

Serverless ETL and Analytics with
AWS Glue

Your comprehensive reference guide to learning about AWS
Glue and its features

Vishal Pathak

Subramanya Vajiraya

Noritaka Sekiyama

Tomohiro Tanaka

Albert Quiroga

Ishan Gaur

BIRMINGHAM—MUMBAI

Serverless ETL and Analytics with AWS Glue
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Publishing Product Manager: Reshma Raman
Senior Editor: Tazeen Shaikh
Content Development Editor: Sean Lobo
Technical Editor: Devanshi Ayare
Copy Editor: Safis Editing
Project Coordinator: Farheen Fathima
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Jyoti Chauhan
Marketing Coordinator: Nivedita Singh

First published: August 2022

Production reference: 1220722

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80056-498-5

www.packt.com

http://www.packt.com

C o n t r i b u t o r s

About the authors
Vishal Pathak is a Data Lab Solutions Architect at AWS. Vishal works with customers on their use
cases, architects solutions to solve their business problems, and helps them build scalable prototypes.
Prior to his journey in AWS, Vishal helped customers implement business intelligence, data warehouse,
and data lake projects in the US and Australia.

Subramanya Vajiraya is a Big data Cloud Engineer at AWS Sydney specializing in AWS Glue. He
obtained his Bachelor of Engineering degree specializing in Information Science & Engineering from
NMAM Institute of Technology, Nitte, KA, India (Visvesvaraya Technological University, Belgaum)
in 2015 and obtained his Master of Information Technology degree specialized in Internetworking
from the University of New South Wales, Sydney, Australia in 2017. He is passionate about helping
customers solve challenging technical issues related to their ETL workload and implementing scalable
data integration and analytics pipelines on AWS.

Noritaka Sekiyama is a Senior Big Data Architect on the AWS Glue and AWS Lake Formation team.
He has 11 years of experience working in the software industry. Based in Tokyo, Japan, he is responsible
for implementing software artifacts, building libraries, troubleshooting complex issues and helping
guide customer architectures.

Tomohiro Tanaka is a senior cloud support engineer at AWS. He works to help customers solve their
issues and build data lakes across AWS Glue, AWS IoT, and big data technologies such Apache Spark,
Hadoop, and Iceberg.

Albert Quiroga works as a senior solutions architect at Amazon, where he is helping to design and
architect one of the largest data lakes in the world. Prior to that, he spent four years working at AWS,
where he specialized in big data technologies such as EMR and Athena, and where he became an
expert on AWS Glue. Albert has worked with several Fortune 500 companies on some of the largest
data lakes in the world and has helped to launch and develop features for several AWS services.

Ishan Gaur has more than 13 years of IT experience in software development and data engineering,
building distributed systems and highly scalable ETL pipelines using Apache Spark, Scala, and various
ETL tools such as Ab Initio and Datastage. He currently works at AWS as a senior big data cloud
engineer and is an SME of AWS Glue. He is responsible for helping customers to build out large,
scalable distributed systems and implement them in AWS cloud environments using various big
data services, including EMR, Glue, and Athena, as well as other technologies, such as Apache Spark,
Hadoop, and Hive.

About the reviewers
Akira Ajisaka is an open source developer who has over 10 years of engineering experience in big
data. He contributes to the open source community and is an Apache Software Foundation member
and Apache Hadoop PMC member. He has worked for the AWS Glue ETL team since 2022 and is
learning a lot about Apache Spark.

Keerthi Chadalavada is a senior software engineer with AWS Glue. She is passionate about building
cloud-based, data-intensive applications at scale. Her recent work includes enabling data engineers to
build event-driven ETL pipelines that respond in near real time to data events and provide the latest
insights to business users. In addition, her work on Glue Blueprints enabled data engineers to build
templates for repeatable ETL pipelines and enabled non-data engineers without technical expertise to
use these templates to gain faster insights from their data. Keerthi holds a master’s degree in computer
science from Ohio State University and a bachelor’s degree in computer science from Bits Pilani, India.

Table of Contents

Preface

Section 1 – Introduction, Concepts, and the
Basics of AWS Glue

1
Data Management – Introduction and Concepts

Types of data processing – OLTP
and OLAP 4
Data warehouses and data marts 5
Data lakes 7
Data lakehouse 8
Data mesh 8

Distributed computing for big data 8
Apache Spark 10
Apache Spark on the AWS cloud 11

AWS Glue 11
Querying data using AWS 13

Summary 14

2
Introduction to Important AWS Glue Features

Data integration 16
Integrating data with AWS Glue 16
Data discovery 17
Data ingestion 17
Data preparation 17
Data replication 18

Features of AWS Glue 18
AWS Glue Data Catalog 19

Glue connections 23
AWS Glue crawlers 25
Custom classifiers 29
AWS Glue Schema Registry 31
AWS Glue ETL jobs 33
Glue development endpoints 38
AWS Glue interactive sessions 38
Triggers 39

Summary 40

Table of Contentsvi

3
Data Ingestion

Technical requirements 42
Data ingestion from file/object stores 42
Data ingestion from Amazon S3 42
Data ingestion from HDFS data stores 49

Data ingestion from JDBC data stores 50
AWS Glue custom JDBC connectors 55

Data ingestion from streaming
data sources 57
AWS Glue Schema Registry 60

Data ingestion from SaaS data stores 61
Summary 63

Section 2 – Data Preparation, Management,
and Security

4
Data Preparation

Technical requirements 68
Introduction to data preparation 68
Data preparation using AWS Glue 68
Visual data preparation using AWS Glue
DataBrew 69

Source code-based approach to data
preparation using AWS Glue 75

Selecting the right service/tool 84
Summary 85

5
Data Layouts

Technical requirements 88
Why do we need to pay attention
to data layout? 89
Key techniques to optimally
storing data 90
Selecting a file format 90
Compressing your data 93
Splittable or unsplittable files 96

Partitioning 97
Bucketing 104

Optimizing the number
of files and each file size 105
What is compaction? 106
Compaction with AWS Glue ETL Spark jobs 107
Automatic Compaction with AWS Lake
Formation acceleration 108

Table of Contents vii

Optimizing your storage
with Amazon S3 109
Selecting suitable S3 storage classes
for your data 109

Using S3 Lifecycle for managing
object lifecycles 109

Summary 113
Further reading 114

6
Data Management

Technical requirements 116
Normalizing data 116
Casting data types and map column names 117
Inferring schemas 120
Computing schemas on the fly 121
Enforcing schemas 124
Flattening nested schemas 127
Normalizing scale 130
Handling missing values and outliers 131
Normalizing date and time values 131
Handling error records 136

Deduplicating records 137
Denormalizing tables 138
Securing data content 143
Masking values 143
Hashing values 145

Managing data quality 147
AWS Glue DataBrew data quality rules 147
DeeQu 147

Summary 152

7
Metadata Management

Technical requirements 154
Populating metadata 154
Glue Data Catalog API 154
DDL statements 156
Glue crawlers 162
Crawler configuration 167

Maintaining metadata 172
Glue crawlers 172
Updating Data Catalog tables from ETL jobs 175

Partition management 175
Partition indexes 176

Versioning and rollback 176
Table versioning 176
Lake Formation-governed tables 177

Lineage 179
Glue DataBrew 179

Summary 180

Table of Contentsviii

8
Data Security

Technical requirements 181
Access control 181
IAM permissions 181
Glue dependencies on other AWS services 182
S3 bucket policies 187
S3 object ownership 188
Lake Formation permissions 189

Encryption 193
Encryption at rest 194

Encryption in transit 197

Network 198
Glue network architecture 199
Glue connections 201
Network configuration requirements and
limitations 202
Connecting to resources on the public internet 203
Connecting to resources in your on-premise
network 205

Summary 206

9
Data Sharing

Technical requirements 207
Overview of data sharing strategies 208
Single tenant 208
Hub and spoke 209
Data mesh 210

Sharing data with multiple AWS
accounts using S3 bucket policies
and Glue catalog policies 212
Scenario 1 – sharing data from one account
with another using S3 bucket policies and
Glue catalog policies 212
Prerequisite – S3 212
Prerequisite – Glue 213
Configuring S3 bucket policies and Glue
Catalog resource policies 215

Sharing data with multiple AWS
accounts using AWS Lake
Formation permissions 219

Lake Formation permission model 219
Lake Formation cross-account sharing 219
Lake Formation named resource-based
access control 220
Lake Formation tag-based access control 220
Scenario 2 – sharing data from one account
with another using Lake Formation
Tag-based access control 221
Prerequisite – S3 222
Prerequisite – Glue 223
Prerequisite – Lake Formation and IAM 224
Step 1 – configuring Glue catalog policies 226
Step 2 – configuring Lake Formation
permissions (producer) 229
Step 3 – configuring Lake Formation
permissions (consumer) 234

Summary 242

Table of Contents ix

10
Data Pipeline Management

Technical requirements 244
What are data pipelines? 245
Why do we need data pipelines? 246
How do we build and manage data pipelines? 246

Selecting the appropriate data
processing services for your analysis 248
AWS Batch 249
Amazon ECS 249
AWS Lambda 249
AWS Glue ETL jobs 252
Amazon EMR 254

Orchestrating your pipelines
with workflow tools 254
Using AWS Glue workflows 256
Using AWS Step Functions 264

Using Amazon Managed Workflows
for Apache Airflow 270

utomating how you provision your
pipelines with provisioning tools 273
Provisioning resources with AWS
CloudFormation 275
Provisioning AWS Glue workflows and
resources with AWS Glue Blueprints 279

Developing and maintaining
your data pipelines 284
Developing AWS Glue ETL jobs locally 285
Deploying AWS Glue ETL jobs 286
Deploying workflows and pipelines using
provisioning tools such as IaC 288

Summary 288
Further reading 289

Section 3 – Tuning, Monitoring, Data Lake
Common Scenarios, and Interesting Edge Cases

11
Monitoring

Defining an SLA for a data platform 294
Monitoring the SLA of a data
platform 295
Monitoring the components
of a data platform 296
Monitoring state changes 297

Monitoring delay 297
Monitoring performance 298
Monitoring common failures 298
Monitoring log messages 299

Analyzing usage 300
Summary 301

Table of Contentsx

12
Tuning, Debugging, and Troubleshooting

Tuning AWS Glue workloads 304
Tuning AWS Glue crawlers 304
Tuning the performance of AWS
Glue Spark ETL jobs 305

Troubleshooting and debugging
common issues in AWS Glue ETL 311
ETL job failures 311

Summary 317

13
Data Analysis

Creating Marketplace connections 321
Creating the Glue Hudi connection 321
Creating a Delta Lake connection 325
Creating an OpenSearch connection 325

Creating the CloudFormation stack 325
Prerequisites for creating the
CloudFormation stack 325

The benefit of ad hoc analysis
and how a data lake enables it 327
Amazon Athena 329
Amazon Redshift Spectrum 332

Creating and updating Hudi
tables using Glue 337
Creating and updating Delta
Lake tables using Glue 339

Inserting data into Lake Formation
governed tables 342
Consuming streaming data using
Glue 345
Creating chapter-data-analysis-msk-connection 346
Loading and consuming data from MSK
using Glue 347
Glue streaming job as a consumer
of a Kafka topic 348
Hudi DeltaStreamer streaming job
as a consumer of a Kafka topic 349
Creating and consuming CDC data
through streaming jobs on Glue 351

Glue’s integration with OpenSearch 353
Cleaning up 358
Summary 359

Table of Contents xi

14
Machine Learning Integration

Technical requirements 362
Glue ML transformations 362
Creating an ML transform 362
Training an ML transform 363

Using an ML transform 365

SageMaker integration 366
Developing ML pipelines with Glue 367
Summary 368

15
Architecting Data Lakes for Real-World Scenarios and Edge Cases

Technical requirements 370
Running a highly selective query
on a big fact table using AWS Glue 371
Hands-on tutorial 372

Dealing with Join performance issues
with big fact and small dimension
tables in ETL workloads 376
Solving Join problems involving
big fact and big dimension tables
using AWS Glue 378

Hands-on tutorial 379
Solution 382

Reducing time on read operations
using AWS Glue grouping 385
Solving S3 eventual consistency
problems using AWS Glue 389
Using glueparquet 390
S3-optimized output committer 392

Summary 394

Index

Other Books You May Enjoy

Preface

These days, organizations have gravitated toward data-driven business. Today, data integration across
various data sources has become a key driver for businesses. In the cloud, data integration services
such as AWS Glue do the undifferentiated heavy lifting based on serverless infrastructure. AWS Glue
helps you to integrate data across different sources and build a data lake at scale in a serverless fashion
without maintaining infrastructure.

This book shows you how AWS Glue can be used to solve real-world problems, along with teaching
you about data processing, data integration, and building data lakes. It allows you to learn how to
perform various aspects of data integration techniques such as data ingestion from various sources,
data layout optimization, data and metadata management, and data pipeline management. Further,
it covers data analysis use cases such as ad hoc queries, visualization, and real-time analysis using
AWS Glue. Additional topics such as CI/CD, data quality validation, data sharing, and data security
aspects, such as access control, encryption, auditing, and networking, are also covered. Toward the
end, the book focuses on providing various monitoring options and the best practices for tuning,
debugging, and troubleshooting.

The book takes you through the AWS Glue features such as jobs, the Data Catalog, crawlers, DataBrew,
Glue Studio, custom connectors, and so on, in addition to AWS Lake Formation.

By the end of this book, you will be able to integrate data across different sources and build a data
platform for scalable analysis using AWS Glue.

Who this book is for
This book is designed for data engineers, ETL developers, and data analysts who want to understand
how AWS Glue can help to solve their business problems. Basic knowledge of AWS data services is
assumed. Experience with AWS Glue is also preferred but not required. Even without prior knowledge,
you can start learning AWS Glue with the book. Most of the features are accompanied by a walkthrough
to help you understand the concepts that are explained in each chapter.

What this book covers
Chapter 1, Data Management – Introduction and Concepts, introduces basic concepts associated with
data management.

Chapter 2, Introduction to Important AWS Glue Features, introduces some important AWS Glue features.

Prefacexiv

Chapter 3, Data Ingestion, describes how to ingest data across multiple data stores.

Chapter 4, Data Preparation, describes typical data preparation use cases with both a GUI-based
approach and a source code-based approach using AWS Glue.

Chapter 5, Designing Data Layouts, describes how to optimize data layout on Amazon S3 using
AWS Glue.

Chapter 6, Data Management, describes how to manage, clean up, and enrich data using AWS Glue.

Chapter 7, Metadata Management, describes how to populate and maintain metadata based on data
using AWS Glue.

Chapter 8, Data Security, describes how to secure your data by access control, encryption, auditing,
and network security using AWS Glue.

Chapter 9, Data Sharing, describes how to share your data across multiple accounts to democratize
your data lake.

Chapter 10, Data Pipeline Management, describes how to build and orchestrate a data-processing
pipeline using AWS Glue.

Chapter 11, Monitoring, describes how to monitor a data lake and AWS Glue components.

Chapter 12, Tuning, Debugging, and Troubleshooting, describes the best practices to tune, debug, and
troubleshoot typical use cases.

Chapter 13, Data Analysis, describes common options to analyze data using AWS analytics services.

Chapter 14, Machine Learning Integration, describes how to utilize your data for a machine learning
workload.

Chapter 15, Architecting Data Lakes for Real-World Scenarios and Edge Cases, describes end-to-end
examples of architecting data lakes.

To get the most out of this book
All walkthroughs will require a web browser (Google Chrome, Mozilla Firefox, Microsoft Edge, or
Safari) installed on a computer in order to use AWS Management Console, and you’ll need an AWS
account to access the AWS Console and utilize AWS resources. Next to that, you’ll need to install the
AWS Command Line Interface (AWS CLI) on a computer to run commands:

Download the example code files xv

Not all the chapters’ walkthroughs require an AWS CLI installation. You’ll be informed in each chapter
when you need further requirements.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue. If there’s
an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/fTqGe.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “We
used the glueContext.write_dynamic_frame.from_options() method to write
the data to Amazon S3.”

A block of code is set as follows:

root

 |-- ColumnA: string (nullable = true)

 |-- ColumnB: string (nullable = true)

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “This can be done by navigating to
AWS Glue Studio console | Connectors | Marketplace Connectors and subscribing to Cloudwatch
Metrics connector for AWS Glue.”

Tips or Important Notes
Appear like this.

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue
https://github.com/PacktPublishing/
https://packt.link/fTqGe

Prefacexvi

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Serverless ETL and Analytics with AWS Glue, we’d love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and
share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1-800-56498-8

Section 1 –
Introduction, Concepts,

and the Basics
of AWS Glue

In this section, you will learn about the basics of AWS Glue and the general trends in data management.
You will be introduced to the important AWS Glue features and ways to ingest data using AWS Glue
from heterogeneous sources.

This section includes the following chapters:

• Chapter 1, Data Management – Introduction and Concepts

• Chapter 2, Introduction to Important AWS Glue Features

• Chapter 3, Data Ingestion

1
Data Management –

Introduction and Concepts

A vast amount of data is being generated by people, organizations, devices, and software applications,
and the volume of data being generated is growing rapidly. The numbers vary significantly, depending
on the source, but it is estimated that approximately 60% to 80% of data gathered by organizations is
dark data. Essentially, data is being collected, processed, and stored for a long time by organizations
for compliance reasons, but the data is not used for any other purposes, such as analytics or
direct monetization. In most cases, storing and securing this data can be more expensive than the
value extracted.

In today’s digital economy, organizations are striving to be data-driven by basing their strategic
business decisions on intelligence that’s been obtained from data gathered from various sources. Until
recently, organizations thought of data purely in the context of transactions and locked it away in
heavily siloed databases that were built for transaction processing; however, this was not suitable for
open-ended analysis. All this changed with advancements in data processing techniques and drops
in the costs involved in processing and analyzing data. Organizations are now adopting data-driven
approaches for key business decisions.

In this chapter, we will cover the following topics:

• Types of data processing – OLTP and OLAP

• Data warehouses and data marts

• Data lakes

• Data lakehouse

• Data mesh

• Apache Spark on the AWS cloud

Data Management – Introduction and Concepts4

• AWS Glue

• Querying data using AWS

The topics in this chapter will introduce us to different data management techniques and different
tools and services offered by the AWS cloud. These concepts will help you understand the different
design approaches you can take to build effective data integration and management setups that are
suitable to your use cases when using AWS Glue.

Types of data processing – OLTP and OLAP
Traditionally, data storage systems have been classified as Online Transaction Processing (OLTP)
and Online Analytical Processing (OLAP). OLTP systems are responsible for day-to-day business
executions. For instance, when you call your phone carrier’s customer service to add a new value pack
to your phone plan, the customer service agent quickly pulls up the account information for your
phone number and adds your desired value pack. The system that’s used by the customer service agent
is designed to be fast so that the customer wait time can be minimized, which allows the customer
service agent to be more efficient and serve customers faster. The system is also designed so that it
updates the data quickly so that a large number of concurrent transactions can be processed. This
allows the customer service agent to confirm that the value pack has been successfully applied to the
account. Other examples include banking and shopping applications.

These faster updates are achieved by using a normalized data model. Normalization is the process of
structuring the dataset as per a set of normal-forms to reduce redundancy and enhance data integrity.
The normalized data model ensures that you don’t update multiple tables with the same information for
a user operation. This is done by reducing the redundancy of the data in these systems. For example,
if a customer updates their preferred_name, we can make this change in one table; the rest of
the dependent tables will use customer_id to fetch updated information. So, a typical SQL query
for the CRM application that’s used by the customer service agent contains the customer_id =
'xxxxxx' expression or data_plan_id = 'xxxxxx' in the WHERE clause.

These OLTP systems are not designed for obtaining or analyzing trends – for example, a query
for gathering the mobile data usage (volume) of all customers over the last 2 years. Such queries
involve joining a lot of tables on the OLTP side because of normalizations and usually results in poor
performance as the amount of data scales up.

This problem can be solved by using OLAP systems. OLAP systems typically use the data warehouse
of an organization, where they are utilized for executing complex queries over a large amount of data.
They generally store historical datasets.

Data warehouses and data marts 5

So, while both OLAP and OLTP have different ways of storing data and are designed for different use
cases, the data on which they operate can be the same – the data is just modeled differently. Since both
systems work on the same data, the data must be moved from one system to another. OLTP systems
support live business transactions, so data generally originates there. This data is then brought into
a data warehouse through an Extract, Transform, Load (ETL) or Extract, Load, Transform (ELT)
tool so that it can then be consumed by OLAP systems. The following table explains the differences
between OLTP and OLAP:

Table 1.1 – Differences between OLTP and OLAP

Now that we understand the fundamentals of the OLTP and OLAP models, let’s explore different data
management systems, such as data warehouses, data marts, data lakes, data lakehouses, and data meshes.

Data warehouses and data marts
In an organization, it is not uncommon for day-to-day operations to be performed and stored in
several transactional operating systems. However, when higher-level business decisions are to be
made using data gathered from these systems, it would be easier to collate necessary information
from these sources and build a centralized repository for datasets to gather actionable intelligence.

A data warehouse is a centralized repository of data that’s been gathered from various sources within
an organization. The collated data within this repository is analyzed and can be used to make business
decisions. A data mart, on the other hand, is a subset of a data warehouse aligned toward a specific
business unit within an organization.

Data Management – Introduction and Concepts6

The concept of data warehouses was introduced in the late 1980s. Data warehouses are subject-oriented,
integrated, time-variant, and non-volatile. This means that data warehouses are designed to be able to
make sense of the data in a specific subject rather than ongoing operations, such as sales, marketing,
and HR. Data warehouses are also designed to integrate data for several different source systems,
such as Enterprise Resource Planning (ERP), Human Resource Management Systems (HRMSs),
Customer Relationship Management (CRM), Financial Management Systems (FMSs), and any other
operational systems within an organization. The data within a data warehouse is usually structured,
but it can be unstructured as well. Data warehouses also allow users to analyze the data at different
grains of time, such as year, month, and day. The data in data warehouses is non-volatile and
maintains history. So, changes in the source systems result in newer entries in the data warehouses
where the new state of the data is used while preserving the old state of the data.

In Inmon’s top-down data warehousing approach, data architects and modelers start by looking at the
holistic data landscape of an organization and identifying the main subject areas and entities under
it. Inmon’s data warehouse is normalized and avoids redundancy. This simplifies the data ingestion
process but is not optimized for queries. Hence, data marts are built on top of data warehouses and
users access these data marts for their queries.

While data marts can be based on a star or snowflake schema, the star schema is generally preferred
because it results in faster queries due to fewer joins. In 1996, Ralph Kimball introduced the star
schema methodology to the data management world. This follows the bottom-up approach and creates
data marts based on the business requirements instead of starting with an enterprise data warehouse.

In a data mart, data is stored at multiple levels and the table at the correct level is picked for processing
the data. The atomic level by which the facts may be defined is known as the grain or granularity of
the table.

For example, let’s consider a retail sales dataset for a retail store chain operating in different countries.
A customer could buy several products in a single sale and the same customer could buy higher quantities
of the same product within the same sale. We can have a table that contains region information that
can be linked to sales and product tables.

So, while selecting a grain, it is beneficial to have the fact table populated with the most atomic grain.
This allows us to be as granular as we want with the information we query. If we define the grain at
the sales transaction level, we can query individual sales transactions and get information such as the
amount per sale, payment method, and so on. However, we won’t be able to get the product information
in a particular sale. To mitigate this, let’s say we define the grain at the product in a sales transaction
level. We can query product-related information along with sales information.

These different levels of pre-computation help us avoid heavy computations at query time. For example,
if a user is querying for sales_amount at the region level, it might be far easier to select the data
from the table that contains the sales_amount and region columns.

Data lakes 7

As we can see, data marts are helpful for working with datasets related to a specific context or a business
line. However, a centralized data warehouse is beneficial when our analysis needs data to be aggregated
from a variety of sources across the organization to extract actionable intelligence from the dataset.

A fresh approach to data warehousing came with the introduction of data vaults. This is a hybrid
approach that incorporates the best-normalized model and a denormalized star schema. This approach
to data modeling can be quite helpful when working with multi-source systems or data sources that
have constantly changing relationships. This makes it easier to ingest data from multiple sources. Also,
because of the way the data is modeled, data vaults make it easier to audit and track data.

Data transformation is a requirement for the data to be loaded into a data warehouse. This creates entry
barriers and lags in delivering value to customers. Generally, organizations have multiple sources of
data and they must be imported into a data warehouse to make business decisions or even to know if
it adds value. Later, if the user discovers that combining the data from certain sources is not delivering
the value that was initially expected, then this results in time and resources being wasted. Also, it is not
always possible to forecast the analytical requirements in a world where businesses have to constantly
evolve to stay relevant. What happens if a business user needs historical data that isn’t available in the
data warehouse? Around 2015, data lakes were created to solve these problems.

Data lakes
A data lake can be defined as a centralized repository that allows you to store all structured and
unstructured data at any scale. With today’s hyper scalers providing cheap and durable storage, it is now
possible for organizations to store all of their data in the cloud without significant cost implications.
Data lakes are broken down into layers or zones.

In the first layer of the data lake, data is generally stored as-is. This reduces the entry barrier and enables
organizations to move all of their data to the “lake” without significantly increasing development or
maintenance costs. Because the first layer of the data lake is an as-is copy of the data, organizations
can use an automated configuration-based pipeline to create newer sources.

Organizations usually pick a replication tool such as AWS Data Migration Service (AWS DMS) to bring
the data into the data lake. While AWS DMS involves taking care of the replication infrastructure, it is
mostly a hands-off mechanism for hydrating the lake. Organizations may also use a push mechanism
to FTP to transfer the files to an AWS Simple Storage Service (S3)-based data lake using AWS
Transfer Family.

Data from the first layer is compressed and partitioned, and audited columns are added during data
preparation so that they can be used by downstream systems more effectively. Having all the data
in the data lake enables data analysts to do the initial discovery to find out the value of combining
data from various sources. If the value is discovered, then necessary transformations are applied in
an ETL pipeline so that the target is hydrated with newer data periodically or through a streaming
arrangement. These automated transformations are then loaded into the final layer of a data lake and
used for user consumption.

Data Management – Introduction and Concepts8

Data lakehouse
Challenged by the newer demands to derive value from the vast and ever-increasing unstructured data,
it became important to come up with a new arrangement that does not try to force unstructured data
into the strict models of a data warehouse. The data lakehouse blurs the lines between data lakes and
data warehouses by enabling the atomicity, consistency, isolation, and durability (ACID) properties
on the data in the data lake and enabling multiple processes to concurrently read and write data.

With this, transformed data in open formats such as Apache Parquet can be consumed for feature
engineering and machine learning (ML) workloads and can also be used for analytics.

Data mesh
While cheap, durable storage helped in storing vast volumes of data, this data had to be secured
properly. Since data from a vast variety of sources is stored in the lake, it becomes difficult to define
the ownership and management of this data. This requirement resulted in a paradigm of serving data
as a product and setting the ownership of the product. This thought process led to the creation of
the data mesh.

Data meshes ensure that data lakes don’t become another monolith that the organization’s IT teams
now have to manage. This decentralization leads to the democratization of data, which fuels innovation
without hindering access to the data. Although data is decentralized and offered as a service, the
permission model that’s applied to create a data lake ensures interoperability to reduce the barriers
to accessing data products for users that have the right permissions.

Distributed computing for big data
Before the advent of big data, ELT and ETL tools usually had a server and an orchestrator that was
responsible for reading the data from the OLTP systems and populating the data warehouse. Some
of these tools used the compute of these intermediate servers, while others used the compute of the
target to process the data. Traditionally, these ETL/ELT systems were used to pull data once a day
and during off-business hours. This was done to reduce the impact of the data being pulled from the
OLTP systems. When a system required higher data processing capabilities, organizations would scale
up the ETL/ELT servers.

This arrangement worked fine for a few years but the volume of data kept increasing, and scaling the
ETL/ELT systems became cost prohibitive. With the world increasingly becoming more data-centric,
the amount of data produced continued to grow. It is estimated that 90% of the data today has been
generated in the last 2 years.

Not only has the volume of data increased, but organizations also want to get the data faster for
quicker decision-making.

Distributed computing for big data 9

In a connected world, the number of variables that impact a business decision has increased, so there is
a need to get data from multiple different sources to make a decision. For example, for a retail company
to find out the discount to be applied to a certain product, it can no longer just rely on the cost price
of the product and the profit that it expects from the sale. It would be beneficial to know the cost of
keeping the product on the shelf before it is sold, along with knowing the approximate time for which
the product is expected to stay on the shelf. The retail company may also want to know the price of the
same product on competitor websites, along with the price of similar products with better features.

Here, the cost price can be obtained from the company’s ERP data. The percentage of expected profit
might be a business transformation logic that uses their “secret sauce.” The cost of keeping the product
on the shelf will be based on the cumulative sum of all the costs of the store. The approximate duration
for which the product will be on the shelf might come from an ML model. The price of the same
product sold by the competitors can be scraped from their websites and the cost of similar products
with better features can be obtained from third-party market research. So, modern decision-making
involves making sense of data from a variety of sources.

Big data is a collection of data derived from various sources and is characterized by the volume,
velocity, variety, veracity, and value of the data. These are known as the 5 V’s of big data. While we
collect the data from a variety of sources at a certain velocity and volume like never before, we also
want to make sure that the collected data is accurate and can be trusted. This can be achieved using
a series of validation steps based on the data being collected. Finally, once we have the trusted data,
we want to be able to derive value from it.

When importing the data into a data lake or a data warehouse, the old arrangements of scaling up
do not work, so we must deal with the 5 V’s of big data. The solution to these challenges came in the
form of distributed computing.

Distributed computing systems distribute the workload of any given query to multiple workers
instead of a single worker. The workloads being distributed across multiple worker nodes meant that
organizations could now add nodes to increase the computing power rather than vertically scaling the
node. The advantage of this approach is that we can process data on multiple nodes in parallel. This
allows us to keep up with the high velocity of incoming data where one single node may not be enough.

With the advent of distributed computing in big data processing and analytics, several engines and
frameworks were developed to handle different aspects of data processing and analysis. One of the
most popular processing and analytics engines is Apache Spark.

Data Management – Introduction and Concepts10

Apache Spark

Apache Spark is an open source unified analytics engine that was originally developed in 2009 at UC
Berkeley. It became a top-level Apache project in February 2014. It has over 1.7K contributors and
over 30K star gazers on GitHub. The following is a quote from the Spark documentation (https://
spark.apache.org/docs/latest/index.html):

“Apache Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs
in Java, Scala, Python, and R, and an optimized engine that supports general execution graphs. It also
supports a rich set of higher-level tools including Spark SQL for SQL and structured data processing,
MLlib for machine learning, GraphX for graph processing, and Structured Streaming for incremental
computation and stream processing.”

At a high level, a Spark cluster consists of a set of executors running a Java Virtual Machine (JVM).
One of these executors runs the Driver program. This driver program is responsible for creating a
SparkContext. A SparkContext is the entry point for Spark features. Spark applications are instances
of this SparkContext, which connects to a Cluster Manager.

The following diagram shows the workflow that’s used by Apache Spark to execute the workload.
Here, the user submits the workload using the spark-submit command; then the Spark driver
coordinates with the Cluster Manager to execute the workload within the executors on the worker nodes:

Figure 1.1 – Overview of Apache Spark’s workload execution

A Cluster Manager can be Spark’s standalone cluster manager, Mesos, Apache Hadoop Yet Another
Resource Negotiator (YARN), or Kubernetes. Cluster Managers are responsible for allocating
containers to various Spark applications running on the cluster. With YARN, Spark can run in either
cluster mode or client mode.

https://spark.apache.org/docs/latest/index.html
https://spark.apache.org/docs/latest/index.html

AWS Glue 11

In client mode, the driver program runs on the machine that submitted the Spark Job. In cluster mode,
the driver program runs on one of the executors. Executors are responsible for executing the tasks
that are sent through SparkContext and run in YARN’s JVMs containers. When we invoke an
action in a Spark application, a Spark Job is created. A list of actions available in Spark can be found
in the Apache Spark documentation (https://spark.apache.org/docs/latest/
rdd-programming-guide.html#actions). To execute a Job, an execution plan must be
created based on a Directed Acyclic Graph (DAG).

A DAG scheduler converts the logical execution plan into a physical execution plan. A DAG consists
of stages. A Spark stage is a set of independent tasks all computing the same function that is needed
as part of a Spark Job. Each stage is further divided into tasks. All of these tasks can be run in parallel
on the CPU cores of the executors. Once Spark acquires the executors, SparkContext sends the
tasks to the executors to perform.

Spark also has a component called SparkSQL which allows users to write SQL queries for data
transformation. SparkSQL is enabled by the Catalyst and Tungsten engines.

Catalyst is responsible for creating a physical plan from a logical plan, while Tungsten is responsible
for generating the byte code that will be executed on the cluster.

This new architecture of data processing came with challenges. Organizations now had to quickly
develop a new skill set to manage clusters of nodes that were used for data processing. Also, what do
you do with all these ETL compute nodes when they are not used for processing?

Apache Spark on the AWS cloud

The problem of unused compute resources was solved by the hyperscalers of the world. One of the
leading hyperscalers is AWS. AWS has two offerings for managed Spark: Amazon EMR and AWS
Glue. With Amazon EMR, customers get higher control of the underlying compute and can run
Spark workloads on Amazon EC2 instances, on Amazon Elastic Kubernetes Service (EKS) clusters,
or on-premises using EMR on AWS Outposts. Customers can also work with other open source
tools such as Apache Spark, Apache Hive, Apache HBase, Apache Flink, Apache Hudi, and Presto
on Amazon EMR.

AWS Glue
On August 14, 2017, AWS released a new service called AWS Glue. AWS Glue is a serverless data
integration service. AWS Glue also provides some easy-to-use features that almost eliminate the
administrative overhead of infrastructure management and simplify how common data integration
tasks can be integrated.

https://spark.apache.org/docs/latest/rdd-programming-guide.html#actions
https://spark.apache.org/docs/latest/rdd-programming-guide.html#actions

Data Management – Introduction and Concepts12

Let’s look at some of the notable components of the AWS Glue feature set:

• AWS Glue DataBrew: Glue DataBrew is used for data cleansing and enrichment through
another GUI. Creating AWS Glue DataBrew Jobs does not require the user to write any source
code and the Jobs are created with the help of a GUI.

• AWS Glue Data Catalog: AWS Glue Data Catalog is a central catalog of metadata that can be
used with other AWS services such as Amazon Athena, Amazon Redshift, and Amazon EMR.

• AWS Glue Connections: Glue Connections are catalog objects that help organize and store
connection information to various data stores. AWS Glue Connections can also be created for
Marketplace AWS Glue Connectors, which allows you to integrate with third-party data stores,
such as Apache Hudi, Google Big Query, and Elastic Search.

• AWS Glue Crawlers: Crawlers can be used to crawl existing data and populate an AWS Glue
Data Catalog with metadata.

• AWS Glue ETL Jobs: Glue ETL Jobs enables users to extract source data from various data
stores, process it, and write output to a data target based on the logic defined in the ETL
script. Users can take advantage of Apache Spark-based ETL Jobs to handle their workload in
a distributed fashion. Glue also offers Python shell Jobs for ETL workloads; these don’t need
distributed processing.

• AWS Glue Interactive Sessions: Interactive sessions are managed interactive environments
that can be used to develop and test AWS Glue ETL scripts.

• AWS Glue Schema Registry: AWS Glue Schema Registry allows users to centrally control data
stream schemas and has integrations with Apache Kafka, Amazon Kinesis, and AWS Lambda.

• AWS Glue Triggers: AWS Glue Triggers are data catalog objects that allow us to either manually
or automatically start executing one or more AWS Glue Crawlers or AWS Glue ETL Jobs.

• AWS Glue Workflows: Glue Workflows can be used to orchestrate the execution of a set of
AWS Glue Jobs and AWS Glue Crawlers using AWS Glue Triggers.

• AWS Glue Blueprints: Blueprints are useful for creating parameterized workflows that can be
created and shared for similar use cases.

• AWS Glue Elastic Views: Glue Elastic Views helps users replicate the data from one store to
another using familiar SQL syntax.

This book will focus on learning about AWS Glue, diving deep into the features listed here, and learning
about how these features help solve the data problems of the modern world. We will also learn about
the fundamental concepts of AWS LakeFormation, which are important for securely managing and
administering the data assets of an organization.

AWS Glue 13

Querying data using AWS

At the beginning of this chapter, we focused on various ways to collect and organize the data from
various systems to enable various downstream workloads, such as feature engineering, data exploration,
and analytics. While data lakes and data meshes have reduced the entry barrier to democratize data,
you may still need to access data from various purpose-built stores.

Today’s applications are built around the microservice architecture, which allows teams to split
vertically based on their functionality and scale independently. Organizations may have their two
pizza teams working on different microservices. Each of these teams is independent and can pick its
own purpose-built data stores to support its application.

In an ideal world, data from all of these purpose-built stores should flow into the data lake, but this
might not always be the case. In a world where the speed of decision-making is paramount, data
analysts may want to access the data and combine it even before the data starts hydrating the data lake.

This requirement led to the need for modern tools to support querying data across multiple different
sources. In the AWS ecosystem, both Amazon Athena and Amazon Redshift allow you to query data
across multiple data stores.

While using Amazon Athena to query S3 data cataloged in AWS Glue Catalog is quite common,
Amazon Athena can also be used to query data from Amazon CloudWatch Logs, Amazon DynamoDB,
Amazon DocumentDB, Amazon RDS, and JDBC-compliant relational data sources such MySQL and
PostgreSQL under the Apache 2.0 license using AWS Lambda-based data source connectors. Athena
Query Federation SDK can be used to write a customer connector too. These connectors return data
in Apache Arrow format. Amazon Athena uses these connectors and manages parallelism, along with
predicate pushdown.

Similarly, Amazon Redshift also supports querying Amazon S3 data through Amazon Redshift
Spectrum. Redshift also supports querying data in Amazon RDS for PostgreSQL, Amazon Aurora
PostgreSQL-Compatible Edition, Amazon RDS for MySQL, and Amazon Aurora MySQL-Compatible
Edition through its Query Federation feature. Amazon Redshift offloads part of the computations to
the target data stores and uses its parallel processing capabilities for the query’s operation.

To handle the undifferentiated heavy lifting, AWS Glue introduced a new feature called AWS Glue
Elastic Views. It allows users to use familiar SQL. It combines and materializes the data from various
sources into the target. Since AWS Glue Elastic Views is serverless, users do not have to worry about
managing the underlying infrastructure or keeping the target hydrated.

Data Management – Introduction and Concepts14

Summary
In this chapter, we discussed data collection practices that are used by organizations and the issue of
dark data. We also discussed different storage and processing techniques, such as OLTP and OLAP,
and how organizations are using a combination of these two techniques to extract value from the data
gathered. We briefly discussed the evolution of data management strategies such as data warehousing,
data lakes, the data lakehouse, and data meshes and the role played by ETL and ELT processes in
ingesting data into OLAP systems for analysis.

Then, we introduced the Apache Spark framework and talked about how Spark executes workloads
by dividing them into different Spark Jobs, stages, and tasks. After this, we discussed different services
in the AWS cloud that can be used to execute Spark workloads. We introduced AWS Glue and the
different features available in Glue that make it a full-fledged data integration platform and not just
a managed ETL service.

In the next chapter, we will discuss the different microservices that are available in AWS Glue and how
they work. We will also focus on some Glue-specific features/enhancements that make AWS Glue an
ideal service for your data integration workloads.

2
Introduction to Important AWS

Glue Features

In the previous chapter, we talked about the evolution of different data management strategies, such
as data warehousing, data lakes, the data lakehouse, and data meshes, and the key differences between
each. We introduced the Apache Spark framework, briefly discussed the Spark workload execution
mechanism, learned how Spark workloads can be fulfilled on the AWS cloud, and introduced AWS
Glue and its components.

In this chapter, we will discuss the different components of AWS Glue so that we know how AWS
Glue can be used to perform different data integration tasks.

Upon completing this chapter, you will be able to define data integration and explain how AWS Glue
can be used for this. You will also be able to explain the fundamental concepts related to different
features of AWS Glue, such as AWS Glue Data Catalog, AWS Glue connections, AWS Glue crawlers,
AWS Glue Schema Registry, AWS Glue jobs, AWS Glue development endpoints, AWS Glue interactive
sessions, and AWS Glue triggers.

In this chapter, we will cover the following topics:

• Data integration

• Integrating data with AWS Glue

• Features of AWS Glue

Now, let’s dive into the concepts of data integration and AWS Glue. We will discuss the key components
and features of AWS Glue that make it a powerful data integration tool.

Introduction to Important AWS Glue Features16

Data integration
Data integration is a complex operation that involves several tasks – data discovery, ingestion,
preparation, transformation, and replication. Data integration is the very first step in deriving
insights from data so that data can be shared across the organization for collaboration and faster
decision-making.

The data integration process is often iterative. Upon completing a particular iteration, we can query
and visualize the data and make data-driven business decisions. For this purpose, we can use AWS
services such as Amazon Athena, Amazon Redshift, and Amazon QuickSight, as well as some other
third-party services. The process is often repeated until the right quality data is obtained. We can set
up a job as part of our data integration workflow to profile the data obtained against a specific set
of rules to ensure that it meets our requirements. For instance, AWS Glue DataBrew offers built-in
capabilities to define data quality rules and allows us to profile data based on our requirements. We
will be discussing AWS Glue DataBrew Profile jobs in detail in Chapter 4, Data Preparation. Once
the right quality data is obtained, it can be used for analysis, machine learning (ML), or building
data applications.

Since data integration helps drive the business forward, it is a critical business process. This also means
there is less room for error as this directly impacts the quality of the data that’s obtained, which, in
turn, impacts the decision-making process.

Now, let’s briefly explore how data integration can be simplified using AWS Glue.

Integrating data with AWS Glue
AWS Glue was initially introduced as a serverless ETL service that allows users to crawl, catalog,
transform, and ingest data into AWS for analytics. However, over the years, it has evolved into a fully-
managed serverless data integration service.

AWS Glue simplifies the process of data integration, which, as discussed earlier, usually involves
discovering, preparing, extracting, and combining data for analysis from different data stores. These
tasks are often handled by multiple individuals/teams with a diverse set of skills in an organization.

As mentioned in the previous section, data integration is an iterative process that involves several
steps. Let’s take a look at how AWS Glue can be used to perform some of these tasks.

Integrating data with AWS Glue 17

Data discovery

AWS Glue Data Catalog can be used to discover and search data across all our datasets. Data Catalog
enables us to store table metadata for our datasets and makes it easy to query these datasets from
several applications and services. AWS Glue Data Catalog can not only be used by AWS services such
as AWS Glue, AWS EMR, Amazon Athena, and Amazon Redshift Spectrum, but also by on-premise
or third-party product implementations that support the Hive metastore using the open source AWS
Glue Data Catalog Client for Apache Hive Metastore (https://github.com/awslabs/
aws-glue-data-catalog-client-for-apache-hive-metastore).

