the AWS CLI (not version 2) will be used. You can set up the AWS CLI 
(and version 2) by going to https://docs.aws.amazon.com/cli/latest/
userguide/cli-chap-getting-started.html.

• An AWS account and an accompanying IAM user (or IAM role) with sufficient privileges to 
complete this chapter’s activities. We recommend using a minimally scoped IAM policy to 
avoid unnecessary usage and making operational mistakes. You can get the IAM policy for 
this chapter from this book’s GitHub repository, which can be found at https://github.
com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-
Glue. This IAM policy includes the following access: 

 � Permissions to create a list of IAM roles and policies for creating a service role for an AWS 
Glue ETL job 

 � Permissions to read, list, and write access to an Amazon S3 bucket 

 � Permissions to read and write access to Glue Data Catalog databases, tables, and partitions

• An S3 bucket for reading and writing data by AWS Glue. If you haven’t done so yet, you can 
create one via the AWS console (https://s3.console.aws.amazon.com/s3/
home). You can also create a bucket by running the following AWS CLI command: 

aws s3api create-bucket --bucket <your_bucket_name> 
--region us-east-1

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue
https://s3.console.aws.amazon.com/s3/home
https://s3.console.aws.amazon.com/s3/home
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Running a highly selective query on a big fact table using 
AWS Glue
We will start with one of the common data processing use cases, where you would end up scanning 
a large volume of data but it returns a selected value as a result. For example, if you want to find out 
the city with the highest population within the US, it would end up scanning data for more than 
19,000 cities and then returning only one city as a result. Working with a large volume of data comes 
with the challenges of high amounts of processing costs and spending a lot of time scaling them. You 
should know the right techniques for data filtering to avoid any kind of data processing bottlenecks.

In this section, you will learn how to handle highly selective queries with AWS Glue. Let’s say that 
you have a use case to query a big fact table that consists of humongous clickstream data stored in 
Amazon S3 that contains billions of records. The clickstream data stores information that’s been 
collected about a user while they browse through a website or use a web browser. You are looking 
to query the dataset to check how much time a specific customer had spent on a given website at a 
specific time or how many views were generated for a specific product for a given timeframe. These 
are considered highly selective queries. It can be an intense operation and creates a bottleneck when 
it comes to scanning billions of records and returning the data. Under the hood, the Apache Spark 
driver splits the overall query into tasks and sends these tasks to executor processes on different nodes 
of the cluster. To improve query performance, one strategy is to reduce the data that is read by the 
Spark executors. One way to prevent loading data that is not needed is to use Glue partition indexes, 
which reduce the data movement and query processing time. This becomes even more important if 
the executors are not on the same physical machine as the data.

In the next section, you will learn how to use AWS Glue to implement a solution to be able to run highly 
selective queries efficiently. We will demonstrate how to use the Glue partition indexing technique. 
The solution provided uses an AWS Glue crawler to crawl an S3 table and then conduct an analysis 
using Spark SQL queries with Glue interactive sessions, as shown in the following diagram:

Figure 15.1 – Handling a highly selective query with AWS Glue
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As illustrated in the preceding diagram, the solution works as follows:

1. An AWS Glue crawler parses the schema from AWS S3 and registers the table in AWS Glue 
Data Catalog with the metadata.

2. The Glue interactive sessions use Spark SQL and AWS Glue Data Catalog as their external schema 
stores for the newly written data in Amazon S3. You can perform highly selective queries on 
the data by using interactive sessions to query Amazon S3 directly using SQL.

So far, we have understood how you can handle running highly selective queries with AWS Glue with 
Glue’s partition index feature. Now, let’s get hands-on by preparing the test data and running some 
of the sample highly selective queries.

Hands-on tutorial

In this tutorial, we will use the AWS CLI to prepare the test data, create a Glue database and Glue 
crawlers, and define partition indexing on tables to see how it works and helps with highly selective 
queries. Follow these steps:

1. Prepare the test data: We will use a partitioned dataset from a sample clickstream data 
source to work with partition indexing with Glue Data Catalog. You can execute the following 
commands using the AWS CLI. It will take about 6 to 8 minutes to copy the data. Notice that 
we loaded data for customers 1, 2, and 3. Execute the following commands after replacing 
${YOUR_BUCKET_NAME} with your respective AWS S3 bucket:

aws s3 sync s3://aws-jupyterhubtest/glue-book/uservisits_
parquet1/customer=1/ s3://${YOUR_BUCKET_NAME}/input/
clkstreamdata/customer=1/ --exclude "*" --include 
"visitYearMonth=1998*"

aws s3 sync s3://aws-jupyterhubtest/glue-book/uservisits_
parquet1/customer=2/ s3://${ YOUR_BUCKET_NAME }/input/
clkstreamdata/customer=2/ --exclude "*" --include 
"visitYearMonth=1998*"

aws s3 sync s3://aws-jupyterhubtest/glue-book/
uservisits_parquet1/customer=3/ s3://${BUCKET_NAME}/
input/clkstreamdata/customer=3/ --exclude "*" --include 
"visitYearMonth=1998*"

2. Create the database: The following command will create a Glue database called serverless_
glue. This database is created using the AWS CLI for the partition index:

aws glue create-database \

    -- serverless_glue "{\"Name\":\"workload_
partitioning\"}" \
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Note
You can also use the Glue console to create partition indexed tables. For more information, 
go to https://docs.aws.amazon.com/glue/latest/dg/partition-
indexes.html#partition-index-creating-table.

Go to the AWS Glue console and click Databases on the left. You will see a database called 
serverless_glue.

3. Create the crawler: The following command will create a Glue crawler called crawl-table-
without-partition-index, a database called serverless_glue, and an S3 path 
called s3://${BUCKET_NAME}/input/clkstreamdata/:

aws glue create-crawler \

--name crawl-table-without-partition-index \

--role ${YOUR_GLUE_SERVICE_ROLE} \

--database-name serverless_glue \

--table-prefix tbl_without_index_ \

--targets "{\"S3Targets\": [{\"Path\": \"s3://${YOUR_
BUCKET_NAME}/input/clkstreamdata /\"} ]}"

The following command will create a Glue crawler called crawl-table-with-
partition-index, a database called serverless_glue, and an S3 path called 
s3://${BUCKET_NAME}/input/clkstreamdata/:

aws glue create-crawler \

--name crawl-table-with-partition-index \

--role ${YOUR_GLUE_SERVICE_ROLE} \

--database-name serverless_glue \

--table-prefix tbl_with_index_ \

--targets "{\"S3Targets\": [{\"Path\": \"s3://${YOUR_
BUCKET_NAME}/input/clkstreamdata /\"} ]}"

Verify that the crawlers have been created successfully in the Glue console.

4. Start the crawlers: Now that we have created both crawlers, we will run the crawlers using the 
AWS CLI. It will take a minute or two for each crawler to run. You can also start them in the 
Glue console, as you did earlier. You can run them one by one or in parallel:

aws glue start-crawler --name crawl-table-without-
partition-index

aws glue start-crawler --name crawl-table-with-partition-
index
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Once the crawlers have finished running, we can view the results by clicking Tables on 
the left of the page. We should see two new tables that were created by the crawlers: tbl_
with_index_clkstreamdata and tbl_without_index_clkstreamdata.

Click on the tbl_with_index_clkstreamdata and tbl_without_index_
clkstreamdata tables – you will see the table schema that was automatically generated 
by the crawler based on the Parquet files. Notice the partition columns that were identified 
by both crawlers in both table definitions.

5. Add a partition index to a table: You can define partition indexes for a given table in AWS 
Glue Data Catalog at any point in time. You can use the CreateTable API with a required 
list of PartitionIndex objects to create a brand-new table in AWS Glue Data Catalog. For 
an existing table in AWS Glue Data Catalog, you can use the CreatePartitionIndex 
API to add partition indexes. In total, you can have three partition indexes on a table. For the 
tbl_with_index_clkstreamdata table, the possible index that was identified by the 
crawler is (customer, visityearmonth).

Run the following command in the CLI to add a partition to the tbl_with_index_
clkstreamdata table. We will add a partition index using both partition columns that 
were identified by the crawler:

aws glue create-partition-index \

--database-name serverless_glue \

--table-name tbl_with_index_clkstreamdata \

--partition-index 
Keys=customer,visityearmonth,IndexName=idxbycustvym

Click tbl_with_index_clkstreamdata to review the table schema. On the 
schema page, click the Partitions and indices button at the top right to validate the partition 
index that was created in the previous step.

To ensure that the partition index has been created, you can check the status column. First, it will 
show its status as Creating. This process can take some time, depending on how many partitions are 
present for the given table. Once the status is Active, you can test the partition index using a Glue 
interactive session (a Spark notebook). 

Testing the partition index via a Spark notebook

Now that our partition index has been created, we will query the dataset in AWS Glue Data Catalog 
using a Glue interactive session. Follow these steps to run spark-sql queries against the tables 
that were created in the previous section:

1. Open an interactive session from the AWS Glue console and initiate a SparkSession:

Spark
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2. Run select against the serverless_glue.tbl_without_index_clkstreamdata 
table. This table has no partition index on it. Capture the time to run using the %%time Spark 
magic command:

%%time

%%sql

select count(*) 

from serverless_glue.tbl_without_index_clkstreamdata 

where customer = 2 and visityearmonth = 199210 

3. Run select against the serverless_glue.tbl_with_index_clkstreamdata 
table. This table has a partition index on it. Capture the time to run using the %%time Spark 
magic command:

%%time

%%sql

select count(*) 

from serverless_glue.tbl_with_index_clkstreamdata 

where customer = 2 and visityearmonth = 199210 

4. Notice the difference between the wall time for the same query targeting two tables.

5. The results of the query are the same. The queries have the same filter applied to the same 
dataset on S3 but the execution times it took to run the queries are different. The query against 
the serverless_glue.tbl_with_index_clkstreamdata table was completed 
much faster than the query against the serverless_glue.tbl_without_index_
clkstreamdata table.