AWS Glue Crawlers enable us to populate the Data Catalog with metadata for our datasets by crawling
the data stores based on the user-defined configuration.

AWS Glue Schema Registry allows us to manage and enforce schemas for data streams. This helps
us enhance data quality and safeguard against unexpected schema drifts that can impact the quality
of our data significantly.

Data ingestion

AWS Glue makes it easy to ingest data from several standard data stores, such as HDFS, Amazon S3,
JDBC, and AWS Glue. It allows data to get ingested from SaaS and custom data stores via custom
and marketplace connectors.

Data preparation

AWS Glue enables us to de-duplicate and cleanse data with built-in ML capabilities using its FindMatches
feature. With FindMatches, we can label sets of records as either matching or not matching and the
system will learn the criteria and build an ETL job that we can use to find duplicate records. We will
discuss FindMatches in detail in Chapter 14, Machine Learning Integration.

AWS Glue also enables us to interactively develop, test, and debug our ETL code using AWS Glue
development endpoints, AWS Glue interactive sessions, and AWS Glue Jupyter Notebooks. Apart
from notebook environments, we can also use our favorite IDE to develop and test ETL code using
AWS Glue development endpoints or AWS Glue local development libraries.

AWS Glue DataBrew provides an interactive visual interface for cleaning and normalizing data without
writing code. This is especially beneficial to novice users who do not have Apache Spark and Python/
Scala programming skills. AWS Glue DataBrew comes pre-packed with over 250 transformations that
can be used to transform data as per our requirements.

Using AWS Glue Studio, we can develop highly scalable Apache Spark ETL jobs using the visual
interface without having in-depth knowledge of Apache Spark.

https://github.com/awslabs/aws-glue-data-catalog-client-for-apache-hive-metastore
https://github.com/awslabs/aws-glue-data-catalog-client-for-apache-hive-metastore

Introduction to Important AWS Glue Features18

Data replication

The Elastic Views feature of AWS Glue enables us to create views of data stored in different AWS data
stores and materialize them in a target data store of our choice. We can create materialized views by
using PartiQL to write queries.

At the time of writing, AWS Glue Elastic Views currently supports Amazon DynamoDB as a source.
We can materialize these views in several target data stores, such as Amazon Redshift, Amazon
OpenSearch Service, and Amazon S3.

Once materialized views have been created, they can be shared with other users for use in their
applications. AWS Glue Elastic Views continuously monitors changes in our dataset and updates the
target data stores automatically.

In this section, we mentioned several AWS Glue features and how they aid in different data integration
tasks. In the next section, we will explore the different features of AWS Glue and understand how they
can help implement our data integration workload.

Features of AWS Glue
AWS Glue has different features that appear disjointed, but in reality, they are interdependent. Often,
users have to use a combination of these features to achieve their goals.

The following are the key features of AWS Glue:

• AWS Glue Data Catalog

• AWS Glue Connections

• AWS Glue Crawlers and Classifiers

• AWS Glue Schema Registry

• AWS Glue Jobs

• AWS Glue Notebooks and interactive sessions

• AWS Glue Triggers

• AWS Glue Workflows

• AWS Glue Blueprints

• AWS Glue ML

• AWS Glue Studio

• AWS Glue DataBrew

• AWS Glue Elastic Views

Features of AWS Glue 19

Now that we know the different features and services involved in executing an AWS Glue workload,
let’s discuss the fundamental concepts related to some of these features.

AWS Glue Data Catalog

A Data Catalog can be defined as an inventory of data assets in an organization that helps data
professionals find and understand relevant datasets to extract business value. A Data Catalog acts as
metadata storage (or a metastore) that contains metadata stored by disparate systems. This can be used
to keep track of data in data silos. Typically, the user is expected to provide information about data
formats, locations, and serialization deserialization mechanisms, along with the query. Metastores
make it easy for us to capture these pieces of information during table creation and can be reused
every time the table is used. Metastores also enable us to discover and explore relevant data in the
data repository using metastore service APIs. The most popular metastore product that’s used widely
in the industry is Apache Hive Metastore.

AWS Glue Data Catalog is a persistent metastore for data assets. The dataset can be stored anywhere
– AWS, on-premise, or in a third-party provider – and Data Catalog can still be used. AWS Glue Data
Catalog allows users to store, annotate, and share metadata in AWS. The concept is similar to Apache
Hive Metastore; however, the key difference is that AWS Glue Data Catalog is serverless and there is
no additional administrative overhead in managing the infrastructure.

Traditional Hive metastores use relational database management systems (RDBMSs) for metadata
storage – for example, MySQL, PostgreSQL, Derby, Oracle, and MSSQL. The problem with using
RDBMS for Hive metastores is that relational database servers need to be deployed and managed. If
the metastore is to be used for production workloads, then we need to factor high availability (HA)
and redundancy into the design. This will increase the complexity of the solution architecture and the
cost associated with the infrastructure and how it’s managed. AWS Glue Data Catalog, on the other
hand, is fully managed and doesn’t have any administrative overhead (deployment and infrastructure
management).

Each AWS account has one Glue Data Catalog per AWS region and is identified by a combination
of catalog_id and aws_region. The value of catalog_id is the 12-digit AWS account
number. The value of catalog_id remains the same for each catalog in every AWS region. For
instance, to access the Data Catalog in the North Virginia AWS region, aws_region must be set to
'us-east-1' and the value of the catalog_id parameter must be the 12-digit AWS account
number – for example, 123456789012.

AWS Glue Data Catalog is comprised of the following components:

• Databases

• Tables

• Partitions

Now, let’s dive into each of these catalog item types in more detail.

Introduction to Important AWS Glue Features20

Databases

A database is a logical collection of metadata tables in AWS Glue. When a table is created, it must be
created under a specific database. A table cannot be present in more than one database.

Tables

A table in a Glue Data Catalog is a resource that holds the metadata for any given dataset. The following
diagram shows the metadata of a table stored in the Data Catalog:

Figure 2.1 – Metadata of a table stored in a Data Catalog

All tables contain information such as the name, input format, output format, location, and schema of
the dataset, as well as table properties (stored as key-value pairs – primarily used to store table statistics,
the compression format, and the data format) and Serializer-Deserializer (SerDe) information such
as SerDe name, the serialization library, and SerDe class parameters.

Features of AWS Glue 21

The SerDe library information in the table’s metadata informs the query processing engine of which
class to use to translate data between the table view and the low-level input/output format. Similarly,
InputFormat and OutputFormat specify the classes that describe the original data structure
so that the query processing engine can map the data to its table view. At a high level, the process
would look something like this:

• Read operation: Input data | InputFormat | Deserializer | Rows

• Write operation: Rows | Serializer | OutputFormat | Output data

Table Versions
It is important to note that AWS Glue supports versioning catalog tables. By default, a new version
of the table is created when the table is updated. However, we can use the skipArchive
option in the AWS Glue UpdateTable API to prevent AWS Glue from creating an archived
version of the table. Once the table is deleted, all the versions of the table will be removed as well.

Partitions

Tables are organized into partitions. Partitioning is an optimization technique by which a table is further
divided into related parts based on the values of a particular column(s). A table can have a combination
of multiple partition keys to identify a particular partition (also known as partition_spec).

For instance, a table for sales_data can be partitioned using the country, category, year,
and month columns.

The following is an example query for this:

SELECT *

FROM sales_data

WHERE country='US' AND category='books' AND year='2021' AND
month='10'

Over time, as data grows, the number of partitions that can be added to a table can grow significantly
based on the partition keys defined in the table. Fetching metadata for all these partitions can introduce
a huge amount of latency. To address this issue, Glue allows users to add indexes for partition keys (refer
to https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.
html) and when the GetPartitions API is called by the query processing engine with
a particular query expression, the API will try to return a subset of partitions instead of all partitions.
By default, if partition indexes are not defined on a table, the GetPartitions API will return all
the partitions and perform filtering on the returned API response.

https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html
https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html

Introduction to Important AWS Glue Features22

Now, let’s consider an example database setup, as shown in the following diagram. If partition indices
idx_1, idx_2, and idx_3 are not defined, all the partitions in the table are returned when the
GetPartitions API is called on the table_1 or table_2 table in the catalog_database
database. However, if the partition indices are defined, only the partitions for a specific table with
indices that match the values passed in the query will be returned. This reduces the effort involved
by the query engine in fetching partition metadata:

Figure 2.2 – Structure of AWS Glue Data Catalog

Limitations of Using Partition Indexes
Once a partition index has been added to a table in Glue Data Catalog, index keys’ data types
will be validated for all new partitions added to this table. It is important to make sure the values
for the columns listed as partition indexes adhere to the data type defined in the schema. If this
is not the case, the partition won’t be created. Once a table has been created, the names, data
types, and the order of the keys registered as part of the partition index cannot be modified.

Now that we understand the fundamentals of AWS Glue Data Catalog, in the next section, we’ll explore
AWS Glue connections and understand how they enable communication with VPC/on-premise
data stores.

Features of AWS Glue 23

Glue connections

AWS Glue connections are resources stored in AWS Glue Data Catalog that contain connection
information for a given data store. Typically, an AWS Glue connection contains information such as
login credentials, connection strings (URIs), and VPC configuration (VPC subnet and security group
information), which are required by different AWS Glue resources to connect to the data store. The
contents of an AWS Glue connection differ from one connection type to another.

Aws Glue Connection is a feature available in AWS Glue that is not present in traditional Hive
Metastores. Connections enable AWS Glue workloads (crawlers, ETL Jobs, development endpoints,
and interactive sessions) to access data stores that are typically not exposed to the public internet – for
example, RDS database servers and on-premise data stores.

Glue users can define connections that can be used to connect to data sources or targets. At the time of
writing, there are eight types of Glue connections, each of which is designed to establish a connection
with a specific type of data store: JDBC, Amazon RDS, Amazon Redshift, Amazon DocumentDB,
MongoDB, Kafka, Network, and Custom/Marketplace connections.

The parameters required for each connection type are different based on the type of data store the
connection will be used for. For instance, the JDBC connection type requires SSL configuration, JDBC
URI, login credentials, and VPC configuration.

The Network connection type is useful when users wish to route the traffic via an Amazon S3 VPC
endpoint and do not want their Amazon S3 traffic to traverse the public internet. This pattern is
usually used by organizations for security and privacy reasons. The Network connection type is also
useful when users wish to establish connectivity to a custom data store (for example, an on-premise
Elasticsearch cluster) within the ETL job and not define connection parameters in a Glue connection.

When a Glue connection is attached to any Glue compute resource (Jobs, Crawlers, development
endpoints, and interactive sessions), behind the scenes, Glue creates EC2 Elastic Network Interfaces
(ENIs) with the VPC configuration (subnet and security groups) specified by the user. These ENIs
are then attached to compute resources on the server side. This mechanism is used by AWS Glue to
communicate with VPC/on-premise data stores.

Elastic Network Interfaces (ENIs)
An ENI is essentially a virtual network interface that facilitates networking capabilities for
compute resources on AWS.

Introduction to Important AWS Glue Features24

Let’s use the following diagram to understand how Glue uses ENIs to communicate with
VPC/on-premise data stores:

Figure 2.3 – VPC-based data store access from AWS Glue using ENIs

Here, when a user makes an API call to execute the AWS Glue workload, the request is submitted to
the AWS Glue workload orchestration system, which will calculate the amount of compute resources
required and allocates workers from the worker node fleet.

If the workload being executed requires VPC connectivity, ENIs are created in the end user AWS
account and are attached to worker nodes. There is a 1:1 mapping between the worker nodes and the
ENIs; the worker nodes use these ENIs to communicate with the data stores. These data stores can be
present in an AWS account or they could be present in the end user’s corporate data center.

ENIs that are created during workload execution are automatically cleared by AWS Glue (this can
take up to 10 to 15 minutes). AWS Glue uses the same IAM role that’s used for workload execution
to delete ENIs once the workload has finished executing. If the IAM role is not available during ENI
deletion (for instance, if the IAM role was deleted immediately after workload execution), the ENIs
will stay active indefinitely until they are manually deleted by the user.

Features of AWS Glue 25

Note
It is important to make sure that the subnet being used by the Glue connection has enough IP
addresses available as each Glue resource creates multiple ENIs (each of which consumes one
IP address) based on the compute capacity required for workload execution.

At the time of writing, a Glue resource can only use one subnet. If multiple connections with
different subnets are attached, the subnet settings from the first connection will be used by
default. However, if the first connection is unhealthy for any reason – for instance, if the
availability zone is down – then the next connection is used.

In the next section, we will explore Glue Crawlers and classifiers and how they aid in data discovery.

AWS Glue crawlers

A Crawler is a component of AWS Glue that helps crawl the data in different types of data stores, infers
the schema, and populates AWS Glue Data Catalog with the metadata for the dataset that was crawled.

Crawlers can crawl a wide variety of data stores – Amazon S3, Amazon Redshift, Amazon RDS,
JDBC, Amazon DynamoDB, and DocumentDB/MongoDB to name a few. This is a powerful tool
that’s available for data discovery in AWS Glue.

Glue Connections for Crawlers
For a crawler to crawl a VPC resource or on-premise data stores such as Amazon Redshift,
JDBC data stores (including Amazon RDS data stores), and Amazon DocumentDB (MongoDB
compatible), a Glue connection is required.

Crawlers are capable of crawling S3 buckets without using Glue connections. However,
a Network connection type is required if you must keep S3 request traffic off the public internet.

For a crawler with a Glue connection, it is recommended to have at least 16 IP addresses
available in the subnet. When a connection is attached to a Glue resource, multiple ENIs are
created to run the workload.

Introduction to Important AWS Glue Features26

Now that we know what data stores are supported by AWS Glue crawlers, let’s explore how they work.
Take a look at the following diagram:

Figure 2.4 – Workflow of a Glue crawler

The workflow of a crawl can be divided into three stages:

1. Classification: In this stage, the crawler traverses the input data store and uses classifiers
(built-in/custom) to classify the source data. When a crawler is created, users can choose one
or more custom classifiers that will be used by the crawler during classification to identify the
format of the data to infer the schema. Input data is evaluated against the list of classifiers in the
same order; the certainty=1.0 value (100% certainty) is returned for the first classifier
to successfully recognize the data store. This will be used for schema inference. If none of the
custom classifiers are successful in recognizing the data store, the crawler will move on to
evaluate the data store against a list of built-in classifiers (https://docs.aws.amazon.
com/glue/latest/dg/add-classifier.html#classifier-built-in).
Finally, the certainty score decides how the data store is classified. If none of the classifiers
return certainty=1.0, the output of the classifier with the highest certainty value
will be used by Glue for table creation. If no classifier returned a certainty value that was
higher than 0.0, Glue creates a table with the UNKNKOWN classification. The crawler will use
the selected classifier to infer the schema of the dataset.

2. Clustering/Grouping: The output from the classification stage is used by the crawler and the data
is grouped based on crawler heuristics (schema, classification, and other properties). Table or
partition objects are created based on clustered data using Glue crawler’s internal logic wherein
schema similarity, compressionType, directory structure, and other factors are considered.

https://docs.aws.amazon.com/glue/latest/dg/add-classifier.html#classifier-built-in
https://docs.aws.amazon.com/glue/latest/dg/add-classifier.html#classifier-built-in

Features of AWS Glue 27

3. Output: In this stage, the table or partition objects that were created in the clustering stage will
be written to Glue Data Catalog using Glue API calls. If the table(s) already exists and this is
the first run of the crawler, a new table with a hash string suffix will be created. However, if the
crawler is running on an existing catalog table or if this is the crawler’s subsequent run, updates
to catalog table(s) will be handled according to the crawler’s SchemaChangePolicy settings.
(In some edge cases, the SchemaChangePolicy property will be ignored and new tables
and partitions might be created. This depends on the data source type defined in the crawler.)
The tables created by the crawler are placed in the database that’s been nominated. If no database
has been set up in the crawler settings, the tables will be placed in the default database.

Note
At the time of writing, the maximum runtime for any crawler is 24 hours. After 24 hours, the
crawler’s run is automatically stopped with the CANCELLED status.

Users are allowed to specify a table prefix in the crawler’s settings. The length of this prefix
cannot exceed 64 characters.

The maximum length of the name of the table cannot exceed 128 characters. The crawler
automatically truncates the names generated to fit this limit.

If the name of the table that’s generated is the same as the name of an existing table, the Glue
crawler automatically adds a hash string suffix to ensure that the table name is unique.

For Amazon S3 data store crawls, the crawler will read all the files in the path specified by default. The
crawler will classify each of the files available in the S3 path and persist the metadata to the crawler’s
service side storage (not to be confused with AWS Glue Data Catalog). Metadata gets reused and the
new files are crawled during the subsequent crawler runs and the metadata stored on the service side
is updated as necessary.

Note
When a new version of an existing file is uploaded to Amazon S3 after a crawl, a subsequent
crawl will consider this a new file. Then, the new file will be included in the new crawl.

For plain text file formats (CSV, TSV, JSON), it is not feasible to crawl the entire file for larger files
to evaluate the schema. Therefore, the crawler will read the initial 1 to 10 MB of data of each file,
depending on the file format, and ensure that at least one record is read (if the record’s size is greater
than 1 MB). The schema is inferred based on the data read into the buffer.

For the JDBC, Amazon DynamoDB, and Amazon DocumentDB (with MongoDB compatibility) data
stores, the stages of the crawler workflow are the same, but the logic that’s used for classification and
clustering is different for each data store type. The classification of the table(s) is decided based on
the data store type/database engine.

Introduction to Important AWS Glue Features28

For JDBC data stores, Glue connects to the database server, and the schema is obtained for the tables
that match the include path value in the crawler settings. Similar logic is used for DocumentDB/
MongoDB data stores and the schema of MongoDB collections is inferred.

In the next section, we’ll explore some of the key features of AWS Glue crawlers.

Key features of Glue crawlers

AWS Glue crawlers have several features and configuration options that make it easy to discover data
and populate the Data Catalog. In the following sub-sections, we will look at some of the features of
AWS Glue crawlers that help optimize the data discovery process.

Data sampling – DynamoDB and DocumentDB/MongoDB

By default, Glue performs a full scan of the DynamoDB table and MongoDB collection to infer the
schema. This operation can be time-consuming when the table is not a high throughput table. To
address this issue, we can enable the Data sampling feature. When sampling is enabled, Glue will
scan a subset of the data rather than perform a full scan.

Data sampling – Amazon S3

By default, Glue will read all the files in the Amazon S3 data store. The Data sampling feature is
available for Amazon S3 data stores as well. This will reduce crawler runtime significantly. Users
can specify the number of objects (in a value range of 1 to 249) in each leaf directory to be crawled.
This feature is helpful when the users have prior knowledge of data formats and the schemas in the
directories do not change.

Amazon S3 data store – incremental crawl

In Amazon S3, crawlers are used to scan new data and register new partitions in Glue Data Catalog.
This can be further optimized by enabling the Incremental Crawls feature (https://docs.
aws.amazon.com/glue/latest/dg/incremental-crawls.html). This feature is
best suited for datasets that have stable schemas. When this feature is enabled, only new directories
that have been added to the dataset are crawled. This feature can be enabled in the AWS Glue console
by selecting the Crawl new folders only checkbox.

Amazon S3 data store – table-level specification

While discussing the Clustering/Grouping stage in the crawler workflow, we talked about how crawlers
use internal logic based on data store properties (schema similarity, compression, and directory structure)
to decide whether a directory that’s stored in Amazon S3 is a partition or a table. In some use cases, two
or more tables can have a similar schema, which causes the crawler to mark these tables as partitions
of the same tables instead of creating separate tables. Using the TableLevelConfiguration
option in the Grouping policy, we can inform the crawler of where the tables are located and how we
want the partitions to be created. Let’s consider an example.

https://docs.aws.amazon.com/glue/latest/dg/incremental-crawls.html
https://docs.aws.amazon.com/glue/latest/dg/incremental-crawls.html

Features of AWS Glue 29

Imagine that we have the following directory structure in an Amazon S3 bucket:

s3://myBucket/prefix/data/year=2021/month=10/day=08/hour=12/
file1.parquet

s3://myBucket/prefix/data/year=2021/month=11/day=10/hour=12/
file2.parquet

All the Parquet files in the S3 location have the same schema. If we point the crawler to s3://
myBucket/prefix/data/ and run the crawler, it will create a single table and four partition
keys – year, month, day, and hour. However, consider a scenario where we want to create separate
tables for each month. Typically, the solution is to add multiple include_path for the crawler
to crawl – for example, s3://myBucket/prefix/data/year=2021/month=10/ and
s3://myBucket/prefix/data/year=2021/month=11/. Now, if there are hundreds
of such paths and we want to create a table for all of them, it would not be feasible to add all the paths
to the crawler configuration.

The same outcome can be achieved by using the Table level feature. We can set the Table Level
parameter to 5 in crawler output settings. This will instruct the crawler to create the tables at level 5
from root (which corresponds to month in the directory structure specified previously). Now, the
crawler will create two tables called month_10 and month_11.

In this section, we discussed some of the key features of Glue crawlers that can be enabled to enhance
the performance or precision of the crawler. Please refer to the AWS Glue documentation for an
exhaustive list of available crawler features.

Custom classifiers

While discussing the different stages in the crawler workflow, we mentioned it is possible to add
custom classifiers to Glue crawlers. Classifiers are responsible for determining the file’s classification
string (for example, parquet) and the schema of the file. When built-in classifiers are not capable
of crawling the dataset or the table that’s been created requires customization, users can define custom
classifiers and crawlers that will use the logic defined to create schema based on the type of classifier.

Note
If a custom classifier definition gets changed after a crawl, any data that was previously crawled
will not be reclassified as the crawler keeps track of metadata for previously crawled data. If a
mistake was made during classifier configuration, just fixing the classifier configuration will
not help. The only way to reclassify already classified data is to delete and recreate the crawler
with the updated classifier attached.

Introduction to Important AWS Glue Features30

At the time of writing, users can define the following types of custom classifiers:

• Grok classifiers: Grok patterns are named sets of regular expressions that can match one line
of data at a time. When the dataset matches the grok pattern specified, the structure of the
dataset is determined and the data is tokenized and mapped to fields defined in the pattern
specified. The GrokSerDe serialization library is used for tables created in Glue Data Catalog.

• XML classifiers: XML classifiers allow users to define the tag in the XML files that contains
the records. For instance, let’s consider the following XML sample:

<?xml version="1.0"?>

<catalog>

 <book id="bk101">

 <author>Gambardella, Matthew</author>

 <title>XML Developer's Guide</title>

 </book>

 <book id="bk102">

 <author>Ralls, Kim</author>

 <title>Midnight Rain</title>

 </book>

</catalog>

In this case, using book as the XML row tag will create a table containing two columns –
author and title.

Note
It is important to note that an element that holds the record cannot be self-closing. For example,
<book id="bk102"/> will not parse. Empty elements should have a separate starting
and closing tag; for example, <book id="bk102"> </book>.

• JSON Classifiers: Using JSON classifiers, users can specify the JSON path where individual
records are present. This classifier uses JsonPath expressions as input and accesses the
items in the JSON based on the path specified. The syntax for JsonPath can be found in
https://docs.aws.amazon.com/glue/latest/dg/custom-classifier.
html#classifier-values-json.

Let’s consider the following sample JSON dataset:

{

 "book": [

 {

 "category": "reference",

https://docs.aws.amazon.com/glue/latest/dg/custom-classifier.html#classifier-values-json
https://docs.aws.amazon.com/glue/latest/dg/custom-classifier.html#classifier-values-json

Features of AWS Glue 31

 "author": "Nigel Rees",

 "title": "Sayings of the Century",

 },

 {

 "category": "fiction",

 "author": "Herman Melville",

 "title": "Moby Dick",

 }

]

}

To extract individual books as records, we can use the $.book[*] JSON path.

• CSV Classifiers: CSV classifiers allow users to specify different options to crawl delimited files.
Users can specify custom delimiters, quote symbols, options about the header, and validations
(this allows files with a single column – trim whitespace before column identification).

In the next section, we will discuss the AWS Glue Schema Registry (GSR) and how we can handle
evolving schemas to stream data stores centrally.

AWS Glue Schema Registry

With organizations’ growing need for real-time analytics, streaming data processing is becoming
more and more important in an enterprise data architecture. Organizations collect real-time data
from a wide variety of sources, including IoT sensors, user applications, application/security logs,
and geospatial services. Collecting real-time data gives organizations visibility into aspects of their
business and customer activity and enables them to respond to emerging situations. For example,
sensors in industrial equipment send data to streaming applications. The application monitors the
data that’s been sent by the sensors and detects any potential faults in the machinery.

Over time, as organizations grow, more data sources (for example, additional sensors or trackers)
can be used to enrich the data streams with additional information that’s vital to the business. This
creates a problem for all the downstream applications that already consume these data streams as
they must be upgraded to handle these schema changes. Schema registries can be used to address the
issues caused by schema evolution and allow streaming data producers and consumers to discover
and manage schema changes, as well as adapt to these changes based on user settings.

GSR is a feature available in AWS Glue that allows users to discover, control, and evolve schema
for streaming data stores centrally. Glue Schema registries support integrations with a wide variety
of streaming data stores such as Apache Kafka, Amazon Kinesis Data Streams, Amazon Managed
Streaming for Apache Kafka (MSK), Amazon Kinesis Data Analytics for Apache Flink, and AWS
Lambda by allowing users to enforce and manage schemas.

Introduction to Important AWS Glue Features32

AWS Glue Schema Registry is fully managed, serverless, and available for users free of cost. At the
time of writing, GSR supports the AVRO, JSON, and protocol buffer (protobuf) data formats for
schemas. JSON schema validation is supported by the Everit library (https://github.com/
everit-org/json-schema).

Note
The AWS Glue Schema Registry currently supports the Java programming language. Java
version 8 (or above) is required for both producers and consumers.

Schema registries use serialization and deserialization processes to help stream data that producers
and consumers enforce a schema on records. If a schema is not available in the schema registry, it
must be registered for use (auto-registration of the schema can be enabled for any new schema to be
auto-registered).

Upon registering a schema in the schema registry, a schema version identifier will be issued to the
serializer. If the schema is already available in the GSR and the serializer is using a newer version of
the schema, the GSR will check the compatibility rule to make sure that the new version is compatible.
The schema will be registered as a new version in the GSR.

When a producer has its schema registered, the GSR serializer validates the schema of the record
with where the schema is registered. If there is a mismatch, an exception will be returned. Producers
typically cache the schema versions and match the schema against the versions available in the cache.
If there is no version available in the cache that matches the schema of the record, GSR will be queried
for this data using the GetSchemaVersion API.

If the schema is validated using a version in the GSR, the schema version ID and definition will be
cached locally by the producer. If the record’s schema is compliant with the schema registered, the
record is decorated with the schema version ID and then serialized (based on the data format selected),
compressed, and delivered to the destination.

Once a serialized record has been received, the deserializer uses the version ID available in the payload
to validate the schema. If the deserializer has not encountered this schema version ID before, the GSR
is queried for this and the schema version is cached in local storage.

If the schema version IDs in the GSR/cache match the version in the serialized record, the deserializer
decompresses and deserializes the data and the record is handed off to the consumer application.
However, if the schema version ID doesn’t match the version IDs available in cache or the GSR, the
consumer application can log this event and move on to other records or halt the process based on
user configuration.

https://github.com/everit-org/json-schema
https://github.com/everit-org/json-schema

Features of AWS Glue 33

SerDe libraries can be added to both producer and consumer applications by adding the
software.amazon.glue:schema-registry-serde Maven dependency (https://
mvnrepository.com/artifact/software.amazon.glue/schema-registry-
serde). Refer to https://docs.aws.amazon.com/glue/latest/dg/schema-
registry-integrations.html for example producer and consumer implementations.

In the next section, we will explore one of the key components of AWS Glue: ETL jobs.

AWS Glue ETL jobs

ETL is one of the main components of data integration. Designing an ETL pipeline to ingest and
transform data can be time-consuming as data grows over time. Setting up, managing, and scaling the
infrastructure takes up most of the effort in a typical on-premise data engineering project. Glue ETL
almost eliminates the effort involved in setting up infrastructure as it is fully managed and serverless.
All the effort involved in setting up hosts, configuration management, and patching is handled behind
the scenes by the Glue ETL engine so that the user can focus on developing ETL scripts and managing
the necessary dependencies. Of course, Glue ETL is not a silver bullet that eliminates all the challenges
involved in running an ETL workload, but with the right design and strategy, it can be a great fit for
almost all organizations.

At the time of writing, Glue allows users to create three different types of ETL jobs – Spark ETL, Spark
Streaming, and Python shell jobs. The key differences between these job types are in the libraries/
packages that are injected into the environment during job orchestration on the service side and
billing practices.

During job creation, users can use the AWS Glue wizard to generate an ETL script for Spark and
Spark Streaming ETL jobs by choosing the source, destination, column mapping, and connection
information. However, for Python shell jobs, the user will have to provide a script. At the time of
writing, Glue ETL supports Scala 2 and PySpark (Java and R jobs are currently not supported) for
Spark and Spark Streaming jobs and Python 3 for Python shell jobs.

When Glue ETL was introduced, Python 2 support was available in Glue ETL v0.9 and 1.0. However,
since Python 2 was sunsetted by the open source community, ETL job environments that used Python
2 were phased out. This is specified in the policy available in the Glue EOS milestones documentation
(https://docs.aws.amazon.com/glue/latest/dg/glue-version-support-
policy.html#glue-version-support-policy-milestones).

Note
AWS Glue allows multiple connections to be attached to ETL jobs. However, it is important to
note that a Glue job can use only one subnet for VPC jobs. If multiple connections are attached
to a job, only the first connection is attached to the ETL job.

https://mvnrepository.com/artifact/software.amazon.glue/schema-registry-serde
https://mvnrepository.com/artifact/software.amazon.glue/schema-registry-serde
https://mvnrepository.com/artifact/software.amazon.glue/schema-registry-serde
https://docs.aws.amazon.com/glue/latest/dg/schema-registry-integrations.html
https://docs.aws.amazon.com/glue/latest/dg/schema-registry-integrations.html
https://docs.aws.amazon.com/glue/latest/dg/glue-version-support-policy.html#glue-version-support-policy-milestones
https://docs.aws.amazon.com/glue/latest/dg/glue-version-support-policy.html#glue-version-support-policy-milestones

Introduction to Important AWS Glue Features34

There are some advanced features that users can select during job creation, such as job bookmarks,
continuous logging, Spark UI, and capacity settings (the number of workers and worker type). Glue
allows users to inject several job parameters (including Spark configuration parameters) so that they
can alter the default Spark behavior.

Glue ETL introduces quite a lot of advanced Spark extensions/APIs and transformations to make it
easy to achieve complex ETL operations. Let’s look at some of the important extensions/features that
are unique to Glue ETL.

GlueContext

The GlueContext class wraps Apache Spark’s SparkContext object and allows you to interact
with the Spark platform. GlueContext also serves as an entry point to several Glue features –
DynamicFrame APIs, job metrics, continuous logging, job bookmarks, and more. The GlueContext
class provides methods to create DataSource and DataSink variables, which is essential in
reading/writing Glue DynamicFrames. GlueContext is also helpful in setting the number of output
partitions (the default is 20) in a DynamicFrame when the number of output partitions is below the
minimum threshold (the default is 10).

GlueContext can be initialized using the following code snippet:

sc = SparkContext()

glueContext = GlueContext(sc)

Once the GlueContext class has been initialized, we can use the object created to extract the
SparkSession object:

spark = glueContext.spark_session

DynamicFrame

DynamicFrame is a key functionality of Glue that enables users to perform ETL operations efficiently.
As defined in the AWS Glue documentation (https://docs.aws.amazon.com/glue/
latest/dg/glue-etl-scala-apis-glue-dynamicframe-class.html),
a DynamicFrame is a distributed collection of self-describing DynamicRecord objects (comparable
to a Row in Spark DataFrame, but DynamicRecords do not require them to adhere to a set schema).
Since the records are self-describing, DynamicFrames do not require a schema to be created and can
be used to read/transform data with inconsistent schemas. SparkSQL performs two passes over
the dataset to read data since a Spark DataFrame expects a well-defined schema for data ingestion –
the first one to infer the schema from the data source and the second to load the data. Even though
SparkSQL supports schema inference, it is still limited in its capabilities. Glue infers the schema
for a given dataset at runtime when required and does not pre-compute the schema. Any schema
inconsistencies that are detected are encoded as choice (or union) data types that can be later resolved
to make the dataset compatible with targets that require a fixed schema.

https://docs.aws.amazon.com/glue/latest/dg/glue-etl-scala-apis-glue-dynamicframe-class.html
https://docs.aws.amazon.com/glue/latest/dg/glue-etl-scala-apis-glue-dynamicframe-class.html

Features of AWS Glue 35

DynamicFrames can be created using different APIs, depending on the use case. The following syntax
can be used to create a DynamicFrame using a Glue Data Catalog table in PySpark (documentation on
this can be found at https://docs.aws.amazon.com/glue/latest/dg/aws-glue-
api-crawler-pyspark-extensions-dynamic-frame-reader.html#aws-glue-
api-crawler-pyspark-extensions-dynamic-frame-reader-from_catalog):

datasource0 = glueContext.create_dynamic_frame.from_
catalog(name_space='my_database', table_name='my_table',
transformation_ctx='datasource0')

This statement will create a DynamicFrame object called datasource0 for the my_table table
in the my_database database. This statement will use the GlueContext object, which uses
the Glue SDK, to connect to Glue Data Catalog and fetch the data store classification and properties
to create the object. Additionally, users can pass additional options into this statement by using the
additional_options parameter and a pushdown predicate filter expression to apply filters to
the dataset while it is being read using the push_down_predicate parameter.

In the preceding source code example, we used the from_catalog method to create datasource0.
Similarly, DynamicFrames can be created using the following methods:

• from_options: This method allows users to create DynamicFrames by manually specifying
the connection type, options, and format. This method provides users with the flexibility to
customize options for a data store.

• from_rdd: This method allows users to create DynamicFrames using Spark Resilient
Distributed Datasets (RDDs).

The DynamicFrame class provides several transformations that are unique to Glue and also allows
conversion to and from Spark DataFrames. This makes it incredibly easy to integrate the existing
source code and take advantage of the operations that are available in Spark DataFrames but not yet
available in Glue DynamicFrames. Users can convert a DynamicFrame into a Spark DataFrame using
the following syntax:

df = datasource0.toDF()

Here, datasource0 is the DynamicFrame and df is the Spark DataFrame that was returned.

Similarly, a Spark DataFrame can be converted into a Glue DynamicFrame using the following code
snippet:

from awsglue.dynamicframe import DynamicFrame

dyf = DynamicFrame.fromDF(dataframe=df, glue_ctx=glueContext,
name="dyf")

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-dynamic-frame-reader.html#aws-glue-api-crawler-pyspark-extensions-dynamic-frame-reader-from_catalog
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-dynamic-frame-reader.html#aws-glue-api-crawler-pyspark-extensions-dynamic-frame-reader-from_catalog
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-dynamic-frame-reader.html#aws-glue-api-crawler-pyspark-extensions-dynamic-frame-reader-from_catalog

Introduction to Important AWS Glue Features36

Both Spark DataFrames and Glue DynamicFrames are high-level Spark APIs that interact with
Spark RDDs. That being said, the structure of a DynamicFrame is significantly different from that of
a DataFrame.

While a DynamicFrame provides a flexible set of APIs to access and transform datasets, there are some
areas where DataFrames outshine DynamicFrames. For instance, since DynamicFrames are based on
raw RDDs and not Spark DataFrames, it does not take advantage of Spark’s catalyst optimizer. This is
the reason why some aggregation operations (such as joins) perform better with Spark DataFrames
than Glue DynamicFrames. In such cases, we can convert it into Spark DataFrame to take advantage
of the performance boost offered by the catalyst optimizer. Also, some functions/classes are only
available for Spark DataFrames, such as Spark MLlib and SparkSQL functions.

It is important to note that converting a Glue DynamicFrame into a Spark DataFrame requires a full
Map stage in Spark. This should only be used when necessary. DynamicFrame to DataFrame conversion
blocks Spark from optimizing workloads based on upstream code and dramatically reduces efficiency.

Job bookmarks

Bookmarking is a key feature available in Glue ETL that allows users to keep track of data that was
processed and written. During the next job run, only new data will be processed. This is an extremely
useful option that helps in processing large datasets that are constantly growing. While specifying the
syntax for DynamicFrame creation from the Data Catalog table earlier, the transformation_
ctx parameter (https://docs.aws.amazon.com/glue/latest/dg/monitor-
continuations.html#monitor-continuations-implement-context) was
mentioned in the code snippet. This parameter is used as the identifier for the job bookmark’s state,
which is persisted across job runs. Job bookmarks are supported for S3 and JDBC-based data stores.
At the time of writing, the JSON, CSV, Apache Avro, XML, Parquet, and ORC file formats are
supported with S3 data stores. For an Amazon S3 data source, job bookmarks keep track of the last
modified timestamp of the objects processed. This information is then persisted in the bookmark storage
on the service side. During the next jobRun, the information that was collected by the bookmark in the
previous jobRun will be used to filter out already processed objects; then, new objects are processed.

Note:
A new version of an already existing object is still considered a new object and will be processed
in the new jobRun.

At the time of writing, Glue DynamicFrames only support Spark SaveMode.Append mode
for writes. So, if a new version of an object was added to the data store, there is a possibility of
data duplication in the target data store. This must be handled by the user with custom logic
in the ETL script.

https://docs.aws.amazon.com/glue/latest/dg/monitor-continuations.html#monitor-continuations-implement-context
https://docs.aws.amazon.com/glue/latest/dg/monitor-continuations.html#monitor-continuations-implement-context

Features of AWS Glue 37

For JDBC data stores, job bookmarks use key(s) specified by the user and the order of the keys to track
the data being processed. If no keys are specified by the user, Glue will use the primary key of the JDBC
table. It is important to note that Glue will not accept the primary key, which is not sequential (there
shouldn’t be gaps in the values). In such cases, we just have to specify the column manually as the key
in the jobBookmarkKeys parameter in additional_options (connection_options
for the from_options API). This will force Glue to use the key for bookmarking.

Note – Bookmarking with JDBC Data Stores
If more than one key is specified, Glue will combine the keys to form a single composite key.
However, if a key is not specified, Glue will use the primary key of the JDBC table as the key
(only if the key is increasing/decreasing sequentially). If keys are specified by the user, gaps are
allowed for these keys. However, the keys have to be sorted – either increasing or decreasing.

GlueParquet

Parquet is one of the most popular file formats used for data analytics workloads. We already know
that DynamicFrames contain self-describing dynamic records with flexible schema requirements
– the same principle can be applied while writing parquet datasets. By setting the output format as
glueparquet, users can take advantage of the custom-built parquet writer, which computes the
schema dynamically during write operations.

This writer computes a schema for the dataset that’s available in memory. Performing a pass over the
dataset in memory is computationally cheaper compared to performing a pass over the data in disk or
Amazon S3. A buffer is created for each column that’s encountered in this pass and data is inserted into
these buffers. If the writer comes across a new column, a new buffer is initialized and data is written
into it. When the file is to be written to the target, the buffers for all the columns are aggregated and
flushed. This approach helps avoid schema computation during a parquet write to the target.

This writer can be used by setting format="glueparquet" or format=parquet along
with the format_option parameter, where useGlueParquetWriter is set to true. The
data that’s written to the target data store is still in parquet format, however, the writer uses different
logic to write data to the target.

It is important to note that the GlueParquet writer only supports schema evolution – that is,
adding/removing columns – and does not support changing data types for existing columns. The
glueparquet format can only be used for write operations. To read the data written by this writer,
we still have to use format=parquet.

Now that we understand the fundamentals of AWS Glue ETL Jobs, we will explore Glue development
endpoints, which can be used by end users to develop ETL scripts for ETL Jobs.

Introduction to Important AWS Glue Features38

Glue development endpoints

When Glue ETL was introduced, the orchestration service on the service side provisioned Spark clusters
on-demand and configured them. This approach introduced a significantly high cold-start of about
10 to 15 minutes (with a timeout of 25 minutes). However, this all changed with the introduction of
Glue v2.0, which used a different infrastructure provisioning mechanism. This cut down the cold-start
from 10 to 15 minutes to 10 to 30 seconds (with a timeout of 5 minutes).

Glue ETL is a heavily customized environment with a lot of proprietary classes and libraries pre-packaged
and ready for use. Developing Glue ETL scripts proved to be a challenge as Glue ETL was not initially
designed for instant feedback. One mistake in the ETL script during development can take up to 10
to 15 minutes for the job to start running – only then will the user be able to see the mistake. This
can be a bit frustrating and lead to poor developer experience.

Glue development endpoints were introduced to address this pain point. This feature allows users
to create an environment for Glue ETL development wherein the developer/data engineer can use
Notebook environments (Jupyter/Zeppelin), read-eval-print loop (REPL) shells, or IDEs to develop
ETL scripts and test them instantly using the endpoint.

Glue development endpoints are essentially long-running Spark clusters that run on the service side
with all the pre-packaged libraries and dependencies available in the ETL environment ready for use.
Apache Livy and Zeppelin Daemon are also installed in a development environment, which enables
users to use Jupyter and Zeppelin notebook environments for ETL script development.

While Glue development endpoints provided a mechanism for users to develop and test Glue ETL
scripts, it required users to create and manage development endpoints and notebook servers. Glue
interactive sessions made this process easier by allowing users to use their own notebook environments.

In the next section, we’ll explore interactive sessions in more detail.

AWS Glue interactive sessions

Glue interactive sessions introduced the optimizations that are used for Glue ETL v2.0 infrastructure
provisioning to development environments. This can be used by users via custom-built Jupyter kernels.
Glue interactive sessions are not long-running Spark clusters and can be instantaneously created or
torn down (using the %delete_session magic command). The cold-start duration is significantly
less (approximately 7 to 30 seconds) compared to development endpoints (10 to 20 minutes).

Interactive sessions make it easier for users to access the session from Jupyter notebook environments
hosted anywhere (the notebook server can be running locally on a user workstation as well) with
minimal configuration. The session is created on-demand when the user starts the session in the
notebook using the %new_session magic command and can be configured to auto-terminate
when there is no user activity for a set period (with the %idle_timeout magic variable).

Features of AWS Glue 39

To set up Glue interactive sessions, all we need is a Jupyter environment with Python 3.6 or above
with Glue kernels installed and connectivity to AWS Glue APIs. We can follow the steps available at
https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions.
html to set up an interactive sessions environment.

The configuration for the interactive session (similar to the ETL job configuration) can be done using
the magic variables that are available in Glue kernels. An exhaustive list of the magic variables that
are available in Glue kernels can be found at https://docs.aws.amazon.com/glue/
latest/dg/interactive-sessions-magics.html.

As we can see, with minimal setup, we can start developing ETL scripts from any Jupyter environment,
so long as Glue kernels are installed and connectivity to Glue APIs is available.