6. In a scenario where no partition index is present on the serverless_glue.tbl_
without_index_clkstreamdata table, AWS Glue will make a GetPartitions 
API call with all the partitions present in the table and then filter the partitions that were used 
in the query expression. These highly selective queries without partition indexes can result 
in higher I/O because the number of partitions typically increases over time, whereas using 
partition indexes makes a great performance optimization technique. In our test case, the 
serverless_glue.tbl_without_index_clkstreamdata table was loaded 
with three times more partitions than when querying serverless_glue.tbl_with_
index_clkstreamdata. This becomes even more evident when you have more partitions 
than what was provided by our sample dataset.

In this section, you learned how to perform highly selective queries on a big fact table using Glue’s 
partition index feature. In the next section, we will cover another real-world use case scenario that 
deals with performance issues when it comes to performing Join operations between a big fact and a 
small dimension table in ETL pipelines.
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Dealing with Join performance issues with big fact and small 
dimension tables in ETL workloads
In a scenario where you are joining a big fact table with a small dimension table, Spark can apply the 
join operation using two different join techniques – it can use a Sort Merge/Shuffle Hash join if both 
tables are bigger or a Broadcast join if one of the datasets for the underlying table is small enough to 
be stored in the Spark memory of all executors. 

A broadcast join can significantly increase performance and helps with optimizing join operations. 
A join operation can result in a large data shuffle across the network between the different executors 
running on multiple workers. This leads to out-of-memory (OOM) errors or data spilling to physical 
disks on the respective workers. While using a broadcast join, you must ensure the smaller table is 
broadcasted to the executors running on the worker nodes. By doing so, each of the executors running 
on the workers will be capable enough to handle these join operations between the big fact table and 
the small dimension table. A broadcast join will be automatically applied if the dimension table is 
smaller than 10 MB. You can still enforce a broadcast join and let Spark know which table it needs 
to be applied to. 

The following code shows how to use a join operation between a big fact table and a small dimension 
table and ensure the broadcast join is used: 

val ClickstreamFactDF = ClickstreamFactRDD.toDF

val SessionDimensionDF = SessionDimensionRDD.toDF

// Applying Broadcast

val tmpSessionDimension = broadcast(SessionDimensionDF.
as("SessionDimension"))

val joinedDF = ClickstreamFactDF.
join(broadcast(tmpSessionDimension), 

   $"Session_key" === $"S_key",  // join by ClickstreamFact.
depID == SessionDimension.id 

   "inner")

// Show the explain plan and confirm the table is marked for 
broadcast

joinedDF.explain()

== Physical Plan ==

*BroadcastHashJoin [Session_key#14L], [S_key#18L], Inner, 
BuildRight
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:- *Range (0, 100, step=1, splits=8)

+- BroadcastExchange HashedRelationBroadcastMode(List(input[0, 
bigint, false]))

   +- *Range (0, 100, step=1, splits=8

Now, let’s look at an example to understand whether you should use broadcasting or not. 

In this exercise, you will be joining two tables: clickstream_fact_table and session_
dimension_table. First, let’s see how big they are:

clickstream_fact_table.count // #rows 1,201,233,333

Session_dimension_table.count // #rows 2,922,556

Now, we can try to perform a join operation without broadcasting to see how long it takes:

val t0 = System.nanoTime()

// Create the Execution Plan

clickstream_fact_table = clickstream_fact_table.join(session_
dimension_table, 

              clickstream_fact_table.col("session_key")  === 
session_dimension_table.col("s_key"))

// Perform an action to run the execution

Clickstream_fact_table.count

val t1 = System.nanoTime()

println("Elapsed time: " + (t1 - t0)/10e8 + "s")

Output: Elapsed time: 215.115751969s

Now, what happens if we broadcast the dimension table? By making a simple addition to the join 
operation – that is, replacing the dimension_table variable with the broadcast (dimension_
table), we can force Spark to handle our tables using a broadcast:

val t0 = System.nanoTime()

// Create the Execution Plan

Clickstream_fact_table = clickstream_fact_table.
join(broadcast(session_dimension_table),clickstream_fact_table.
col("session_key") === session_dimension_table.col("s_key"))



Architecting Data Lakes for Real-World Scenarios and Edge Cases378

// Perform an action to run the execution

Clickstream_fact_table.count

val t1 = System.nanoTime()

println("Elapsed time: " + (t1 - t0)/10e8 + "s")

Output: Elapsed time: 61.1358s

Using the broadcast join between a big fact table and a small dimension table resulted in 70% faster 
execution. When you use a broadcast join with a small-sized table, you need to ensure it will remain 
small to medium in size in the future so that you don’t run into OOM exceptions or make your 
application code problematic.

In this section, you learned how to deal with Join performance issues when it comes to performing 
join operations between a large fact table dataset and a small dimension table dataset. We explained the 
concept of a broadcast join and how useful it can be in these scenarios since it saves a lot of execution 
time and cost. In the next chapter, we will learn how to solve an edge-case problem involving using 
a join operation between a large fact table and a large-dimension table.

Solving Join problems involving big fact and big 
dimension tables using AWS Glue
Whether you are a data engineer, big data architect, or business analyst, one thing you need to do is 
scale your data processing and ETL batch workloads. In this section, we are going to talk about one of 
Glue’s Spark runtime optimization features: workload partitioning with bounded execution. This can 
help you handle join operations between a large fact table and a dimension table. We will also provide 
a hands-on tutorial to demonstrate the difference this feature can make concerning performance. This 
feature works in conjunction with AWS Glue bookmarks, which we discussed in Chapter 2, Introduction 
to Important AWS Glue Features. It can help you break down your complex and humongous workloads 
by bounding the execution of the respective Spark applications. In layman’s terms, you can partition 
your ETL workloads by putting a restriction in place for each of these independent workloads to 
process a certain number of files sequentially or in parallel. The following diagram depicts an ETL 
architecture for this use case:
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Figure 15.2 – Handling join operations between a large fact table and dimension tables

Keeping this architecture in mind, let’s talk about a scenario where you want to process and perform 
join operations between a big fact table (NYC taxi trips fact dataset) and a dimension table (payments 
dimension dataset) and write the resultant data to the target – Amazon S3. In our experience, some of 
the common errors you can primarily run into while executing this use case are OOM issues with a 
Spark driver as a result of listing billions of files in Amazon S3 for the fact table, or OOM issues with 
a Spark executor as a result of data skew in the fact table. We will show you how to handle these edge 
case scenarios using workload partitioning. This can help you avoid these problems by setting up the 
bounded execution for Spark applications.

In the next section, we will see how the workload partitioning feature performs when it comes to 
performing join operations between a large fact table and a dimension table and how it can be optimized. 
You can follow the steps provided to create the problematic use case or just follow the subset of steps 
provided in the Solution section.

Hands-on tutorial

To create a problematic scenario for the use case we are trying to solve, we used a public dataset called 
NYC TLC data, which is available at https://registry.opendata.aws/nyc-tlc-
trip-records-pds/. We did some pre-processing on the original dataset to create our test 
datasets for the fact and dimension tables. Our setup included two large datasets – one for the NYC 
taxi trips fact dataset, which contains 1.3 million objects totaling 42 GB, and another for the NYC taxi 
trips payment dataset, which contains 1.3 million objects with a total size of 17 GB.

https://registry.opendata.aws/nyc-tlc-trip-records-pds/
https://registry.opendata.aws/nyc-tlc-trip-records-pds/
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Now, let’s create the problematic scenario step by step and implement the solution. In this section, we 
will use the AWS CLI to create a Glue database and Glue crawlers and define workload partitioning 
while reading data using Glue DynamicFrames to see how it works and helps with join operations 
between a large fact and a dimension table. Follow these steps:

1. Prepare the test data: We will use a partitioned dataset from a sample NYC taxi data source 
to work with workload partitioning. You can execute the following commands using the 
AWS CLI. It will take about 6 to 8 minutes to copy the data. Notice that we loaded data for a 
couple of years from these sample datasets. Execute the following commands after replacing 
${YOUR_BUCKET_NAME} with your respective AWS S3 bucket:

A. Copy the fact table data: To create some sample datasets, run the following command to 
copy the data for multiple years ranging from year=2010 to year=2020:

aws s3 cp --recursive s3://aws-jupyterhubtest/glue-book/
trips_fact_data/ s3://aws-isgaur-logs/book_test_data/
trips_fact_data/ --exclude "*" --include "year=2010/*" 
--endpoint-url https://s3-accelerate.amazonaws.com

B. Copy the dimension table data: To create some sample datasets, run the following command 
to copy the data for multiple years ranging from year=2010 to year=2020:

aws s3 cp --recursive s3://aws-jupyterhubtest/glue-book/ 
payments_dim_data/ s3:// ${YOUR_BUCKET_NAME}/input/
payments_dim_data/ --exclude "*" --include "year=2010/*" 
--endpoint-url https://s3-accelerate.amazonaws.com

2. Create the database: The following command will create a Glue database called workload_
partitioning. This database will be created using the AWS CLI for demonstrating workload 
partitioning. Run the following command in the AWS CLI.

Go to the AWS Glue console and click Databases on the left. You will see a database called 
workload_partitioning. Replace profile and endpoint per the region 
where you are running this command:

aws glue create-database \

    --database-input "{\"Name\":\"workload_
partitioning\"}" \

    --profile my_profile \

    --endpoint https://glue.us-west-2.amazonaws.com
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3. Create the crawler: The following command will create a Glue crawler called crawl-nyc-
trips-taxi-fact-table, a database called workload_partitioning, and an 
S3 path called s3://${BUCKET_NAME}/input/trips_fact_data/:

aws glue create-crawler \

--name crawl-nyc-trips-taxi-fact-table \

--role ${YOUR_GLUE_SERVICE_ROLE} \

--database-name workload_partitioning \

--targets "{\"S3Targets\": [{\"Path\": \"s3://${YOUR_
BUCKET_NAME}/input/trips_fact_data/\"} ]}"

The following command will create a Glue crawler called crawl-nyc-trips-
payments-dim-table, a database called workload_partitioning, and an S3 
path called s3://${BUCKET_NAME}/input/payments_dim_data/:

aws glue create-crawler \

--name crawl-nyc-trips-payments-dim-table \

--role ${YOUR_GLUE_SERVICE_ROLE} \

--database-name workload_partitioning \

--targets "{\"S3Targets\": [{\"Path\": \"s3://${YOUR_
BUCKET_NAME}/input/payments_dim_data/\"} ]}"

Verify that the crawlers were created successfully in the Glue console.