In the next section, we will explore Glue triggers, which allow us to orchestrate complex Glue workloads
since we can execute Glue jobs or crawlers on-demand, based on a schedule or the outcome of
a condition.

Triggers

Triggers are Glue Data Catalog objects that can be used to start (manually or automatically) one or more
crawlers or ETL jobs. Triggers allow users to chain crawlers and ETL jobs that depend on each other.

There are three types of triggers:

• On-demand triggers: These triggers allow users to start one or more crawlers or ETL jobs by
activating the trigger. This can be done manually or via an event-driven API call.

• Scheduled triggers: These time-based triggers are fired based on a specified cron expression.

• Conditional triggers: Conditional triggers fire when the previous job(s)/crawler(s) satisfy
the conditions specified. Conditional triggers watch the status of the jobs/crawlers specified –
success, failed, timeout, and so on. If the list of conditions specified is satisfied, the trigger is fired.

Note
A scheduled/conditional trigger must be in the ACTIVATED state (and not in the CREATED/
DEACTIVATED state) for the trigger to start firing based on a schedule or a specific condition.
This is the first thing that the user can check if a scheduled/conditional trigger is not firing
as expected.

When multiple glue resources are chained using triggers, the dependent job/crawler is started,
provided that the previous job/crawler was started by a trigger.

If we are designing a chain of dependent jobs/crawlers, it is important to make sure that all
the jobs and crawlers in the chain are descendants of the same scheduled/on-demand trigger.

https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions.html
https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions.html
https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions-magics.html
https://docs.aws.amazon.com/glue/latest/dg/interactive-sessions-magics.html

Introduction to Important AWS Glue Features40

Triggers can be part of a Glue workflow or they can be independent. We can design a chain of dependent
jobs and crawlers. However, Glue workflows are preferable while designing complex multi-job ETL
operations. We will discuss Glue workflows and blueprints in detail later in this book.

Summary
In this chapter, we introduced different AWS Glue microservices, including Glue Data Catalog,
crawlers, classifiers, connections, ETL jobs, development endpoints, the schema registry, and triggers.
We also discussed the key features of each of those different microservices to understand how they
aid in different stages of data integration.

Then, we explored the structure of Glue Data Catalog, Glue connections, and the mechanisms used
by crawlers and classifiers for data discovery. We also talked about the different classes/APIs that are
available in AWS Glue ETL that help with data preparation and transformation. After this, we briefly
explored development endpoints and interactive sessions, which make it easy for data engineers/
developers to test and write ETL jobs. Then, we explored AWS Glue Triggers and understood how
they help us orchestrate complex ETL workflows by allowing Glue users to chain crawlers and ETL
jobs based on specific conditions or a schedule.

In the next chapter, we will discuss some of the key features of AWS Glue ETL jobs in detail and explore
how they can be used to prepare and ingest data from different types of data stores.

3
Data Ingestion

In the previous chapter, we discussed the fundamental concepts and inner workings of the various
features/microservices that are available in AWS Glue, such as Glue Data Catalog, connections, crawlers,
and classifiers, the schema registry, Glue ETL jobs, development endpoints, interactive sessions,
and triggers. We also explored how AWS Glue crawlers aid in data discovery by crawling different
types of data stores – Amazon S3, JDBC (Amazon RDS or on-premises databases), and DynamoDB/
MongoDB/DocumentDB infer the schema and populate AWS Glue Data Catalog. While discussing
Glue ETL in the previous chapter, we introduced a few of the important extensions/features of Spark
ETL, including GlueContext, DynamicFrame, JobBookmark, and GlueParquet. In
this chapter, we will see them in action by looking at some examples.

In this chapter, we will be discussing some of the components of AWS Glue mentioned in the previous
paragraph – specifically Glue ETL jobs, the schema registry, and Glue custom/Marketplace connectors
– in further detail and exploring data ingestion use cases, such as ingesting data from file/object
stores, JDBC-compatible data stores, streaming data sources, and SaaS data stores, to demonstrate
the capabilities of Glue. We know that AWS Glue supports three different types of ETL jobs – Spark,
Spark Streaming, and a Python Shell. Each of these job types is designed to handle a specific type
of workload and the environment in which the workload is executed varies, depending on the type
of ETL job. For instance, Python Shell jobs allow users to execute Python scripts as a shell in AWS
Glue. These jobs run on a single host on the server side. Spark/Spark Streaming ETL, on the other
hand, allows you to execute PySpark/Scala-based ETL jobs in a distributed environment and allows
users to take advantage of Spark libraries to execute ETL workloads.

In the upcoming sections, we will explore how Glue ETL can be used to ingest data from different data
stores, including file/object stores, JDBC data stores, Spark Streaming data sources, and SaaS data stores.

By completing this chapter, you will be able to articulate and explain the features of AWS Glue ETL
that help with ingesting data from file/object stores, HDFS, JDBC, Spark Streaming, and SaaS data
stores and compose ETL scripts for them. You will also be able to explain the mechanism used by
Glue job bookmarks to perform incremental data ingestion from Amazon S3 object stores and JDBC
data stores. You will be able to create and use JDBC/custom/Marketplace connectors to ingest data
from custom JDBC and SaaS data stores.

Data Ingestion42

In this chapter, we will cover the following topics:

• Data ingestion from file/object stores

• Data ingestion from JDBC data stores

• Data ingestion from streaming data sources

• Data ingestion from SaaS data stores

Now, let’s explore how we can ingest data from different types of data stores using AWS Glue and the
salient features of AWS Glue that make it easy to ingest data from data stores.

Technical requirements
To get started with this chapter, you will need a workstation that’s running Linux, macOS, or Windows
with at least 7 GB of storage and 4 GB of RAM. While the code snippets can be run directly on AWS
Glue (an AWS account is required to access AWS Glue), you can still run most of the code snippets in
this chapter on your workstation directly. The code snippets in this chapter are available in this book’s
GitHub repository at https://github.com/PacktPublishing/Serverless-ETL-
and-Analytics-with-AWS-Glue/tree/main/Chapter03.

There are several options available for setting up the Glue development environment on your
workstation. Please refer to the AWS Glue documentation at https://docs.aws.amazon.
com/glue/latest/dg/aws-glue-programming-etl-libraries.html
for instructions regarding each of those options.

Now, let’s explore how we can ingest data from different types of data stores one by one.

Data ingestion from file/object stores
This is one of the most common use cases for Glue ETL, where the source data is already available
in file storage or cloud-based object stores. Here, depending on the type of job being executed, the
methods or libraries used to access the data store differ.

There are several file/object storage services available today – Amazon S3, HDFS, Azure Storage,
Google Cloud Storage, IBM Cloud Object Storage, FTP, SFTP, and HTTP(s) to name a few. In
this section, we will focus on two of the most popular file/object stores that are used with AWS
Glue – Amazon S3 and HDFS.

Data ingestion from Amazon S3

Data ingestion from Amazon S3 is by far the most commonly used design pattern for ETL in AWS
Glue. Most organizations already have some mechanism to move data to Amazon S3, typically
by using the AWS CLI/SDKs directly, AWS Transfer Family (https://aws.amazon.com/
aws-transfer-family/), or some other third-party tools.

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter03
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter03
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html
https://aws.amazon.com/aws-transfer-family/
https://aws.amazon.com/aws-transfer-family/

Data ingestion from file/object stores 43

If we are using Python Shell jobs, the user can take advantage of several Python packages that allow
them to connect to the desired file storage. If the user wishes to read an object from Amazon S3, they
can use the Amazon S3 Boto3 client to get and read objects using Python packages/functions (for
example, native Python functions and pandas), depending on the file format.

The following code snippet can be used with an AWS Glue Python Shell ETL job to read a CSV from an
Amazon S3 bucket, transform the file from CSV into JSON, and write the output to another Amazon
S3 location (the source code for this is available in this book’s GitHub repository at https://
github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-
AWS-Glue/tree/main/Chapter03):

import boto3, io, pandas as pd

client = boto3.client('s3')

nyc-tlc - https://registry.opendata.aws/

src_bucket = 'nyc-tlc' # SOURCE_S3_BUCKET_NAME

target_bucket = 'TARGET_S3_BUCKET_NAME'

src_object = client.get_object(

 Bucket=src_bucket,

 Key='trip data/yellow_tripdata_2021-07.csv'

)

Read CSV and Transform to JSON

df = pd.read_csv(src_object['Body'])

jsonBuffer = io.StringIO()

df.to_json(jsonBuffer, orient='records')

Write JSON to target location

client.put_object(

 Bucket=target_bucket,

 Key='target_prefix/data.json',

 Body=jsonBuffer.getvalue()

)

Here, the source data is a CSV file stored in an Amazon S3 location. The preceding script is downloading
the data using the get_object() method, which is available in the AWS Python SDK (boto3),
reading and transforming the CSV file using the pandas library, and writing to a different Amazon
S3 location using the put_object() method.

The same source code can be executed in several ways in AWS – any Amazon EC2 instance with
Python installed, an AWS Lambda function, or within a Docker container using Amazon ECR/AWS
Batch, to name a few. Out of all the approaches listed, AWS Lambda and AWS Glue Python Shell jobs
are the only ones that are serverless. Now, the question is, “Why should we use AWS Glue Python Shell
jobs over AWS Lambda?”

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter03
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter03
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter03

Data Ingestion44

While AWS Lambda and AWS Glue Python Shell jobs are both capable of running Python scripts,
Python Shell jobs are designed for ETL workloads and can be orchestrated easier with other Glue
components such as crawlers, Spark jobs, and Glue triggers using AWS Glue workflows. AWS Lambda
functions can use a maximum of 512 MB of storage space (the /tmp directory), up to 10,240 MB of
memory, and up to 6 vCPUs – the functions can run for up to a maximum of 15 minutes.

Glue Python Shell jobs, on the other hand, use the concept of Data Processing Units (DPUs) for
capacity allocation, where one DPU provides four vCPUs and 16 GB of memory. Users can use either
0.0625 DPU or a 1 DPU capacity for Python Shell jobs. Essentially, a Python Shell job can use up to
four vCPUs and 16 GB of memory and the user can configure the timeout value for Python Shell jobs
(the default is 48 hours). At the time of writing, Glue Python Shell jobs are allocated 20 GB of disk
space by default, though this may change in the future.

Now, let’s consider the same ETL operation we performed in the previous script but using AWS Glue
Spark ETL instead.

Let’s consider the following code snippets:

• Using AWS Glue DynamicFrame (code snippet 1): The following code snippet shows how
to read data from Amazon S3 and write the transformed data to another Amazon S3 location:

dy_frame = glueContext.create_dynamic_frame.from_options(

 connection_type="s3",

 connection_options = {"paths": ["s3://nyc-tlc/trip
data/yellow_tripdata_2021-07.csv"]},

 format="csv",

 format_options = {"withHeader": True}

)

datasink = glueContext.write_dynamic_frame.from_options(

 frame = dy_frame, connection_type = "s3",

 connection_options = {

 "path": "s3://TARGET_BUCKET_NAME/target_prefix/"

 },

 format = "json"

)

• Without using AWS Glue DynamicFrame (code snippet 2): The following code snippet
implements a similar workflow to the previous one, but this time, we will not be using AWS
Glue DynamicFrames:

df = spark.read.option("header","true").csv("s3://
nyc-tlc/trip data/yellow_tripdata_2021-07.csv")

df.write.json("s3://TARGET_BUCKET_NAME/target_prefix/")

Data ingestion from file/object stores 45

Now, both of these code snippets are essentially performing the same operations. This begs the question,
“What is the advantage of using Glue DynamicFrame over a Spark DataFrame?”

As discussed in the previous chapter, DynamicFrames are structurally different from Spark DataFrames
since they have several optimizations enabled under the hood.

AWS Glue Spark ETL and EMRFS
In the preceding examples, as you may have noticed, we specified Amazon S3 paths in the
s3://BUCKET_NAME/prefix format to read or write data. Notice that the s3://
protocol string was used instead of s3a:// or s3n://, which you may have seen examples
of in the Spark documentation or blog articles online.

Under the hood, AWS Glue ETL (Spark) uses an EMRFS (https://docs.aws.amazon.
com/emr/latest/ReleaseGuide/emr-fs.html) driver by default to read from
Amazon S3 data stores when the path begins with the s3:// URI scheme (class: com.
amazon.ws.emr.hadoop.fs.EmrFileSystem), regardless of whether Apache
Spark DataFrames or AWS Glue DynamicFrames are used. The EMRFS driver was originally
developed for Amazon EMR and has been since adopted by AWS Glue for Amazon S3 reads
and writes from Glue Spark ETL.

While users can still use s3a:// (class: org.apache.hadoop.fs.s3a.
S3AfileSystem) and s3n:// (class: org.apache.hadoop.fs.s3native.
NativeS3FileSystem) to read from Amazon S3 data stores, it is strongly discouraged
as different classes would be used to read the data store and bypass configuration properties,
as well as making optimizations that have been set up on the server side.

In addition, it is important to note that NativeS3FileSystem (s3n://) has reached
End-of-Life (EoL) and must not be used.

Schema flexibility

Since DynamicRecords are self-describing, a schema is computed on the fly and there is no need to
perform an additional pass over the source data.

Advanced options for managing schema conflicts

DynamicFrames make it easier to handle schema conflicts by introducing ChoiceType whenever
a schema conflict is encountered instead of defaulting to the most compatible data type (usually, this
is StringType). For instance, if one of the columns has integer/long values and string values,
Spark infers it as StringType by default. However, Glue creates ChoiceType and allows the
user to resolve the conflict.

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-fs.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-fs.html

Data Ingestion46

Let’s consider an example where the Provider Id column has StringType and numeric
(LongType) values. When the data is read using a Spark DataFrame, the column will be inferred
as StringType by Spark:

root

 |-- ColumnA: string (nullable = true)

 |-- ColumnB: string (nullable = true)

Now, when the same dataset is read using AWS Glue DynamicFrames, the column is represented with
ChoiceType and lets the user decide how to resolve the type conflict:

root

 |-- ColumnA: string

 |-- ColumnB: choice

 | |-- long

 | |-- string

When a column is recognized as ChoiceType, the user can resolve the conflict by using the
ResolveChoice class in Glue. There are four different options for the user to choose from: cast,
make_cols, make_struct, and project. Let’s take a look:

• cast: The user can cast the column to long using the following statement:

new_dyf = dyf.resolveChoice(specs = [('ColumnB
','cast:long')])

The column will use LongType as the data type. For the string values that could not be
cast to LongType, Glue inserts null values.

• make_struct: We can convert this into a struct using make_struct, which will
produce a struct column in the DynamicFrames, with each containing both StringType
and LongType values.

• make_cols: This option can be used by the user to create separate columns for each of the
data types detected. In this instance, two new columns will be produced: ColumnB_long
and ColumnB_string.

• project: This option can be used when the user is only concerned about retaining values
of a specific type. In this case, if the project:long action is used, this will result in a
DynamicFrame where the values that are not long are dropped.

Now that we know how to manage schema conflicts in Glue ETL, let’s explore other features of Glue
ETL that make it easy for us to transform and ingest data.

Data ingestion from file/object stores 47

AWS Glue-specific ETL transformations and extensions

Several transformations and ETL actions are unique to Glue DynamicFrames – Unbox, SplitFields,
ResolveChoice, and Relationalize to name a few. Please refer to the AWS Glue documentation
at https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-
python.html for an exhaustive list of transformations and extensions supported by DynamicFrames.

Job bookmarks

To take advantage of job bookmarks – a key feature of Glue ETL – it is necessary to use Glue
DynamicFrames.

Grouping

We have all come across or heard of a classic problem in big data processing – reading a large number
of small files. Spark launches a separate task for each data partition for each stage; if the file size is less
than the block size, Spark will launch one task per file. Consider a scenario where there are billions of
such files/objects in the data store – this will lead to a huge number of tasks being created, which will
cause unnecessary delays due to scheduling logic (any given executor can run a finite number of tasks
in parallel, depending on the number of CPU cores available). Using the Grouping feature in Glue ETL
(https://docs.aws.amazon.com/glue/latest/dg/grouping-input-files.
html), users can group input files to combine multiple files into a single task. This can be done by
specifying the target size of groups in bytes with groupSize. Glue ETL automatically enables this
feature if the number of input files is higher than 50,000.

For example, in the following code snippet, we are reading JSON data from Amazon S3 while performing
grouping. This allows us to control the task size rather than letting Spark control the task size based
on the number of input files:

dy_frame = glueContext.create_dynamic_frame.from_options(

 connection_type="s3",

 connection_options = {

 'paths': ["s3://s3path/"],

 'recurse':True,

 'groupFiles': 'inPartition',

 'groupSize': '1048576'

 }, format="json")

Note
groupFiles is supported for DynamicFrames that have been created using the csv, ion,
grokLog, json, and xml formats. This option is not supported for Avro, Parquet, or ORC
data formats.

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python.html
https://docs.aws.amazon.com/glue/latest/dg/grouping-input-files.html
https://docs.aws.amazon.com/glue/latest/dg/grouping-input-files.html

Data Ingestion48

Optimizing Amazon S3 reads using S3ListImplementation

When a DynamicFrame, DataFrame, or RDD is created in Spark, Spark creates a list of files in the
Spark driver memory to be included in the object. Only when the list is completely in memory is
the object created in Spark. This becomes a problem when we are dealing with a huge number of
files – the Spark driver will run out of memory and the ETL job will fail.

Glue provides a mechanism to handle this issue: S3ListImplementation. This allows
DynamicFrame to lazily load the file listing. S3ListImplementation works by calling the Amazon
S3 ListObjectsV2 API and fetching the list of objects in batches of 1,000. Job Bookmark and
Pushdown predicate filters are applied to each batch and the next batch is fetched using the pagination
token that’s returned in each API response. This process repeats until the job traverses all the files in
the Amazon S3 path supplied.

The following code snippet demonstrates how we can enable the S3ListImplementation feature in
Glue DynamicFrames to read data from an Amazon S3 data store:

dyf = glueContext.create_dynamic_frame.from_catalog(

 database = "db_name",

 table_name = "million_files_table",

 transformation_ctx = " dyf",

 additional_options = {

 "useS3ListImplementation": True

 }

)

As you may have observed, this feature is only beneficial when some form of filtering is enabled – Job
Bookmark or Pushdown predicates. If job bookmarks are not enabled or if the list of files is still bigger
than what the driver can handle, S3ListImplementation will not help and the job will fail due to the
driver running out of memory.

In such cases, the best option is to perform workload partitioning using Bounded Execution or to
push down partitions further and batch your ETL job, as we will see in the next section.

Workload partitioning with Bounded Execution for Amazon S3 data stores

The Bounded Execution feature was introduced to allow users to mitigate issues originating from
inefficient Spark scripts, data abnormalities, and in-memory execution of large-scale transformations.

Workload partitioning allows users to run ETL jobs on unprocessed data with an upper bound on the
data size or the number of files that can be processed within a job run. For instance, if there are 4,000
files, the user can set the upper bound for the number of files to 1,000, which will limit the number
of files that are processed during this JobRun. We can use four separate JobRuns to process the entire
dataset instead of processing the entire dataset within a single JobRun.

Data ingestion from file/object stores 49

Note
It is important to use this feature in conjunction with job bookmarks to avoid reprocessing the
same dataset over and over again.

This feature can be used when the jobs are failing due to driver or executor memory issues, which can
occur due to data skew (a hot partition issue), too many objects being listed, or large data shuffles.

• By the number of files: Bounded Execution can be implemented in AWS Glue ETL to limit
the data that’s read in an ETL job run to a specific number of files. The following code snippet
demonstrates how we can implement this:

dyf_4000 = glueContext.create_dynamic_frame.from_catalog(

 database = "db_name",

 tableName = "four_thousand_file_table",

 transformation_ctx = "dyf_4000",

 additional_options = {"boundedFiles": "1000"}

)

• By the volume of data: Bounded Execution can also be implemented to limit the volume of
data that’s ingested per job run instead of limiting the run to a specified number of files. The
following code snippet demonstrates how this can be implemented:

dyf_volume = glueContext.create_dynamic_frame.from_
catalog(

 database = "db_name",

 tableName = "four_thousand_file_table",

 transformation_ctx = "dyf_volume",

 # Volume in bytes

 additional_options = {"boundedSize": "1000000000"}

)

Data ingestion from HDFS data stores

While it is true that several features/optimizations in AWS Glue Spark ETL are designed for data
ingestion from Amazon S3 data stores, it is still possible to ingest data from HDFS data stores (or any
data store supported by Apache Spark). Data can be read from a Hadoop cluster hosted in on-premises
data centers or by a third-party provider.

Data Ingestion50

The following code snippet demonstrates data ingestion from a HDFS location in an Amazon
EMR cluster:

df = spark.read.parquet("hdfs://EMR_MASTER:8020/parquet/")

df.write.mode("overwrite").parquet("s3://TARGET/prefix/")

Data ingestion from JDBC data stores
For many organizations hydrating data lakes by ingesting the data from OLTP, data stores are the
primary use case for using ETL tools/frameworks. Typically, these ETL jobs are run periodically
to keep the data lake up to date. As discussed in Chapter 1, Data Management - Introduction and
Concepts, there are quite a few options available in AWS to achieve this outcome. The most popular
ones are AWS DMS and AWS Glue.

Users can set up AWS DMS replication instances to capture ongoing changes from the source data store.
At the time of writing, this feature supports Microsoft SQL Server, PostgreSQL, Oracle, and MySQL
databases. Please refer to the AWS DMS documentation at https://docs.aws.amazon.com/
dms/latest/userguide/CHAP_Task.CDC.html for more information on this feature.

Another option is to use AWS Glue Spark ETL to read JDBC data stores and move the data to Amazon
S3 or other target data stores supported by Apache Spark. With this option, users do not need to set up
replication tasks or instances and AWS Glue Spark ETL supports advanced transformations. AWS Glue
leverages Apache Spark’s capability of handling JDBC operations and adds quite a few optimizations
under the hood for JDBC read/write operations. We will be unpacking a few of the key optimizations
available using examples shortly.

Let’s consider a simple ETL operation where the job is moving data from a JDBC-compatible data
store (we will be using a MySQL database for our example here) to the Amazon S3 target location in
Parquet format. In the following code snippet, we are connecting to a MySQL 5.7 host that is using
the world_x sample dataset. This is available in the MySQL documentation at https://dev.
mysql.com/doc/world-x-setup/en/:

mysql_options = {

 "url": "jdbc:mysql://DB_HOST:3306/world_x",

 "dbtable": "city",

 "user": "admin",

 "password": "password"

}

dyf = glueContext.create_dynamic_frame.from_options(

 connection_type="mysql",

 connection_options=mysql_options

)

https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Task.CDC.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Task.CDC.html
https://dev.mysql.com/doc/world-x-setup/en/
https://dev.mysql.com/doc/world-x-setup/en/

Data ingestion from JDBC data stores 51

sink = glueContext.write_dynamic_frame.from_options(

 frame = dyf,

 connection_type = "s3",

 connection_options = {"path": "s3://TARGET/prefix/"},

 format = "parquet"

)

A similar outcome can be achieved in AWS Glue Spark ETL using Apache Spark DataFrames instead
of AWS Glue DynamicFrames:

mysql_options = {

 "url": "jdbc:mysql://DB_HOST:3306/world_x",

 "dbtable": "city",

 "user": "admin",

 "password": "password"

}

df = spark.read \

 .format("jdbc") \

 .option("url", mysql_options["url"]) \

 .option("dbtable", mysql_options["dbtable"]) \

 .option("user", mysql_options["user"]) \

 .option("password", mysql_options["password"]) \

 .load()

df.write.parquet("s3://TARGET/prefix")

Even though both code snippets do the same thing, the second code snippet is missing quite a few
optimizations that were used by the first code snippet under the hood.

Both code snippets offer similar performance for smaller datasets. However, when the second code
snippet is run on a larger dataset, it will run into executor out-of-memory (OOM) issues. This is
because Apache Spark sets the default value of the fetchsize JDBC option to 0. On the other
hand, AWS Glue DynamicFrames use a fetchsize value of 1000 rows by default.

The fetchsize parameter informs the JDBC driver of the number of rows to read in one round
trip. Since the default value for this parameter is 0, the entire table will be read in one round trip.
This is not a problem for smaller tables that can easily fit into executor on-heap memory space, but
the same cannot be said for larger tables where the volume of data is larger than the executor heap
memory allocation; this will lead to executor OOM errors, causing the ETL job to fail.

Data Ingestion52

It is important to note that with both of these approaches, Apache Spark connects to the JDBC data
store over a single connection by default. Considering Spark ETL jobs are executed in a distributed
environment, a single executor is active while Spark is reading data from the JDBC data store; the
rest of the executors are idle. To distribute the workload across all the available executors, we can
parallelize JDBC reads by specifying a few additional parameters.

Let’s explore how to implement parallel JDBC reads from Glue Spark ETL using DynamicFrames.
Upon checking the schema for the table we used in the preceding example (city), we can see that
the table has a primary key ID (integer) and four other string columns – Name, CountryCode,
District, and Info.

Now, in AWS Glue ETL, we can parallelize JDBC reads using hashexpression – an integer column
or a WHERE condition that yields an integer value or a hashfield. This is a column (of any data
type) in the table using which we can partition the dataset. Here, it is preferable to use a key that has
an even distribution of values. For example, we can use the month column in a transactions table
to partition the data. However, if one of the months has an extremely high number of transactions,
then this introduces a data skew and affects performance.

In our sample dataset, since we have a primary key with integer values, we can use this column as
our hashexpression and specify the number of partitions desired (hashpartitions). The
Glue ETL libraries will launch parallel SELECT queries based on the hashpartitions value
that is set. The following code snippet demonstrates how we can implement input partitioning on
the same dataset:

mysql_options = {

 "url": "jdbc:mysql://DB_HOST:3306/world_x",

 "dbtable": "city",

 "user": "admin",

 "password": "password",

 "hashexpression": "ID",

 "hashpartitions": '10'}

dyf = glueContext.create_dynamic_frame.from_options(

 connection_type="mysql",

 connection_options=mysql_options

)

sink = glueContext.write_dynamic_frame.from_options(

 frame = dyf,

 connection_type = "s3",

 connection_options = {"path": "s3://TARGET/prefix/"},

 format = "parquet"

)

Data ingestion from JDBC data stores 53

Once we execute the preceding code snippet, AWS Glue ETL will launch 10 SELECT queries in parallel,
each of which will query a different partition of data while using hashexpression to split the
data. We can enable MySQL general_log (refer to the instructions outlined in the knowledge
center article at https://aws.amazon.com/premiumsupport/knowledge-center/
rds-mysql-logs/ for AWS RDS) and check the query history to see this in action:

Figure 3.1 – Queries generated by AWS Glue ETL when hashpartitions is specified

Based on the query log shown in the preceding screenshot, we can see that the SELECT query looks
similar to the following template:

SELECT * FROM (select * from table_name WHERE hashexpression %
hashpartitions = partition_num) as table_name

AWS Glue ETL also executes the same query with an additional condition, WHERE 1=0, before
executing the actual query. This query returns no results; however, it returns the schema for the partition.

Similarly, if we use hashfield instead of hashexpression, the query follows a similar pattern
but instead, the modulo operator will be used on the hash generated based on the hashfield
column value.

The following is an example query (for partition #0):

SELECT * FROM (select * from city WHERE
CONV(SUBSTRING(MD5(CONCAT('',CountryCode)), -8, 8), 16, 10) %
10 = 0) as city

https://aws.amazon.com/premiumsupport/knowledge-center/rds-mysql-logs/
https://aws.amazon.com/premiumsupport/knowledge-center/rds-mysql-logs/

Data Ingestion54

Based on the queries we’ve executed, we can see that the pattern looks similar to the following template:

SELECT * FROM (select * from table_name WHERE
CONV(SUBSTRING(MD5(CONCAT('',hashfield)), -8, 8), 16, 10) %
hashpartitions = partition_num) as table_name

Now, it is important to note that the sample query or the template mentioned previously is for
a MySQL database engine. If a different database engine is being queried, the hashing syntax or
functions used will be completely different. That being said, the overall logic will be similar to the
example mentioned previously.

JDBC reads from Spark DataFrames can be optimized similarly using the partitionColumn,
lowerBound, upperBound, and numPartitions parameters – refer to the Apache Spark
documentation at https://spark.apache.org/docs/3.1.1/sql-data-sources-
jdbc.html for more information on these parameters. Apache Spark will use these parameters
to create partitions using partitionColumn to parallelize JDBC reads. It is important to note
that lowerBound and upperBound are just used to decide the partition’s stride; data will not
be filtered based on these values.

Now, the difference between the approach used by AWS Glue’s hashexpression- or hashfield-
based partitioning and Apache Spark’s built-in approach is that Apache Spark can split the data using
the built-in approach without generating hashes. The built-in approach to split the data is more efficient
during SQL query runtime compared to AWS Glue’s approach as it avoids performing multiple full
scans of the source table. However, Apache Spark’s approach is vulnerable to data skews, which may
lead to other performance issues during the ETL job’s runtime. So, it is important to examine the
dataset and consider the use case before choosing one approach over the other to partition the dataset.

So far, we’ve explored JDBC reads from AWS Glue DynamicFrames using code snippets where we
created Python dictionaries to define connection properties such as the JDBC URL, username, password,
database name, and table name. However, it is not recommended to hardcode credentials directly into
an ETL script. This is not a problem when a catalog table is being used to connect to the JDBC data
store as JDBC credentials are stored in an AWS Glue connection and can be encrypted using an AWS
KMS key. However, if the create_dynamic_frame.from_options() method is being
used to read from the JDBC data store, we can leverage AWS Glue’s integration with AWS Secrets
Manager to keep JDBC user credentials away from the ETL script. We can store the username and
password properties in AWS Secrets Manager in the following format:

{

 "username": "admin",

 "password": "password"

}

Data ingestion from JDBC data stores 55

Once the credentials have been stored in AWS Secrets Manager, we can grant permissions to the AWS
IAM role that’s used by the Glue ETL job to read these credentials (refer to the AWS Secrets Manager
documentation for sample policies: https://docs.aws.amazon.com/secretsmanager/
latest/userguide/auth-and-access_examples.html#auth-and-access_
examples_read) and make the following change to the connection options in the Python dictionary:

mysql_options = {

 "url": "jdbc:mysql://DB_HOST:3306/world_x",

 "dbtable": "city",

 "secretId": "glue_sec/mysqltestdb" # secret ARN or Name

}

Now, AWS Glue will automatically fetch the username/password combination from AWS Secrets
Manager when connecting to the JDBC data store.

It is also possible for users to pass a custom JDBC driver for JDBC data stores that are supported by AWS
Glue by passing the customJdbcDriverS3Path and customJdbcDriverClassName
parameters. This option is helpful when users wish to use the advanced version of JDBC compared
to the one available in the AWS Glue environment by default:

mysql_options = {

 "url": "jdbc:mysql://DB_HOST:3306/world_x",

 "dbtable": "city",

 "customJdbcDriverS3Path":"s3://bucket/pre/mysql8.jar",

 "customJdbcDriverClassName":"com.mysql.cj.jdbc.Driver",

 "secretId": "glue_sec/mysqltestdb" # secret ARN or Name

}

For a list of JDBC data stores supported and the JDBC driver versions available in AWS Glue ETL,
please refer to the AWS Glue documentation at https://docs.aws.amazon.com/glue/
latest/dg/migrating-version-30.html#migrating-version-30-appendix-
jdbc-driver.

We can also build a custom JDBC connector if the database server engine is not natively supported by
AWS Glue ETL. In the next section, we will explore how this can be achieved using AWS Glue Studio.

AWS Glue custom JDBC connectors

So far, we have focused on reads/writes for JDBC data store types directly supported by AWS Glue –
Microsoft SQL Server ("connectionType": "sqlserver"), MySQL ("connectionType":
"mysql"), Oracle DB ("connectionType": "oracle"), PostgreSQL ("connectionType":
"postgresql"), and Amazon Redshift ("connectionType": "redshift").

https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples.html#auth-and-access_examples_read
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples.html#auth-and-access_examples_read
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples.html#auth-and-access_examples_read
https://docs.aws.amazon.com/glue/latest/dg/migrating-version-30.html#migrating-version-30-appendix-jdbc-driver
https://docs.aws.amazon.com/glue/latest/dg/migrating-version-30.html#migrating-version-30-appendix-jdbc-driver
https://docs.aws.amazon.com/glue/latest/dg/migrating-version-30.html#migrating-version-30-appendix-jdbc-driver

Data Ingestion56

However, there are plenty of other JDBC data store types that were not mentioned previously. AWS
Glue added a feature to AWS Glue Studio that allows users to define custom JDBC connectors. This
would use either a custom.jdbc or marketplace.jdbc connection type, depending on the
connector definition in AWS Glue Studio.

Users can create custom JDBC connectors using the Create custom connector option in AWS Glue
Studio by uploading the JDBC JAR file to S3 and specifying the JDBC class name and base URL.

For instance, if we have to run an ETL workload that reads from MySQL Database v8.0 and use
advanced parameters that are only supported by MySQL Connector J/8.0, we can create a custom
connector with different configuration properties. Here, we are using a comma-separated list JDBC
URL format supported by MySQL Connector J/8.0 and we are defining placeholders (${varName})
instead of specifying actual values. The advantage of this approach is that we can reuse connectors to
create multiple connections.

The following are the parameters we used to create a MySQL Connector J/8.0 custom JDBC connector
in the AWS Glue Studio management console:

• Connector S3 URL: s3://bucket/pre/mysql-connector-java-8.0.23.jar

• Name: mysql-8-connector

• Connector type: JDBC

• Class name: com.mysql.cj.jdbc.Driver

• JDBC URL Base: jdbc:mysql://(host=${host},port=${port},
user=${username},password=${password})/${dbname}

• URL parameter delimiter: &

Once the connector has been set up, we can set up a secret in AWS Secrets Manager with the following
key-value pairs:

{

 "username": "admin",

 "password": "password",

 "engine": "mysql",

 "host": "database.hostname.internal",

 "port": "3306",

 "dbname": "world_x"

}

Once the secret has been set up, we can create a connection (let’s assume the name of the connection
is mysql-8-connection-rds) in Glue Studio using the connector and select the secret and
network options (VPC, subnet, and security group).

Data ingestion from streaming data sources 57

We can use the following AWS Glue DynamicFrame code snippet to read data using the custom JDBC
connection that was just created:

dyf = glueContext.create_dynamic_frame.from_options(

 connection_type="custom.jdbc",

 connection_options={

 "dbTable": "city",

 "connectionName": "mysql-8-connection-rds",

 }

)

dyf.toDF().show(truncate=False)

The preceding code snippet will read the dataset from the MySQL 8 database using a custom JDBC
connector and print the top 20 rows to logs.

Now that we know how we can ingest data from JDBC data stores, in the next section, we will learn
how to ingest data from streaming data sources such as Apache Kafka and AWS Kinesis.

Data ingestion from streaming data sources
We explored fundamental concepts regarding data ingestion from streaming data sources in the
previous chapter when we discussed AWS Glue Schema Registry (GSR). In this section, we will learn
how to implement data ingestion from streaming data sources such as Amazon Kinesis and Apache
Kafka using AWS Glue Spark ETL.

Stream processing can be defined as the act of continuously incorporating new data to compute
a result wherein the input data is unbounded and has no predetermined beginning or end. Apache Spark
has two components for stream processing: Spark Streaming and Structured Streaming.

According to the Apache Spark documentation (https://spark.apache.org/docs/3.1.1/
streaming-programming-guide.html), “Spark Streaming is an extension of the core Spark
API that enables scalable, high-throughput, fault-tolerant stream processing of live data streams.”

Spark Streaming introduces a high-level abstraction layer called a discretized stream (also known
as a Dstream), which represents a continuous stream of data and exposes a programming model to
operate on the underlying data in the stream.

Structured Streaming, on the other hand, is a stream processing engine built on the Spark SQL engine.
Structured Streaming is known to be both scalable and fault-tolerant and as an added benefit, we
can express operations on streaming data in the same way we do so for batch data. This extends the
Dataset and Dataframe APIs with streaming capabilities and uses a declarative model to acquire
data from a stream or set of streams.

https://spark.apache.org/docs/3.1.1/streaming-programming-guide.html
https://spark.apache.org/docs/3.1.1/streaming-programming-guide.html

Data Ingestion58

Stream processing in AWS Glue ETL uses Apache Spark’s Structured Streaming. Streaming ETL in
AWS Glue allows users to hydrate their data lakes or data warehouses by ingesting streaming data while
allowing users to take advantage of Glue DynamicFrames. The same set of advanced ETL transforms
is available in AWS Glue ETL for batch data processing. Glue ETL supports streaming data ingestion
from Apache Kafka and Amazon Kinesis. Data is read in micro-batches with a specified window size
(100 seconds by default).

Unlike Spark batch jobs, Structured Streaming jobs require a schema for the data. We can use a schema
stored in Glue Data Catalog as the source for the schema so that it can be integrated with the Glue
Schema Registry.

The following code snippets will show us how to ingest streaming data from an Apache Kafka stream.
The ETL source code is similar for the AWS Kinesis streaming data source. The key difference is in
the setup that’s involved in creating a Glue Data Catalog table and the parameters that will be passed.

Now, the read statement looks almost similar to batch data reads when using a Glue Data Catalog
table. However, the difference here is that we are creating a DataFrame instead of a DynamicFrame:

df_kafka = glueContext.create_data_frame.from_catalog(

 database = "default",

 table_name = "kafka_stream",

 transformation_ctx = "datasource0",

 additional_options = {

 "startingOffsets": "earliest",

 "inferSchema": "true"

 }

)

The preceding code snippet looks similar for a Kinesis data stream. However, the only difference
would be the parameters that are passed in additional_options – we can pass Amazon Kinesis
connection properties (refer to https://docs.aws.amazon.com/glue/latest/dg/
aws-glue-programming-etl-connect.html#aws-glue-programming-etl-
connect-kinesis for a list of AWS Kinesis properties that can be used) instead of Apache Kafka
connection properties (refer to https://docs.aws.amazon.com/glue/latest/dg/
aws-glue-programming-etl-connect.html#aws-glue-programming-etl-
connect-kafka for a list of Apache Kafka connection properties that can be used).

The next step is to define a method that will be executed on each micro-batch during stream processing:

def processBatch(data_frame, batchId):

 if (data_frame.count() > 0):

 datasource0 = DynamicFrame.fromDF(

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-kinesis
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-kinesis
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-kinesis
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-kafka
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-kafka
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-kafka

Data ingestion from streaming data sources 59

 data_frame,

 glueContext,

 "from_data_frame"

)

 now = datetime.datetime.now()

 path_datasink1 = "s3://bucket/destination/" + "/
ingest_year=" + "{:0>4}".format(str(now.year)) + "/ingest_
month=" + "{:0>2}".format(str(now.month)) + "/ingest_day=" +
"{:0>2}".format(str(now.day)) + "/ingest_hour=" + "{:0>2}".
format(str(now.hour)) + "/"

 datasink1 = glueContext.write_dynamic_frame.from_
options(

 frame = datasource0,

 connection_type = "s3",

 connection_options = {

 "path": path_datasink1

 },

 format = "parquet",

 transformation_ctx = "datasink1"

)

In the preceding code snippet, we converted the DataFrame into a DynamicFrame and built the target
S3 path to write the micro-batch that’s being processed by obtaining the year, month, day, and hour
values using the datetime Python library. We used the glueContext.write_dynamic_
frame.from_options() method to write the data to Amazon S3.

Since the preceding code snippet defines a method for writing data to Amazon S3, this method has to
be called on each micro-batch. This is where Glue ETL’s forEachBatch() method comes into the
picture. Using this method, we can call the processBatch() method on each micro-batch and
specify Structured Streaming-related options such as windowSize and checkpointLocation:

glueContext.forEachBatch(

 frame = data_frame_datasource0,

 batch_function = processBatch,

 options = {

 "windowSize": "100 seconds",

 "checkpointLocation": "s3://bucket/checkpoint_loc/"

 }

)

Data Ingestion60

If our use case requires the data to be transformed in some way, we can implement the DynamicFrame
transformations that are available in Glue ETL in the processBatch() method after converting
the DataFrame into a DynamicFrame.

AWS Glue Schema Registry

We introduced AWS GSR in the previous chapter. In this chapter, we will explore how the schema
registry works in detail.

AWS GSR is fully managed and serverless and available to users free of cost. At the time of writing, GSR
supports the AVRO and JSON data formats for the schema. JSON Schema validation is supported via
the Everit library, which is available at https://github.com/everit-org/json-schema.

Note
AWS GSR currently supports the Java programming language. Producers and consumers need
to be running Java 8 or above.

Schema registries use serialization and deserialization processes to help streaming data producers and
consumers enforce schemas on records.

If a schema is not available in the schema registry, it must be registered for use (auto-registration of
the schema can be enabled for any new schema). Upon registering a schema in the schema registry,
a schema version identifier (version ID) will be issued to the serializer.

If the schema is already available in GSR and the serializer is using a newer version of the schema,
GSR will check the compatibility rule to make sure that the new version is compatible. If it is, the
schema will be registered as a new version in GSR.

When a producer has its schema registered, the GSR serializer validates the schema of the record with
the schema that’s been registered. If there is a mismatch, an exception will be returned. Producers
typically cache the schema versions and match the schema against the versions available in the cache.
If there is no version available in the cache that matches the schema of the record, GSR will be queried
for the same using the GetSchemaVersion API. If the schema is validated using a version in GSR,
the schema version ID and definition will be cached locally by the producer. If the record’s schema is
compliant with the schema that’s been registered, the record is decorated with the schema version ID
and then serialized (based on the data format selected), compressed, and delivered to the destination.

Once a serialized record has been received, the deserializer uses the version ID available in the payload
to validate the schema. If the deserializer has not encountered this schema version ID before, GSR is
queried for it and the schema version is cached in local storage.

https://github.com/everit-org/json-schema

Data ingestion from SaaS data stores 61

If the schema version IDs in GSR/the cache match with the version in the serialized record, the
deserializer decompresses and deserializes the data and the record is handed off to the consumer
application. However, if the schema version ID doesn’t match the version IDs available in the cache
or GSR, the consumer application can log this event and move on to other records or halt the process
based on the user’s configuration.

SerDe libraries can be added to both producer and consumer applications by adding the software.
amazon.glue:schema-registry-serde Maven dependency (refer to https://
mvnrepository.com/artifact/software.amazon.glue/schema-registry-
serde for more information). Please refer to the AWS GSR documentation at https://docs.
aws.amazon.com/glue/latest/dg/schema-registry-integrations.html
for example producer and consumer implementations.

In this section, we explored how to ingest data from streaming data sources and understood the
mechanism that’s used by AWS GSR to centrally manage evolving schemas.

In the next section, we will learn how to ingest data from SaaS data stores.

Data ingestion from SaaS data stores
So far, we have explored ways to ingest data from file/object stores, JDBC, and streaming data
sources using AWS Glue ETL. Apart from these methods, organizations can take advantage of
Marketplace connectors or create their own connectors to ingest data from a data store that is not
directly supported by AWS Glue ETL. This feature was added to AWS Glue as part of the Glue Studio
release in December 2020.