4. Start the crawlers: Once we have created both crawlers, we will run the crawlers using the 
CLI. It will take a minute or two for each crawler to run. You can also start them in the Glue 
console, as you did earlier. You can run them one by one or in parallel:

aws glue start-crawler --name crawl-nyc-trips-taxi-fact-
table

aws glue start-crawler --name crawl-nyc-trips-payments-
dim-table

Once the crawlers have finished running, you can view the results by clicking Tables 
on the left of the page. You should see that two new tables were created by the crawlers: 
payments_dim_data and trips_fact_data.

Click on the trips_fact_data and payments_dim_data tables to see the table 
schema that was automatically generated by the crawler based on the Parquet files. Notice 
that the partition columns that were identified by both crawlers are in both table definitions.
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5. Run a Glue job: By now, you know how to create a Glue job. Once a job has been created, we can 
enable AWS Glue job bookmarks to use with AWS Glue DynamicFrames to take advantage of 
incremental processing. The sample Spark application code can be found in this book’s GitHub 
repository at https://github.com/PacktPublishing/Serverless-ETL-
and-Analytics-with-AWS-Glue/tree/main/Chapter15. This code does 
not use bounded execution just yet because we are going to demonstrate what happens when 
we run Spark applications and perform join operations between a large fact and a dimension 
table. We will apply the bounded execution after the first iteration, hence executing it using 
workload partitioning to conclude the demo. 

When we executed the first iteration of this code as is without bounded execution, the Spark driver 
struggled with the memory due to a large number of objects in both the fact and dimension tables. 
There were 1.6 million objects in trips_fact_data, whereas payments_dim_data had 
approximately 1 million objects. In this scenario, the Spark driver must keep a track of the objects in 
its memory and, at the same time, keep a track of the number of Spark tasks. It eventually failed with 
a Spark driver OOM error: 

Figure 15.3 – Spark driver memory peaked above 50% and led to OOM

To conclude, you can check the Spark driver and executor memory profile using AWS Glue job metrics. 
The job metric graph will look like what’s shown in the preceding screenshot.

Solution

To overcome this Spark driver OOM error, we modified the previously written code so that it uses 
workload partitioning and includes the boundedFiles parameter as additional_options. 
We will only process 95,000 files from the trips_fact_data and payments_dim_data 
data sources. As the Spark application will only process 95,000 files, hence it will put less pressure on 
the Spark driver. Bounded execution keeps track of the files and partitions with the specified bound 
concerning the number of files. One thing to note here is bounded execution works well along with job 
bookmarks and we need to ensure it’s enabled beforehand. As we already know, job bookmarks keep 
track of already processed files and partitions from the source data based on the timestamp and path.

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter15
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter15
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The following code snippet shows the changes that can be made in the code to implement workload 
partitioning with bounded execution: 

tripsfactDyf = glueContext.create_dynamic_frame.from_
catalog(database = "trips_fact_data", table_name = "trips_fact_
data", transformation_ctx = "datasource0", additional options = 
{"boundedFiles" : "95000"} )

paymentDimDyf = glueContext.create_dynamic_frame.from_
catalog(database = "workload_partitioning", table_name = 
"payments_dim_data", transformation_ctx = "datasource0"", 
additional options = {"boundedFiles" : "95000"})

Once these changes have been made, we can rerun our Spark application. We will find that the Spark 
driver memory consistently stayed below 50% with a peak of 25% but that the Spark executors struggled 
with heavy memory usage. This caused the job to eventually fail with an executor OOM error:

Figure 15.4 – Spark driver memory peaked below 50% but executors are stuggling with memory

Now, let’s use a more conservative bound for the number of files to be processed in a given iteration. 
Here, we changed the boundedFiles value to 45,000 files:

tripsfactDyf = glueContext.create_dynamic_frame.from_
catalog(database = "trips_fact_data", table_name = "trips_fact_
data", transformation_ctx = "datasource0", additional_options = 
{"boundedFiles" : "45000"} )

paymentDimDyf = glueContext.create_dynamic_frame.from_
catalog(database = "workload_partitioning", table_name = 
"payments_dim_data", transformation_ctx = "datasource0"", 
additional_options = {"boundedFiles" : "45000"})
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This time, the Spark application ran without any driver or executor memory problems. Based on your 
use case, you can perform benchmarking to find the optimal value for boundedFiles that would 
work for your workloads. To conclude with an optimal value, you may require multiple iterations of 
the Spark application to be executed. One of the other great advantages of using workload partitioning 
is that it allows you to execute multiple Spark applications in parallel for the same dimension and fact 
datasets. Let’s assume that, in your production environment, you have a strict SLA to meet for data 
processing. You can optimize this problem by creating more than one copy of the Glue job. Then, to 
process a subset of the data from the input data sources, you can take advantage of Glue’s push-down 
predicate with bounded execution. 