For example, with this new capability, we can take advantage of connectors for Salesforce, SAP, and
Snowflake. If a connector is not readily available in AWS Marketplace, we can build custom connectors
so that we can integrate custom-built Spark connectors and Athena Federated Query connectors into
our ETL jobs.

Connectors for popular data stores such as Snowflake, SAP, Salesforce, Apache Hudi, Google BigQuery,
Delta Lake, Elasticsearch, and CloudWatch Logs are readily available on AWS Marketplace. Depending
on the publisher of a given connector, there might be a subscription fee for connector usage. At the
time of writing, all the connectors that have been published by AWS on Marketplace are available for
use at no additional cost.

If a connector is not available for a data store, users can build a connector and use it in their ETL
workload. While exploring methods to ingest data from JDBC data stores, we unpacked the process of
creating custom JDBC connectors. In this section, we will explore how to use a Marketplace connector
to ingest data from a SaaS product. We will be ingesting data from AWS CloudWatch Logs for our
example. However, before we can proceed, we will have to set up a connector by subscribing to the
CloudWatch connector on AWS Marketplace.

https://mvnrepository.com/artifact/software.amazon.glue/schema-registry-serde
https://mvnrepository.com/artifact/software.amazon.glue/schema-registry-serde
https://mvnrepository.com/artifact/software.amazon.glue/schema-registry-serde
https://docs.aws.amazon.com/glue/latest/dg/schema-registry-integrations.html
https://docs.aws.amazon.com/glue/latest/dg/schema-registry-integrations.html

Data Ingestion62

This can be done by navigating to the AWS Glue Studio console | Connectors | Marketplace Connectors
and subscribing to Cloudwatch Metrics connector for AWS Glue. For a detailed set of instructions
for subscribing to Marketplace connectors, please refer to the AWS Glue Studio documentation at
https://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.
html#subscribe-marketplace-connectors. Once the subscription process is complete,
a connection will be created in AWS Glue Studio with the name specified during the setup process.

We can use the following code snippet to read metrics data from AWS CloudWatch metrics:

dyf = glueContext.create_dynamic_frame.from_options(

 connection_type="marketplace.athena",

 connection_options={

 "schemaName": "default",

 "tableName": "metrics",

 "connectionName": "CloudWatchMetricsConnector",

 }

)

Once the metrics data has been read into a DynamicFrame, we can either transform the data or
write the data straight to the target. In this use case, we’ll write the data to an Amazon S3 location in
Parquet format and set up a Glue Data Catalog table for the target dataset so that it can immediately
be queried from Amazon Redshift Spectrum or Amazon Athena:

target = glueContext.getSink(

 path="s3://bucket/target/",

 connection_type="s3",

 updateBehavior="UPDATE_IN_DATABASE",

 partitionKeys=[],

 compression="snappy",

 enableUpdateCatalog=True

)

target.setCatalogInfo(

 catalogDatabase="default",

 catalogTableName="cw_metrics"

)

target.setFormat("glueparquet")

target.writeFrame(dyf)

https://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html#subscribe-marketplace-connectors
https://docs.aws.amazon.com/glue/latest/ug/connectors-chapter.html#subscribe-marketplace-connectors

Summary 63

The preceding code snippet will write the data to the Amazon S3 target location and create a table
called cw_metrics in the default database in AWS Glue Data Catalog.

In this section, we ingested metrics data from AWS CloudWatch for AWS resources in a specific AWS
Region. Users can ingest data from a data store for which a connector is not readily available by building
a custom connector using the Apache Spark DataSource API or the Amazon Athena DataSource
API; detailed instructions and examples are available in aws-samples/aws-glue-samples
in this book’s GitHub repository at https://github.com/aws-samples/aws-glue-
samples/tree/master/GlueCustomConnectors/development.

Summary
In this chapter, we discussed the methods and different optimization features that can be used in AWS
Glue ETL to ingest data from file/object stores, JDBC-compatible data stores, and streaming data stores.
We also explored serialization and deserialization, which are used by AWS GSR to handle evolving
schemas. Then, we introduced Glue Studio Marketplace connectors, using which we can ingest data
from SaaS. Finally, we briefly discussed how users can build custom JDBC/Spark/Athena Federated
Query connectors to ingest data from data stores that are not directly supported by AWS Glue and
when there is no connector readily available in AWS Marketplace.

In the next chapter, we will be discussing data preparation strategies. We'll explore different factors
that can be considered while choosing the right service/tool. We will also discuss the different available
options: visual data preparation versus source code-/SQL-based data preparation and the different
transformation classes that are available in AWS Glue ETL to help with preparing data.

https://github.com/aws-samples/aws-glue-samples/tree/master/GlueCustomConnectors/development
https://github.com/aws-samples/aws-glue-samples/tree/master/GlueCustomConnectors/development

Section 2 –
Data Preparation,

Management, and Security

In this section, you will learn about using the right tool (such as Glue Studio, Glue DataBrew, Lambda,
and EMR) for the right purpose. You will also learn about good data layout practices along with data
sharing, data security, metadata management, and various ways of orchestration. You will explore the
common data transformation tasks customers have.

This section includes the following chapters:

• Chapter 4, Data Preparation

• Chapter 5, Designing Data Layouts

• Chapter 6, Data Management

• Chapter 7, Metadata Management

• Chapter 8, Data Security

• Chapter 9, Data Sharing

• Chapter 10, Data Pipeline Management

4
Data Preparation

In the previous chapter, we explored fundamental concepts surrounding data ingestion and how we
can leverage AWS Glue to ingest data from various sources, such as file/object stores, JDBC data stores,
streaming data sources, and SaaS data stores. We also discussed different features of AWS Glue ETL,
such as schema flexibility, schema conflict resolution, advanced ETL transformations and extensions,
incremental data ingestion using job bookmarks, grouping, and workload partitioning using bounded
execution in detail with practical examples. Doing so allowed us to understand how each of these
features can be used to ingest data from data stores in specific use cases.

In this chapter, we will be introducing the fundamental concepts related to data preparation, different
strategies that can help choose the right service/tool for a specific use case, visual data preparation,
and programmatic data preparation using AWS Glue.

Upon completing this chapter, you will be able to explain how to perform data preparation operations in
AWS Glue using a visual interface and source code. You will also be able to articulate different features
of AWS Glue DataBrew, AWS Glue Studio, and AWS Glue ETL. You will also be able to write simple
ETL scripts in AWS Glue ETL to prepare the data using some of the most popular transformations
and extensions. Finally, you will be able to articulate the importance of planning and the different
factors that must be taken into consideration while choosing a tool/service to implement a data
preparation workflow.

In this chapter, we will cover the following topics:

• Introduction to data preparation

• Data preparation using AWS Glue

• Selecting the right service/tool

Now, let’s dive into the fundamental concepts of data preparation and understand how data preparation
can be done using AWS Glue and the different services/tools we can utilize to perform data preparation
tasks quite easily.

Data Preparation68

Technical requirements
Please refer to the Technical requirements section in Chapter 3, Data Ingestion, as they are the same
for this chapter as well.

In the upcoming sections, we will be discussing the fundamental concepts of data preparation, the
importance of data preparation, and how we can prepare data using different tools/services in AWS Glue.

Introduction to data preparation
Data preparation can be defined as the process of sanitizing and normalizing the dataset using
a combination of transformations to prepare the data for downstream consumers. In a typical data
integration workflow, prepared data is consumed by analytics applications, visualization tools, and
machine learning pipelines. It is not uncommon for the prepared data to be ingested by other data
processing pipelines, depending on the requirements of the consuming entity.

When we consider a typical data integration workflow, quite often, data preparation is one of the
more challenging and time-consuming tasks. It is important to ensure the data is prepared correctly
according to the requirements as this impacts the subsequent steps in the data integration workflow
significantly.

The complexity of the data preparation process depends on several factors, such as the schema of the
source data, schema drift, the volume of data, the transformations to be applied to obtain the data in
the required schema, and the data format, to name a few. It is important to account for these factors
while planning and designing the data preparation steps of the workflow to ensure the quality of the
output data and to avoid a garbage in, garbage out (GIGO) situation.

Now that we know the fundamental concepts and the importance of the data preparation steps in a data
integration workflow, let’s explore how we can leverage AWS Glue to perform data preparation tasks.

Data preparation using AWS Glue
It is normal for data to grow continuously over time in terms of volume and complexity, considering
the huge number of applications and devices generating data in a typical organization. With this ever-
growing data, a tremendous amount of resources are required to ingest and prepare this data – both
in terms of manpower and compute resources.

Data preparation using AWS Glue 69

AWS Glue makes it easy for individuals with varying levels of skill to collaborate on data preparation
tasks. For instance, novice users with no programming skills can take advantage of AWS Glue DataBrew
(https://aws.amazon.com/glue/features/databrew/), a visual data preparation
tool that allows data engineers/analysts/scientists to interact with and prepare the data using a variety
of pre-built transformations and filtering mechanisms without writing any code.

While AWS Glue DataBrew is a great tool for preparing data using a graphical user interface (GUI),
there are some use cases where the built-in transformations may not be flexible enough or the user may
prefer a programmatic approach to prepare data over using the GUI-based approach. In such cases,
AWS Glue enables users to prepare data using AWS Glue ETL. Users can leverage AWS Glue Studio –
AWS Glue’s new graphical interface – to author, execute, and monitor ETL workloads. Although Glue
Studio offers a GUI, users may still require programmatic knowledge of AWS Glue’s transformation
extensions and APIs to implement data preparation workloads, especially when implementing custom
transformations using SQL or source code.

Now that we know about the different data preparation options that are available in AWS Glue, let’s
dive deep into each of them while looking at practical examples to understand them.

Visual data preparation using AWS Glue DataBrew

AWS Glue makes it possible to prepare data using a visual interface through AWS Glue DataBrew. As
mentioned previously, AWS Glue DataBrew is a visual data preparation tool wherein users can leverage
over 250 pre-built transformations to filter, shape, and refine data according to their requirements. AWS
Glue DataBrew makes it easy to gather insights from raw data, regardless of the level of technical skill
that the individuals interacting with the data have. More importantly, since DataBrew is serverless,
users can explore and reshape terabytes of data without creating expensive long-running clusters, thus
eliminating any administrative overhead involved in managing infrastructure.

Getting started with AWS Glue DataBrew is quite simple. To use DataBrew, you can create a project
and connect it to a data store to obtain raw data. AWS Glue DataBrew can ingest raw data from
Amazon S3, Amazon Redshift, JDBC data stores (including on-premise database servers), and AWS
Data Exchange. We can also ingest data from external data stores such as Snowflake. You can even
upload a file directly from the AWS Glue DataBrew console and specify an Amazon S3 location to
store this uploaded file. At the time of writing, AWS Glue DataBrew supports the CSV, TSV, JSON,
JSONL, ORC, Parquet, and XLSX file formats.

https://aws.amazon.com/glue/features/databrew/

Data Preparation70

AWS Glue DataBrew can also ingest data from a wide range of external Software-as-a-Service (SaaS)
providers via Amazon AppFlow. There are several external SaaS providers supported via Amazon
AppFlow, including Amplitude, Datadog, Google Analytics, Dynatrace, Marketo, Salesforce, ServiceNow,
Slack, and Zendesk, to name a few. This feature enables users to prepare the data by applying the
necessary transformations while interacting with the data on a visual interface. This data can be
further integrated with datasets from other data stores or SaaS applications. This helps the users take
a holistic approach to analyzing and gathering insights from their datasets, which have been spread
across different data stores or SaaS platforms. The following screenshot outlines the grid-like visual
interface and different options available in the AWS Glue DataBrew project workspace:

Figure 4.1 – AWS Glue DataBrew project workspace

Once a project has been created and a dataset has been attached to the project, you can specify the
AWS IAM role that can be used by this project to interact with other AWS services and a sampling
strategy. This includes specifying the number of rows the visual editor has to load and whether these
rows can be chosen at random or whether they have to be from the beginning or the end of the dataset.

After creating the project, AWS Glue DataBrew loads the project workspace and you will see your data
in a grid-like interface (Figure 4.1). You can explore the data with ease using the project workspace
and you will also be able to gain insights into each column using the statistics populated under the
column name in the interface. Detailed statistics can be viewed for individual columns by clicking on
the column name. By doing this, AWS Glue DataBrew generates insights based on the sample data
that’s been loaded into the project workspace and displays them in the Column details panel on the
right-hand side of the workspace.

Data preparation using AWS Glue 71

The following screenshot shows the list of recommendations that were generated for the human_rights
column in the sample dataset after it was loaded into the AWS Glue DataBrew project workspace:

Figure 4.2 – AWS Glue DataBrew – recommended transformations

Based on the data type and the sample data that’s loaded into the workspace, AWS Glue DataBrew also
generates a list of recommended transformations that can be applied. For instance, if the values for a
specific column in the dataset are missing, the list of recommended transformations includes different
strategies to handle missing values, such as deleting rows with missing values, filling with an empty
value, filling with the last valid value, filling with the most frequent value, and filling with a custom
value. To apply one of these transforms, all we have to do is click Apply as step next to the transform.

Data Preparation72

As we make changes by applying different transformations, AWS Glue DataBrew captures the sequence
of transformations that have been applied and builds a recipe. You can click on the column name and
select a transformation from the top ribbon to apply a transformation for that column. Once you are
happy with the recipe that’s been generated, you can publish this recipe and it will be saved in AWS
DataBrew (Figure 4.2a). This recipe can be downloaded as a JSON file and can be reused by importing
the file as a new recipe in DataBrew. This is useful when you want to share the recipe with DataBrew
users in other AWS accounts:

Figure 4.3 – Options to create, publish, and import/export recipes

In the preceding screenshot, several options are highlighted. Option 1 allows us to toggle the sidebar,
which displays the current version of the recipe. The same recipe can be published using option 2.
A recipe can be exported or imported using option 3. Finally, option 4 allows us to create a job from
the recipe. Now that we know how to build, export, and import a recipe, let’s explore different types
of jobs in AWS Glue DataBrew.

Recipe jobs

A recipe can be used to create a recipe job in AWS Glue DataBrew, which will allow you to run the
steps on your dataset (refer to option 4 in Figure 4.3). The job can be set up to run on-demand or at
regular intervals by specifying a schedule. At the time of writing, AWS Glue DataBrew allows you to
write transformed data to Amazon S3, Amazon Redshift, and JDBC data. Additional settings can be
specified for the job, depending on the type of output destination data store.

For instance, if you are writing the data to an Amazon S3 location, you can specify options such as
output format, compression codec, and output encryption using AWS KMS. The list of available options
changes with the type of output data store selected. Other configuration items can be set for the job
run, such as Maximum number of units (maximum number of DataBrew nodes that can be used),
Number of retries, Job timeout (in minutes), and CloudWatch logs for the job run.

Data preparation using AWS Glue 73

Profile jobs

In the previous section, you learned how to define a recipe and create a job from this recipe. Wouldn’t
it be great if most of the heavy lifting involved in understanding the data is handled by AWS Glue
DataBrew so that we can plan the transformations better? AWS Glue DataBrew has another type of
job called a profile job that addresses this exact issue. A profile job can be defined to evaluate the
dataset and generate statistics and a summary that will help us understand the data better. This will,
in turn, help us decide the type of transformations required to prepare the data.

A profile job run generates a data profile in AWS Glue DataBrew that contains a summary of the
dataset and statistics for each column and any advanced summaries selected by the user. Profile jobs
allow users to generate a correlations summary of different numeric columns available. It also allows
you to profile the dataset based on advanced rules such as personally identifiable information (PII)
detection. The dataset is evaluated using pre-built rules that analyze the column names and the values
to flag any potential PII data in a given dataset. This is extremely helpful to make sure the dataset
complies with data governance policies set forth by the organization or an external governing body.

The following screenshot shows what a sample data profile looks like:

Figure 4.4 – Data profile overview

In the lower half of the preceding screenshot, we can see that AWS Glue DataBrew has generated
different summaries of the dataset based on the data types of the columns in the dataset. For instance,
we can see a value distribution chart and the minimum, maximum, mean, median, mode, standard
deviation, and other statistics for numeric columns. The summary also captures any missing data.
We can use these pieces of information and design appropriate transformations in the recipe job to
filter and reshape data based on our requirements.

Now that we know how profile jobs can be used to generate statistics and summaries for a given dataset,
let’s learn how to enrich these summaries with information based on user-defined rules.

Data Preparation74

Controlling data quality using DQ Rules

AWS Glue DataBrew allows us to define a ruleset that governs the quality of the dataset based on
specified rules. The dataset is evaluated against the user-defined rules and violations are flagged in the
data profile generated by the profile job run. This allows us to enrich the data profile with additional
information based on the custom rules defined.

Upon creating a dataset in AWS Glue DataBrew, you can navigate to the DQ Rules option in the
navigation panel and define a new ruleset for the dataset that’s been created.

A data quality (DQ) ruleset is a collection of rules that defines the data quality for the dataset. This is
achieved by comparing different data metrics with expected values. Once a ruleset has been defined,
we can associate this ruleset with a profile job. After the job run, we will be able to see additional
information under the Data quality rules tab in the generated data profile. This view includes the
list of user-defined rules that were evaluated and a summary of whether all the columns adhered to
these rules.

The following screenshot shows that the sample dataset was evaluated against two user-defined rules.
The dataset passed the checks for one rule (Check Dataset For Duplicate Rows) and a few columns
failed the checks for the other rule (Check All Columns For Missing Values):

Figure 4.5 – Data profile generated based on user-defined DQ Rules

Using the insights generated by profile jobs, you can plan the data preparation steps according to
your requirements and write the output to your destination data store. For instance, now that we
know there are missing values in some of the columns, we can define transformations to handle those
missing values – for example, populate with the last valid value, populate it with an empty string, or
use a custom value.

Data preparation using AWS Glue 75

Similarly, data masking transformations such as redaction, substitution, and hash functions can be
applied to columns flagged as PII. We can even encrypt the data using probabilistic (using an AWS
KMS key) or deterministic encryption (using a secret in AWS Secrets Manager) and decrypt the data
when necessary.

There are over 250 transformations available in AWS Glue DataBrew for cleaning, reshaping, and
preparing data based on the requirements and new transformations are being added to DataBrew
frequently. A complete list of all the recipe steps and functions can be found in the AWS Glue
DataBrew documentation at https://docs.aws.amazon.com/databrew/latest/
dg/recipe-actions-reference.html.

Usage patterns for services/tools differ from one organization to another. An organization can
choose to use AWS Glue DataBrew as its tool of choice for all data preparation workloads. However,
if an organization prefers to use SQL or ETL scripts for their data preparation workload, AWS Glue
DataBrew can be used for prototyping a data preparation pipeline. Then, data engineers can use the
recipe in DataBrew as a reference to the authoring Glue ETL job. This allows other individuals within
an organization who do not have Spark/Glue ETL programming skills to actively collaborate in data
preparation workflows. Using this approach will reduce the effort and time taken by engineers to
explore the data and design the data preparation steps from scratch.

Now that we know how we can leverage AWS Glue DataBrew for data preparation using a visual
interface, let’s learn how to prepare data using a source code-based approach in AWS Glue.

Source code-based approach to data preparation using AWS Glue

While AWS Glue DataBrew offers a visual interface-based approach to tackle data preparation tasks
in a data integration workflow, AWS Glue offers AWS Glue ETL and AWS Glue Studio as source code/
SQL-based approaches for the same. AWS Glue ETL and AWS Glue Studio require us to have some
level of Glue/Spark programming knowledge to implement ETL jobs, which aids in data preparation as
we get a much higher level of flexibility compared to AWS Glue DataBrew. With AWS Glue DataBrew,
we can use pre-built transformations to prepare data. Since there are no such restrictions in AWS
Glue ETL and AWS Glue Studio, we can design and develop custom transformations based on our
requirements using existing Glue/Spark ETL APIs and extensions.

AWS Glue ETL and AWS Glue Studio

In Chapter 2, Introduction to Important AWS Glue Features, and Chapter 3, Data Ingestion, we briefly
discussed some of the features of AWS Glue ETL and how they aid in data ingestion. In this section,
we will explore different features of AWS Glue ETL and AWS Glue Studio and how these can be
leveraged to prepare data.

Data Preparation76

Based on our discussion in Chapter 2, Introduction to Important AWS Glue Features, we know that a
DynamicRecord is a data structure in AWS Glue in which individual rows/records in the dataset
are processed and that a DynamicFrame is a distributed collection of DynamicRecord objects.
To use Glue ETL transformations, the dataset must be represented as a Glue DynamicFrame, not
an Apache Spark DataFrame. We can author ETL scripts using several methods on AWS Glue
Studio, Interactive Sessions, or even locally on our development workstation using our preferred IDE
or text editor since AWS Glue runtime libraries are publicly available. You can refer to the AWS Glue
documentation at https://docs.aws.amazon.com/glue/latest/dg/aws-glue-
programming-etl-libraries.html to explore different ETL job development options.

AWS Glue Studio is a new visual interface that makes it easy to author, run, and monitor AWS Glue
ETL Jobs. AWS Glue Studio enables us to design and develop ETL jobs using a visual editor (Figure
4.6), implement complex operations such as PII detection and redaction, provide interactive ETL
script development using Jupyter notebooks, set up custom/marketplace connectors to connect to
SaaS/custom data stores, and easily monitor ETL job runs using a unified monitoring dashboard:

Figure 4.6 – Visual job editor in AWS Glue Studio

In the next section, we’ll learn how to clean and prepare data using some of the transformations and
extensions available in AWS Glue ETL.

Data preparation using AWS Glue 77

Data transformation using AWS Glue ETL

Data preparation can be done in AWS Glue ETL by making use of built-in extensions and transformations.
A complete list of extensions and transformations, syntax, and usage instructions can be found in the
AWS Glue ETL documentation:

• AWS Glue Scala ETL jobs: https://docs.aws.amazon.com/glue/latest/dg/
glue-etl-scala-apis.html

• AWS Glue PySpark ETL jobs: https://docs.aws.amazon.com/glue/latest/
dg/aws-glue-programming-python.html

In this section, we will explore some of the most commonly used transformations in AWS Glue ETL.

ApplyMapping

The ApplyMapping transformation allows us to specify a declarative mapping of columns to
a specified DynamicFrame. This transformation takes a DynamicFrame and a list of tuples, each
consisting of the column name and data type mapping in the source and target DynamicFrames.
This transformation is helpful when we want to rename columns or restructure a nested schema or
change the data type of a column. It is important to specify a mapping for all the columns that are to
be present in the target DynamicFrame. If a mapping is not defined for a column, that column will
be dropped in the target DynamicFrame.

For example, let’s assume there’s a dataset with the following nested schema:

root

|-- email: string

|-- employee: struct

| |-- employee_id: int

| |-- employee_name: string

We can rename the email column employee_email and move the column under the employee
struct using the following ApplyMapping transformation:

mappingList = [("email", "string", "employee.employee_email",
"string"), ("employee.employee_id", "int", "employee.employee_
id", "int"), ("employee.employee_name", "string", "employee.
employee_name", "string")]

applyMapping0 = ApplyMapping.apply(frame=datasource0,
mappings=mappingList)

https://docs.aws.amazon.com/glue/latest/dg/glue-etl-scala-apis.html
https://docs.aws.amazon.com/glue/latest/dg/glue-etl-scala-apis.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-python.html

Data Preparation78

In the preceding snippet, mappingList is the list of mapping tuples being passed to the
ApplyMapping transform. We can also see the mapping tuple that maps the email column to
employee.employee_email. This mapping is essentially renaming the column employee_
email and moving the column under the employee struct. Now, when we print the schema of
the applyMapping0 DynamicFrame, we will see the following:

>>> applyMapping0.printSchema()

root

|-- employee: struct

| |-- employee_email: string

| |-- employee_id: int

| |-- employee_name: string

As you can see, by using the ApplyMapping transformation, we were able to achieve two things:

• Rename the column employee_email.

• Reshape the schema of the dataset to move the email column under the employee struct.

Now, let’s look at another commonly used transformation: Relationalize.

Relationalize

The Relationalize transform helps us reshape a nested schema of the dataset by flattening it.
Any array columns that are present are pivoted out. This transformation is extremely helpful when
we are working with a dataset that has a nested schema structure and we want to write the output to
a relational database.

Let’s see this transformation in action. Let’s assume there is a dataset with the following schema.
You will be able to find the source code and sample dataset for this example in this book’s GitHub
repository at https://github.com/PacktPublishing/Serverless-ETL-and-
Analytics-with-AWS-Glue/tree/main/Chapter04:

>>> datasource1.printSchema()

root

|-- company: string

|-- employees: array

| |-- element: struct

| | |-- email: string

| | |-- name: string

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter04
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter04

Data preparation using AWS Glue 79

Now, let’s apply the Relationalize transformation to flatten this schema. In return, we will get
a DynamicFrameCollection populated with DynamicFrames. Any array columns present in
the dataset are pivoted out to a separate DynamicFrame:

relationalize0 = Relationalize.apply(frame=datasource1,
staging_path='/tmp/glue_relationalize', name='company')

To list the keys for the different DynamicFrames that have been generated, we can use the keys()
method on the returned DynamicFrameCollection. In the preceding example, that would
be relationalize0:

>>> relationalize0.keys()

dict_keys(['company', 'company_employees'])

Now, since two DynamicFrames in DynamicFrameCollection were returned, it would be
easier to interact with them separately if we extract them from DynamicFrameCollection.
We could select() each of those DynamicFrames and use the show() method to see their
contents. Alternatively, we can use the SelectFromCollection transformation to select
individual DynamicFrames:

>>> company_Frame = relationalize0.select('company')

>>> company_Frame.toDF().show()

+----------+---------+

| company|employees|

+----------+---------+

|DummyCorp1| 1|

|DummyCorp2| 2|

|DummyCorp3| 3|

+----------+---------+

>>> emp_Frame = relationalize0.select('company_employees')

>>> emp_Frame.toDF().show()

+---+-----+-------------------+------------------+

| id|index|employees.val.email|employees.val.name|

+---+-----+-------------------+------------------+

| 1| 0| foo@company1.com| foo1|

| 1| 1| bar@company1.com| bar1|

| 2| 0| foo@company2.com| foo2|

| 2| 1| bar@company2.com| bar2|

| 3| 0| foo@company3.com| foo3|

Data Preparation80

| 3| 1| bar@company3.com| bar3|

+---+-----+-------------------+------------------+

As you may recall, the Relationalize transform has pivoted the employees column and
created a new DynamicFrame with additional columns: id and index. The id column acts similarly
to a foreign key for the employees column in the company DynamicFrame.

However, for us to be able to write the flattened data to a relational database, we need the data to be
present in one DynamicFrame. To bring both of these DynamicFrames together, we can use the Join
transform. Let’s look at the Join transform and see how it works.

Join

The Join transform, as its name suggests, joins two DynamicFrames. A Join transform in AWS
Glue performs an equality join. If you are interested in performing other types of Join (for example,
broadcast joins) in Glue ETL, you will have to convert the DynamicFrame into a Spark DataFrame.

Let’s continue with our example and join the two DynamicFrames that were created by Relationalize
while using employees and id as the keys:

join0 = Join.apply(frame1 = company_Frame, frame2 = emp_Frame,
keys1 = 'employees', keys2 = 'id')

Let’s use the show() function to see the joined data:

>>> join0.toDF().show(truncate=False)

This will result in the following output:

Figure 4.7 – Output demonstrating a Join transformation

As you can see, the email and name array columns have been renamed employees.val.
email and employees.val.name, respectively. This is the result of pivoting the array in the
Relationalize transformation. This can be corrected using the RenameField transformation
before joining the DynamicFrames.

Data preparation using AWS Glue 81

Now, let’s look at the RenameField transformation to see how we can rename columns.

RenameField

The RenameField transformation allows us to rename columns. This transformation takes three
parameters as input – a DynamicFrame where the column needs to be renamed, the name of the
column to be renamed, and the new name for the column.

In our example, we saw that after the array was pivoted by the Relationalize transform, the
email and name array columns were renamed employees.val.email and employees.
val.name, respectively. To rename the columns so that they have their original names, we can use
the following code snippet:

renameField0 = RenameField.apply(frame = join0, old_name =
"`employees.val.email`", new_name = "email")

renameField1 = RenameField.apply(frame = renameField0, old_name
= "`employees.val.name`", new_name = "name")

You may have noticed the wrapping backquotes (`) for the old column names in the preceding code
snippet. This is because we have a dot (.) character in the name of the column itself and here, the dot
character does not represent a nested structure. To suppress the default behavior of the dot character,
we have wrapped the column names in backquotes.

We can confirm that the columns have been successfully renamed by printing the schema of the
renameField1 DynamicFrame. Now that we have a flattened schema structure and the columns
have been renamed according to our requirements using transformations such as Relationalize,
Join, and RenameField, we can safely write the resultant DynamicFrame to a table in a relational
database.

Now, let’s look at some of the other transformations available in AWS Glue ETL.

Unbox

The Unbox transformation is helpful when a column in a dataset contains data in another format. Let’s
assume that we are working with a dataset that’s been exported from a table in a relational database
and that one of the columns has a JSON object stored as a string.

If we continue to use string data types for this JSON object, we won’t be able to analyze the data
present in this column as easily as the downstream application may not know how to parse it. Even
if it does, the queries would be extremely complex. Since the purpose of the data preparation step is
to clean and reshape the data, it is much better to address this within the data preparation workflow.

Data Preparation82

Let’s assume that our dataset has the following schema:

root

|-- location: string

|-- companies_json: string

When we use the show() method on the DynamicFrame, we will see that there is a JSON string in
the companies_json column:

+-----------+--------------------+

| location| companies_json|

+-----------+--------------------+

|Seattle, WA|{"jsonrecords":[{...|

+-----------+--------------------+

Now, let’s see how the Unbox transform can help us unpack this JSON object and merge the schema
of the JSON object with the DynamicFrame schema:

>>> unbox0 = Unbox.apply(frame = datasource2, path =
"companies_json", format = "json")

>>> unbox0.printSchema()

root

|-- location: string

|-- companies_json: struct

| |-- jsonrecords: array

| | |-- element: struct

| | | |-- company: string

| | | |-- employees: array

| | | | |-- element: struct

| | | | | |-- email: string

| | | | | |-- name: string

As we can see, the schema from the JSON object was merged into DynamicFrame’s schema. Now,
we can use other transformations to further transform the data or output the DynamicFrame as-is.

Now, there might be situations where you run into an issue when applying a transformation in
Glue ETL and you may notice that some or all the records in a DynamicFrame have gone missing.
This may happen if there was an error when parsing the records. How do we find out if this has
happened? Well, AWS Glue ETL has a transformation that captures the nested error records called
ErrorsAsDynamicFrame. Let’s take a look at how this works.

Data preparation using AWS Glue 83

ErrorsAsDynamicFrame

This transformation takes a DynamicFrame as input and returns the nested error records that have been
encountered up until the creation of the input DynamicFrame. In the Unbox transform example, we
used a JSON string nested within a record to demonstrate the capabilities of Unbox. Let’s introduce
a syntax error into the JSON string of one of the records by removing a curly brace or a comma that
will interfere with the normal functioning of the JSON parser.

The following source code can be found in this book’s GitHub repository at https://github.
com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/
tree/main/Chapter04:

Refer GitHub repository for Sample code-gen function
createSampleDynamicFrameForErrorsAsDynamicFrame()

>>> datasource2 =
createSampleDynamicFrameForErrorsAsDynamicFrame()

>>> datasource2.toDF().show()

+-----------+--------------------+

| location| companies_json|

+-----------+--------------------+

|Seattle, WA|{"jsonrecords":[{...|

|Sydney, NSW|{"jsonrecords":[{...|

+-----------+--------------------+

>>> unbox0 = Unbox.apply(frame = datasource2, path =
"companies_json", format = "json")

>>> unbox0.toDF().show()

+-----------+--------------------+

| location| companies_json|

+-----------+--------------------+

|Seattle, WA|{[{DummyCorp1, [{...|

+-----------+--------------------+

>>> ErrorsAsDynamicFrame.apply(unbox0).count()

1

>>> ErrorsAsDynamicFrame.apply(unbox0).toDF().show()

+--------------------+

| error|

+--------------------+

|{{ File "/tmp/66...|

+--------------------+

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter04
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter04
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter04

Data Preparation84

As we can see, the valid JSON record that was in the DynamicFrame was parsed correctly by the parser.
However, the invalid record was not parsed and we can see that the ErrorsAsDynamicFrame
class has captured the errors. As part of the ETL script, we can have validation steps using this class
to ensure there were no errors when transforming data.

You may have noticed by now that each of the AWS Glue ETL transforms have two parameters available.
These parameters specify the error threshold for each transformation:

• stageThreshold specifies the maximum number of errors that can occur in a given
transformation for which the job needs to fail.

• totalThreshold specifies the maximum number of errors up to and including the current
transformation.

We can leverage these parameters to manage error handling behavior in AWS Glue ETL.

There are several other transformations available in AWS Glue ETL that make it easy to reshape and
clean data based on our requirements. It would not be practical to discuss each of the transformations
available in AWS Glue ETL here as the service has been constantly evolving since it was released
and new transformations and extensions are being added by AWS. You can find an exhaustive list
of transformations, syntax, and examples in the AWS Glue documentation, as mentioned at the
beginning of this section.

Now that we are familiar with AWS Glue DataBrew, AWS Glue ETL, and AWS Glue Studio, it is
important to know which tool/service to choose for your workload.

Selecting the right service/tool
In the previous sections, we looked at the different features, transformations, and extensions/APIs
that are available in AWS Glue DataBrew, AWS Glue Studio, and AWS Glue ETL for preparing data.
With all the choices available and the varying sets of features in each of these tools, how do we pick a
tool/service for our use case? There is no hard and fast rule in selecting a tool/service and the choice
depends on several factors that need to be considered based on the use case.

As discussed earlier in this chapter, AWS Glue DataBrew empowers data analysts and data scientists
to prepare data without writing source code. AWS Glue ETL, on the other hand, has a higher learning
curve and requires Python/Scala programming knowledge and a fundamental understanding of Apache
Spark. So, if the individuals preparing the data are not skilled in AWS Glue/Spark ETL programming,
they can use AWS Glue DataBrew.

One of the important factors to consider while choosing a tool/service is whether the data preparation
tasks being planned can be implemented using the tool/service. While AWS Glue DataBrew has a
library of over 250 pre-built transformations, they may still not cover some of the transformations
required to implement your data preparation workflow or it might be too complex to implement your
workflow using built-in transformations in DataBrew. In such cases, we can simplify the workflow by

Summary 85

writing an ETL job in AWS Glue ETL since we have the flexibility to write custom transformations. We
can leverage built-in AWS Glue ETL transformations or we can custom-design our transformations
using Apache Spark APIs.

Another factor that can influence this decision is whether the data preparation workflow that’s being
implemented is a one-off operation or something that needs to be accomplished quite frequently. If
the data preparation tasks are simple and infrequent, it would not justify the effort involved in writing
source code manually. In such cases, we can use AWS Glue DataBrew or AWS Glue Studio’s visual
job editor to set up an ETL job to accomplish our tasks. However, if the tasks are complex, require
a higher level of flexibility, and are going to be performed regularly, AWS Glue ETL would be a better
choice as we can customize the ETL job based on our requirements.

To summarize, it is important to consider the use case and construct a plan based on the requirements.
Some of the key considerations that could factor into the decision-making process are as follows:

• Features offered by a specific tool and whether our tasks can be accomplished using built-in
transforms

• The skill sets of individuals within the team

• The complexity of the workflow that is being implemented

• The frequency of data preparation operations

So, it is important to consider the use case at hand, plan your data preparation workflow, and then
choose a tool/service to implement your workflow. Otherwise, you could end up wasting a lot of time
and effort in designing your workflow using a specific tool/service that was not fit for your use case
to begin with.

Summary
In this chapter, we discussed the fundamental concepts and importance of data preparation within
a data integration workflow. We explored how we can prepare data in AWS Glue using both visual
interfaces and source code.

We explored different features of AWS Glue DataBrew and saw how we can implement profile jobs
to profile the data and gather insights about the dataset being processed, as well as how to use a DQ
Ruleset to enrich the data profile, use PII detection and redaction, and perform column encryption
using deterministic and probabilistic encryption. We also discussed how we can apply transformations,
build a recipe using those transformations, create a job using that recipe, and run the job.

Then, we discussed source code-based ETL development using AWS Glue ETL jobs and the different
features of AWS Glue Studio before exploring some of the popular transformations and extensions
available in AWS Glue ETL. We saw how these transformations can be used in specific use cases while
covering source code examples and how we can detect and handle errors during data preparation in
AWS Glue ETL.

Data Preparation86

We talked about different factors that need to be considered while choosing a service/tool in AWS
Glue and the importance of considering the use case and planning while designing our data
preparation workflow.

In the next chapter, we will discuss the importance of data layouts and how we can design data
layouts to optimize analytics workloads. We will be exploring some of the concepts that factor into
performance and resource consumption during query execution, such as data formats, compression,
bucketing, partitioning, and compactions.

5
Data Layouts

Data analysis is a common practice to make data-driven decisions to accelerate business and grow
your company, organization, teams, and more. In a typical analysis process, queries that process and
aggregate records in your datasets will be run for your data to understand their business trends.
The queries are commonly run from Business Intelligence (BI) dashboard tools, web applications,
automated tools, and more. Then, you will be able to get the results you need such as user subscriptions,
marketing reports, sales trends, and more.

For their analytic queries, it’s important to consider analytic query performance because they need
to timely utilize the analysis data and to quickly make a business decision for their business growth.
To accelerate the query performance to quickly obtain the analysis data, you need to care about your
dashboard tools, computation engine that processes the large amount of your data, data layout design
of your data and its data storage, and more. The combination of these resources affects your analytic
query performance so that it’s important to understand them.

This chapter focuses on how we design data layouts to optimize your analytic workloads. In particular,
to design the data layouts that can maximize your query performance, we need to consider the three
important parts such as key techniques for our data to optimize query performance, how we manage
our files, and how we optimize our Amazon S3 storage.

By focusing on these three parts, in this chapter, we will learn useful and general techniques to
accelerate your analytic workloads, and important functionalities to optimize the workloads that can
be achieved using AWS Glue and Lake Formation.

In this chapter, we will cover the following topics:

• Why do we need to pay attention to data layout?

• Key techniques to optimally storing data

• Optimizing the number of files and each file size

• Optimizing your storage by working with Amazon S3

Data Layouts 88

Technical requirements
For this chapter, if you wish to follow some of the walk-throughs, you will require the following:

• Access to GitHub, S3, and the AWS console (specifically AWS Glue, AWS Lake Formation,
and Amazon S3)

• A computer with the Chrome, Firefox, Safari, or Microsoft Edge browser installed and the AWS
Command-Line Interface (AWS CLI):

 � Regarding the AWS CLI, you can use not only the AWS CLI but also AWS CLI version 2. In
this chapter, the AWS CLI (not version 2) is used. You can set up the AWS CLI (and version
2) from https://docs.aws.amazon.com/cli/latest/userguide/
cli-chap-getting-started.html.

• An AWS account and an accompanying IAM user (or IAM role) with sufficient privileges to
complete this chapter’s activities. We recommend using a minimally scoped IAM policy to
avoid unnecessary usage and making operational mistakes. You can get the IAM policy for this
chapter from the relevant GitHub repository, which is shown at https://github.com/
PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/
blob/main/Chapter05/data.json. This IAM policy includes the following access:

 � Permissions to create a list of IAM roles and policies for creating a service role for an AWS
Glue ETL job

 � Permissions to read, list, and write access to an Amazon S3 bucket

 � Permissions to read and write access to Glue Data Catalog databases, tables, and partitions

 � Permissions to read and write access to Glue Studio

• An S3 bucket for reading and writing data with AWS Glue. If you haven’t created one yet, you
can do so from the AWS console (https://s3.console.aws.amazon.com/s3/
home) | Create bucket. You can also create a bucket by running the aws s3api create-
bucket --bucket <your_bucket_name> --region us-east-1 AWS CLI
command.

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/data.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/data.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/data.json
https://s3.console.aws.amazon.com/s3/home
https://s3.console.aws.amazon.com/s3/home

Why do we need to pay attention to data layout? 89

Why do we need to pay attention to data layout?
As we discussed earlier, it’s important to maximize query performance for your analytic workloads
because they need to quickly understand for their situation for quick decisions based on the query
results. To achieve the most optimal analytics workloads, one of the most important phases is data
extraction process that a computation engine retrieves your data from the data location (Relational
database, Distributed storage and so on) and reads records. It’s because many operations on our analytic
workloads are reading data and processing them into what we want based on our running queries.
These days, many computation engines that process data are effectively optimized their computation
by their community, company and more. However, the data extraction process, especially retrieving
and reading data from an external location highly depends on our data layout such as the file number,
file format and so on, network speed, and more. Therefore, to achieve optimal data extraction, we
should carefully design our data layout to optimize our query performance more.

When considering the data layout, you should mainly focus on the following three parts:

• Key techniques to optimally storing data: This is the first part. When you store your data, you
should pay attention to what file format and compression type you use, and whether you use
partitioning and/or bucketing. Because these techniques are import to optimize your query
performance. We’ll go through the details about the techniques in Key techniques to optimally
storing data section. Paying attention to how you store data can optimize the processing of
your data with a processor engine that actually runs analytic queries such as saving process
time to compute data schema by choosing a file format. This has a schema, avoiding processing
unnecessary files by filtering your data in advance, and more.

• Optimizing the number of files and each file size: This is the second part. It’s possible to save
processing time by keeping the number of files as small as possible and by keeping each file size
the number which is a computation engine’s chunk size such as 64MB, 128MB and so on. This is
because we can potentially avoid spending time of handling each file by the computation engine.

• Optimizing data storage based on data access: This is the last one. Your data size should
be incremental and grow continuously, such as continuous web access logs, data sent by IoT
devices, and more. Generally, the larger the data size in your storage, the higher the cost of the
storage usage you need to pay. Therefore, often you need to archive part of the data and keep
other parts based on the access to the data to decrease the storage cost and reduce unnecessary
data access for your analytic workloads.

To achieve data retrieval as quickly as possible, and then enhance your analytic workloads, in the next
section, we will focus on learning about the previously mentioned points to introduce a good data
layout. In particular, this chapter will show how you can meet these requirements with AWS Glue,
AWS Lake Formation, and Amazon S3.

Data Layouts 90

Key techniques to optimally storing data
As mentioned earlier, the data extraction process is one of the most important phases to consider when
optimizing your analytic workloads. In the usual process of data retrieval, users such as data analysts,
business intelligence engineers, and data engineers run queries to a distributed analytics engine such
as Apache Spark and Trino. Then, the distributed analytics engine gets information about the data,
such as each file location and metadata. Usually, this kind of data is stored in distributed storage such
as Amazon S3, HDFS, and more. After getting all the information about the data, the computing
engine actually accesses and reads the data that you specify in the queries. Finally, it returns query
results to the users.

To make the data retrieval process faster for further analysis, it’s important to consider how you
store data. In particular, you can optimize workloads for analysis by storing data in the most suitable
condition for your analysis. For example, when running analytic queries, if there were a lot of files
in your storage, running queries would take more time than if there are a smaller number of files.
This is mainly because a distributed analytics engine would need time to get the information about
each file, such as each file location and metadata. Based on the information, the computing engine
retrieves the data from storage before processing it. In such cases, it’s possible to improve the time of
the data retrieval process by gathering the files within a smaller number of files and decreasing each
file size by compressing it to match the size that the computing engine can process (usually, this size
is based on your computing engine’s memory capacity). Usually, this processing can be achieved by
using computing engines.

To optimally store your data, you should pay attention to file formats, compression types, the splitability
of files, and partitioning or bucketing as they can affect the workloads of your analytic queries. We
will learn more about this in the following sections.

Selecting a file format

Generally, data can be categorized into unstructured, semi-structured, and structured formats
based on whether the data has a specific schema and types. If the data has specific key-value pairs
but doesn’t have any typed schema, the data can be classified into a semi-structured format such as
JSON, CSV, or XML. If the data has specific columns and types, it can be classified into a structured
format such as Apache Parquet, Apache ORC, Apache Avro, and more. Otherwise, the data can be
generally thought of as an unstructured format such as images and log files.

Key techniques to optimally storing data 91

Selecting a file format affects your query performance. Structured format data with a schema like a
relational database table enables a data processing engine to avoid computing the data schema and
to extract only necessary data (e.g. values in the columns you want to process) based on user defined
queries. In particular, it’s recommended that you use the formats that have columnar data structures
such as Apache Parquet and Apache ORC because these formats provide a lot of merits for the
analysis. For example, Apache Spark that is used on AWS Glue can optimize querying Parquet files
by narrowing down access to records based on Parquet format structure. We’ll see the merits next,
and see how to convert your data to these columnar formats.

Storing your data in columnar formats for effective analytic workloads

As we’ve seen so far, Apache Parquet and Apache ORC are file formats that have table-like schemas
and columnar storage. These formats can effectively provide data processing for your analytic queries
based on their columnar format features such as metadata columns, filtering columns and the relevant
records, effective compression and encoding schemas, and more.

Actual data in Parquet files consists of row groups, which include arrays of columns. Parquet defines
the size of a chunk of the data for each column to store records, which includes columns and pages
as Block size. By default, this size is defined as 128 MB. Also, ORC has a chunk size to store records
called Stripe size, which is defined as 64 MB by default. Each chunk in ORC includes index data,
row data, and, strip footer. If you store data with a large block or strip size, a processor can execute
effective column-based manipulations; however, this is possible to cause multiple I/O operations due
to multiple blocks in your storage. On the other hand, if you store data with a small block or strip size,
this too needs multiple accesses to each file and possibly reduces its efficiency. Therefore, when you
store your data with the Parquet or ORC format, you should store data with the block or stripe size
or set a larger block or stripe size based on your data if your data has a lot of columns.

Configuration of Parquet block or ORC stripe size in Glue Spark jobs
You can configure the block or strip size by specifying each relevant parameter to the option
method for Spark DataFrameWriter as follows:

dataframe.write.option('parquet.block.size', 1024 * 1024)
1024 * 1024 bytes = 1MB block size

dataframe.write.option('orc.stripe.size', 1024 * 1024)
1MB strip size

Data Layouts 92

You can also effectively narrow down your data for Parquet and ORC formats when filtering or querying
values in particular columns. Many computation engines such as Apache Spark, Apache Hive and
Trino/Presto support a narrow-down feature called predicate pushdown or filter pushdown. Each
block in Parquet and ORC files has statistics of the chunk such as the value range of minimum and
maximum. This statistical information is used for your running query to determine which part is
necessary to read. If you sort the column value that you use for filtering before processing the data,
this can improve your analytic query performance based on its mechanism.

Converting your data to Apache Parquet or Apache ORC formats with
AWS Glue

You can convert your data files with a Glue ETL Spark job. Using AWS Glue Studio, you can create the
Glue job and it automatically generates the format conversion script. Regarding how to use the Glue
Studio, please refer to AWS Glue ETL and AWS Glue Studio section in Chapter 4, Data Preparation.
The following example shows the steps to generate the format conversion script from JSON to Apache
Parquet with snappy compression. Follow these steps:

1. Download the sample sales data (data.json) on your local machine from https://
github.com/PacktPublishing/Serverless-ETL-and-Analytics-
with-AWS-Glue/blob/main/Chapter05/data.json. Once downloading is
completed, upload the file to your Amazon S3 bucket using the command; aws s3 cp
data.json s3://<your-bucket-and-path>/ or from the S3 console (https://
s3.console.aws.amazon.com/s3/buckets)

2. Access Jobs on Glue Studio console (https://us-east-1.console.aws.amazon.
com/gluestudio/home#/jobs).

3. Choose Visual with a source and target and Create on the top of right page.

4. In Data source – S3 bucket node, set your S3 bucket and path, and choose Infer schema.

5. In Data target – S3 bucket node, set Parquet to Format, Snappy to Compression
Type and your S3 bucket and path. You can generate the following diagram and script as the
following screenshot.

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/data.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/data.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/data.json
https://s3.console.aws.amazon.com/s3/buckets
https://s3.console.aws.amazon.com/s3/buckets
https://us-east-1.console.aws.amazon.com/gluestudio/home#/jobs
https://us-east-1.console.aws.amazon.com/gluestudio/home#/jobs

Key techniques to optimally storing data 93

Figure 5.1 – Format conversion Glue job diagram and script on Glue Studio console

6. To run this file format conversion job, choose Job details tab and complete all information
such as Job name, IAM Role, Job type and so on.

7. After completing all information, choose Save and Run.

After running the Glue job completed, you can see parquet files with snappy compression in the target
S3 bucket and path.

Next, we’ll look at several data compression types that can decrease your data size.

Compressing your data

Reducing file size by compression enables you to save data network transfer cost, save query process
time, reduce usage of data storage, save the storage cost and so on. For these merits, you should store
data with compression. Note that you pay attention to whether the compression type is splittable or
not, compression or decompression speed and each compressed file size, which possibly affect your
query performance. We will see the file splittability in the Splittable or Unsplittable files section and
see the file size management in the Managing number of files and each file size section.

Data Layouts 94

The following table shows, in Spark, compression formats that are commonly used for Apache Parquet
such as gzip, lz4, snappy, and zstd, along with their compression ratios and compression/
decompression speeds. Each compression ratio and (de)compression speed is measured by running
actual data processing jobs, in seconds. Additionally, each of them is normalized by each no compression
result and gzip compression result, respectively:

Table 5.1 – Comparison of compression ratio and speed between compression types

Each value in the table was measured by running a Glue Spark job. The following list shows what
environment the Spark job ran on:

• The test data is all tables in TPC-DS dataset with scale 1000 whose size and file format are 412.3
GB in Apache Parquet files without compression. Refer to Further Reading section about the
TPC-DS.

• TPC-DS Glue custom connector (https://aws.amazon.com/marketplace/pp/
prodview-xtty6azr4xgey) was used to generate TPC-DS dataset.

• Used analytic engine: Glue 3.0 (Spark 3.1.1).

• Compression speed and ratio were measured by running the Glue job script in the book’s
GitHub repository (https://github.com/PacktPublishing/Serverless-
ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/
MeasureCompressionSpeedAndRatio.scala).

https://aws.amazon.com/marketplace/pp/prodview-xtty6azr4xgey
https://aws.amazon.com/marketplace/pp/prodview-xtty6azr4xgey
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/MeasureCompressionSpeedAndRatio.scala
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/MeasureCompressionSpeedAndRatio.scala
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/MeasureCompressionSpeedAndRatio.scala

Key techniques to optimally storing data 95

As shown in Table 5.1, compressing the data with gzip, lz4, snappy, and zstd can reduce the
file size compared to the case without compression. In addition to reducing file size by the compression
technique, compression/decompression speed can affect your processing job. In particular, a data
processing job, including gzip compression, is expected to be slower than a job using the other
compression types such as lz4, snappy, and zstd, based on Table 5.1. Therefore, when compressing
your data with a processing job to optimize the data in your storage, you should consider not only
the compression ratio but also the compression speed to get compressed data as quickly as possible.

Note
Generally, the higher the compression ratio of an algorithm you specify, the more computation
overhead is necessary to compress and decompress data.

So far, we’ve seen how the compression works for your data and workloads. But how can we actually
run the compression job for our data? We can compress our data with AWS Glue. Using Glue Studio, we
can generate the compression Glue job script as we’ve seen in Converting your data to Apache Parquet
or Apache ORC formats with AWS Glue section. Specifically, we just choose a compression type for the
Data target – S3 bucket node in Step 5 of the example in the previous section. The compression type
you can choose depends on your file format type. For example, if you set Parquet as the format,
you can choose Snappy, LZO, GZIP or Uncompressed. The following example script shows the
partial code that is generated by Glue Studio and that writes the Parquet files with GZIP compression.

S3bucket_node3 = glueContext.write_dynamic_frame.from_options(

 frame=ApplyMapping_node2,

 connection_type="s3",

 format="glueparquet",

 connection_options={

 "path": "s3://your-target-bucket-and-path/",

 "partitionKeys": [],

 },

 format_options={"compression": "gzip"},

 transformation_ctx="S3bucket_node3",

)

Data Layouts 96

You can also compress your data with Spark DataFrame. If you use Spark DataFrame for compression,
you need to directly edit your Glue job script on Glue Studio. The following example shows the part
of the job script that writes Parquet files with zstd compression.

COMPRESSION_CODEC = 'zstd'

dataframe.write\

 .option('compression', COMPRESSION_CODEC)\

 .parquet(DST_S3_PATH)

The whole script is available at https://github.com/PacktPublishing/Serverless-
ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/compression_
by_dataframe.py.

Note
Glue DynamicFrame currently doesn’t support zstd for reading and writing. You should use
Spark DataFrame to compress/decompress data to/from zstd.

Next, we’ll look at file splittability, which is determined by file format and compression type.

Splittable or unsplittable files

When you run analytics queries and process data, it’s helpful to know whether the files from your data
source are splittable or not. A file is splittable means whether a processor such as AWS Glue can get the
contents of a file by separating it based on the chunk size of the processor when the processor reads
the file. When a file is not splittable, a processor cannot separate a file and needs to get the whole file.

Why do we need to think about whether a file is splittable? Well, usually, it affects your data retrieval.
Let’s assume that your data files are not splittable and each file has a big size that is greater than the size
of your memory or storage. A file is not splittable; therefore, a processor cannot separate it as a chunk
and needs to read the whole file. However, a processor cannot process a file because each file size is
more than the memory and storage size or processor. In particular, with Apache Spark, processing
a large size of an unsplittable file might cause an out-of-memory error because Spark processes the
data in memory. In other words, you should control each file size appropriately for your processor if
your data source has unsplittable files.

Whether it’s splittable or not depends on what the file format is and/or how the file has been compressed.
The following table shows popular file formats and compression types, and whether they’re splittable
or unsplittable. Please check the files in your data source if you use a data processor such as AWS Glue,
Amazon EMR, or Amazon Athena, which processes and writes the data in your storage:

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/compression_by_dataframe.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/compression_by_dataframe.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/compression_by_dataframe.py

Key techniques to optimally storing data 97

Table 5.2 – The splittability of file formats and compression types

From Table 5.2, for example, if your data files are in XML format without compression, they’re splittable.
As another example, if your data files are in JSON format with gzip compression, they’re unsplittable.

Partitioning

Partitioning is a technique to store your data separately into different folders based on specified
partition keys. Each partition key is related to your data and actually acts as a column. For example,
if you have your data in your Amazon S3 bucket as s3://bucket-name/category=drink/
data.json, the partition key can be recognized as category, and its value is drink.

By partitioning your data, you can reduce data scan size by querying only the required data. Specifically,
a computation engine (such as Spark, Presto and so on.) only reads the data in specified partition keys
and values in your query. In the example above, if you specify drink for the category partition
key, the engine only reads the data under the drink folder by listing partition values for the key.
This can reduce data scan size and improve query performance.

Data Layouts 98

You can define a column as a partition key at table creation. The partition keys and values are registered
in your table that is stored in Apache Hive metastore. The Hive Metastore is a service to store table
metadata and their relevant information, in a database backend such as a relational database. More
details about the Hive Metastore is discussed in the AWS Glue Data Catalog section in Chapter 2,
Introduction to Important AWS Glue Features. The computing engine retrieves the list of partition
values from the metastore based on your query with a specific range of partition values for keys, and
then it reads the data in specified partitions. Therefore, partitioning enables a computation engine to
filter partitions and avoid processing unnecessary partitions.

When you partition your data, you should use Hive style partitioning such as /path/
to/<partition_key_1>=<value1>/<partition_key_2>=<value2> compared to
non key-value style such as /path/to/value1/value2. Using Hive style partitioning, partition
keys can be processed as table columns and the values are filtered by WHERE clause in SQL-like query
such as WHERE category = 'drink'. Also, you can automatically register partition values in
your Hive Metastore for the key by MSCK REPAIR TABLE <your-table-name> Hive query
that can be run by not only Glue Spark jobs but also Athena. For more details about Hive query for
Hive style partitioned tables, please refer to https://docs.aws.amazon.com/athena/
latest/ug/partitions.html.

The Glue Data Catalog, which we saw in Chapter 2, Introduction to Important AWS Glue Features, can be
used as an external Hive metastore. You can register partition keys and values in your table in the Glue
Data Catalog. For example, you can register category as a partition key and drink as its value in
a Glue Data Catalog table on your S3 bucket structure such as s3://bucket-name/category=drink/<data
files>. We look at how to register partition keys and values in the Glue Data Catalog in Registering
partition values in a Glue Data Catalog table section below. By specifying a range of partitions, you
can reduce the data scan size in your Glue ETL Spark job because the job only reads the data in the
specified partitions. This possibly improves the Glue job performance.

Example - partitioning by AWS Glue ETL Spark job

In this example, we partition the data (data.json) in the S3 bucket with Hive style partitioning
by a Glue Spark job. Specifically, we partition the S3 bucket as the following structure based on the
data.json records. In the following folder structure, the partition key is category, and the
values are drink, grocery and kitchen.

s3://bucket-name/

 ├── category=drink/<data files>

 ├── category=grocery/<data files>

 ├── category=kitchen/<data files>

To write your data with Hive style partitioning by a Glue job, you can mainly use partitionKeys
option for Glue DynamicFrame or partitionBy method for Spark DataFrame.

https://docs.aws.amazon.com/athena/latest/ug/partitions.html
https://docs.aws.amazon.com/athena/latest/ug/partitions.html

Key techniques to optimally storing data 99

As we’ve seen in Converting your data to Apache Parquet or Apache ORC formats with AWS Glue
section, using Glue Studio, we can automatically generate a partitioning script by specifying partition
keys for the Data target – S3 bucket node. In the following screenshot, category is specified as
the partition key.

Figure 5.2 – Specifying partition key for Data target node

The following script is the partial code that is generated by Glue Studio based on this diagram. This script
writes snappy compressed Parquet files with hive style partitioning as category=<partition_
value>.

S3bucket_node3 = glueContext.write_dynamic_frame.from_options(

 frame=ApplyMapping_node2,

 connection_type="s3",

 format="glueparquet",

 connection_options={

 "path": "s3://your-target-bucket-and-path/",

 "partitionKeys": ["category"],

 },

Data Layouts 100

 format_options={"compression": "snappy"},

 transformation_ctx="S3bucket_node3",

)

If you use Spark DataFrame for partitioning, you need to directly edit your Glue job script on Glue
Studio. The following example shows the part of the job script that writes snappy compressed Parquet
files with category based partitioning.

dataframe.write\

.partitionBy('category')\

.parquet(DST_S3_PATH). # The default compression type is
snappy.

The whole script is available at https://github.com/PacktPublishing/Serverless-
ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/partitioning_
by_dataframe.py

Best practice to select partition keys
Please note that the number of partitions when you select partition keys for your data. The more
number of partitions in a table increases, the higher the overhead of processing the partition
metadata. Therefore, you should choose a low-cardinality column as a partition key. Also, note
that avoid choosing a partition key that has many skewed values to lower the overhead of filtering
values. Usually we use year, month, day, category, region and so on a partition key.

If you create a table in the Glue Data Catalog based on your data by the Glue Crawler, Athena DDLs
and so on., you can define columns as partition keys in your table registered in Glue Data Catalog.
Glue Data Catalog that we’ve seen in Chapter2, Introduction to Important AWS Glue Features supports
partitioning columns.

The following output of AWS CLI get-table command shows a table metadata that is created
based on the example dataset. You can see columns and the category partition key as follows.

$ aws glue get-table --database-name db_name --name product_
sales

{

 "Table": {

 "Name": "product_sales",

 "DatabaseName": "db_name",

 ...

 "StorageDescriptor": {

 "Columns": [

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/partitioning_by_dataframe.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/partitioning_by_dataframe.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter05/partitioning_by_dataframe.py

Key techniques to optimally storing data 101

 {

 "Name": "product_name",

 "Type": "string"

 },

 {

 "Name": "price",

 "Type": "long"

 },

 ...

 },

 "PartitionKeys": [

 {

 "Name": "category",

 "Type": "string"

 }

],

...

To identify each partition column value for data retrieval by AWS Glue, Amazon Athena, Amazon
EMR, and Amazon Redshift Spectrum you need to register the values of the partition key in your
Glue Data Catalog table.

Registering partition values in AWS Glue Data Catalog

Primarily, there are four ways to reflect those partition column values in the Glue Data Catalog:

• Glue DynamicFrame: Adding partitions by Glue ETL jobs. An example of the script is shown
at https://docs.aws.amazon.com/glue/latest/dg/update-from-job.
html#update-from-job-partitions.

• Spark DataFrame: Running saveAsTable with partitionBy such as the following
example:

PySpark example

your_data_frame.write\

 .mode('overwrite')\

 .partitionBy('<partition_column>')\

 .option('path', 's3://your-bucket/path/')\

 .saveAsTable("db.table")

https://docs.aws.amazon.com/glue/latest/dg/update-from-job.html#update-from-job-partitions
https://docs.aws.amazon.com/glue/latest/dg/update-from-job.html#update-from-job-partitions

Data Layouts 102

The preceding example registers a table that has a partition column such as <partition_
column> in the Glue Data Catalog. It also writes the data to Amazon S3. The data is
written into the s3 path, which is concatenated s3://your-bucket/path/ with
the pair of our specified partition column and its value, such as s3://your-bucket/
path/<partition_column>=<value>/.

• Running the ALTER TABLE ADD PARTITION query by Amazon Athena or by Amazon
Redshift Spectrum.

• Directly calling the CreatePartition API (https://docs.aws.amazon.com/glue/
latest/dg/aws-glue-api-catalog-partitions.html#aws-glue-
api-catalog-partitions-CreatePartition), which adds a partition to the
Glue Data Catalog by specifying partition column names and the column value. If you add
one or more partitions to the Glue Data Catalog, you can use the BatchCreatePartition API
(https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-
catalog-partitions.html#aws-glue-api-catalog-partitions-
BatchCreatePartition or https://docs.aws.amazon.com/glue/
latest/webapi/API_CreateTable.html).

Using the first two ways, you can write the data and add partition values to your Glue Data Catalog
simultaneously. The other operations simply help in adding the partition values to the Glue Data
Catalog. Therefore, you can operate these two operations after writing your data with the partitioning.

Partition Pruning AWS Glue

If you use the Glue DynamicFrame to read data from partitioned tables in the Glue Data Catalog, you
can use data filtering queries that enable your Glue Spark job to avoid processing unnecessary partitions
for your analysis. The DynamicFrame supports the following two types of data filtering queries:

• Predicate pushdown: This enables your Glue Spark job to filter partitions. This happens on
the client (Spark job) side. This works as the following steps:

I. The Glue job firstly retrieves all partitions that are registered in the Glue Data Catalog,
and it keeps them as a partitions list.

II. The job filters the partitions in the list based on the specified predicate pushdown query

III. The job reads the data located in the filtered partitions in Step 2.

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-partitions.html#aws-glue-api-catalog-partitions-CreatePartition
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-partitions.html#aws-glue-api-catalog-partitions-CreatePartition
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-partitions.html#aws-glue-api-catalog-partitions-CreatePartition
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-partitions.html#aws-glue-api-catalog-partitions-BatchCreatePartition
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-partitions.html#aws-glue-api-catalog-partitions-BatchCreatePartition
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-partitions.html#aws-glue-api-catalog-partitions-BatchCreatePartition
https://docs.aws.amazon.com/glue/latest/webapi/API_CreateTable.html
https://docs.aws.amazon.com/glue/latest/webapi/API_CreateTable.html

Key techniques to optimally storing data 103

• Catalog-side predicate pushdown: This is also a query to prune partitions as well as the
predicate pushdown, however the pruning partitions happens on the sever (the Glue Data
Catalog) side. This works as the following steps:

I. The Glue job requests the specified partitions registered in a table to the Glue Data Catalog.

II. The partitions list as a result of filtering on the server (Glue Data Catalog) side is returned
returns the list to the job based on the request in Step 1

III. The job reads the data located in the specified partitions.

These predicate pushdowns contribute to making data retrieval faster compared to retrieving all data
in your storage by the processing job.

You can operate predicate pushdown as mentioned by specifying the push_down_predicate
option in DynamicFrame. You can also use this with SparkSQL by specifying partitions in the WHERE
clause. In the following example, the DynamicFrame only reads the data in the partition whose category
is grocery by setting category=='grocery' to push_down_predicate option.

PySpark example of a pushdown predicate

glue_context.create_dynamic_frame.from_catalog(

 database="db_name",

 table_name="product_sales",

 push_down_predicate="category==grocery")

Also, you can operate catalog-side predicate pushdown by specifying catalogPartitionPredicate
in a DynamicFrame. Please note that partition indexes in AWS Glue, which we’ll see next needs to be
enabled to use the catalog partition predicate. In the following example , the Glue DynamicFrame
reads the data at the partition which is category == book.

PySpark example of a catalog partition predicate

glue_context.create_dynamic_frame.from_catalog(

 database="db_name",

 table_name="product_sales",

 additional_
options={"catalogPartitionPredicate":"category=='grocery'"})

As discussed earlier, the catalog-side predicate pushdown partition prunes partitions on the Glue Data
Catalog side instead of on processing job side. Catalog-side predicate pushdown can be much faster
than using predicate pushdown on the job side if there are a lot of partitions such as over millions of
partitions in your Amazon S3 bucket.

Data Layouts 104

Running queries faster with partition indexes

Partition indexes (https://docs.aws.amazon.com/glue/latest/dg/partition-
indexes.html) in AWS Glue is one of the functionalities in the Glue Data Catalog. This enables
to reduce the query time to filter partitions in the Glue Data Catalog tables. Partition filtering works
on the Glue Data Catalog side, instead of returning all partitions to a requester. Once you set the
partition indexes to your table that has partitions, a requester (typically, a Glue job) only retrieves
necessary partitions that you requested. If the partition index is not enabled, all partitions in the Glue
Data Catalog table are returned to a requester and then the requester needs to choose partitions that
you want to query. Using partition indexes can increase query performance and save costs such as
requests to the Glue Data Catalog table.

Bucketing

Bucketing is a technique that is used to divide data into sub-data and to group rows based on one
or more specified columns. Also, this can reduce your processed data by filtering any unnecessary
data rows based on the bucketing information if you specify the bucketed columns in your queries.
Bucketing can improve your query performance and then accelerate your analytic workloads, too.

You can also specify a bucketed column at table creation. When you set a column as the bucketed
column, you should choose with high cardinality and that can be used often for filtering the data. The
Glue Data Catalog supports bucketing. If you specify bucketing at table creation, then the bucketing
columns are defined in the StorageDescriptor part of the Data Catalog. On the other hand,
when Spark writes the data with bucketing, Spark adds the Spark format, which describes the bucketing
information as parameters of the Data Catalog.

To write your data with bucketing on S3 with Glue ETL Spark jobs, you can mainly use the bucketBy
method for a Spark DataFrame. MurmurHash (https://en.wikipedia.org/wiki/
MurmurHash) is used in Spark and Glue by default. Please note that Glue DynamicFrameWriter
doesn’t support writing with bucketing in the writing process. For example, you can write the data
using bucketing such as the product sales table that based on data.json by following examples of
using a DataFrame. In this example, you need to pass the bucketed number and one or more columns
to the bucketBy method:

PySpark example of setting the bucketed number to 10 and
column to 'customer_id'

your_data_frame.write\

.bucketBy(10, 'customer_id')\

.parquet('s3://<your-bucket>/<path>/')

https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html
https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html
https://en.wikipedia.org/wiki/MurmurHash
https://en.wikipedia.org/wiki/MurmurHash

Optimizing the number of files and each file size 105

There are primarily two ways to reflect the bucket column values in the Glue Data Catalog for Glue
ETL jobs to identify the columns as bucketed columns in the data retrieval phase:

• Spark DataFrame: Running saveAsTable with bucketBy as dataframe.write.
buckety(<number of buckets>, <bucketed columns>.saveAsTable("db.
table"). The Spark public document (https://spark.apache.org/docs/3.1.1/
sql-data-sources-load-save-functions.html#bucketing-sorting-
and-partitioning) also shows how to register bucketed columns on your table by using
bucketBy with saveAsTable.

• Running CREATE TABLE with CLUSTERED BY (<bucketed columns>) INTO
<number of buckets> BUCKETS.

By using saveAsTable in a Spark DataFrame, you can write data with bucketing and add the
bucketing information to your Glue Data Catalog simultaneously. The other option requires creating
a new table and adding the bucketing information to the Data Catalog at the time of the new table
creation.

Note
If you are creating a table using bucketing with Athena DDL, you can see the Athena DDL
syntax at https://docs.aws.amazon.com/athena/latest/ug/create-
table.html. In addition to the DDL, Athena CTAS can also be operated to define and
register the bucketing information. An example of the CTAS query, including a definition of
bucketing, is shown at https://docs.aws.amazon.com/athena/latest/ug/
ctas-examples.html#ctas-example-bucketed.

We’ve seen how we store data optimally, focusing on topics such as file formats, compression types,
file splitability, and partitioning/bucketing. Next, we’ll see the second topic, Managing the number of
files and each file size, which you need to consider for optimizing your analytic queries.

Optimizing the number of files and each file size
The number of files and each file size are also related to the performance of your analytic workloads.
In particular, the number of files and file sizes are related to the performance of the data retrieval
phase by using an analytic engine in your analytic workloads. To understand the relationship between
the number of files and the file size and the performance of the data retrieval process by an analytic
engine, we’ll look at how the engine generally retrieves data and returns the result as follows.

https://spark.apache.org/docs/3.1.1/sql-data-sources-load-save-functions.html#bucketing-sorting-and-partitioning
https://spark.apache.org/docs/3.1.1/sql-data-sources-load-save-functions.html#bucketing-sorting-and-partitioning
https://spark.apache.org/docs/3.1.1/sql-data-sources-load-save-functions.html#bucketing-sorting-and-partitioning
https://docs.aws.amazon.com/athena/latest/ug/create-table.html
https://docs.aws.amazon.com/athena/latest/ug/create-table.html
https://docs.aws.amazon.com/athena/latest/ug/ctas-examples.html#ctas-example-bucketed
https://docs.aws.amazon.com/athena/latest/ug/ctas-examples.html#ctas-example-bucketed

Data Layouts 106

The basic process of data retrieval and returning a result is firstly getting a list of files, reading each file,
processing the contents of the files based on your queries, and then returning the result. In particular,
when processing data in Amazon S3, the analytic engine lists objects in your specified S3 bucket, gets
objects, reads the contents, then processes and returns the result. When you use an AWS Glue ETL
Spark job to process your data in the S3, in the data retrieval process, the Spark driver in the Glue
job lists objects in the S3 bucket, then Spark Executors on the Glue job get objects based on the result
listed by Spark Driver.

Therefore, the greater the number of files in your storage, the longer listing takes. In addition to
this, if your data source is based on a lot of small files, it also takes longer to process data across
multiple files because it needs more file I/O compared to the file I/O for a smaller number of files.
Therefore, managing the number of files and file sizes is important for your data retrieval process by
the analytic engine.

What is compaction?

We store various types of logs such as web access logs, application logs, and IoT device logs in storage
such as Amazon S3. These logs are delivered by applications and devices continuously and periodically
(in a relatively short period, from seconds to minutes). Furthermore, these logs often consist of a small
file in the size of kilobytes or a few megabytes. Therefore, as the logs are delivered into your storage,
the number of small files in your storage increases. Usually, this can cause a situation where there are
a lot of small files in your storage, such as there being 100 million files and each file size being 1 KB.

If you directly run your analytic workloads for data that consists of a lot of small files, it’s expected
that the query time would increase because listing files in the data retrieval phase by an analytic
engine takes a lot of time. Therefore, when running a processing job, you need to transform a lot
of small-file data into data with the appropriate number of files, as well as the size of each file. This
action to merge small files into larger ones and arrange the data is called compaction. Compaction
is a necessary process to relax the a lot of small files problem, which increases query time and affects
your analytic workloads. The following table shows the performance comparison of record count by
a Spark DataFrame between non-compacted data and compacted data:

Table 5.3 – Comparison of the speed of record count by a Spark DataFrame between

non-compacted data and compacted data (this speed is measured by seconds)

Optimizing the number of files and each file size 107

As you can see in the preceding table, counting records of compacted data is about 66 times faster
than that of non-compacted data. Based on the result, we can see that compaction greatly contributes
to increasing query performance if the compacted and non-compacted data have the same size.

In the following sections, we’ll see how you can run compaction on your data with AWS Glue. AWS
Glue provides flexible solutions to run compaction and basic compaction steps using Spark. In
addition to Glue, you can also use the AWS Lake Formation automatic compaction functionality,
which automatically runs compaction on your specified data. Additionally, we’ll learn about Lake
Formation’s automatic compaction.

Compaction with AWS Glue ETL Spark jobs

You can process your data, merge the files, and store the data in columnar format using Glue ETL
Spark jobs to optimize your analytic workloads. To build an automatic compaction, you essentially
need to consider the following two key things in the compaction process:

• How you determine the number of files after the compaction process?

• How you control each file size through the compaction process?

You can control the number of output files in Glue ETL Spark job. Additionally, you can manage
each file size by controlling the number of files when Glue job writes the data in your storage such as
Amazon S3, and by specifying the file format and compression.

Essentially, Spark determines the number of output files based on the number of Spark partitions, which
determines the amount of concurrency of processing data. The number of partitions is determined by
input splits, such as data splitted size in EMRFS is defined as fs.s3.block.size, HDFS block
size, and more. Additionally, the number is determined by the operations on your data in Spark such
as spark.sql.shuffle.partitions/spark.default.parallelism, which defines
the number of partitions after shuffling operations.

In a Glue job, by setting the number of partitions just before writing data with Spark, your Glue job
writes the data with the same number of files as the number of partitions specified. You can control
the number of partitions using the repartition(<number>) or coalesce(<number>)
methods for a Glue DynamicFrame or Spark DataFrame. Please note that there is currently no option
to specify the output file size in Spark when writing data. Therefore, to control the number of files and
each file size by Spark, you need to control the number of partitions in your Spark application (Glue job).

The following steps show an example of compaction process by a Glue job:

1. Check the total size of input files and the number of files.

2. If possible, process a small part of the data with Spark and check the compression ratio of the
output file size to the input file size (columnar formats such as Parquet and ORC are good as
output file formats for analytic workloads).

Data Layouts 108

3. Based on the compression ratio and each file size, compute and set the number of output
partitions. It’s good to start by setting 64 or 128 MB to efficiently process data with a Glue job.

4. Update the number of partitions by repartition() or coalesce()_ method based
on your input file size.

The compaction sample script is provided by AWS in the AWS provided GitHub’s repository (https://
github.com/awslabs/aws-glue-blueprint-libs/blob/master/samples/
compaction/compaction.py). The compaction process in this script roughly works as follows.

1. Spark partition number and size is calculated by listing objects in a specified S3 folder in
get_partition_num_and_size method.

2. If partition size control option (enable_size_control) is set to true, based on the
calculated partition number and size, optimal file number per partition (optimal_file_
num) is calculated.

3. The partition number is updated by coalesce() method with the calculated optimal file
number. Then write the number of files.

Automatic Compaction with AWS Lake Formation acceleration

The Lake Formation acceleration feature automatically runs compaction on your data. This compaction
is a background process and doesn’t affect your analytic workloads. You don’t have to implement a
compaction Glue ETL job that reads your data and merges and compresses the data into a new one.
To enable this feature, you need to create a table whose table type has GOVERNED. You can create a
GOVERNED status table by checking the Enable governed data access and management box from
Create Table in Tables in the Lake Formation console navigation pane, as shown in the following
screenshot. After checking it, Automatic compaction will automatically be turned on. Once the
GOVERNED status for a table has been enabled, Lake Formation starts monitoring your data and
runs compaction jobs internally without interfering with concurrent queries:

Figure 5.3 – Enabling governed status for a table

https://github.com/awslabs/aws-glue-blueprint-libs/blob/master/samples/compaction/compaction.py
https://github.com/awslabs/aws-glue-blueprint-libs/blob/master/samples/compaction/compaction.py
https://github.com/awslabs/aws-glue-blueprint-libs/blob/master/samples/compaction/compaction.py

Optimizing your storage with Amazon S3 109

At the time of writing, this compaction feature is supported only for partitioned tables in the Parquet
format. Next, we’ll look at how to optimize our data layout with Amazon S3 functionalities.

Optimizing your storage with Amazon S3
So far, we’ve seen how we should store data optimally and how we can manage data to optimize data
retrieval and accelerate the analytic workloads. The techniques primarily work on the data itself, such
as storing data with columnar formats, data compaction, and more. Not only does it handle data itself
optimally, but it’s also important to think about optimization on the storage side.

Our data, such as logs of web access, device data, and so on, is continuously reported, and that data size
grows over time. As the storage usage increases, the cost increases, too. To reduce the cost of storage
usage, usually, we archive data that is not frequently or ever accessed. Generally, we can divide data
into the following tiers based on the frequency of access to it:

• Hot: This is data that you usually access.

• Warm: This is data that you have relatively less access to or require less than hot data.

• Cold: This is data that you infrequently access or almost do not require.

Based on the three preceding tiers, usually, we select machines and configure replication policies.

Amazon S3 provides more flexible storage options that you can select. By selecting suitable options for
your data and archiving your data effectively, you can reduce not only the storage cost but also the data
retrieval time. In this section, we’ll look at the S3 storage plans, the data life cycle that S3 also provides,
and the way to archive or delete your unnecessary or infrequently accessed data with AWS Glue.

Selecting suitable S3 storage classes for your data

You can see the storage classes that S3 provides and the main usage of each storage class in the table
under the Comparing the Amazon S3 storage classes section of the AWS documentation (https://
docs.aws.amazon.com/AmazonS3/latest/userguide/storage-class-intro.
html). Based on your data usage and access patterns, you should select a suitable class for your data.
If you process the data with AWS Glue, Glue has options to exclude specific class objects and also has
methods to change a storage class of objects. We’ll see the options and methods in the Excluding S3
storage classes, archiving, and deleting objects with AWS Glue section.

Using S3 Lifecycle for managing object lifecycles

S3 Lifecycle runs automatic actions on your objects to manage objects in your storage based on your
lifecycle configurations. You can set the lifecycle using the Management tab in your bucket view.

https://docs.aws.amazon.com/AmazonS3/latest/userguide/storage-class-intro.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/storage-class-intro.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/storage-class-intro.html

Data Layouts 110

Firstly, you need to set the scope of automatic actions, such as Limit the scope of this rule using
one or more filters (filter-based action) or Apply to all objects in the bucket (applying to all objects
action), from Choose a rule scope in the following screenshot. If you select filter-based actions, you
can set the filtering condition, such as Prefix or Object tags, as follows:

Figure 5.4 – The condition of automatic lifecycle actions

Then, you define the actual lifecycle actions on your objects with which the lifecycle configuration is
applied. There are two types of provided actions:

• Transition actions: These are defined when objects move to another storage class. You can set
the number of days after which to move an object to other storage classes such as STANDARD-IA
class after an object is put on Amazon S3. If you have old data that you never use or infrequently
access, such as data that has passed 30 days since the data creation, you should consider setting
this action. By setting this action that moves old objects into archival storage classes, such as
STANDARD-IA, you can decrease the storage cost of Amazon S3.

Optimizing your storage with Amazon S3 111

• Expiration actions: These are defined when objects expire or are deleted. You can set the
number of days after which to expire or delete an object after the object is put on Amazon S3.
If you have old data that was created some years ago, and you don’t need to access the data, you
can remove that data by setting this action. By removing unnecessary data, you can decrease
not only the storage usage but also the cost of storage usage.

You can choose one or more rules, such as changing a current storage class or removing objects from
the list, on the page shown in the following screenshot. The first two actions are transition actions,
while the others are expiration actions:

Figure 5.5 – The list of lifecycle actions

Please note that life cycle configurations are applied to not only new objects but all existing objects
once you set the configuration. For more details about the S3 Lifecycle, please refer to https://
docs.aws.amazon.com/AmazonS3/latest/userguide/object-lifecycle-
mgmt.html.

By setting S3 Lifecycle rules, we can manage the data lifecycle. In particular, there are two actions that
you can configure for your Amazon S3 bucket. These actions are Transition, which changes the data
storage class, and Expiration, which expires or deletes the data. These actions are triggered days after
the object’s creation was set. Therefore, the S3 Lifecycle automatically archives your data and runs
garbage collection without implementing custom code.

Next, we’ll look at the functionalities of Glue for skipping data with a specific storage class, transitioning
a storage class of your data, and deleting your data using Glue ETL jobs.

https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-lifecycle-mgmt.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-lifecycle-mgmt.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-lifecycle-mgmt.html

Data Layouts 112

Excluding S3 storage classes, archiving, and deleting objects with AWS Glue

AWS Glue provides functionalities that are combined with S3 storage classes, and it can delete
unnecessary objects. In particular, we’ll see the following functionalities that Glue provides regarding
archiving and deleting data:

• Excluding S3 storage classes: AWS Glue ETL jobs can process data across multiple storage
classes excluding specific storage classes.

• Transition of a storage class: Transition a storage class of files in the specified S3 path or that
is pointed to by the database and table in the Glue Data Catalog.

• Purge objects: Delete files in the specified S3 path or that are pointed to by the database and
table in the Glue Data Catalog.

Now, let’s take a look at them in detail.

Excluding S3 storage classes with the excludeStorageClasses option

You can filter the S3 storage classes in your AWS Glue ETL jobs to avoid failing to read data in specific
classes such as GLACIER and DEEP_ARCHIVE. In particular, you can filter them by passing the
excludeStorageClasses option to a DynamicFrame when creating it. For more details,
please refer to https://docs.aws.amazon.com/glue/latest/dg/aws-glue-
programming-etl-storage-classes.html#aws-glue-programming-etl-
storage-classes-dynamic-frame.

Transitioning a storage class with the transition_s3_path or transition_table
method

You can transition your file storage class to another class. When you want to archive specific partitions
after running compaction on the data in the partitions, you can use this method and archive files in
the partitions with partitionPredicate.

Here’s a simple script demonstrating how to run the transition_table method to transition
objects in the specific partition (month=5). After running the script, all objects in the month=5
partition are transitioned to the Glacier storage class:

PySpark script to transition objects in the month=5 partition
to GLACIER immediately.

glue_context.transition_table(

 database='db_name',

 table='table',

 transition_to='GLACIER'

 options={

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-storage-classes.html#aws-glue-programming-etl-storage-classes-dynamic-frame
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-storage-classes.html#aws-glue-programming-etl-storage-classes-dynamic-frame
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-storage-classes.html#aws-glue-programming-etl-storage-classes-dynamic-frame

Summary 113

 'retentionPeriod': 0,

 'partitionPredicate': '(month==5)'})

You can filter objects by not only partition predicates but also retention periods. For more details
about transition operations in Glue, please refer to https://docs.aws.amazon.com/
glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-
context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-
transition_table.

Deleting objects with the purge_s3_path or purge_table method

You can delete your files from Glue ETL jobs with the purge_s3_path or purge_table method.
When you want to delete objects in a specific partition after running compaction on the data in the
partition, you can use this method and delete the files in the partition with partitionPredicate.
Additionally, you can remove partition values from the Glue Data Catalog.

Here’s a simple script demonstrating how to run the purge_table method to delete objects from
the specific partition (month=5) and also delete the partition value from the Glue Data Catalog.
After running the script, all objects in the month=5 partition are deleted and the partition value
registered in Data Catalog is also deleted:

PySpark script to delete objects in the month=5 partition
immediately.

glue_context.purge_table(

 database='db_name',

 table_name='purge_table',

 options={

 'partitionPredicate': '(month==5)',

 'retentionPeriod': 0})

You can filter objects by not only partition predicates but also retention periods. For more details about
purge operations in Glue, please refer to https://docs.aws.amazon.com/glue/latest/
dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-
glue-api-crawler-pyspark-extensions-glue-context-purge_table.

Summary
In this chapter, we learned how to design the data layout to accelerate our analytic workloads. In
particular, we learned about it by focusing on three parts, including how we store our data optimally,
how we manage the number of files and each file size, and how we optimize our storage by working
with Amazon S3.

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-transition_table
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-transition_table
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-transition_table
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-transition_table
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-purge_table
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-purge_table
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-purge_table

Data Layouts 114

In the first part, we learned techniques to store our data optimally. These techniques include choosing
file formats and compression types, understanding file splitability, and partitioning/bucketing. Then,
we learned about data compaction to manage the number of files and each file size and to enhance
analytic query performance. In the last part, we learned how to optimize our storage with Amazon S3
and Glue DynamicFrames. You can effectively use your storage by archiving, expiring, and deleting
your data with Amazon S3 Lifecycle configurations and the Glue DynamicFrame methods.

Managing the data in your data lake with techniques introduced in this chapter will solve a lot of
problems such as slow queries, analytic costs, storage costs, and more. In Chapter 6, Data Management,
we’ll see how we can manage data to match various use cases by diving into what kind of analysis we
can do and who conducts the analysis by running queries.