The following are two pieces of code from two different Glue jobs that are processing data from the 
same trips_fact_data and payments_dim_data tables. However, each of these are from 
different input partitions – that is, 2020 and 2021, respectively: 

• The following code is for Glue job 1: 

tripsfactDyf = glueContext.create_dynamic_frame.
from_catalog(database = "trips_fact_data", table_
name = "trips_fact_data", transformation_ctx = 
"datasource0",push_down_predicate=("year=2020"), 
additional_options = {"boundedFiles" : "45000"} )

paymentDimDyf = glueContext.create_dynamic_frame.from_
catalog(database = "workload_partitioning", table_name = 
"payments_dim_data", transformation_ctx = "datasource0"", 
,push_down_predicate=("year=2020"), additional_options = 
{"boundedFiles" : "45000"})

• The following code is for Glue job 2: 

tripsfactDyf = glueContext.create_dynamic_frame.
from_catalog(database = "trips_fact_data", table_
name = "trips_fact_data", transformation_ctx = 
"datasource0",push_down_predicate=("year=2021"), 
additional options = {{"boundedFiles" : "45000"} )

paymentDimDyf = glueContext.create_dynamic_frame.from_
catalog(database = "workload_partitioning", table_name = 
"payments_dim_data", transformation_ctx = "datasource0"", 
,push_down_predicate=("year=2021"), additional options = 
{{"boundedFiles" : "45000"})

Once these jobs have been created, you can use AWS Glue workflows to execute them in parallel.
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In this section, you learned how to perform a join operation between a large fact table and a large-
dimension table using Glue’s workload partitioning feature. You also learned how to divide large 
workloads into partitioned workloads so that you can read from a single data source in parallel, thus 
reducing the overall time for such workloads. In the next section, you will learn how to process the 
data in a large-dimension table, which can contain millions of small files, in Amazon S3.

Reducing time on read operations using AWS Glue 
grouping
Let’s assume you have an edge use case where you have over 1 billion rows in one of your dimension 
table data sources available in Amazon S3 and that you have written some ETL code in a Glue job. 
This code reads millions of small files with billions of rows with a standard Glue worker, does some file 
conversion, and writes the files back to S3. In this section, you will learn how to deal with expensive 
Spark read operations, especially while reading the data from large-dimension tables with AWS Glue.

As we know, Glue manages provisions and manages the resources that are required to perform ETL 
for you. That being said, when you encounter OOM exceptions thrown by the Spark driver, we need 
to understand how Spark works to resolve them. Once the Glue job is executed, the Glue console 
provides you with the ETL metrics and memory profiles for each job run you execute, which helps 
you identify job abnormalities and performance issues, similar to the one shown here:

Figure 15.5 – ETL metrics showing performance issues while reading millions of small files

As you can see, the memory of the Spark driver (the blue line) exceeds the threshold of 50%, and 
once it reaches 100, the job fails with an OOM exception and is killed. The executors (the green line) 
haven’t even started to use any memory yet. In this instance, the transformation that was performed 
in ETL isn’t the problem here. There is no data movement and the Spark tasks haven’t been distributed 
to the executors yet.
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The problem is that Spark tries to make large recursive calls to the S3 list method. The S3 list method 
becomes too expensive in this scenario since there are too many small files in the S3 dataset – in this 
case, your large-dimension table. As we know, the Spark driver’s job is to record the file metadata it 
reads and store it in the driver’s memory. This leads to OOM errors with the Spark driver. 

The best practice for solving this problematic use case while dealing with large-dimension tables is 
to use the grouping feature from Glue. When enabled and used with a Glue DynamicFrame, it allows 
Spark to form a group for multiple small files and assign this group of files to a single Spark task rather 
than individual files. Using this feature, you can significantly reduce the memory pressure on the 
Spark driver as it stores significantly less information in memory about fewer tasks. This reduces the 
probability of OOM exceptions while reading from these large-dimension tables. The downside of not 
using this feature is that Spark would process individual files using a single Spark task. Eventually, the 
Spark driver would get the status of each of these Spark tasks individually, which would overwhelm 
the Spark driver and lead to an OOM error.

Now, let’s learn how to configure this feature within a Glue ETL job and take advantage of it. The 
following boilerplate code examples for Scala and PySpark use the AWS Glue DynamicFrame API 
in an ETL script with the configuration that is required to enable the AWS Glue grouping feature: 

#Scala Example when you are reading directly from Amazon S3

glueContext.getSourceWithFormat(

    connectionType = "s3",

    options = JsonOptions(Map("paths" -> s3Paths,

    "groupFiles" -> "inPartition", 

    "useS3ListImplementation" -> true)),

    format = "xml",

    formatOptions = JsonOptions(Map("rowTag" -> "our-row-tag"))

  ).getDynamicFrame()

#PySpark Example when you are reading directly from Amazon S3

 df = glueContext.create_dynamic_frame.from_options(

   "s3", {'paths': ["s3://s3path/"],

   'recurse':True,

   'groupFiles': 'inPartition',

   'groupSize': '1048576'},

    format="json")
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If you want to read the data directly from AWS Glue Catalog, you can set grouping configuration 
parameters in the following two ways:

• Edit the table definition and provide these parameters as key values:

Figure 15.6 – Editing table details in Glue Data Catalog
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• Provide these parameters while creating a DynamicFrame within the ETL script:

#PySpark Example

datasource = Gluecontext.create_dynamic_frame_from_
catalog(

       database= "many_files_dataset",

             table_name ="Json_2k_million",

             additional_options= {"groupsize" 
:1024*1024*1024},"groupFiles": "acrossPartition")

In the preceding boilerplate scripts, there are some important things to note:

• The configurations you can tweak per your use case are groupFiles, groupSize, and 
recurse. AWS Glue enables grouping when you have more than 50,000 input files in the 
Amazon S3 data source by default. 