Further reading
To learn more about what we’ve touched on in this chapter, please refer to the following resources:

• Apache Parquet: https://parquet.apache.org/docs/

• Apache ORC: https://orc.apache.org/specification/ORCv0/

• Apache Avro: https://avro.apache.org

• TPC-DS and its specification: http://www.tpc.org/tpcds/ and http://tpc.
org/tpc_documents_current_versions/pdf/tpc-ds_v3.2.0.pdf

• Improve query performance using AWS Glue partition indexes: https://aws.amazon.
com/blogs/big-data/improve-query-performance-using-aws-glue-
partition-indexes/

 � Video recording on YouTube: https://youtu.be/jyfJ1X_RaCs

• Effective data lakes using AWS Lake Formation, Part 1: Getting started with governed tables:
https://aws.amazon.com/blogs/big-data/part-1-effective-data-
lakes-using-aws-lake-formation-part-1-getting-started-with-
governed-tables/

• Transitioning objects using Amazon S3 Lifecycle: https://docs.aws.amazon.
com/AmazonS3/latest/userguide/lifecycle-transition-general-
considerations.html

• Expiring objects using Amazon S3 Lifecycle: https://docs.aws.amazon.
com/AmazonS3/latest/userguide/lifecycle-expire-general-
considerations.html

https://parquet.apache.org/docs/
https://orc.apache.org/specification/ORCv0/
https://avro.apache.org
http://www.tpc.org/tpcds/
http://tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v3.2.0.pdf
http://tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v3.2.0.pdf
https://aws.amazon.com/blogs/big-data/improve-query-performance-using-aws-glue-partition-indexes/
https://aws.amazon.com/blogs/big-data/improve-query-performance-using-aws-glue-partition-indexes/
https://aws.amazon.com/blogs/big-data/improve-query-performance-using-aws-glue-partition-indexes/
https://youtu.be/jyfJ1X_RaCs
https://aws.amazon.com/blogs/big-data/part-1-effective-data-lakes-using-aws-lake-formation-part-1-getting-started-with-governed-tables/
https://aws.amazon.com/blogs/big-data/part-1-effective-data-lakes-using-aws-lake-formation-part-1-getting-started-with-governed-tables/
https://aws.amazon.com/blogs/big-data/part-1-effective-data-lakes-using-aws-lake-formation-part-1-getting-started-with-governed-tables/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-transition-general-considerations.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-transition-general-considerations.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-transition-general-considerations.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-expire-general-considerations.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-expire-general-considerations.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-expire-general-considerations.html

6
Data Management

In the previous chapter, you learned how to optimize your data layout to accelerate performance in
query engines and manage the data optimally to reduce costs. This is a really important topic, but
it is just one aspect of a data lake. As the volume of data increases, a data lake is used by different
stakeholders – not only data engineers and software engineers but also data analysts, data scientists,
and sales and marketing representatives. Sometimes, the original data is not easy to use for these
stakeholders because the raw data may not be structured well. To make business decisions based on
data quickly and effectively, it is important to manage, clean up, and enrich the data so that these
stakeholders can understand the data correctly, find insights from the data without any confusion,
correlate them, and drive their business based on data.

In this chapter, you will learn how to manage, clean up, and enrich the data in typical data requirements,
and how to achieve this using AWS Glue. AWS Glue provides various functionalities that allow you
to implement ETL logic easily. In addition, Apache Spark has lots of capabilities for different data
operations. With AWS Glue, you can take advantage of both, which will help you make your data lake
effective in real-world use cases.

In this chapter, we will cover the following topics:

• Normalizing data

• Deduplicating records

• Denormalizing tables

• Securing data content

• Managing data quality

Data Management116

Technical requirements
For this chapter, you will need the following resources:

• An AWS account

• An AWS IAM role

• An Amazon S3 bucket

All the sample code needs to be executed in a Glue runtime (for example, the Glue job system, Glue
Interactive Sessions, a Glue Studio notebook, a Glue Docker container, and so on). If you do not have
any preferences, we recommend using a Glue Studio notebook so that you can easily start writing
code. To use a Glue Studio notebook, follow these steps:

1. Open the AWS Glue console.

2. Click AWS Glue Studio.

3. Click Jobs.

4. Under Create job, click Jupyter Notebook, then Create.

5. For Job name, enter your preferred job name.

6. For IAM Role, choose an IAM role where you have enough permission.

7. Click Start notebook job.

8. Wait for the notebook to be started.

9. Write the necessary code and run the cells on the notebook.

Let’s begin!

Normalizing data
Data normalization is a technique for cleaning data. There are different techniques for normalizing data
that make it easy to understand and analyze. This section covers the following techniques and use cases:

• Casting data types and map column names

• Inferring schemas

• Computing schemas on the fly

• Enforcing schemas

• Flattening nested schemas

• Normalizing scale

Normalizing data 117

• Handling missing values and outliers

• Normalizing date and time values

• Handling error records

Let’s dive in!

Casting data types and map column names

In the context of data lakes, there can be a lot of different data sources. This may cause inconsistency
in data types or column names. For example, when you want to join multiple tables where there is
inconsistency, it can cause query errors or invalid calculations. To avoid such issues and make further
analytics easier, it is a good approach to cast the data types and apply mapping to the data during the
extract, transform, load (ETL) phase.

Let’s create a simple DataFrame as an example:

from pyspark.sql import Row

product = [

 {'product_id': '00001', 'product_name': 'Heater', 'product_
price': '250'},

 {'product_id': '00002', 'product_name': 'Thermostat',
'product_price': '400'}

]

df_products = spark.createDataFrame(Row(**x) for x in product)

df_products.printSchema()

df_products.show()

The preceding code returns the following output. You will notice that there are three columns and
that all of them are of the string type:

root

 |-- product_id: string (nullable = true)

 |-- product_name: string (nullable = true)

 |-- product_price: string (nullable = true)

+----------+------------+-------------+

|product_id|product_name|product_price|

+----------+------------+-------------+

| 00001| Heater| 250|

Data Management118

| 00002| Thermostat| 400|

+----------+------------+-------------+

In natural analysis, you may want to calculate the average price for all products. To support such
analysis use cases, the columns, such as product_price, should be converted from string
into integer.

Apache Spark supports type casting in Spark DataFrames. You can cast the type as an integer and
rename the column’s name from product_price to price by running the following code:

from pyspark.sql.functions import col

df_mapped_dataframe = df_products \

 .withColumn("product_price", col("product_price").
cast('integer')) \

 .withColumnRenamed("product_price", "price")

df_mapped_dataframe.printSchema()

df_mapped_dataframe.show()

The preceding code returns the following output. You will notice that the column’s name has been
renamed to price and that the data type has been converted from string into integer, as
expected:

root

 |-- product_id: string (nullable = true)

 |-- product_name: string (nullable = true)

 |-- price: integer (nullable = true)

+----------+------------+-----+

|product_id|product_name|price|

+----------+------------+-----+

| 00001| Heater| 250|

| 00002| Thermostat| 400|

+----------+------------+-----+

You can achieve the same thing with SQL syntax as well. The following code registers the df_products
DataFrame as a Hive table and runs a SELECT query against the table:

df_products.createOrReplaceTempView("products")

df_mapped_sql = spark.sql("SELECT product_id, product_name,
INT(product_price) as price from products")

Normalizing data 119

df_mapped_sql.printSchema()

df_mapped_sql.show()

The preceding code returns the following output. You will notice that you get the same result that
you did with the DataFrame:

root

 |-- product_id: string (nullable = true)

 |-- product_name: string (nullable = true)

 |-- price: integer (nullable = true)

+----------+------------+-----+

|product_id|product_name|price|

+----------+------------+-----+

| 00001| Heater| 250|

| 00002| Thermostat| 400|

+----------+------------+-----+

In the preceding tutorial, you used a Spark DataFrame to cast column types and rename columns.

On the other hand, an AWS Glue DynamicFrame provides the ApplyMapping transform so that
you can cast and apply the mapping of column names and data types. The following example shows
how to use the ApplyMapping transform:

from pyspark.context import SparkContext

from awsglue.context import GlueContext

from awsglue import DynamicFrame

glueContext = GlueContext(SparkContext.getOrCreate())

dyf = DynamicFrame.fromDF(df_products, glueContext, "from_df")

dyf = dyf.apply_mapping(

 [

 ('product_id', 'string', 'product_id', 'string'),

 ('product_name', 'string', 'product_name', 'string'),

 ('product_price', 'string', 'price', 'integer')

]

)

df_mapped_dyf = dyf.toDF()

Data Management120

df_mapped_dyf.printSchema()

df_mapped_dyf.show()

The preceding code returns the following output. As you can see, you get the same result that you
did with the DataFrame:

root

 |-- product_id: string (nullable = true)

 |-- product_name: string (nullable = true)

 |-- price: integer (nullable = true)

+----------+------------+-----+

|product_id|product_name|price|

+----------+------------+-----+

| 00001| Heater| 250|

| 00002| Thermostat| 400|

+----------+------------+-----+

As you have learned, you can use either a Spark DataFrame or Glue DynamicFrame for data type
casting and column mapping.

Inferring schemas

Apache Spark can infer schemas from the content of data. With schema inference, you can create
a DataFrame without passing the static schema structure.

When you read a CSV file without schema inference, you can set the inferSchema option to
False. It is disabled by default. You can use the following code to create a DataFrame by reading
from one sample CSV file located on Amazon S3:

df_infer_schema_false = spark.read.format("csv") \

 .option("header", True) \

 .option("inferSchema", False) \

 .load("s3://covid19-lake/static-datasets/csv/
CountyPopulation/County_Population.csv")

df_infer_schema_false.printSchema()

Normalizing data 121

The preceding code returns the following output. You will notice that all of the columns are recognized
as being of the string type:

root

 |-- Id: string (nullable = true)

 |-- Id2: string (nullable = true)

 |-- County: string (nullable = true)

 |-- State: string (nullable = true)

 |-- Population Estimate 2018: string (nullable = true)

When you set the inferSchema option to True, you must run following code:

df_infer_schema_true = spark.read.format("csv") \

 .option("header", True) \

 .option("inferSchema", True) \

 .load("s3://covid19-lake/static-datasets/csv/
CountyPopulation/County_Population.csv")

df_infer_schema_true.printSchema()

The preceding code returns the following output. You will notice that the Id2 and Population
Estimate 2018 columns are registered as the integer type instead of the string type:

root

 |-- Id: string (nullable = true)

 |-- Id2: integer (nullable = true)

 |-- County: string (nullable = true)

 |-- State: string (nullable = true)

 |-- Population Estimate 2018: integer (nullable = true)

In this section, you learned that the inferSchema option manages the schema inference behavior
to read CSV files.

It is a good idea to infer schemas from data when you do not want to define static schemas in advance
and you want to define a schema from unpredictable data.

Computing schemas on the fly

A Spark DataFrame is a data representation in Apache Spark. It is powerful and widely used in a huge
number of Spark clusters in various kinds of real-world use cases. A DataFrame is conceptually equivalent
to a table, and it is optimized for relational database-like table operations such as aggregations and joins.

Data Management122

However, when you use a Spark DataFrame for ETL operations, you may face some typical issues.
First, a DataFrame requires a schema to be provided before data is loaded. This can be a problem
when you do not know or cannot predict the schema of the data in advance. Second, a DataFrame
can have one schema per frame. This can be a problem when the same field in a frame has different
types of values in multiple records. Even when you want to determine the type afterward, it is not
possible. These issues often occur in messy data.

AWS Glue has a unique data representation called a DynamicFrame, which is similar to a Spark
DataFrame. You can use it to convert a Spark DataFrame into a DynamicFrame and vice versa, but
there are important differences between the two operations. First, in a Glue DynamicFrame, each record
is self-describing. The Glue DynamicFrame computes a schema on-the-fly, so no schema is required
initially. Second, a Glue DynamicFrame can have one schema per record, not per frame. The logical
record in the DynamicFrame is called a DynamicRecord. When the same field in a DynamicFrame
is of a different type in multiple DynamicRecords, the DynamicFrame allows you to determine the
preferred types after loading the data.

Before trying DynamicFrame’s on-the-fly schema feature, you need to upload a sample file to your S3
bucket and create a table on the Glue Data Catalog. Follow these steps:

1. Create a sample JSON Lines (JSONL) file:

{"id":"aaa","key":12}

{"id":"bbb","key":34}

{"id":"ccc","key":56}

{"id":"ddd","key":78}

{"id":"eee","key":"90"}

2. Upload the sample file to your S3 bucket (replace the path with your S3 path):

$ aws s3 cp sample.json s3://path_to_sample_data/

3. Create a Glue database:

$ aws glue create-database --database-input Name=choice

4. Create a Glue crawler on s3://path_to_sample_data/:

$ aws glue create-crawler --name choice --database
choice --role GlueServiceRole --targets
'{"S3Targets":[{"Path":"s3:// path_to_sample_data/"}]}'

Normalizing data 123

5. Run the crawler (replace the IAM role with yours):

$ aws glue start-crawler --name choice

6. After running the crawler, you will see the sample table in the catalog.

Here’s the schema of the sample table that was returned by the get-table AWS CLI command:

$ aws glue get-table --database-name choice --name sample
--query Table.StorageDescriptor.Columns --output table

| GetTable |

+-------+----------+

| Name | Type |

+-------+----------+

| id | string |

| key | string |

+-------+----------+

Now, we’re all set to create a DynamicFrame. You can create a DynamicFrame from the table definition
on the Glue Data Catalog by running the following code:

from pyspark.context import SparkContext

from awsglue.context import GlueContext

glueContext = GlueContext(SparkContext.getOrCreate())

dyf_sample = glueContext.create_dynamic_frame.from_catalog(

 database = "choice",

 table_name = "sample")

dyf_sample.printSchema()

The preceding code returns the following output. You will notice that the key column is registered as
a choice type. This means that key could be either of the int or string type. This happened
because the Spark DataFrame schema recognizes key as an int type, but the Glue Data Catalog
recognizes key as a string type:

root

|-- id: string

|-- key: choice

| |-- int

| |-- string

Data Management124

There are five records in the sample JSONL file. The values in the key field in the first four records
are all integers, while at the end of the file, there is one record with a string value in that column.

AWS Glue DynamicFrames allow you to determine the schema after loading the data by introducing
the concept of a choice type. To query the key column or to save the frame, you need to resolve
the choice type first using the resolveChoice transform method. For example, you can run
the resolveChoice transform with the cast:int option to convert those string values
into int values:

dyf_sample_resolved = dyf_sample.resolveChoice(specs =
[('key','cast:int')])

dyf_sample_resolved.printSchema()

The output of printSchema is as follows:

root

|-- id: string

|-- key: int

You will notice that the key column is now recognized as int instead of choice or string.

As you have learned, DynamicFrames have unique on-the-fly schema capabilities and the choice
type allows you to determine the schema after data load. This would be useful for ETL workloads
where your data can include different data types.

Enforcing schemas

In an Apache Spark DataFrame, you need to set a static schema per frame. Similarly, in DynamicFrames
you can enforce a static schema using the with_frame_schema method.

Let’s create a new DynamicFrame using the example data located on Amazon S3:

from pyspark.context import SparkContext

from awsglue.context import GlueContext

glueContext = GlueContext(SparkContext.getOrCreate())

dyf_without_schema = glueContext.create_dynamic_frame_from_
options(

 connection_type = "s3",

 connection_options = {

 "paths": ["s3://awsglue-datasets/examples/us-
legislators/all/events.json"]

Normalizing data 125

 },

 format = "json"

)

dyf_without_schema.printSchema()

The schema is automatically recognized, as shown in the following code. You will notice that the
start_date, end_date, and identifier columns are recognized as strings:

Root

|-- classification: string

|-- name: string

|-- end_date: string

|-- identifiers: array

| |-- element: struct

| | |-- scheme: string

| | |-- identifier: string

|-- id: string

|-- start_date: string

|-- organization_id: string

Now, let’s pass a static schema to the with_frame_schema method using the same data. Be
careful not to pass the schema after schema computation. Do not execute the printSchema
method before the with_frame_schema method since the printSchema method triggers
schema computation and with_frame_schema is only available before schema computation:

from awsglue.gluetypes import Field, ArrayType, StructType,
StringType, IntegerType

dyf_without_schema_tmp = glueContext.create_dynamic_frame_from_
options(

 connection_type = "s3",

 connection_options = {

 "paths": ["s3://awsglue-datasets/examples/us-
legislators/all/events.json"]

 },

 format = "json"

)

schema = StructType([

Data Management126

 Field("id", StringType()),

 Field("name", StringType()),

 Field("classification", StringType()),

 Field("identifiers", ArrayType(StructType([

 Field("schema", StringType()),

 Field("identifier", IntegerType())

])),

),

 Field("start_date", IntegerType()),

 Field("end_date", IntegerType()),

 Field("organization_id", StringType()),

])

dyf_with_schema = dyf_without_schema_tmp.with_frame_
schema(schema)

dyf_with_schema.printSchema()

The output of printSchema is now as follows:

root

|-- id: string

|-- name: long

|-- classification: string

|-- identifiers: array

| |-- element: struct

| | |-- schema: string

| | |-- identifier: int

|-- start_date: int

|-- end_date: int

|-- organization_id: string

You will notice that the start_date, end_date, and identifier columns are now recognized
as integers instead of strings. Schema enforcement for a DynamicFrame is useful when you want to
use a DynamicFrame but you do not want to rely on on-the-fly schemas or schema inference.

Normalizing data 127

Flattening nested schemas

When you process unstructured/semi-structured data, you may see a schema that includes a deep
nested struct or an array generated from applications. Here’s an example of a nested schema:

{

 "count": 2,

 "entries": [

 {

 "id": 1,

 "values": {

 "k1": "aaa",

 "k2": "bbb"

 }

 },

 {

 "id": 2,

 "values": {

 "k1": "ccc",

 "k2": "ddd"

 }

 }

]

}

Typically, for most query engines, a nested schema introduces additional complexity for analytics.
Also, for humans, it is not easy to read. To overcome that, you can flatten the schema. AWS Glue’s
Relationalize transform helps you convert a deep nested schema into a flat schema:

from pyspark.context import SparkContext

from awsglue.context import GlueContext

glueContext = GlueContext(SparkContext.getOrCreate())

dyf = glueContext.create_dynamic_frame_from_options(

 connection_type = "s3",

 connection_options = {"paths": ["s3://path_to_nested_
json/"]},

 format = "json"

Data Management128

)

dyf.printSchema()

dyf.toDF().show()

The output of printSchema is now as follows:

root

|-- count: int

|-- entries: array

| |-- element: struct

| | |-- id: int

| | |-- values: struct

| | | |-- k1: string

| | | |-- k2: string

The output of show is now as follows:

+-----+--------------------+

|count| entries|

+-----+--------------------+

| 2|[{1, {aaa, bbb}},...|

+-----+--------------------+

Then, you can perform a Relationalize transform on this nested schema:

from awsglue.transforms import Relationalize

dfc_root_table_name = "root"

dfc = Relationalize.apply(

 frame = dyf,

 staging_path = "s3://your-tmp-s3-path/",

 name = dfc_root_table_name

)

dfc.keys()

The output of keys is now as follows:

dict_keys(['root', 'root_entries'])

Normalizing data 129

The Relationalize transform returns a DynamicFrameCollection object. Now, you have two
DynamicFrames inside this collection. Let’s extract both:

dyf_flattened_root = dfc.select(dfc_root_table_name)

dyf_flattened_root.printSchema()

dyf_flattened_root.toDF().show()

The output is now as follows:

root

|-- count: int

|-- entries: long

+-----+-------+

|count|entries|

+-----+-------+

| 2| 1|

+-----+-------+

Then, extract the second DynamicFrame inside the collection:

dyf_flattened_entries = dfc.select('root_entries')

dyf_flattened_entries.printSchema()

dyf_flattened_entries.toDF().show()

The output is now as follows:

Figure 6.1 – Relationalized DynamicFrame

Data Management130

If you want to rejoin these two DynamicFrames, run the following code:

df_flattened_root = dyf_flattened_root.toDF()

df_flattened_entries = dyf_flattened_entries.toDF()

df_joined = df_flattened_root.join(df_flattened_entries)

df_joined.printSchema()

df_joined.show()

The output will be as follows:

Figure 6.2 – Rejoined DynamicFrame

In this section, you learned that Relationalize returns a collection of DynamicFrames from
deep nested data. It is useful for flattening nested data.

Normalizing scale

In the context of mathematics, machine learning (ML), or statistics, normalization is commonly
used to prepare data on the same scale. Imagine that you have an Amazon review dataset and that
each review has a star rating for an item. The value of the rating is 1 to 5 in the original data. On the
other hand, most ML algorithms expect a value between 0 to 1. If you prefer to rescale data, you can
use any typical normalization method, such as min-max normalization, mean normalization, and
Z-score normalization.

AWS Glue DataBrew supports mechanisms such as mean normalization and Z-scale normalization.
You can easily scale and normalize the values with a GUI.

Normalizing data 131

Handling missing values and outliers

Real-world data typically includes missing values or outliers, and they sometimes cause invalid trends
in analysis or unexpected results in ML.

With AWS Glue jobs, you can use the FillMissingValues transform to handle missing values
in the dataset. The FillMissingValues transform has been built on top of an ML algorithm. It
detects null values and empty strings as missing values in a specific column and adds a new column
with values that are automatically predicted by the ML algorithm, such as linear regression and
random forest.

With AWS Glue DataBrew, you can fill missing values with predefined sets such as average, median,
custom value, empty string, last valid value, and others. You can also detect outliers and replace them
with the rescaled values.

Normalizing date and time values

Real-world data uses different notations of date and time. In the US, It is common to use the MM/
dd/yyyy format (for example, 12/25/2021), whereas in Europe, it is common to use the dd/MM/
yyyy format (for example, 25/12/2021). Since they can be confused with each other, it is important
to convert international use cases into a unified format.

Unix time (also known as epoch time or POSIX time) is used in various systems. It is the number
of seconds that have elapsed since the Unix epoch, excluding leap seconds. The Unix time of 00:00,
December 25, 2021, in UTC is 1640390400. Since it is hard for a human to read, typically, it is
converted into a human-readable timestamp format in queries or dashboards.

ISO 8601 is an international standard that covers the worldwide exchange and communication of date-
and time-related data. For example, the ISO 8601 format for the date and time of 00:00, December
25, 2021, in UTC is 2021-12-25T00:00:00+00:00.

In the case of international use cases, it is important to choose a timezone to show the data. Usually,
an application needs to adjust the end user’s timezone. If you expect all the end users to be in a specific
timezone, it may be also okay to store the timestamp within that specific timezone.

With AWS Glue, you can use any of Spark’s or Glue DynamicFrame’s methods to convert a specific
date and time format into a timestamp type. Spark has various date and time functions, including
unix_timestamp, date_format, to_unix_timestamp, from_unixtime, to_date,
to_timestamp, from_utc_timestamp, and to_utc_timestamp.

Data Management132

The following is an example DataFrame that includes a timestamp record:

df_time_string = spark.sql("SELECT '2021-12-25 00:00:00' as
timestamp_col")

df_time_string.printSchema()

df_time_string.show()

The schema and the following data are returned by the preceding code:

root

 |-- timestamp_col: string (nullable = false)

+-------------------+

| timestamp_col|

+-------------------+

|2021-12-25 00:00:00|

+-------------------+

Now, let’s convert the data type from a string type into a timestamp type using the DataFrame’s to_
timestamp method:

from pyspark.sql.functions import to_timestamp, col

 df_time_timestamp = df_time_string.withColumn(

 "timestamp_col",

 to_timestamp(col("timestamp_col"), 'yyyy-MM-dd HH:mm:ss')

)

df_time_timestamp.printSchema()

df_time_timestamp.show()

The printSchema output is shown in the following code block. You will notice that the timestamp_
col column is now recognized as timestamp instead of string:

root

 |-- timestamp_col: timestamp (nullable = true)

+-------------------+

| timestamp_col|

+-------------------+

Normalizing data 133

|2021-12-25 00:00:00|

+-------------------+

AWS Glue DynamicFrame also has the ApplyMapping transformation for casting values, including
timestamps. The following code initiates Glue-related classes and converts the sample DataFrame
into a DynamicFrame:

from pyspark.context import SparkContext

from awsglue.context import GlueContext

from awsglue import DynamicFrame

glueContext = GlueContext(SparkContext.getOrCreate())

dyf = DynamicFrame.fromDF(df_time_string, glueContext, "from_
df")

The following code finds columns whose names contain timestamp_col dynamically and converts
the string value in the column into the timestamp type:

mapping = []

for field in dyf.schema():

 if field.name == 'timestamp_col':

 mapping.append((

 field.name, field.dataType.typeName(),

 field.name, 'timestamp'

))

 else:

 mapping.append((

 field.name, field.dataType.typeName(),

 field.name, field.dataType.typeName()

))

dyf = dyf.apply_mapping(mapping)

df_time_timestamp_dyf = dyf.toDF()

df_time_timestamp_dyf.printSchema()

df_time_timestamp_dyf.show()

Data Management134

You will see the same result that you saw previously:

root

 |-- timestamp_col: timestamp (nullable = true)

+-------------------+

| timestamp_col|

+-------------------+

|2021-12-25 00:00:00|

+-------------------+

Another typical date and time handling operation is to extract some values, such as the year, month,
and day from the timestamp column dynamically. This is commonly done when you want to partition
data into data lake storage based on the timestamp.

The following code extracts the year, month, and day values from the timestamp_col column:

from pyspark.sql.functions import year, month, dayofmonth

 df_time_timestamp_ymd = df_time_timestamp \

 .withColumn('year', year("timestamp_col"))\

 .withColumn('month', month("timestamp_col"))\

 .withColumn('day', dayofmonth("timestamp_col"))

df_time_timestamp_ymd.printSchema()

df_time_timestamp_ymd.show()

The preceding code returns the following output. You will notice that the DataFrame has three additional
columns – year, month, and day – and that those columns contain the values that were extracted
from the timestamp_col column:

root

 |-- timestamp_col: timestamp (nullable = true)

 |-- year: integer (nullable = true)

 |-- month: integer (nullable = true)

 |-- day: integer (nullable = true)

+-------------------+----+-----+---+

| timestamp_col|year|month|day|

+-------------------+----+-----+---+

Normalizing data 135

|2021-12-25 00:00:00|2021| 12| 25|

+-------------------+----+-----+---+

With a Glue DataFrame, you can achieve the same by running the following code using the
map function:

def add_timestamp_column(record):

 dt = record["timestamp_col"]

 record["year"] = dt.year

 record["month"] = dt.month

 record["day"] = dt.day

 return record

dyf = dyf.map(add_timestamp_column)

df_time_timestamp_dyf_ymd = dyf.toDF()

df_time_timestamp_dyf_ymd.printSchema()

df_time_timestamp_dyf_ymd.show()

The preceding code returns the following output:

root

 |-- timestamp_col: timestamp (nullable = true)

 |-- year: integer (nullable = true)

 |-- month: integer (nullable = true)

 |-- day: integer (nullable = true)

+-------------------+----+-----+---+

| timestamp_col|year|month|day|

+-------------------+----+-----+---+

|2021-12-25 00:00:00|2021| 12| 25|

+-------------------+----+-----+---+

In this section, you learned that you can easily normalize the date/time format in both a Spark DataFrame
and a Glue DynamicFrame. You can also extract year/month/value values from a timestamp. This is
useful for time series data, as well as data layouts that use time-based partitioning.

Data Management136

Handling error records

If the data is corrupted, Apache Spark or AWS Glue may not be able to read the records successfully.
This can cause missing values and invalid results.

If you want to manage such situations, the Glue DynamicFrame class can detect error records. The
following code detects the error records and aborts the job when the error rate exceeds the threshold:

import sys

from pyspark.context import SparkContext

from awsglue.context import GlueContext

from awsglue.job import Job

from awsglue.utils import getResolvedOptions

ERROR_RATE_THRESHOLD = 0.2

glue_context = GlueContext(SparkContext.getOrCreate())

dyf = glue_context.create_dynamic_frame.from_options(

 connection_type = "s3",

 connection_options = {'paths': ['s3://your_input_data_
path/']},

 format = "csv",

 format_options={'withHeader': False}

)

dataCount = dyf.count()

errorCount = dyf.errorsCount()

errorRate = errorCount/(dataCount+errorCount)

print(f"error rate: {errorRate}")

if errorRate > ERROR_RATE_THRESHOLD:

 raise Exception(f"error rate {errorRate} exceeded
threshold: {ERROR_RATE_THRESHOLD}")

errorDyf = dyf.errorsAsDynamicFrame()

glue_context.write_dynamic_frame_from_options(

 frame=errorDyf,

 connection_type='s3',

 connection_options={'path': 's3://your_error_frame_path/'},

Deduplicating records 137

 format='json'

)

In this section, you learned that Glue provides a set of capabilities that can help you handle typical
error records. Based on your requirements, you can trigger an exception when the error rate exceeds
the predefined threshold.

Deduplicating records
When you start analyzing the business data, you may find that it’s incorrect and that there are multiple
different notations of the same record.

The following example table contains duplicates:

Figure 6.3 – Customer table with duplicates

As you may have noticed, there are only four unique records in the preceding table. Two records have
two different notations, which causes duplication. If you analyze the data with these kinds of duplicated
records, the result may include unexpected bias, so you will get an incorrect result.

With AWS Glue, you can use the FindMatches transform to find duplicated records. FindMatches
is one of the ETL transforms provided in the Glue ETL library. With the FindMatches transform,
you can match records and identify and remove duplicate records based on the ML model.

Let’s look at the end-to-end matching process:

1. Register a table definition for your data in AWS Glue Data Catalog. You can use a Glue crawler,
DDL, or the Glue catalog API to catalog your data.

2. Create new Glue ML transforms using FindMatches. You need to choose the table created
in step 1, give primary keys, and tune the balance between Recall and Precision and Lower
cost and Accuracy.

Data Management138

3. Train the FindMatches model by providing a labeling file that represents a perfect mapping
of the records. You can estimate the quality of the model by reviewing the match quality metrics
and uploading better labeling files if you want to improve the quality.

4. Create and run an AWS Glue ETL job that uses your FindMatches transform.

You can find detailed steps in Integrate and deduplicate datasets using AWS Lake Formation (https://
aws.amazon.com/blogs/big-data/integrate-and-deduplicate-datasets-
using-aws-lake-formation-findmatches/).

Once you have completed the preceding steps, you will see the results shown in the following table:

Figure 6.4 – Deduplicated customer table

After matching the datasets, you will see that the result table represents the source table’s structure
and data, as well as one more column: match_id. Each of the matched records displays the same
match_id value. By utilizing these match_id values, you can filter with only distinct values to
get unique records.

In this section, you learned that you can easily take advantage of the ML model in the FindMatches
transform and deduplicate the same records efficiently.

Denormalizing tables
In this section, we will look at an example use case. There is a fictional e-commerce company that
sells products and has a website that allows people to buy these products. There are three tables stored
in the web system – two dimension tables, product and customer, and one fact table, sales.
The product table stores the product’s name, category, and price. The customer table stores
individual customer names, email addresses, and phone numbers. These email addresses and phone
numbers are sensitive pieces of information that need to be handled carefully. When a customer buys
a product, that activity is recorded in the sales table. One new record is inserted into the sales
table every time a customer buys a product.

Denormalizing tables 139

The following is the product dimension table:

Figure 6.5 – Product table

The following code can be used to populate the preceding sample data in a Spark DataFrame:

df_product = spark.createDataFrame([

 (11, "Introduction to Cloud", "Ebooks", 15),

 (12, "Best practices on data lakes", "Ebooks", 25),

 (21, "Data Quest", "Video games", 30),

 (22, "Final Shooting", "Video games", 20)

], ['product_id', 'product_name', 'category', 'price'])

df_product.show()

df_product.createOrReplaceTempView("product")

The preceding code returns the following output:

Figure 6.6 – DataFrame for the Product table

The following is the customer dimension table:

Figure 6.7 – Customer table

Data Management140

The following code can be used to populate the preceding sample data in a Spark DataFrame:

df_customer = spark.createDataFrame([

 ("A103", "Barbara Gordon", "gordon@example.com",
"117.835.2584"),

 ("A042", "Rebecca Thompson", "thompson@example.net", "001-
469-964-3897x9041"),

 ("A805", "Rachel Gilbert", "gilbert@example.com", "001-510-
198-4613x23986"),

 ("A404", "Tanya Fowler", "tanya@example.net", "(067)150-
0263")

], ['uid', 'customer_name', 'email', 'phone'])

df_customer.show(truncate=False)

df_customer.createOrReplaceTempView("customer")

The preceding code returns the following output:

Figure 6.8 – DataFrame for the Customer table

The following is the sales fact table (the purchased_by field is the foreign key for the uid
field in the customer table):

Figure 6.9 – Sales table

The following code can be used to populate the preceding sample data in a Spark DataFrame:

df_sales = spark.createDataFrame([

 (21, "A042", "2022-03-30T01:30:00Z"),

Denormalizing tables 141

 (22, "A805", "2022-04-01T02:00:00Z"),

 (11, "A103", "2022-04-21T11:40:00Z"),

 (12, "A404", "2022-04-28T08:20:00Z")

], ['product_id', 'purchased_by', 'purchased_at'])

df_sales.show(truncate=False)

df_sales.createOrReplaceTempView("sales")

The preceding code returns the following output:

Figure 6.10 – DataFrame for the Sales table

These tables are well-designed and normalized in the context of relational databases. However, this
means that the data analyst always needs to join the tables for analysis.

For example, if you want to find the names of customers who bought products in April, you need to
join the customer and sales tables, then filter with the purchased_at column:

Spark.sql("SELECT customer_name, purchased_at FROM sales JOIN
customer ON sales.purchased_by=customer.uid WHERE purchased_at
LIKE '2022-04%'").show()

The preceding code returns the following output:

Figure 6.11 – Customers who bought products in April

It is not critical when the tables are small, but if the tables are large, you will spend an unnecessarily
long time joining tables. In addition, joins can cause huge memory consumption in well-known
analytic engines, including Apache Spark, and it sometimes causes out-of-memory (OOM) errors.

Data Management142

Denormalization is one of the typical optimization techniques that has fewer joins and simpler queries.
Once you denormalize the table by joining the source tables in advance, you won’t need to join the
tables in the analysis phase, and your query syntax will be simpler. The disadvantage of denormalization
is that you will need to have some redundancy in the data, and you will have to think about how to
keep the denormalized table up to date.

Let’s denormalize the four preceding tables into a destination table:

df_product_sales = df_product.join(

 df_sales,

 df_product.product_id == df_sales.product_id

)

df_destination = df_product_sales.join(

 df_customer,

 df_product_sales.purchased_by == df_customer.uid

)

df_destination.createOrReplaceTempView("destination")

df_destination.select('product_
name','category','price','customer_
name','email','phone','purchased_at').show()

The following table shows some of the columns in the destination table:

Figure 6.12 – DataFrame for the Destination table

Once you have created the destination table, you can easily find the name of people who purchased
products in April without joining all the relevant tables every time:

spark.sql("SELECT product_name,category,price,customer_
name,email,phone,purchased_at FROM destination WHERE purchased_
at LIKE '2022-04%'").show()

Here is the output of the preceding code:

The preceding code returns the following output:

Figure 6.13 – The Destination table with customers who bought products in April 2022

Securing data content 143

In this section, you learned that tables can be denormalized by joining them. This is useful for
optimizing performance in analytics workloads as it avoids having multiple joins in queries. However,
if you denormalize the tables and store them on data lakes, they will be a little bit harder to maintain
because you need to repeat the denormalization process whenever the source tables are changed. You
will need to decide on a direction based on your workload.

Securing data content
In the context of a data lake, security is a “job zero” priority. In Chapter 8, Data Security, we will dive
deep into security. In this section, we cover basic ETL operations that secure data. The following
common techniques can be used to hide confidential values from data:

• Masking values

• Hashing values

In this section, you will learn how to mask/hash values that are included in your data.

Masking values

In business data lakes, the data can contain sensitive data, such as people’s names, phone numbers,
credit card numbers, and so on. Data security is an important aspect of data lakes. There are different
approaches to handling such data securely. It is a good idea to just drop the sensitive data when you
collect the data from data sources when you won’t use the sensitive data in analytics. It is also common
to manage access permissions on certain columns or records of the data. Another approach is to mask
the data entirely or partially when you want to keep it confidential but also keep the same format – for
example, the number of digits or characters.

With AWS Glue, you can mask a specific column using Spark DataFrame’s withColumn method
by replacing the text based on a regular expression:

from pyspark.sql.functions import regexp_replace

df_masked = df_destination.withColumn("phone", regexp_
replace("phone", r'(\d)', '*'))

df_masked.select('product_name','category','price','customer_
name','email','phone','purchased_at').show()

Data Management144

Once you have masked the data, you will see the following output. You will notice that only the
numbers have been replaced in the phone column:

Figure 6.14 – The Destination table contains masked phone numbers

In terms of personally identifiable information (PII) data, AWS Glue has a native capability for
detecting the PII data dynamically based on the data. At the time of writing, it can detect the following
16 entities:

• ITIN (US)

• Email

• Passport Number (US)

• US Phone

• Credit Card

• Bank Account (US, Canada)

• US Driving License

• IP Address

• MAC Address

• DEA Number (US)

• HCPCS Code (US)

• National Provider Identifier (US)

• National Drug Code (US)

• Health Insurance Claim Number (US)

• Medicare Beneficiary Identifier (US)

• CPT Code (US)

If you want to detect the PII data and mask it based on the detected result, you can use the
following code:

entities_filter = [] # Empty list means we detect all entities.

sample_fraction = 1.0 # 100%

Securing data content 145

threshold_fraction = 0.8 # At least 80% of rows for a given
column should contain the same entity in order for the column
to be classified as that entity.

transformation_ctx = ""

stage_threshold = 0

total_threshold = 0

recognizer = EntityRecognizer()

results = recognizer.classify_columns(frame=dyf, entities_
filter=entities_filter, sample_fraction=sample_fraction,
threshold_fraction=threshold_fraction, stageThreshold=stage_
threshold, totalThreshold=total_threshold)

for key in results:

 for recognized_value in results[key]:

 # Mask CREDIT_CARD, PHONE_NUMBER and IP_ADDRESS columns

 if recognized_value in ["CREDIT_CARD", "PHONE_NUMBER",
"IP_ADDRESS"]:

 df = df.withColumn(key, regexp_replace(key,
r'(\d)', '*'))

In this section, you learned that, with AWS Glue, you can easily mask your data. Glue’s PII detection
helps you dynamically choose the confidential columns and mask them.

Hashing values

Another way to keep data secure but still make some analytic queries available is hashing. Hashing is
the process of passing data to a hash function and converting it into the result. Hashed data is always the
same length, regardless of the amount of original data. MD5 is one of the common hash mechanisms
for returning a 128-bit checksum as a hex string of the value. SHA2 returns a checksum from the
SHA-2 family (for example, SHA-224, SHA-256, SHA-384, or SHA-512) as a hex string of the value.

These hashing algorithms are one-way, which means they can’t be reversed. One possible way to
retrieve the original value from a hashed result is to brute-force it. A brute-force attack is commonly
performed by generating all the possible values, making a hash of them, and then comparing the
generated hashes with the original hash result.

Let’s compute a hash for one column in the table. Apache Spark supports hashing algorithms such as
MD5, SHA, SHA1, SHA2, CRC32, and xxHash. Here, we will use SHA2 to hash the email column:

from pyspark.sql.functions import sha2

df_hashed = df_masked.withColumn("email", sha2("email", 256))

Data Management146

df_hashed.select('product_name','category','price','customer_
name','email','phone','purchased_at').show()

Once you have hashed the data, you will see the following output. You will notice that only the email
addresses have been hashed in the email column:

Figure 6.15 – The Destination table with hashed email addresses

If you want to integrate PII detection with hashing, you can use the following code:

entities_filter = [] # Empty list means we detect all entities.

sample_fraction = 1.0 # 100%

threshold_fraction = 0.8 # At least 80% of rows for a given
column should contain the same entity in order for the column
to be classified as that entity.

transformation_ctx = ""

stage_threshold = 0

total_threshold = 0

recognizer = EntityRecognizer()

results = recognizer.classify_columns(frame=dyf, entities_
filter=entities_filter, sample_fraction=sample_fraction,
threshold_fraction=threshold_fraction, stageThreshold=stage_
threshold, totalThreshold=total_threshold)

for key in results:

 for recognized_value in results[key]:

 # Hash DRIVING_LICENSE, PASSPORT_NUMBER, and USA_ITIN
columns using SHA-2

 if recognized_value in ["DRIVING_LICENSE", "PASSPORT_
NUMBER", "USA_ITIN"]:

 df = df.withColumn(key, sha2(key, 256))

In this section, you learned that, similar to masking, you can easily hash your data with AWS Glue.

Managing data quality 147

Managing data quality
When you build a modern data architecture from different data sources, the incoming data may
contain incorrect, missing, or malformed data. This can make data applications fail. It can also result
in incorrect business decisions due to incorrect data aggregations. However, it can be hard for you to
evaluate the quality of the data if there is no automated mechanism. Today, it is important to manage
data quality by applying predefined rules and verifying if the data meets those criteria or not.

Different frameworks can be used to monitor data quality. In this section, we will introduce two
mechanisms: AWS Glue DataBrew data quality rules and DeeQu.

AWS Glue DataBrew data quality rules

Glue DataBrew data quality rules allow you to manage data quality to detect typical data issues
easily. In this section, we will use a human resources dataset (https://eforexcel.com/wp/
downloads-16-sample-csv-files-data-sets-for-testing/).

Follow these steps to manage data quality with Glue DataBrew:

1. Create a data quality ruleset against your dataset.

2. Create data quality rules. You can define multiple data quality rules here – for example, a rule
to make sure that row count is correct and expected, there are no duplicate records, and so on.

3. Create and run a profile job with the ruleset.

4. Inspect the data quality rule’s validation results.

If data quality issues are detected by the rules, you can run DataBrew jobs to clean up the data and
rerun the data quality checks.

You can find detailed steps in Enforce customized data quality rules in AWS Glue DataBrew (https://
aws.amazon.com/blogs/big-data/enforce-customized-data-quality-
rules-in-aws-glue-databrew/).

DeeQu

DeeQu, an open source data quality library, addresses data quality monitoring requirements and
can scale to large datasets. DeeQu is built on top of Apache Spark to define “unit test for data.” With
DeeQu, you can populate data quality metrics and define data quality rules easily.

https://eforexcel.com/wp/downloads-16-sample-csv-files-data-sets-for-testing/
https://eforexcel.com/wp/downloads-16-sample-csv-files-data-sets-for-testing/
https://aws.amazon.com/blogs/big-data/enforce-customized-data-quality-rules-in-aws-glue-databrew/
https://aws.amazon.com/blogs/big-data/enforce-customized-data-quality-rules-in-aws-glue-databrew/
https://aws.amazon.com/blogs/big-data/enforce-customized-data-quality-rules-in-aws-glue-databrew/

Data Management148

DeeQu version 2.x runs with Spark 3.1, as well as with AWS Glue 3.0 jobs. Follow these steps before
running any DeeQu code:

1. Download the DeeQu 2.x JAR file from the Maven repository (https://mvnrepository.
com/artifact/com.amazon.deequ/deequ/2.0.0-spark-3.1).

2. Download the PyDeeQu 1.0.1 Wheel file from pypi.org (https://pypi.org/project/
pydeequ/).

3. Upload the JAR file and the Wheel file to your S3 bucket.

4. Configure library dependencies. When you use the Glue job system, configure the --extra_
jars and --extra_py_files parameters with the S3 paths of the JAR/Wheel files. When
you use Glue Studio Notebook or Glue Interactive Sessions, configure %extra_jars and
%extra_py_files, like so:

%extra_jars s3://path_to_your_lib/deequ-2.0.0-spark-
3.1.jar

%extra_py_files s3://path_to_your_lib/pydeequ-1.0.1-py3-
none-any.whl

5. First, let’s initialize SparkSession and generate some sample data:

import pydeequ

from pyspark.sql import SparkSession

spark = (SparkSession

 .builder

 .config("spark.jars.packages", pydeequ.deequ_maven_
coord)

 .config("spark.jars.excludes", pydeequ.f2j_maven_
coord)

 .getOrCreate())

df = spark.createDataFrame([

 (1, "Product A", "awesome thing.", "high", 2),

 (2, "Product B", "available at http://producta.
example.com", None, 0),

 (3, None, None, "medium", 6),

 (4, "Product D", "checkout https://productd.example.
org", "low", 10),

 (5, "Product E", None, "high", 18)

], ['id', 'productName', 'description', 'priority',
'numViews'])

https://mvnrepository.com/artifact/com.amazon.deequ/deequ/2.0.0-spark-3.1
https://mvnrepository.com/artifact/com.amazon.deequ/deequ/2.0.0-spark-3.1

Managing data quality 149

6. Now, let’s run the analyzer to measure the metrics in the sample data:

from pydeequ.analyzers import *

analysisResult = AnalysisRunner(spark) \

 .onData(df) \

 .addAnalyzer(Size()) \

 .addAnalyzer(Completeness("id")) \

 .addAnalyzer(Completeness("productName")) \

 .addAnalyzer(Maximum("numViews")) \

 .addAnalyzer(Mean("numViews")) \

 .addAnalyzer(Minimum("numViews")) \

 .run()

analysisResult_df = AnalyzerContext.
successMetricsAsDataFrame(spark, analysisResult)

analysisResult_df.show()

The preceding code returns the following output:

+-------+-----------+------------+-----+

| entity| instance| name|value|

+-------+-----------+------------+-----+

|Dataset| *| Size| 5.0|

| Column| id|Completeness| 1.0|

| Column|productName|Completeness| 0.8|

| Column| numViews| Maximum| 18.0|

| Column| numViews| Mean| 7.2|

| Column| numViews| Minimum| 0.0|

+-------+-----------+------------+-----+

7. Now, let’s apply a verification check to understand if the data meets the predefined quality rules:

from pydeequ.checks import *

from pydeequ.verification import *

check = Check(spark, CheckLevel.Warning, "Review Check")

checkResult = VerificationSuite(spark) \

 .onData(df) \

 .addCheck(

Data Management150

 # we expect 5 row

 check.hasSize(lambda x: x == 5) \

 # should never be NULL

 .isComplete("id") \

 # should not contain duplicates

 .isUnique("id") \

 # should never be NULL

 .isComplete("productName") \

 # should only contain the values "high",
"medium", and "low"

 .isContainedIn("priority", ["high", "medium",
"low"]) \

 # should not contain negative values

 .isNonNegative("numViews") \

 # at least half of the descriptions should
contain a url

 .containsURL("description", lambda x: x >= 0.5) \

 # half of the items should have less than 10
views

 .hasApproxQuantile("numViews", ".5", lambda x: x
<= 10)) \

 .run()

checkResult_df = VerificationResult.
checkResultsAsDataFrame(spark, checkResult)

checkResult_df.show()

The preceding code returns the following output:

+------------+-----------+------------+------------------
--+-----------------+--------------------+

| check|check_level|check_status|
constraint|constraint_status| constraint_message|

+------------+-----------+------------+------------------
--+-----------------+--------------------+

|Review Check| Warning|
Warning|SizeConstraint(Si...| Success|
|

|Review Check| Warning|
Warning|CompletenessConst...| Success|

Managing data quality 151

|

|Review Check| Warning|
Warning|UniquenessConstra...| Success|
|

|Review Check| Warning|
Warning|CompletenessConst...| Failure|Value: 0.8
does n...|

|Review Check| Warning|
Warning|ComplianceConstra...| Success|
|

|Review Check| Warning|
Warning|ComplianceConstra...| Success|
|

|Review Check| Warning|
Warning|containsURL(descr...| Failure|Value: 0.4
does n...|

|Review Check| Warning|
Warning|ApproxQuantileCon...| Success|
|

+------------+-----------+------------+------------------
--+-----------------+--------------------+

When you want to see all the messages provided by the verification, you can run the
following code:

checkResult_df.show(truncate=False)

The preceding code returns the following output:

Figure 6.16 – DeeQU data quality check result

In this section, you learned that Glue DataBrew and DeeQu help you analyze and validate data quality
in your dataset.

Data Management152

Summary
In this chapter, you learned how to manage, clean up, and enrich your data using various functionalities
available on AWS Glue and Apache Spark. In terms of normalizing data, you looked at several
techniques, including schema enforcement, timestamp handling, and others. To deduplicate records,
you experimented with using ML transforms with a sample dataset, while to denormalize tables, you
joined multiple tables and enriched the data to optimize the analytic workload. When learning about
masking and hashing values, you performed basic ETL to improve security. Moreover, you learned
that Glue PII Detection helps you choose confidential columns dynamically. Finally, you learned how
to manage data quality with Glue DataBrew data quality rules and DeeQu.

In the next chapter, you will learn about the best practices for managing metadata on data lakes.

7
Metadata Management

Just as with relational databases, AWS Glue relies on the concepts of databases and tables to organize
and manage datasets. That said, these concepts are quite different in their execution. In a relational
database, the data to be stored and its descriptors (such as the schema and comments, also known as
metadata) are stored and managed together: there is no way to store data without describing it first,
and there is no way to add metadata to already written data.

In big data environments, the storage and metadata layers are decoupled. There is no centralized
storage system because of dataset size limitations, and data is typically dumped without a format onto
distributed, large-scale systems such as Apache Hadoop or Amazon S3. This means we as users have
to bring the metadata to the data wherever it is stored, cataloging the data and specifying its location,
how to read it, and how to understand it (its schema).

In the case of Glue, this centralized cataloging entity is known as the Glue Data Catalog, a serverless
metadata repository for all datasets in your data lake. In this chapter, we will cover all aspects of the
Data Catalog, including the following topics:

• Populating metadata – creating, updating, and deleting entries within the Data Catalog

• Maintaining metadata – automation and management features for the Data Catalog

• Partition management – avoiding low query execution times by managing your partitions

• Versioning and rollback – dealing with version management and changes within the Data Catalog

• Lineage –understanding the flow of data within your data lake

Upon completion of this chapter, you will know how to operate, manage, and maintain a successful
catalog, enabling you to process data stored as described in previous chapters.

Metadata Management154

Technical requirements
This chapter requires the following:

• The AWS command-line interface (CLI) (https://aws.amazon.com/cli/) installed
in your environment

• A Python interpreter and the boto3 library (https://aws.amazon.com/sdk-for-
python/) installed in your environment

Populating metadata
The first step of any Data Catalog is to populate it with databases and tables. AWS Glue provides
both manual and automatic options for doing so, the latter being particularly useful to avoid the
cumbersomeness of defining datasets from scratch. This section will explain how the Data Catalog
works and will demonstrate how to interact with it in different ways.

Glue Data Catalog API

Just as in other AWS services, AWS Glue offers a fully fledged application programming interface
(API; https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api.html)
to interact with it, which includes the Data Catalog. Thus, operations such as creating a database or
a table can be done through said API or any of its containers, such as the AWS CLI or any of the
software development kits (SDKs).

For instance, let’s start populating our catalog manually. The first step is to create a database, which we
can do using the AWS CLI. The CLI Command Reference page (https://docs.aws.amazon.
com/cli/latest/reference/glue/index.html) has a complete list of all available CLI
commands for Glue, which follow the same notation as API calls. In this case, the CreateDatabase
API call is mirrored with the create-database CLI command, so that’s what we will use, as
illustrated in the following code snippet:

aws glue create-database --database-input
"{\"Name\":\"sampledb\"}"

Next, let’s create a table inside the database, for which we can use the create-table command.
Please note that the create-table operation requires passing a TableInput object that
determines all the properties of the table. This object can be defined using JavaScript Object
Notation (JSON) notation. In this case, our table will have three columns (name and surname—of
type string; and identifier (ID)—of type int) and will be stored in S3 as JSON files. The code
is illustrated in the following snippet:

aws glue create-table \

 --database-name sampledb \

https://aws.amazon.com/cli/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api.html
https://docs.aws.amazon.com/cli/latest/reference/glue/index.html
https://docs.aws.amazon.com/cli/latest/reference/glue/index.html

Populating metadata 155

 --table-input '{"Name":"sampletable", \

 "StorageDescriptor":{ "Columns":[\

 {"Name":"name", "Type":"string"}, \

 {"Name":"surname", "Type":"string"}, \

 {"Name":"id", "Type":"int"}], \

 "Location":"s3://sample-path/", \

 "SerdeInfo":{"SerializationLibrary":"org.openx.
data.jsonserde.JsonSerDe"}}, \

 "Parameters":{"classification":"json"}}

Finally, let’s use an AWS SDK to create a partition inside the table. AWS offers a wide variety of SDKs
(https://aws.amazon.com/tools/), but the easiest one to use is probably the Python one,
also known as boto3 (https://boto3.amazonaws.com/v1/documentation/api/
latest/reference/services/glue.html). The official documentation (https://
boto3.amazonaws.com/v1/documentation/api/latest/reference/services/
glue.html) lists all available methods and how to use them, but they follow a very similar structure
to that of the REpresentational State Transfer (REST) API. This time, we’ll be using the create_
partition method, which similarly to before requires passing a PartitionInput object that
defines the properties of the partition. The code is illustrated in the following snippet:

import boto3

glue_client = boto3.client('glue')

response = glue_client.create_partition(

 DatabaseName='sampledb',

 TableName='sampletable',

 PartitionInput={

 'Values': [

 '2019',

],

 'StorageDescriptor': {

 'Columns': [

 {

 'Name': 'name',

 'Type': 'string'

 },

 {

 'Name': 'surname',

https://aws.amazon.com/tools/
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/glue.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/glue.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/glue.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/glue.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/glue.html

Metadata Management156

 'Type': 'string'

 },

 {

 'Name': 'id',

 'Type': 'int'

 }

],

 'Location': 's3://sample-path/year=2019/',

 'SerdeInfo': {

 'SerializationLibrary': 'org.openx.data.
jsonserde.JsonSerDe'

 }

 },

 'Parameters': {

 'classification': 'json'

 }

 }

)

The three methods we used to create the database, table, and partition respectively are equivalent and
exchangeable, and there are no differences as to how they are represented in the AWS backend. This
is because, as stated before, both the AWS CLI and any of the SDKs use REST API calls internally to
interface with the service endpoint.

In this section, we discussed different ways of interacting with the Glue API through the AWS API.
Next, we will discuss interacting with the API through Structured Query Language (SQL) statements,
which might be more natural for data engineers or database administrators.

DDL statements

The most natural way of interacting with the Data Catalog for the majority of users is to use Data
Definition Language (DDL) statements since that is similar to a relational SQL database. AWS Glue,
however, does not offer any SQL interface to interact with the catalog directly—the only way to interact
with it is through API calls.

Because of this limitation, several external services and applications have been developed as a translation
layer between the SQL language and the necessary API calls to run DDL statements on the Glue
Data Catalog. In the following sections, we will cover services providing this capability within AWS;
however, with the API being an open specification, literally any third-party SQL interpreter could
interact with the Data Catalog.

Populating metadata 157

Apache Hive

Apache Hive (https://hive.apache.org/) is an open source project that delivers a data
warehouse designed for the Hadoop ecosystem, allowing users to explore and query large datasets
using a variation of the American National Standards Institute (ANSI) SQL language, known as the
Hive Query Language (HiveQL). Hive relies on the Hive Metastore, a single-node metadata repository
that holds all information about Hive tables—a concept very similar to that of the Glue Data Catalog.

Even though Hive is not directly related to Glue, AWS offers Hive-Glue compatibility through Amazon
Elastic MapReduce (Amazon EMR) clusters (https://aws.amazon.com/emr/). This allows
users to use the Glue Data Catalog in place of the Hive metastore, which effectively lets them run SQL
queries on Glue tables through Hive. Users can launch EMR clusters with Hive-Glue compatibility
(https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive-
metastore-glue.html) by adding the following configuration property at launch time:

[

 {

 "Classification": "hive-site",

 "Properties": {

 "hive.metastore.client.factory.class": "com.amazonaws.
glue.catalog.metastore.AWSGlueDataCatalogHiveClientFactory",

 "hive.metastore.schema.verification": "false"

 }

 }

]

This property effectively replaces the Hive metastore factory class with a custom one developed by
AWS, which will interact with the Glue Data Catalog instead.

Once an EMR cluster has been launched with Glue Data Catalog integration, we can start Hive and
begin running queries, as follows:

$> hive

Now let’s repeat the operations we ran through the REST API, this time with Hive. We start by creating
a new database, like so:

CREATE DATABASE sampledb;

https://hive.apache.org/
https://aws.amazon.com/emr/
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive-metastore-glue.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive-metastore-glue.html

Metadata Management158

We can then create our table within the database, as follows:

CREATE EXTERNAL TABLE sampledb.sampletable (

 name STRING,

 surname STRING,

 id INT

)

PARTITIONED BY (year STRING)

ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe'

LOCATION 's3://sample-path/'

And finally, we can add a partition to the created table, like so:

ALTER TABLE sampledb.sampletable

ADD PARTITION (year='2019')

LOCATION 's3://sample-path/year=2019/'

Please note that in order for these operations to succeed, the Identity and Access Management (IAM)
role attached to the EMR cluster’s nodes must have the necessary permissions to do the equivalent Glue
actions. For instance, when creating a database, the IAM role must have explicit permission to perform
the CreateDatabase action (https://docs.aws.amazon.com/glue/latest/
dg/aws-glue-api-catalog-databases.html#aws-glue-api-catalog-
databases-CreateDatabase). This also extends to additional Glue Data Catalog features
such as Key Management Service (KMS) encryption.

Even though this Hive-Glue compatibility works, there are certain limitations and considerations to
take into account when using it, the most notable being these:

• Hive atomicity, consistency, isolation, and durability (ACID) transactions (which enable
operations such as DELETE or UPDATE) are not supported.

• Hive cannot rename tables, as tables in Glue cannot be renamed.

• Even though users could theoretically create Hive-managed tables and they would appear in the
Data Catalog, these tables are not accessible as their data would be stored in the Hive cluster’s
local Hadoop Distributed File System (HDFS) storage. Therefore, it is recommended to use
the EXTERNAL keyword for all of your tables.

To check a complete list of limitations and considerations, please refer to the public AWS documentation

(https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive-
metastore-glue.html).

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-databases.html#aws-glue-api-catalog-databases-CreateDatabase
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-databases.html#aws-glue-api-catalog-databases-CreateDatabase
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-catalog-databases.html#aws-glue-api-catalog-databases-CreateDatabase
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive-metastore-glue.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive-metastore-glue.html

Populating metadata 159

Apache SparkTM

Apache Spark (https://spark.apache.org/) is an open source framework for big data
processing, enabling the processing of large datasets over a cluster of compute nodes. Spark is part of
the Hadoop ecosystem and, as such, is capable of interacting with tables defined in a Hive metastore.
Spark is also offered as part of Amazon EMR clusters, and just as with Hive, AWS has developed specific
integrations to enable Spark to interact with tables defined in the Glue Data Catalog.

Spark offers two main ways of dealing with data: programmatically via code, or through its own
implementation of the ANSI SQL language, Spark SQL. Spark SQL is also the name of Spark’s SQL
libraries and modules, which enable the use of SQL queries within Spark code and provide the spark-
sql read-eval-print loop (REPL) environment where queries can be executed interactively through
a command-line terminal.

As the AWS documentation (https://docs.aws.amazon.com/emr/latest/
ReleaseGuide/emr-spark-glue.html) describes (and similarly to Hive), Glue-Spark
integration can be enabled by passing the following configuration property to the EMR cluster at
launch time:

[

 {

 "Classification": "spark-hive-site",

 "Properties": {

 "hive.metastore.client.factory.class": "com.amazonaws.
glue.catalog.metastore.AWSGlueDataCatalogHiveClientFactory"

 }

 }

]

This property effectively replaces the Hive metastore factory class used by Spark with a custom-
developed one that interacts with the Glue Data Catalog instead.

Once the cluster has been launched, we can run SQL queries easily by starting a REPL, as follows:

$ spark-sql

We can then repeat the same steps we did in the Glue Data Catalog API section within the REPL, as
illustrated here:

CREATE DATABASE sampledb;

https://spark.apache.org/
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-glue.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-glue.html

Metadata Management160

Creating a table is done in a similar fashion, as we can see here:

CREATE EXTERNAL TABLE sampledb.sampletable (

 name STRING,

 surname STRING,

 id INT

)

PARTITIONED BY (year STRING)

ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe'

LOCATION 's3://sample-path/'

And finally, adding a partition is again very similar, as illustrated here:

ALTER TABLE sampledb.sampletable

ADD PARTITION (year='2019')

LOCATION 's3://sample-path/year=2019/'

Just as with Hive, the IAM role attached to the EMR cluster nodes will need specific Glue permissions
to perform operations that stem from the executed commands.

Spark has very few differences from Hive in its SQL implementation and interpretation. Because of
this, many of the Hive-Glue integration limitations mentioned earlier also apply to Spark. For a full
list of them, please check the public AWS documentation (https://docs.aws.amazon.com/
emr/latest/ReleaseGuide/emr-spark-glue.html).

Amazon Athena

Athena (https://aws.amazon.com/athena/) is a serverless query service designed to
enable SQL querying over datasets stored in S3. Since its purpose overlaps heavily with that of Glue’s,
Athena was designed from an early stage to work with the Glue Data Catalog, enabling SQL querying
over Glue tables.

That said, there are certain limitations to the SQL queries you can run on the Data Catalog. Athena
is based on Presto (https://prestodb.io/), an open source SQL engine developed by
Facebook engineers, and thus it will be as powerful—in terms of querying—as Presto is. Presto uses
PrestoSQL, an ANSI-compatible implementation of the SQL language that covers most, but not all,
SQL language operations.

Let’s try to use Athena to perform the same operations we performed with the API: creating a database,
creating a table inside the database, and adding a partition to said table. If you followed the instructions
for Apache Hive, you’ll find that the queries are pretty much identical—since they are quite simple
and both engines support the SQL language, there’s not much variation.

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-glue.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-glue.html
https://aws.amazon.com/athena/
https://prestodb.io/

Populating metadata 161

Creating a database can be done with a simple statement, as follows:

CREATE DATABASE sampledb;

When creating a table, there are two things to pay particular attention to, as outlined here:

• The EXTERNAL keyword must be added to the CREATE TABLE statement. This is inherited
from the Apache Hive concept of managed tables and external tables; however, in Athena (and
Glue), all tables are considered external.

• Just as we provided the location, serializer/deserializer (SerDe), and classification information
to the table definition JSON in the previous examples, we need to tell Athena all this information
in a similar fashion.

The CREATE TABLE statement then looks like this:

CREATE EXTERNAL TABLE sampledb.sampletable (

 name STRING,

 surname STRING,

 id INT

)

PARTITIONED BY (year string)

ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe'

LOCATION 's3://sample-path/'

Finally, let’s add a partition to the created table, just as before, like so:

ALTER TABLE sampledb.sampletable

ADD PARTITION (year='2019')

LOCATION 's3://sample-path/year=2019/'

Note how in this case, we didn’t have to specify the schema or the serialization properties of the
partition. This is because Athena (by Presto’s design) expects all partitions of a table to have the same
schema and properties as the table itself. Therefore, complex scenarios where the partition schema
and properties evolve over time cannot use Athena or should update the table schema itself rather
than individual partitions.

Another important thing to note is Athena includes an automatic partition detection mechanism built
into the MSCK REPAIR TABLE statement. This will automatically identify all partitions in the
location specified by the table’s location property, provided that they follow the Hive-style partitioning
format (https://docs.aws.amazon.com/athena/latest/ug/partitions.
html). If not following this format, partitions will have to be added manually.

https://docs.aws.amazon.com/athena/latest/ug/partitions.html
https://docs.aws.amazon.com/athena/latest/ug/partitions.html

Metadata Management162

Glue crawlers

If you followed the previous sections, you will have seen that populating metadata within the Data
Catalog is not a hard task. That said, it can quickly turn into an extremely repetitive task for large
data lakes, sometimes becoming unfeasible for a single engineer to map all datasets to Glue tables
manually. Because of this, AWS developed Glue crawlers.

A Glue crawler is an AWS entity that will scan the contents of a given data location, automatically infer
a schema from it, and define it as a table in the Glue Data Catalog. Crawlers are recursive, which means
they will work with complex nested structures such as table partitions and can be run periodically
to add partitions or update the schema of a table with new fields populated by new incoming data.

Because of their usefulness and ease of use, crawlers are the recommended way of populating the Data
Catalog, even for small and simple setups. Running a crawler will have a small cost and finish within
a matter of minutes, which is more comfortable and less error-prone than—for instance—defining a
TableInput object to be used with a CLI command.

Crawlers can automatically infer schema from data stored in the following silos:

• Amazon S3 buckets and prefixes

• Amazon DynamoDB tables

• Amazon Redshift clusters

• Amazon Relational Database Service (Amazon RDS) databases

• Non-RDS-hosted relational databases (MariaDB, SQL Server, MySQL, Oracle, and PostgreSQL)

• MongoDB and Amazon DocumentDB databases

Depending on which silo is being crawled, the crawler will behave and perform in different ways,
which we’ll discuss in the following sections.

Crawler behavior

The way a crawler determines the existence of a table or partition is critical to understanding how it
works and avoiding possible issues. A malfunctioning crawler can break your data pipelines by updating
a table definition with the wrong one, or it can pollute the Data Catalog by creating thousands of tables
that should have been partitions of a large dataset.

Populating metadata 163

The way a crawler works depends on what type of data store it is analyzing, with behaviors falling into
one of the three following categories:

• Java Database Connectivity (JDBC) data stores and document stores: For relational datasets
(Amazon Redshift, Amazon Aurora, MariaDB, SQL Server, MySQL, Oracle, and PostgreSQL)
and document stores (MongoDB and DocumentDB), the crawler will simply list databases and
tables, and then retrieve each table’s schema by describing it. There isn’t much complexity to
this setup, as it is pretty much just copying information over to the Data Catalog.

• DynamoDB tables: By default, the crawler will scan all items in the specified table, at a rate
specified by the user when creating a crawler. This rate is specified as a percentage of the total
read capacity units of the table. Alternatively, if all records in the table can be assumed to have
a similar schema, the user can configure the crawler to only analyze a sample of the table to
avoid consuming unnecessary read capacity units.

• S3 datasets: Given an S3 location, the crawler will recursively analyze objects located within
it and compare their schema. S3 crawler behavior is sufficiently complex that we’ve separated
it into its own section, located right after this one.

Let’s discuss crawler behavior for S3 datasets in detail.

S3 crawler behavior

As stated earlier, when crawling an S3 location, the crawler will read the contents of objects located
within it to infer their schema. Schema inference is carried out by an entity known as a classifier.

A classifier is a piece of software that the crawler will execute to determine which format a file has
been written in. For instance, the comma-separated values (CSV) classifier determines whether a
particular file is written in CSV format or not. Determining the format is important for two reasons,
as outlined here:

• The crawler needs to know how to read the file. Plain-text file formats such as CSV are easy
to read, but more complex file formats such as Parquet require the use of specific libraries.

• The SerDe information will be written on the resulting table in the Data Catalog, which will
let other services and applications read the data properly. The term SerDe refers to the Java
classes to be used to serialize (write) and deserialize (read) information to and from the file.

A crawler has a set of built-in classifiers (one per each supported format), and users can also define
custom classifiers for certain file formats that require more tuning. A list of built-in classifier formats
can be found in the public documentation (https://docs.aws.amazon.com/glue/
latest/dg/add-classifier.html#classifier-built-in).

https://docs.aws.amazon.com/glue/latest/dg/add-classifier.html#classifier-built-in
https://docs.aws.amazon.com/glue/latest/dg/add-classifier.html#classifier-built-in

Metadata Management164

Whenever a crawler needs to infer the schema for an S3 object, it will run the object through all the
classifiers, starting with the custom ones and following with the built-in ones. Upon completing its
analysis, each classifier returns a value between 0 and 1 that determines the certainty the classifier has
that the file belongs to its format. The first classifier to report a certainty of 1 is used as the format. If no
classifier returns a 1 value, the one with the higher certainty value is used. Finally, if all classifiers return
a 0 value, the crawler will set the table format to UNKNOWN and the schema inference process will fail.

The selected classifier will then be used to determine the file’s schema, based on the file format. The way
this happens depends on how much schema information the file format inherently has, as explained
in more detail here:

• For structured file formats (such as Avro, Optimized Row Columnar (ORC), or Parquet), the
schema will simply be extracted from the file’s own metadata.

• Semi-structured formats (such as JSON, Extensible Markup Language (XML), or Ion) will
have their schema inferred by reading a sample of records and inferring the types of the fields.

• Log files (such as Apache logs, Linux kernel logs, or AWS CloudTrail logs) will all rely on the use
of predefined Grok patterns (https://www.elastic.co/guide/en/logstash/
current/plugins-filters-grok.html).

• Non-structured file formats (such as CSV or any of its variations) will split records by a defined
separator character and try to match each resulting field to the best-matching data type. Field
names will be taken from the file’s header, if available.

Now, let’s go back to the crawler’s behavior. When crawling an S3 path, the crawler looks at the contents
of the path as a recursive tree, where each node in the tree is a subfolder (or S3 prefix) within the
target S3 path. The crawler will then navigate to the deepest node in the tree and analyze the schema
of all S3 objects present there, using the classifier process explained before.

After all schemas are determined, the crawler will then start comparing all identified schemas and group
them together by similarity. There are four key factors to take into consideration here, as outlined here:

• File compatibility

• Schema similarity

• File similarity

• File group quantity

The following sub-sections will discuss each one of these factors.

File compatibility

Files must be compatible. This means they must use the same compression format and belong to the
same format. For instance, a path with JSON and CSV files will not result in a single unified table as
there would be no way to read all files simultaneously with the same SerDe information.

https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html

Populating metadata 165

Schema similarity

Two schemas are considered similar if they have more than 70% fields present in both of them. For
instance, take these two records:

{"id":1,"first_name":"Henrik","last_
name":"Paddington","country":"Ireland","city":"Dublin"}

{"id":2,"first_name":"James","last_
name":"Smith","country":"Canada","language":"English"}

In this example, the two records have five fields and only one of the fields is different, so there would
be a 20% difference or 80% similarity between them. The crawler would consider them similar and
place them in a group together. Now, let’s look at an opposite example, as follows:

{"id":1,"car_brand":"Toyota","model":"Yaris"}

{"id":2,"car_brand":"Audi","year":2009}

This time, there’s a total of three fields, with the last one being different for both (66% similar). The
crawler would consider them different schemas, therefore placing them into separate groups.

File similarity

The same 70% similarity is applied to the number of files belonging to each schema in the tree node.
Let’s exemplify this with two schemas, as follows:

Schema A

{"id":1,"first_name":"Henrik","last_
name":"Paddington","country":"Ireland","city":"Dublin"}

Schema B

{"id":2,"car_brand":"Audi","year":2009}

These two schemas only share one field out of six different ones, so they would be considered different
by the crawler. Now, let’s assume two different distributions, as follows:

1. The S3 path contains eight files with schema A and two with schema B. This would mean 80%
of files belong to the same schema, which is larger than the 70% threshold. The crawler will
consider the path to have schema A, and ignore files with schema B. The ignored files will be
notified to the user through CloudWatch logging, with the following message:

INFO: Some files do not match the schema detected.
Remove or exclude the following files from the crawler
(truncated to first 200 files):

Metadata Management166

 sample-path/B1.json

sample-path/B2.json

The table creation process is also part of the logs and helps identify table creation API calls
for audit purposes. You can see an example of this here:

INFO: Created table sampledata in database sampled

2. The S3 path contains seven files with schema A and three files with schema B. This time, the
70% threshold would be hit, meaning the contents of the path are not homogeneous enough for
the crawler to assume a single schema. In this case, the crawler would create an individual table
for each file within the S3 path. The threshold being hit is notified to the user via CloudWatch
logging. The code is illustrated in the following snippet:

[main] INFO com.amazonaws.services.glue.statetree.
detector.streaming.S3StreamingPartitionDetector - Minimum
frequency threshold surpassed for aggregated file set:
sample-path/

 [main] INFO com.amazonaws.services.glue.statetree.
detector.streaming.S3StreamingPartitionDetector -
Clustered Schema Count: 7

This would also include details of conflicting schemas and their fields, alongside table creation messages
for each table created.

File group quantity

There can only be a maximum of five groups at all times. A sixth group appearing will immediately
stop the crawling process, with the crawler creating tables and/or partitions based on the information
it had read up until that point.

The crawler will then apply this logic to each level in the recursive tree, going from its bottom to its top
and comparing the resulting schemas at each level. At every level, only files or partitions (subfolders or
prefixes) can be present. Having both at the same level will result in the schema detection process being
interrupted, with the crawler writing results to the Data Catalog based on information obtained up
until that point. Partitions must also follow Hive-style naming for them to be recognized as partitions
of a table rather than individual tables within a common directory.

Now that we understand how schema detection behaves for different file formats, we’ll discuss how
crawlers are executed and the different stages they go through.

Populating metadata 167

Crawler life cycle

In order to troubleshoot and manage crawlers, it is important to understand how they are executed.
Crawlers have four different states, which cycle in the following order:

1. Ready: The crawler is waiting to be executed.

2. Starting: The crawler is waiting for data processing units (DPUs) to be allocated to run.

3. Running: The crawler is analyzing its target.

4. Stopping: The crawler is writing results to the Data Catalog.

Just as with many other AWS resources, the crawler generates AWS CloudWatch logs on every execution.
Crawler logs include messages about the crawler’s state changes, issues encountered during execution,
and results written to the Data Catalog.

Every instance of a crawler’s execution is known as a crawl and has an associated crawl ID that can be
used to identify an execution uniquely. This crawl ID is not exposed by the AWS web user interface
(UI) and can only be retrieved in the following two ways:

• By checking the crawler’s execution logs. Every log message written by a crawler execution will
be preceded by its crawl ID, as in the following code example:

[e6021d6f-8fc6-4ac7-96a2-07dee35ccf14] BENCHMARK: Running
Start Crawl for Crawler cases-ddb

In the preceding example, the e6021d6f-8fc6-4ac7-96a2-07dee35ccf14 string would
be the crawl ID.

• By using the Glue REST API (in any of its forms). The GetCrawler API call returns a
Crawler object containing a LastCrawl object, which contains the MessagePrefix
property. This is the same as the crawl ID.

Retrieving the crawl ID can also be useful in instances when contacting AWS Premium Support is
necessary, as this will help AWS engineers easily identify an execution.

Even though all crawlers execute the same four stages, they can be configured to modify the behavior
of each stage. In the following section, we will discuss these configuration options.

Crawler configuration

Crawlers have several configuration options that are critical to their functioning. These options
determine the way crawlers behave when updating, deleting, or comparing the schema of tables. In
the following sub-sections, we will go over each category of configuration options.

Metadata Management168

Catalog update behavior

The following options modify what a crawler does when writing results to an already existing Data
Catalog table. They are listed based on their name in the Glue console web UI:

• Update the table definition in the Data Catalog: This will update all properties of the table that
have changed, including changes such as removing columns or changing data types. Because
of the drastic changes it can apply, it is not recommended for production setups unless no
changes to incoming data can be guaranteed.

• Add new columns only: This option will only add new columns if they are discovered in
subsequent crawls. Recommended for setups where there is constant data ingestion with evolving
fields, such as streaming data coming from a changing REST API endpoint, for instance.

• Ignore the change and don’t update the table: As the name implies, this will ignore all schema
and property changes. Only new partitions will be added to the table. Recommended for most
setups, as once the schema has been verified to work, it can be kept stable.

When configuring these options through the API, they can be found in the SchemaChangePolicy
object inside the Crawler object. The UpdateBehavior property can be configured to the
following values:

• UPDATE_IN_DATABASE for the Update the table definition in the Data Catalog option

• LOG for the Ignore the change and don’t update the table option

In order to achieve the Add new columns only setting, the UpdateBehavior option must be set to
UPDATE_IN_DATABASE and the following section should be added to the crawler definition object:

"Configuration": "{\"Version\":1.0, \"CrawlerOutput\":
{\"Tables\":{\"AddOrUpdateBehavior\":\"MergeNewColumns\"}}}

Catalog deletion behavior

In regard to what happens when the crawler doesn’t find an object already defined in the catalog, there
are again three possible options, as follows:

• Delete tables and partitions from the Data Catalog: As the name implies, anything that’s not
found will be deleted. Not recommended for production setups as it can result in accidental
deletion.

• Ignore the change and don’t update the table in the Data Catalog: Nothing will happen.

Populating metadata 169

• Mark the table as deprecated in the Data Catalog: The table will be deprecated instead of deleted.
A deprecated table is marked by a custom property added to the table parameters; however,
it has no practical effect other than notifying users, and deprecated tables can still be queried
and accessed normally. A deprecated table will have the following property in its definition:

"Parameters": {

 "DEPRECATED_BY_CRAWLER": "1642411200907"

}

Here, the value of the DEPRECATED_BY_CRAWLER property is the timestamp of the deprecation.

Table schema inheritance

When dealing with a partitioned table’s schema, we would typically assume the partitions of a table
will have the same schema as the table itself. This assumption has, however, been challenged with
the appearance of technologies such as REST APIs and streaming, where a schema can be evolving
over time. A common use case would be REST API logs, where a new method or property might be
added one day. If a table is partitioned by day, for example, usage logs for that API will suddenly have
a new column starting on that partition, which means the partition-level schemas and the table-level
one are not the same.

Some frameworks and query engines assume schema equality between a table and its partitions, and
some provide the flexibility of having different schemas. As described in previous sections, Amazon
Athena is an example of such a service, whereby trying to query a table with different table-level and
partition-level schemas will result in an error. In order to tackle this issue automatically, crawlers can
update the schema of the table’s partitions every time they run with the schema of the table itself.

This can be configured by enabling the Update all new and existing partitions with metadata from
the table option in the console, or by defining the option in the CrawlerOutput section of the
Crawler object, like so:

"CrawlerOutput": {

 "Partitions": {"AddOrUpdateBehavior": "InheritFromTable"
}

 }

Crawler behavior modification

As described earlier, schema similarity is one of the factors that a crawler considers in order to
differentiate tables from partitions automatically. This, however, can result in situations where the
crawler assumes two different schemas should be different tables, even though the user might want
to have them as partitions. This is only possible as long as the schemas are compatible—that is, they
don’t overlap or cause conflicts between each other.

Metadata Management170

Take these two schemas, for instance:

Schema A

{"id":1,"first_name":"Henrik","last_name":"Paddington"}

Schema B

{"car_brand":"Audi","year":2009}

Even though the schemas are not similar, they could still be unified under a single table if we combine
them, as follows:

Unified schema

{"id":1,"first_name":"Henrik","last_name":"Paddington","car_
brand":"Audi","year":2009}

Querying the table would simply return NULL values on records that don’t have the column, and
this would allow us to query everything under a single table rather than having to query two separate
tables and join the results.

In order to tackle these situations, crawlers can be configured to ignore the similarity threshold and
combine schemas whenever possible. This can be achieved by enabling the Create a single schema for
each S3 path option in the console, or by adding the following property to the crawler definition object:

{

 "Version": 1.0,

 "Grouping": {

 "TableGroupingPolicy": "CombineCompatibleSchemas"}

}

Keep in mind not all schemas are compatible. Take the following example:

Schema A

{"id":1,"first_name":"Henrik","last_name":"Paddington"}

Schema B

{"id":true, "car_brand":"Audi","year":2009}

In this case, both Schema A and Schema B have an id field; however, in Schema A, it would
be of an integer type, whereas in Schema B it would be of a Boolean type. This would cause a direct
conflict when defining a table, so the crawler would be unable to combine them.

Populating metadata 171

On the other hand, the opposite can also happen. If two schemas are similar enough, they will be
combined into a single table even if the user would expect them to be different tables being crawled at
the same time. In order to avoid this, crawlers can be configured to take a given level of the recursive
tree as the table level 1, at which schema merging will stop and tables will be output.

This can be configured through the Table Level option in the AWS console, or by adding the following
property to the crawler definition object:

{

 "Version": 1.0,

 "Grouping" = {

 TableLevelConfiguration = 2

 }

}

Before schemas can be compared and analyzed in the ways described earlier, the crawler needs to be
able to determine them. Some file formats may present challenges when it comes to this, which we
will discuss in the following section.

Custom classifiers

Certain file formats have particularities that don’t allow for one-size-fits-all parsing. For instance, the
CSV format has many variations of the character used to separate fields (tab-separated values (TSV),
pipe-separated values (PSV), and many custom ones). When crawling nested formats such as XML
or JSON, the user might want to parse only a subset of the tree rather than the whole structure.

In order to support these variations, users can create custom classifiers that allow them to modify the
behavior of the default built-in classifiers. Custom classifiers are available for the following file formats:

• CSV: Allows for the configuration of column delimiters, quote symbols, file headers, and
crawler behavior when encountering abnormalities.

• JSON: Allows you to specify a path in dot or bracket notation to only parse parts of each record.

• XML: Allows you to specify a root tag so that only information below it is parsed.

• Grok: Custom Grok expressions can be provided to parse log files not directly supported by
Glue. Grok classifiers can also be used to parse custom text files without a strong format or
that are not supported by other classifiers.

A crawler can have several custom classifiers attached to it, and they will be used in the same order
they were attached when classifying files.

Metadata Management172

Maintaining metadata
There’s rarely a scenario in which Glue Data Catalog tables will be static entities defined once and
never updated again. Whether your tables use partitioning and they need to be updated with new
partition values, or you have a changing stream of incoming data that adds or modifies data types,
you’ll want to keep updating and refining your Data Catalog entities.

Glue provides several mechanisms to do so automatically without user interaction, although any of
the methods described before can be used to update tables or partitions manually. Metadata can be
automatically updated using crawlers or extract, transform, load (ETL) jobs, which we will discuss
in this section.

Glue crawlers

Similar to how crawlers can define tables and partitions in the Data Catalog, they can also update
them. Any subsequent runs of a successfully completed crawler will update objects the crawler initially
defined as per the configuration options selected. There are several aspects to consider when using
crawlers to maintain metadata.

Crawler behavior when re-crawling

For S3 targets, when a crawler is executed a second time (or any subsequent times after that), it will try
to avoid re-analyzing all the contents of the S3 path, which saves both time and costs for the user. This
is achieved by checking the start time of the last successful execution of the crawler and comparing that
against the last modification time of all files within the S3 target path. Only files created or modified
after the last start time will be crawled.

Scheduling

Crawlers can be set to execute on a regular schedule, allowing users to refresh their Data Catalog
entities periodically. The crawler’s schedule is configured as part of its properties and can be specified
via either the web console or the API. Even though the web console offers preconfigured options (such
as weekly, hourly, or daily), crawler schedules are always expressed in cron notation, and choosing a
preconfigured option will automatically generate a cron expression (https://en.wikipedia.
org/wiki/Cron).

The schedule is configured under the Schedule section of the Crawler object, as follows:

"Schedule": {

 "ScheduleExpression": "cron(08 11 ? * MON *)",

 "State": "SCHEDULED"

}

https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron

Maintaining metadata 173

Even though schedules can be useful, some users prefer to update their Data Catalog definitions right
after data has been pushed to the data lake, reducing the time it takes for new columns or changes to
be updated. A common setup is to run crawlers right after ingestion has been completed, enabling
new partitions within minutes. The following section will describe how to achieve that.

Automation

Crawlers can be automated in a variety of ways, and really any kind of custom automation can be
developed thanks to the REST API. This section will discuss some of the most common automation
options, typically based on other AWS services, as outlined here:

• Glue workflows: The Glue service itself offers the workflows feature (https://docs.aws.
amazon.com/glue/latest/dg/workflows_overview.html), which allows
you to create complex step-based automations involving not just crawlers, but also ETL jobs
and custom conditions. A very common setup is to run a Glue ETL job as an ingestion job,
then run a crawler over the output location of the job if the ingestion was successful.

• AWS Step Functions: Similar to Glue workflows, AWS Step Functions (https://aws.
amazon.com/step-functions/) is a visual workflow service based on state machines
that enables automation for many AWS service components, not just Glue ones. Step Functions
allows for more complex integrations, such as running a crawler after an EMR cluster has
completed running a job or running a crawler over the resulting Linux kernel logs of an Elastic
Compute Cloud (EC2) instance.

• AWS Lambda: The fact that crawlers can be started and managed through the AWS SDK
allows developers to write their own automation code if the previous workflow solutions don’t
fit their use case. Lambda (https://aws.amazon.com/lambda/) is a serverless code
service that can very easily run complex code-based workflows with a variety of conditions
and inputs and outputs (I/Os).

Once again, given that the API can be accessed programmatically through the AWS CLI or any of the
SDKs, the possibilities here are limitless. That said, there’s a particular scenario we wouldn’t recommend:
Glue ETL job code. Even though we’ve proposed code-based services as an automation solution, and
that you could potentially start a crawler programmatically as part of the code of a Glue ETL job, this
is typically not recommended. Decoupling code and responsibilities from isolated components will
make your workflows safer to run and easier to troubleshoot.

Incremental crawling

Even if the crawler will not re-analyze all files for every subsequent execution, there are still situations
in which it can take increasingly longer for every execution.

https://docs.aws.amazon.com/glue/latest/dg/workflows_overview.html
https://docs.aws.amazon.com/glue/latest/dg/workflows_overview.html
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/lambda/

Metadata Management174

Take a streaming ingestion system, for instance: most data streaming platforms such as Amazon
Kinesis (https://aws.amazon.com/kinesis/) will write files to S3 in periodical batches,
often resulting in a large number of small files, which is not optimal for querying with most big data
platforms. Most users would typically run a compaction system after files have been written, merging
small files into larger ones; however, that means creating a new last modification timestamp that would
cause the crawler to re-analyze the files, even if their schema has not changed.

In order to provide a way to avoid these situations, the incremental crawling feature was developed
for crawlers. This feature will only crawl new folders within the target S3 path rather than checking
modification timestamps, meaning already crawled partitions can be safely edited or compacted
without affecting the crawler’s execution time.

This option can be enabled by either of the following:

• Checking the Crawl new folders only option when editing a crawler’s configuration

• Setting RecrawlPolicy to CRAWL_NEW_FOLDERS_ONLY instead of
CRAWL_EVERYTHING when using the API

When enabling this feature, all crawler behavior options are changed to LOG, meaning the crawler
will not alter schemas or delete objects automatically. Because of this, the crawler will also ignore any
objects that have a schema sufficiently different from the already existing one. Thus, this feature is
only recommended for stable schemas where variations are known to be rare.