• You can still set groupFiles to inPartition if you want to group a large number of 
small files in Amazon S3 data sources and perform benchmarking. 

• groupSize is purely an optional configuration that allows Spark tasks to process a certain 
amount of data while reading and then process it as a single AWS Glue DynamicFrame partition. 
Be careful when using a considerably small or large groupSize values because it can result 
in significant task parallelism or underutilization of the resources in the Glue environment.

• You can use the recurse config with grouping, which allows you to recursively read all the 
files in the subdirectories for the Amazon S3 path provided.

• You can use useS3ListImplementation along with grouping to help resolve OOM 
exceptions.

In this section, you learned how to solve a problematic use case – that is, optimizing read operations 
for the large-dimension table. You experimented with using the AWS Glue grouping technique, which 
helps solve small file problems that can run into OOM issues. You learned how to use this configuration 
while reading the data from Amazon S3 and Glue Data Catalog. Using grouping, you can ensure the 
ETL pipelines do not run into these corner cases and build a scalable ETL pipeline.
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Solving S3 eventual consistency problems using AWS Glue
Let’s assume you have a use case where you are dealing with writing huge data into Amazon S3 – that 
is, you have a clickstream fact table dataset in Parquet format but the Spark application fails with an 
exception File not found error. When running Spark jobs on Amazon S3, Spark writes the output to 
a _TEMPORARY prefix in S3, then moves the data from _TEMPORARY to its final destination. In 
S3, a move is a rename operation. If the move happens immediately after the write operation, there is 
a chance of eventual consistency, which causes this move operation to fail. You will see that it failed 
due to a Rename failed or File not found error message. In this section, you will learn how to handle 
these problematic scenarios and fix them in the long term. The following diagram shows the S3 
eventual consistency model:

Figure 15.7 – S3 eventual consistency model

First, let’s understand how the S3 eventual consistency model works. The important concept to 
understand here is that the file rename process in a POSIX-based filesystem is a metadata-only 
operation. Only the pointer changes and the file remain as is on disk. For example, I have a file called 
abc.txt and I want to rename it xyz.txt. This is an instantaneous and atomic process. The xyz.
txt file’s last modified timestamp remains the same as the abc.txt file’s last modified timestamp. 
On the other hand, in AWS S3 (the object store), the file that was renamed under the hood is a copy 
followed by a delete operation. The source file is copied to the destination and then the source file is 
deleted. So, aws s3 mv changes the last-modified timestamp of the destination file, unlike what 
happens in the POSIX filesystem. The metadata here is a key-value store where the key is the file 
path and the value is the content of the file. There is no such process as changing the key and getting 
this done immediately. The renaming process depends on the size of the file. If there is a directory 
rename (there is nothing called directory in S3 so for simplicity, we can assume a recursive set of files 
is a directory), then it depends on the number of files inside the directory, along with the size of each 
file. So, in a nutshell, renaming is a very expensive operation in S3 compared to this being done in a 
normal filesystem. S3 comes with two kinds of consistency: read after write and eventual consistency. 
In some cases, it results in a File not found error, files being added and not listed, or files being deleted 
or not removed from the list.
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To deal with this problem, you have two options:

• Use glueparquet.

• Use an S3-optimized output committer.

Let’s look at each of these options in detail.

Using glueparquet

Using glueparquet as the output format will internally change the output committer to 
DirectOutputCommiter, which does not do renames. To understand this concept better, let’s 
see what the PARQUET file looks like under the hood:

Figure 15.8 – Parquet file format internals

Let’s talk about the preceding figure. The following are the generic properties for a Parquet file format 
that you should be familiar with. They help you choose between the different file formats that are 
available in the big data ecosystem:

• Parquet file uses a magic number (4 bytes) that acts as a separator and helps identify the 
beginning and end of the file.

• Following the first magic number, there are several row groups and then a footer.
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• FileMetaData is placed in the footer because the Parquet file metadata is written once the 
actual data is written. The row groups contain the data.

• The Parquet file contains three types of metadata: file metadata, column (chunk) metadata, 
and page header metadata.

Apache Parquet format is typically faster for reads compared to writes because it has the columnar 
storage layout and also offers a precomputed schema that is written along with the data. Now, let’s 
understand why a regular Parquet file format can cause issues while writing large fact table datasets 
in Amazon S3. The problem is that, when using the Parquet file format with a Glue DynamicFrame, 
Spark does not know the complete schema. Hence, the number of buffers is unknown. This leads to an 
additional pass over the dataset, which is an expensive operation and leads to more time in the overall 
execution. This may lead to failures during the write operation. By introducing glueparquet when 
it’s time to write each executor, you can compute the schema of the data it has in memory. Doing a pass 
over the data in memory is way faster than in disk, so there are no performance issues. The executor 
creates one buffer for each column group. As rows are being written, if a row with a new column comes 
in, new buffers are created. When the buffers are full, data is written to disk: 

Figure 15.9 – Illustration of a glueparquet write
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It uses a different committer called DirectOuputCommitter that also does not do any rename 
operations, hence saving a significant amount of I/O processing while performing write operations in 
Spark. When the data is available to write, the writer computes and merges the schema dynamically 
at runtime, leading to faster job runtimes. In comparison to a regular Apache Parquet writer, it does 
not perform an extra scan over the input dataset to infer the schema. It enables schema evolution by 
allowing you to add and delete new columns. The following is a boilerplate PySpark script example 
that demonstrates how to use the glueparquet format option:

glueContext.write_dynamic_frame.from_options(

frame = dyFrame,

     connection_type = "s3",

     connection_options = {"path": output_dir},

     format = "glueparquet",

     format_options = {"compression": "snappy",

     blockSize = block_size, 

     pageSize = page_size})

The following default values are set for the configurations:

• compression is "snappy"

• blockSize is 128 MB

• pageSize is 1 MB

blockSize specifies the size of a row group that is buffered in memory, while pageSize specifies 
the size for compression that will be used. When the read operation is executed, each page can be 
decompressed independently. It is the smallest unit in a Parquet file that must be read fully to access 
a single record. 

S3-optimized output committer

Now, let’s talk about the last option that we have to deal with this problem. You can use the EMRFS 
S3-optimized committer, which is an alternative OutputCommitter implementation that is 
optimized for writing Parquet files to Amazon S3 when using EMRFS. Glue can use EMR’s S3-optimized 
output committer in Spark applications that use Spark SQL, DataFrames, or datasets to write Parquet 
files. In terms of performance, it is considered better than DirectOutputCommiter, which we 
discussed in the previous section.
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Now, let’s discuss the problems that the S3-optimized output committer can address:

• List and rename operations are considered expensive in Spark applications while doing write 
operations. This committer helps improve a Spark application’s performance by avoiding both 
of these operations during the job and task commit phases.

• Glue ETL jobs run on the Apache Spark framework, which writes all the output to a temporary 
directory in S3 by default. When all the executors have finished writing, the files are moved 
from this temporary directory to your selected destination path.

• S3 does not use the concept of directories (everything is a named prefix), so this move operation 
is just a rename to change the file’s prefix. Sometimes, the jobs fail while writing the data to S3. 

The best way to address this is to enable the EMRFS S3-optimized committer, which is available in Glue. 
It removes such errors by using optimized S3 write logic. Whenever you or one of your applications 
writes a file to S3, there’s a very small time window where the file needs to be propagated throughout 
S3’s backend system. If you try to access that file within that window of time (as in, immediately after 
writing it), there’s a chance the file has not finished propagating and S3 will return an error.

To enable this feature with AWS Glue, you can supply the necessary key pair value via the AWS Glue 
console when creating or updating an AWS Glue job. Setting the value to true enables the committer. 
By default, the flag is turned off:

Key       :   --enable-s3-parquet-optimized-committer.

Value : true

This feature is available with Glue 2.0 onward and is used by default in Glue 3.0. There are certain 
scenarios where this committer will not be used, even if you have enabled it. Please check https://
docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-committer-
reqs.html for more details.

In this section, you learned how to solve Amazon S3’s eventual consistency problem and enable faster 
write operations, which involves writing data to Amazon S3 for large fact table datasets. You learned 
about what the S3 eventual consistency model is all about and how it works. Then, we explained the 
solutions to this problem by using either the glueparquet file format or an S3-optimized committer 
with AWS Glue. For both these options, you understood the different file committers that are involved 
to help you choose one over the other in real-world data processing problems.

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-committer-reqs.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-committer-reqs.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-committer-reqs.html
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Summary
In this chapter, you learned about some of the best practices for dealing with real-world problems 
and how to run highly selective queries on big fact tables. After that, you learned how to run highly 
selective queries by experimenting with the Glue partition indexing technique, which allows you to 
query humongous fact tables and make data retrieval smooth. Next, you learned how to deal with join 
performance issues between a large fact table and a small dimension table. Here, you learned how to 
use the broadcast mechanism to optimize the join operation. 

After that, you learned how to deal with dimension tables when something goes wrong and you don’t 
have a way to partition the workloads into smaller workloads. Here, you applied a Glue bounded 
execution with Glue bookmarks to restrict the number of files that can be processed with incremental 
workloads. For the edge case scenario, where you read a large-dimension table, you learned how to 
configure Glue jobs to use the grouping technique, which put less pressure on the Spark driver, thus 
avoiding OOM issues. Lastly, you learned how to deal with S3 eventual consistency and the best 
practice to handle faster writes to Amazon S3 for large fact tables.
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