S3 event-based crawling

If incremental crawling is not an option because of its limitations, there’s still another feature to
accelerate crawling S3 targets. S3 offers the Event Notifications feature (https://docs.aws.
amazon.com/AmazonS3/latest/userguide/NotificationHowTo.html), which
can trigger notifications upon a variety of events (such as creating a new S3 object). These notifications
can then be configured to be sent to Amazon Simple Notification Service (Amazon SNS) topics
(https://aws.amazon.com/sns/), Amazon Simple Queue Service (Amazon SQS) queues,
or AWS Lambda functions (https://aws.amazon.com/lambda/), which essentially enables
automation based on S3 changes.

When writing data to a new partition in a Glue table, enabling the S3 Event Notifications feature
essentially creates a log of all new objects within the target location, which is essentially what the
crawler needs to avoid re-crawling older files.

In order to enable this option, you will first need to create an SNS topic and an SQS queue to handle S3
event notifications, then enable the option via either the web UI or by adding the SQS queue Amazon
Resource Name (ARN) to the target definition object, as follows:

"S3Targets": [

 {

https://aws.amazon.com/kinesis/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/NotificationHowTo.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/NotificationHowTo.html
https://aws.amazon.com/sns/
https://aws.amazon.com/lambda/

Partition management 175

 "Path": "s3://sample-path/", "Exclusions":
[], "EventQueueArn": "arn:aws:sqs:us-east-
1:123456789123:samplequeue"

 }

]

Crawlers are a viable option to automate metadata maintenance, but their execution needs to be
started. If this is to happen right after an ETL job is executed, the ETL job itself can be used to update
metadata without requiring a crawler execution. The following section will go over how to achieve that.

Updating Data Catalog tables from ETL jobs

When running Glue ETL jobs that write results to the Data Catalog, it is possible for them to not just
write output data but also to update the catalog with its respective metadata. This means the job itself
can add new partitions or modify the table’s schema without the need to run a crawler afterward or
update the table manually.

This option is limited to only updating metadata with changes present in the data that is being written.
Imagine a scenario where a single Data Catalog table is being updated with new data by two entities:
a Glue ETL job and an EMR cluster. The metadata would only be updated with what the ETL job
writes, and any changes made by the EMR cluster would not be reflected. This means the option is
only suitable when the ETL job is the only entity writing to the target; otherwise, a crawler or manual
updates will still be necessary.

ETL jobs can update the Data Catalog with the following:

• New tables

• New partitions being written to a table

• Schema changes being made to a table

Full instructions on how to enable these features, alongside code samples, can be found in the public
AWS documentation (https://docs.aws.amazon.com/glue/latest/dg/update-
from-job.html).

Partition management
In the previous sections, we discussed how to automatically update and add partitions to tables. This
means that with an easy setup, Glue is capable of adding partitions continuously as your dataset grows.

For very large data lakes, however, this setup can easily run into issues. Glue supports up to 10 million
partitions per table by default; however, having such a large number of partitions will increasingly
lower your query execution times without proper management.

https://docs.aws.amazon.com/glue/latest/dg/update-from-job.html
https://docs.aws.amazon.com/glue/latest/dg/update-from-job.html

Metadata Management176

Partition indexes

Let’s take the example of a table storing product sales information. The table is partitioned by product
category, and even though the business started small and we had only a handful of categories, as we
expanded and added external sellers, we are now in the tens of thousands of categories.

Our business analysts want to query data based on product families, and so their Glue ETL queries
usually include a WHERE CATEGORY= clause, filtering by category. Every time the query is executed,
Glue will have to list all product categories and filter out those that don’t match the filter. This means
running GetPartitions API calls, which are paginated and can get expensive the more values
we have to retrieve, slowing our queries down.

In order to avoid this, Glue introduced partition indexes. These indexes basically hold a list of partition
values known to already exist in the table beforehand, speeding the filtering process up by a large
margin since it won’t be necessary to retrieve all partitions and filter them.

Every Glue table can have up to three indexes defined for it, and once an index is created, Glue will
validate all new partition values to ensure they belong to the right data type. Once an index has been
created, all GetPartitions API calls can include a filter expression that Glue will try to match
against the index. Limitations and considerations when using partition indexes can be consulted in
the AWS public documentation (https://docs.aws.amazon.com/glue/latest/dg/
partition-indexes.html).

Versioning and rollback
The previous sections described automated and autonomous metadata management for Glue tables.
This, however, can lead to unexpected changes in the Data Catalog that might break pipelines relying
on it. Even when not relying on automated changes, a human error could also break a table definition
by mistake. This section describes the versioning and rollback mechanisms in place in the Data Catalog,
designed to avoid and recover from such scenarios.

Table versioning

The Glue Data Catalog has a versioning mechanism for tables. Every time an edit is made to the table
(even if the table definition passed as the edit is the same as the already existing one), a new version
will be created, identified by a monotonically increasing integer starting at 1.

Only one table version can be active at any time, and only the active version can be accessed—it is
not possible to read from a table specifying a previous version, for instance. At any time, the user can
choose to pick an active version from all versions of a table; however, this operation can only be done
through the AWS web console as there’s no API call to do it.

This mechanism allows for rollbacks in the case of an error, and also provides traceability for changes—
something critical when having both automated and manual entities modifying the catalog.

https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html
https://docs.aws.amazon.com/glue/latest/dg/partition-indexes.html

Versioning and rollback 177

Lake Formation-governed tables

AWS Lake Formation (https://aws.amazon.com/lake-formation/) is a managed
data lake service that enables secure, row-level access security for tables defined in the Glue Data
Catalog. Lake Formation has a wide variety of features, but for the purposes of this chapter, we will
discuss governed tables.

Governed tables are S3 tables managed by Lake Formation that provide an additional set of features not
available to regular Glue tables. Two main differences occur when a table is governed, as outlined here:

• Transactions: Any operation made against the table will be encapsulated within a Lake Formation
transaction, which includes both data and metadata. These transactions can be canceled and
reverted if necessary, providing an automatic rollback mechanism for failures.

• Manifests: Lake Formation will keep a manifest of all S3 objects that represent the current
dataset in the table. This means the S3 path specified as the location of the table can contain
objects that are not part of the table. These objects can be part of a currently ongoing transaction
that is not yet committed or could be data that has been deleted from the table.

These two key differences enable advanced features that regular Glue tables cannot provide, as
outlined here:

• ACID transactions: Enable security and atomicity when multiple users are querying and
inserting data into Data Catalog tables.

• Automatic data compaction: As mentioned in previous sections, having large amounts of
small objects can negatively impact the performance of query engines accessing Data Catalog
tables. Lake Formation automatically compacts objects for governed tables to ensure proper
performance.

• Automatic garbage collection: Lake Formation can automatically delete objects that are not
part of the table to save on costs.

• Time-travel queries: Each governed table keeps a manifest of S3 objects that represent the data
within it. This manifest is versioned and can be used to query previous versions of data within
the table, without the need to load them back.

• Rollback mechanism: In the case of a failed transaction, both data and metadata can be rolled
back to their previous state. If an ETL job failed in the middle of writing data, Lake Formation
can automatically remove data that was written up until the failure. If a streaming job needs
to add a column to a table to insert data but then fails before it finishes, the new column can
be automatically removed.

https://aws.amazon.com/lake-formation/

Metadata Management178

In order for a table to be governed by Lake Formation, its data needs to be stored in S3, and the
S3 location must be registered with Lake Formation. Once that is done, a table can become Lake
Formation-governed if any of the following actions are performed:

• Enabling the option in the Lake Formation web console when browsing or creating a table

• Setting the TableType property to GOVERNED through the Glue API

• Adding the property within TBLPROPERTIES in Athena, as follows:

TBLPROPERTIES (

 'table_type'='LAKEFORMATION_GOVERNED',

 'classification'='parquet'

)

Once a table is governed, the ways to interact with it change, with several important considerations
to make, as follows:

• S3 objects within it should be considered immutable. Even though through S3 you could
potentially upload a new version of an object, this will not update the Lake Formation manifest
and thus could potentially break the table’s functionality.

• Whenever data is written to the table, the UpdateTableObjects API must be called to
update the manifest with the new S3 objects.

• In order to read from the table, any of the Lake Formation querying API calls should be used
rather than simply reading from the S3 location. This will ensure the right S3 objects are queried,
as well as applying the security access models defined in Lake Formation.

When it comes to metadata management, all operations should be handled through Lake Formation
transactions. Several of the Glue APIs (listed in the official documentation at https://docs.
aws.amazon.com/lake-formation/latest/dg/transactions-metadata-
operations.html#trx-enabled-glue-apis) have been updated to include a transaction
ID parameter, the value of which can be obtained with the Lake Formation StartTransaction
API call. After the operation has been completed, the Lake Formation CommitTransaction
API should be called to end the transaction. For instance, when creating a table, the user should do
the following:

1. Call StartTransaction to obtain a transaction ID.

2. Run the CreateTable operation, passing the transaction ID as a parameter.

3. If the operation is successful, call CommitTransaction to commit it. If the operation
failed for whatever reason, CancelTransaction should be called to revert the changes.

Lake Formation is a very powerful tool for metadata and access management. We recommend
considering enabling Lake Formation to manage your Data Catalog whenever possible.

Lineage 179

Lineage
Data lineage is the process of visualizing and understanding the flow of data within your data lake.
Lineage is critical for data engineers and analysts to understand how data is processed and transformed
within the data lake. This section covers the tools Glue provides in regard to lineage.

Glue DataBrew

Glue DataBrew (https://aws.amazon.com/glue/features/databrew/) is a
serverless data lineage tool integrated within the AWS Glue ecosystem. DataBrew provides a visual and
interactive way of visualizing, transforming, and automating data processing within a Glue data lake.

There are a few key components of DataBrew, as outlined here:

• Datasets: In order to work with data in DataBrew, it must be registered as a dataset. This can
be an S3 location, a JDBC database, or a Glue table.

• Projects: A project is a visualization environment that loads a sample of a dataset and allows
you to apply transformations and see their results live. Once the user is happy with the results
of the transformations, they can be written onto a recipe.

• Recipes: A recipe defines a set of transformations to be applied to a particular dataset.

• Jobs: DataBrew jobs apply recipes to a given dataset in an automated fashion. Jobs can be
scheduled or automated in a way similar to that of Glue ETL jobs.

DataBrew also provides data discovery and analysis features that let users get additional insights into
their datasets, as outlined here:

• Profile jobs collect statistics and summaries on a dataset, such as the distribution of unique
values, or the number of null values in a column. These can be run periodically on a dataset,
like regular jobs.

• Data quality rules are validation checks that can be attached to a profile job. These include
factors such as duplicated rows, missing values, or outliers.

DataBrew enables easy data management and discovery for Glue users, which in combination with
the features and utilities described in previous sections result in powerful metadata management.

https://aws.amazon.com/glue/features/databrew/

Metadata Management180

Summary
In this chapter, we discussed all aspects of metadata management, such as Glue Data Catalog and
how it stores metadata. We went over different methods of populating it both manually (such as with
the AWS CLI or running DDL statements) and automatically (through crawlers and their schema
discovery features). We also discussed metadata maintenance and how it can become an issue for large
organizations. We went over different options to not just keep metadata up to date but also automate
the process and decouple it from the logic of your ETL processes.

We talked about metadata versioning and how to roll back versions causing issues. We also discussed
how Lake Formation can help with not just metadata rollbacks but also data ones, as well as the wide
variety of features it offers. Finally, we talked about lineage and how Glue DataBrew can help you
discover, analyze, and transform your datasets in a visual way.

With these concepts, you should be able to fully manage the metadata of your data lakes. However, as
important as metadata is, a very crucial aspect of maintaining a data lake is keeping it secure. In recent
years, many countries and organizations have passed laws mandating companies to be responsible for
the data they gather and store. Because of this, the security of a data lake is a very important aspect to
manage for any large enterprise. The following chapter will go over data security and all the options
Glue offers to tackle it.

8
Data Security

At AWS, we like to say that security is "job zero," in that security is more important than even priority
tasks. Glue has been built from the ground up with that tenet in mind, and that, together with all the
security features of AWS services, makes data security an easy – but powerful – area to cover.

The Glue security model relies and builds upon concepts common to all AWS services, such as IAM
roles, policies, and S3 encryption. Throughout this chapter, we’ll cover different approaches and
configurations to ensure the security of your data lake and data pipelines. This will include dealing
with concepts such as encryption (both in transit and at rest), logging, and retention.

In this chapter, we will cover the following topics:

• Access control

• Encryption

• Network

Technical requirements
The code for this chapter can be found in this book’s GitHub repository at https://github.
com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue.

Access control
A large part of security is determining who can access data and in which ways. In this section, we will
cover how to configure access control for all the components of a Glue data lake.

IAM permissions

Much like other AWS services, AWS Glue relies on IAM (https://aws.amazon.com/iam/)
to provide access control for the service itself, meaning users need to be granted access for IAM to
Glue operations to manage and retrieve elements of the data lake.

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue
https://aws.amazon.com/iam/

Data Security182

All IAM permissions depend on the resource’s specifications, which in AWS are uniquely identified
through an Amazon Resource Name (ARN). Within Glue, only certain types of resources get ARN
identifiers. Other resources, such as workflows, for instance, do not support the use of ARNs, so
permissions cannot be granted on a resource-specific basis. For a complete list of resource ARNs,
please refer to the following AWS documentation page: https://docs.aws.amazon.com/
glue/latest/dg/glue-specifying-resource-arns.html.

For Data Catalog resources, all permissions that have been granted to objects that depend on parents
also need permission to access the parents. For instance, granting john access to glue:GetTable
on the sales table will also require giving john access to the database and Data Catalog that holds
the table. Additionally, all delete operations require the opposite: the user must also have permission
to access all child objects. For instance, if john wants to delete the sales table, they will also need
permission to delete all table versions and partitions present in the table.

Glue dependencies on other AWS services

AWS Glue relies on capabilities provided by other services, such as VPC networking or CloudWatch
for logging. When using the AWS Web UI to configure Glue resources, it will list and filter results,
which means access will also have to be granted to them to fully manage a data lake. This includes
the following:

• IAM itself to list and assign IAM roles to Glue resources

• CloudWatch logs to list and read the execution logs of Glue resources

• VPC to list and assign network resources such as VPCs, subnets, and security groups to Glue
resources

• S3 to list, read, and write buckets and objects

• Redshift to list and access clusters

• RDS to list and access databases

Without access to these permissions, the Web UI will often display error messages and incomplete
results.

Resource-based versus identity-based policies

Within the AWS permissions model, IAM permissions policies can be attached to either a resource (an
AWS component, such as an S3 bucket) or an identity (such as a user). With resource-based policies,
the resource defines who can access or control it. Identity-based policies work the other way round:
access to resources is defined by the permissions attached to a user or role.

https://docs.aws.amazon.com/glue/latest/dg/glue-specifying-resource-arns.html
https://docs.aws.amazon.com/glue/latest/dg/glue-specifying-resource-arns.html

Access control 183

Resource-based policies allow you to compact all access rules down to a single document, whereas
identity-based policies offer more flexibility and allow for individual user management. Typically, and
unless you are managing a small set of resources and entities, identity-based policies are preferred
since it’s easier to associate each user or IAM role with its permissions, rather than having to modify
the permissions of all resources it has to access.

In the case of Glue, only the Data Catalog accepts policies – it is not possible to attach policies to Glue
databases, tables, crawlers, or jobs. Let’s say you wanted to grant john access to the payments
table in the sales database. You could achieve this with either a resource-based policy attached
to your catalog, or an identity-based policy attached to john. Let’s compare how both are used in
their JSON form:

• Resource-based policy: The following example showcases a JSON-formatted policy attached
to a Glue Data Catalog. The policy grants john access to the glue:GetTable operation,
but only against the payments table within the sales database:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "glue:GetTable"

],

 "Principal": {"AWS": [

 "arn:aws:iam::account-id:user/john"

]},

 "Resource": [

 "arn:aws:glue:us-east-1:account-id:table/sales/
payments"

]

 }

]

}

• Identity-based policy: The following example showcases granting the same permissions but
by attaching them to john rather than the Data Catalog itself:

{

 "Version": "2012-10-17",

 "Statement": [

Data Security184

 {

 "Sid": "AccessPayments",

 "Effect": "Allow",

 "Action": [

 "glue:GetTable"

],

 "Resource": "arn:aws:glue:us-east-1:account-
id:table/sales/payments"

 }

]

}

Managing access through a policy attached to your AWS account’s Data Catalog comes with two
main limitations:

• Only one policy can be attached to the Catalog.

• This policy is limited to 10 KB.

These limitations reinforce the fact that using resource-based policies is not recommended for large
accounts or organizations, as the policy will be limited in size. There are additional limitations in
the clauses that can be specified in the policy, which you can find in the AWS documentation at
https://docs.aws.amazon.com/glue/latest/dg/glue-resource-policies.
html#overview-resource-policies.

Cross-account access

A very common strategy in large multi-account AWS organizations is to centralize all table definitions
into a single Data Catalog, then use other secondary accounts to process the data in them. Much like with
other AWS services, cross-account access is possible and can be configured through IAM permissions,
both with resource-based and identity-based policies.

Now, let’s assume that the Data Catalog holding the sales database and the payments table is
stored in one AWS account (account A) and that john is located in another (account B). The following
resource-based policy will have to be attached to the Data Catalog in account A:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

https://docs.aws.amazon.com/glue/latest/dg/glue-resource-policies.html#overview-resource-policies
https://docs.aws.amazon.com/glue/latest/dg/glue-resource-policies.html#overview-resource-policies

Access control 185

 "glue:GetTable"

],

 "Principal": {"AWS": [

 "arn:aws:iam::account-B:user/John"

]},

 "Resource": [

 "arn:aws:glue:us-east-1:account-A:catalog",

 "arn:aws:glue:us-east-1:account-A:table/sales/payments"

]

 }

]

}

On top of that, the administrator of account B will have to grant john permission to run
glue:GetTable on account A, as follows:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "glue:GetTable"

],

 "Resource": [

 "arn:aws:glue:us-east-1:account-A:catalog",

 "arn:aws:glue:us-east-1:account-A:table/sales/payments"

]

 }

]

}

For identity-based policies, the best way to achieve this is through IAM role assumption (https://
docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html).
This mechanism allows a user or IAM role to assume the credentials and permissions of another IAM
role. Cross-account access is granted by the owner of account A by creating an IAM role and modifying
its trust policy to be allowed by john in account B. The owner of account B will then have to give
john permission to assume the role in account A, after which john should have access to the table.

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

Data Security186

Accessing cross-account Data Catalog resources is always done by giving a value to the CatalogId
parameter, whether it is an API call, an AWS CLI command, or code in a Glue ETL job. Keep in mind
that the ID of the Data Catalog is the same as the ID of the AWS account holding it.

Unlike with S3 objects, cross-account tables and databases must be owned by the account hosting
the Data Catalog rather than whoever created them. In the example given earlier, the AWS account
holding the sales database will be the owner of any tables or databases created by john and will
have immediate access to them.

Note that cross-account access has certain limitations, the most notable of which is the inability to
use Glue crawlers with cross-account setups. For a complete list of the limitations, check out the
AWS documentation at https://docs.aws.amazon.com/glue/latest/dg/cross-
account-access.html#cross-account-limitations.

Tag-based access control

IAM policies support the use of conditionals to determine which resources are affected by the permissions
rule. A very common practice with AWS resources is to attach tags to them and make use of those
tags to determine access and permissions. For instance, given an organization with two teams (sales
and marketing), each team could tag their resources with a tag that specifies their team’s name and,
through that, restrict access to only themselves. Tags can also have other management purposes, such
as separating billing into groups or for automated resource management.

Tags are always expressed in the form of a key/value pair. AWS Glue supports the use of tags for some
of its resources, including the following:

• Connections

• Crawlers

• ETL jobs

• Development endpoints

• ML transformations

• Triggers

• Workflows

Tags can be added to any of these resource types at creation time, but they can also be added or
removed for as long as the resource exists. The following is an example of an IAM policy that allows
access to an ETL job’s definition based on a tag with a "team" key and a "marketing" value:

{

 "Effect": "Allow",

 "Action": [

https://docs.aws.amazon.com/glue/latest/dg/cross-account-access.html#cross-account-limitations
https://docs.aws.amazon.com/glue/latest/dg/cross-account-access.html#cross-account-limitations

Access control 187

 "glue:GetJob"

],

 "Resource": "*",

 "Condition": {

 "ForAnyValue:StringEquals": {

 "aws:ResourceTag/team": "marketing"

 }

 }

 }

This covers the Glue side of permissions management. In the next section, we’ll discuss managing
permissions in terms of S3.

S3 bucket policies

The previous sections described how to grant access to Glue resources. However, you will also need to
restrict access to the data in your data lake. The process for this will vary, depending on where the data
is stored. Java Database Connectivity (JDBC) databases can restrict access through user credentials
and database permissions while DynamoDB tables can use IAM policies. In terms of S3 buckets, an
effective way of restricting access is by using an S3 bucket policy.

S3 bucket policies are a form of resource-based access control where an IAM policy is attached to a
bucket. This policy then determines what actions can be performed on objects within the bucket, and
who can perform them. Only the bucket owner can attach a policy to the bucket, and the policy will
only apply to objects owned by the bucket owner – not third accounts. For instance, the following is
a bucket policy that’s been designed to give read access to a third AWS account:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "AddCannedAcl",

 "Effect": "Allow",

 "Principal": {

 "AWS": [

 "arn:aws:iam::111122223333:root",

 "arn:aws:iam::444455556666:root"

]

 },

 "Action": [

Data Security188

 "s3:PutObject",

 "s3:PutObjectAcl"

],

 "Resource": "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*"

 }

]

}

In the context of Glue, using S3 bucket policies means specific access rules will need to be granted
– not to the users using Glue, but to the IAM roles attached to crawlers, ETL jobs, and development
endpoints.

S3 object ownership

When writing results with a Glue ETL job or development endpoint, the resulting objects will be
owned by the account that owns the IAM role attached to said job or endpoint. In most scenarios,
where your job or endpoint is writing to a bucket you own, this is meaningless as access will always
be guaranteed. However, read access problems can arise when the destination S3 bucket is owned by
a different AWS account.

When writing cross-account access, the objects will be in a bucket owned by a different account.
However, each will have the writer account as its owner – resulting in access errors when they are read
afterward. The best way to avoid this is by tackling the issue from both ends, as follows:

1. Set the right object owner when writing.

Your ETL job or development endpoint can be configured to write objects that are owned
by the same owner as the bucket containing them, avoiding the problem. To do so, a special
configuration property must be passed onto the Hadoop configuration object, like so:

sc = SparkContext()

glueContext = GlueContext(sc)

spark = glueContext.spark_session

job = Job(glueContext)

job.init(args['JOB_NAME'], args)

glueContext._jsc.hadoopConfiguration().set("fs.s3.canned.
acl", "BucketOwnerFullControl")

Any subsequent write operations after this configuration change will address
the issue.

2. Forbid non-bucket-owned writes.

Access control 189

You can also configure the S3 buckets in your data lake to reject any writes that don’t set the
object owner properly. This will not modify the owner of already-existing objects, but it will
cause any future incorrect writes to fail, forcing the writer to set permissions properly and
avoid situations where data must be rewritten or reassigned to a different owner.

Such a configuration can be achieved by configuring the S3 bucket policy of your buckets.
The following example shows how this can be done:

{

 "Version":"2012-10-17",

 "Statement":[

 {

 "Sid":"OnlyAllowBucketOwnerFullControl",

 "Effect":"Allow",

 "Principal":{"AWS":"1234567890"},

 "Action":"s3:PutObject",

 "Resource":"arn:aws:s3:::my-bucket/*",

 "Condition": {

 "StringEquals": {"s3:x-amz-acl":"bucket-owner-
full-control"}

 }

 }

]

}

With that, we have discussed permissions management from both the Glue and S3 perspectives.
However, permissions can only be granted to whole tables without any other granularity. While this
works, recent legal requirements that have been imposed by regulations around the world have caused
use cases where users only have access to parts of a table valid. In the next section, we will discuss
Lake Formation, an AWS service that provides such capabilities.

Lake Formation permissions

AWS Lake Formation is a service that provides data lake capabilities on AWS resources. Even though
it is separate from AWS Glue and can be used independently, Lake Formation and Glue share the
same Data Catalog and are designed to work together from the ground up.

Lake Formation provides a wide array of features to support and manage data lakes. However, in this
chapter, we are going to focus on permissions. Lake Formation permissions are an additional layer on top
of IAM permissions that can be used to control access to both data and metadata. Lake Formation also
provides fine-grained access control to not just tables, but also the rows and columns within those tables.
This is particularly powerful for any company or organization going through compliance regulations.

Data Security190

When using Lake Formation, the data lake administrator decides which S3 locations and Data Catalog
databases/tables are part of the data lake. For any request to any resource that is part of the data lake,
the necessary permissions will have to be validated against both IAM and Lake Formation – otherwise,
the request will fail.

The Lake Formation permissions management system is very similar to that of relational databases,
where permissions are granted or removed using the GRANT or REVOKE statements, respectively.
Now, let’s discuss the different capabilities of Lake Formation and the permissions at different levels.

Data Catalog permissions

Data Catalog permissions refer to the ability to manage, create, and delete resources within the Data
Catalog. These can be granted to either databases or tables, with the option of adding row/column
granularity when granting access to a table. Permissions can either be granted to IAM principals in
your AWS account or principals in other accounts, giving them access to your databases, tables, and
their underlying data.

Permission management is done through the GrantPermissions and RevokePermissions
API calls, which take in the following parameters:

• Principal: The IAM principal that the operation involves. This can be an IAM user, an IAM
role, or an AWS organization.

• Resource: The Data Catalog resource (database, table, or table subset) that the operation grants/
removes access to/from.

• Permissions: The list of operations being granted or revoked access. Lake Formation supports
the following operations:

 � SELECT

 � ALTER

 � DROP

 � DELETE

 � INSERT

 � DESCRIBE

 � CREATE_DATABASE

 � CREATE_TABLE

 � DATA_LOCATION_ACCESS

 � CREATE_TAG

 � ALTER_TAG

Access control 191

 � DELETE_TAG

 � DESCRIBE_TAG

 � ASSOCIATE_TAG

For instance, the following AWS CLI command grants SELECT permissions to john on the sales
table in the payments database:

aws lakeformation grant-permissions --principal
DataLakePrincipalIdentifier=arn:aws:iam::1234567890:user/john
--resource '{

 "Table": {

 "CatalogId": "1234567890",

 "DatabaseName": "payments",

 "Name": "sales"

 }

}' --permissions DESCRIBE

In the next section, we’ll discuss how to manage permissions for large groups of entities, typically
found in large organizations.

Tag-based access control

Granting permissions to individual entities can quickly become tedious or repetitive to manage in
organizations with large amounts of users and resources. This is a similar problem that happens when
dealing with IAM permissions on large AWS accounts, and the typical recommendation is to group
resources through tagging and then use those tags to determine access permissions.

Lake Formation offers a very similar approach with tag-based access control (or LF-TBAC). This feature
allows you to manage permissions on a larger scale by granting permissions to tags and then attaching
those tags to all the resources that fall under the same permissions model. For instance, if the sales
department within your company has upwards of 1,000 tables, giving john the right access to all of
them can become problematic and also consume a very large amount of API calls. With LF-TBAC,
all these tables can be tagged under the department: sales key/value pair, and then john
can be granted access to the tag. All tables with the tag will immediately inherit the permissions of
the associated tag, reducing the amount of management overhead.

Keep in mind that Lake Formation tags are different than regular AWS resource tags. Lake Formation
tags only exist within the domain of Lake Formation and only serve the purpose of managing Lake
Formation permissions. Resources can still be attached regularly to AWS resource tags and their IAM
access can be managed through those tags, regardless of their Lake Formation tags.

Data Security192

Granting permissions based on Lake Formation tags is similar to basing them on regular Lake Formation
resources. For both the GrantPermissions and RevokePermissions API calls, the only
difference is to specify a Lake Formation tag instead of a Lake Formation resource. For instance, to
grant john select access on all tables with the department: sales tag, the following AWS CLI
command can be executed:

aws lakeformation grant-permissions --principal
DataLakePrincipalIdentifier=arn:aws:iam::1234567890:user/john
--resource '{

 "LFTagPolicy": {

 "CatalogId":"1234567890",

 "ResourceType":"TABLE",

 "Expression": [{"TagKey": "department","TagValues":
["sales]}]'

--permissions SELECT

With this, we’ve covered all there is to Data Catalog permissions. The next section will go over data
permissions.

Data – S3 permissions set

Lake Formation also requires data lake administrators to set permissions for their data locations in S3.
A user with permissions for a data location will not just be able to read data from that location, but
also create databases and tables that point to it. Therefore, unless a user has a very particular use case
where only metadata access is needed, most users will need data access on top of metadata access – if
it’s not for data reading, it’s at least to be able to create and define tables.

Granting and revoking permissions to/from an S3 data location is no different than doing so to/from
a Data Catalog resource, with the only difference being the resource parameter will have to be a data
location rather than a catalog resource. The following AWS CLI command shows how to grant john
access to an S3 location defined by its ARN resource:

aws lakeformation grant-permissions --principal
DataLakePrincipalIdentifier=arn:aws:iam::1234567890:user/john
--resource '{

 "DataLocation": {

 "CatalogId":"1234567890",

 "ResourceArn":"arn:aws:s3:::bucket_name/key_name"'

--permissions DATA_LOCATION_ACCESS

Notice how the permission being granted here is DATA_LOCATION_ACCESS rather than the usual
SELECT or DESCRIBE. This is a static value that must always be used with data location permissions.

Encryption 193

Data location permissions can also be granted to a different account. The following
code shows an example of the 1 2 3 4 5 6 7 8 9 0 account granting access to the
0987654321 account:

aws lakeformation grant-permissions

--principal DataLakePrincipalIdentifier=0987654321

--permissions "DATA_LOCATION_ACCESS"

--resource '{

 "DataLocation":{

"CatalogId":"1234567890",

"ResourceArn":"arn:aws:s3:::bucket_name/key_name "

}}

When granting cross-account access, the receiving account can also be permitted to grant access to
others by itself. This can be done through the permissions-with-grant-option parameter
of the API call, as shown here:

aws lakeformation grant-permissions

--principal DataLakePrincipalIdentifier=0987654321

--permissions-with-grant-option "DATA_LOCATION_ACCESS"

--permissions "DATA_LOCATION_ACCESS"

--resource '{

 "DataLocation":{

"CatalogId":"1234567890",

"ResourceArn":"arn:aws:s3:::bucket_name/key_name "

}}

This concludes all Lake Formation features related to data security. In the next section,
we’ll talk about the different aspects of encryption, and how they can be configured
in Glue.

Encryption
Encryption is the basis of all data security policies, as it ensures critical data cannot fall into the hands of
potential attackers. In recent years, encryption has also taken increased importance because of compliance and
personal data protection regulations. AWS Glue offers several features to support encrypting your data both
at rest and in transit. This section will cover all encryption options and features while providing examples and
best practices.

Data Security194

Encryption at rest

When it comes to encryption at rest in Glue, it can happen at three different levels:

• Encrypting the metadata that defines your data lake, which is handled by Glue itself

• Encrypting the data auxiliary to executing Glue resources

• Encrypting the data within your data lake

In this section, we will go through each level. For encryption, Glue relies on AWS Key Management
Service (KMS), an AWS service that provides serverless hosting and management of encryption
keys. All encryption features support the use of KMS keys. However, Glue only supports symmetric
ones – keys that are used to both encrypt and decrypt data. When specifying KMS keys for any of
the encryption features, make sure you enter the ARN of a symmetric key as Glue will not validate
whether it is symmetric or not before attempting to encrypt or decrypt, resulting in potential failures
down the line.

Metadata encryption

Glue is capable of encrypting all metadata in your Data Catalog using a KMS key. This covers the
following catalog objects:

• Databases

• Tables

• Table versions

• Partitions

• Connections

• User-defined functions

Metadata encryption works as a toggle (either it is enabled or not). Despite that, encryption only
takes effect for objects created after it has been enabled and doesn’t happen retroactively. Let’s say the
following happens:

1. john creates a Glue table (table A) in the Data Catalog.

2. The AWS account administrator enables Glue metadata encryption.

3. john creates another Glue table (table B) in the Data Catalog.

4. The AWS account administrator disables Glue metadata encryption.

In this scenario, table A would not be encrypted (even after the administrator has enabled encryption)
and table B would be encrypted (even after the administrator has disabled encryption).

Encryption 195

Additionally, Glue can encrypt passwords that have been used for Glue connections using a KMS key.
This can be different from the one used for the Data Catalog. This will ensure connection passwords are
encrypted when stored in AWS, and that any entity requesting them must also have IAM permissions
to run kms:Decrypt on the KMS key used to encrypt the data.

Data Catalog and connection password encryption can be enabled using either the AWS Web Console
or the SDK/CLI through the PutDataCatalogEncryptionSettings API call. This call
takes parameters in the following structure:

{

 "EncryptionAtRest": {

 "CatalogEncryptionMode": "DISABLED"|"SSE-KMS",

 "SseAwsKmsKeyId": "string"

 },

 "ConnectionPasswordEncryption": {

 "ReturnConnectionPasswordEncrypted": true|false,

 "AwsKmsKeyId": "string"

 }

}

If no KMS key is specified for either of the encryption options, Glue will use the service’s default
encryption key (aws/glue). To access any encrypted objects, the requesting entity (whether it
is an IAM user or an IAM role) will need to have IAM permissions to use the kms:Decrypt,
kms:Encrypt, and kms:GenerateDataKey API calls, allowing access to the KMS key that
was used for encryption.

If a non-default key was configured to encrypt the Data Catalog and it is deleted from the AWS
account, all objects encrypted by it will become non-decryptable permanently. Always make sure to
manage KMS keys properly.

Auxiliary data encryption

When running Glue resources such as crawlers or ETL jobs, data is generated in the form of execution
logs and job bookmarks. Even though this data may seem harmless at first, more often than not, it
will contain critical information such as table column names or data samples, which can represent
data leaks. Glue also supports encrypting these data sources so that your data lake is properly secured
and fully compliant with regulations.

Encrypting Glue resources is always handled through Glue security configurations. A security
configuration is a set of defined encryption rules that can be attached to a Glue crawler, a Glue ETL
job, or a Glue development endpoint, determining how logs and bookmarks are encrypted for them.

Data Security196

Security configurations can be created through the CreateSecurityConfiguration API
call, which takes parameters in the following structure:

{

 "S3Encryption": [

 {

 "S3EncryptionMode": "DISABLED"|"SSE-KMS"|"SSE-S3",

 "KmsKeyArn": "string"

 }

 ...

],

 "CloudWatchEncryption": {

 "CloudWatchEncryptionMode": "DISABLED"|"SSE-KMS",

 "KmsKeyArn": "string"

 },

 "JobBookmarksEncryption": {

 "JobBookmarksEncryptionMode": "DISABLED"|"CSE-KMS",

 "KmsKeyArn": "string"

 }

}

For the specified KMS keys to be used, the account administrator must grant AWS KMS IAM
permissions to the roles used for Glue resources. This process is described in the KMS documentation at
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-
log-data-kms.html.

Data encryption

The process of encrypting the data that resides in your data lake will be a task shared between all silos or
services involved: your RDS-backed tables will have to use RDS encryption (https://docs.aws.
amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html).
DynamoDB offers similar encryption-at-rest capabilities (https://docs.aws.amazon.com/
amazondynamodb/latest/developerguide/EncryptionAtRest.html) and any
S3 bucket can benefit from S3 encryption (https://docs.aws.amazon.com/AmazonS3/
latest/userguide/bucket-encryption.html).

That said, Glue offers some additional features when writing data as part of the output of an ETL job.
ETL jobs can be configured to write either S3-encrypted or KMS-encrypted output when the target
is an S3 location, ensuring all the results of your jobs are protected, regardless of the configuration
present at the storage layer.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-encryption.html

Encryption 197

ETL job data encryption can be enabled in two ways, depending on the type of encryption. Let’s look
at these two encryption types, as follows:

• S3-based encryption (SSE-S3) is configured by passing a property to the ETL job definition,
either at the time of creation (CreateJob) or when editing it (UpdateJob). This property
is defined inside the DefaultArguments property of the job:

"DefaultArguments": {

 "—TempDir": "s3://path/ ",

 "—encryption-type": "sse-s3",

 "—job-bookmark-option": "job-bookmark-disable",

 "—job-language": "python"

}

• KMS-based encryption (SSE-KMS) is configured by creating a security configuration and
attaching it to the ETL job, similar to how log and bookmark encryption work.

If both options are configured simultaneously, KMS encryption will be used over S3. For
security configurations to take effect within an ETL job, the Job.init() statement must
be executed within the job’s code:

job = Job(glueContext)

job.init(args['JOB_NAME'], args)

This covers all the features and aspects of at-rest encryption. In the next section, we’ll discuss encryption
in transit.

Encryption in transit

Glue relies on Secure Sockets Layer (SSL) encryption for encryption in transit, which means
connections to other AWS services (such as when reading or writing to S3 or DynamoDB) are made
securely and are encrypted. For non-AWS connections (such as when connecting to a JDBC database),
Glue supports enforcing SSL connections, which will cause the crawler or ETL job trying to use the
connection to fail if connecting over SSL doesn’t work.

Enforcing an SSL connection also allows you to configure the usage of custom SSL certificates to
authenticate the connection, which allows users to connect securely to JDBC databases using a
proprietary certificate that hasn’t been publicly validated. The connection can also be configured to pass
values to the SSL_SERVER_CERT_DN (for Oracle databases) or hostNameInCertificate
(for SQL Server databases) parameters of the target database, which allows you to configure custom
distinguished names and domain names for the database server, respectively.

Data Security198

FIPS encryption

AWS offers service endpoints that use cryptographic modules compliant with Federal Information
Processing Standards (FIPS) rather than standard SSL for communication. If the purposes of your
Glue usage must meet such a standard, Glue offers FIPS-compliant endpoints for all North American
regions, including GovCloud ones.

Development endpoint connections

Glue offers development endpoints, (https://docs.aws.amazon.com/glue/latest/
dg/dev-endpoint.html), which can be used to create a static development environment in the
cloud that users can log into and use to develop and test scripts for ETL jobs. Development endpoints
can be accessed via SSH and do not support authentication through a user/password combination –
only SSH keys are supported. The use of SSH for communication also ensures all traffic between your
local computer and the development endpoint is encrypted.

When creating a development endpoint, you must provide one or more public keys. These will be
used to authenticate users logging in. If the development endpoint is going to be shared among several
users, it is within best practices to create individual key pairs for each one and pass all public keys to
the development endpoint, thus avoiding having to share SSH keys between users.

Once the endpoint is up and running, the UpdateDevEndpoint API call allows you to add new
keys and delete unused ones. Reviewing and rotating SSH keys is a good practice that will prevent
unwanted access to the development endpoint.

With this, we’ve covered all aspects of encryption in AWS Glue. In the next section, we’ll discuss
network security, which handles the security of all communications happening between Glue resources
and external ones.

Network
Even though AWS Glue is a serverless service, understanding its network infrastructure and how it
connects to resources is a critical part of guaranteeing your data’s security and your organization’s
compliance. By default, Glue will always attempt to use the less public route to direct network traffic.
However, it is crucial to understand how this routing works to avoid public calls that could compromise
your information.

https://docs.aws.amazon.com/glue/latest/dg/dev-endpoint.html
https://docs.aws.amazon.com/glue/latest/dg/dev-endpoint.html

Network 199

Glue network architecture

Much like with other AWS services, all AWS Glue resources are stored and executed in internal
AWS accounts that are not accessible or part of any public infrastructure. This includes your Data
Catalog, crawlers, ETL jobs, development endpoints, triggers, and workflows. This is shown in the
following diagram:

Figure 8.1 – AWS resources within the AWS cloud

Data Security200

If a Glue resource needs access to an S3 location, this communication happens privately and internally
through the AWS infrastructure, as shown in the following diagram:

Figure 8.2 – AWS resources communicating through the AWS cloud

However, connecting to any other resource will require Glue to set up a bridge between its internal
infrastructure and your AWS VPC. To make this happen, whenever a Glue resource is in execution,
Glue will create Elastic Network Interfaces (ENIs) in your VPC and attach them to the nodes running
your Glue resource – a process known as requester-managed network interfaces (https://docs.
aws.amazon.com/AWSEC2/latest/UserGuide/requester-managed-eni.html).

Let’s say you want to run a crawler to automatically detect the schema of your MySQL database, which
is running in an EC2 instance in your account. Since you followed security best practices, this EC2
instance is running in a private subnet within your VPC, which means it is not accessible over the
public internet. When you run your Glue crawler, Glue will create ENIs in your VPC, assign private
IP addresses to them, and attach them to the nodes that execute the crawler process in the internal
AWS infrastructure. Once the crawler finishes running, the ENIs will be detached and deleted, and
their IP addresses will be released. The following diagram shows how this works:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/requester-managed-eni.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/requester-managed-eni.html

Network 201

Figure 8.3 – AWS resources communicating with resources in a user’s VPC

This process allows Glue to securely and privately connect to other resources in your AWS account
without ever leaving the internal AWS infrastructure. To carry it out, though, Glue will need several
parameters, such as the location of your database (VPC and subnet), proper security clearance to
access it (security groups), and a way to authenticate within your database. All these parameters are
supplied as part of a Glue connection.

Glue connections

A Glue connection is a set of configuration parameters that define the location and way of accessing
an external resource so that Glue can automate its access. These parameters include the following:

• VPC and subnet combination.

• One or more security groups.

• If authentication is required, all the necessary parameters for it. These include
the following:

 � The JDBC URL, which can include parameters to be passed onto the database

 � Username and password combination

Data Security202

When creating a Glue connection, you must also specify its type. There are as many types as there
are supported connection targets:

• JBDC: Connects to a relational database that supports JBDC

• MongoDB: Connects to a MongoDB or DocumentDB cluster

• Kafka: Connects to an Apache Kafka cluster

In addition to the previous types, there are also three special connection types:

• Network: This connection will simply specify a VPC and subnet without any other parameters.
This is designed to route connections through a VPC rather than connecting to a specific
resource within it.

• Marketplace: This connection specifies parameters for connectors that have been obtained
through the AWS marketplace.

• Custom: This connection specifies parameters for custom connectors that have been created
by you.

Attaching a connection to a Glue resource will cause the resource to automatically infer its properties
when it is being executed. For instance, a crawler will automatically know which subnet and database
to connect to and will have the right security groups to do so.

Network configuration requirements and limitations

For connections to work properly, certain requirements must be met. Let’s look at a few of these
requirements, as follows:

• At least one of the security groups that’s attached to the connection must include a self-
referencing inbound rule that allows all traffic. Even though such a wide permission may seem
like a security issue, permission will only be granted to incoming – not outgoing – connections,
and will only take effect between resources that have the security group attached. This rule is
necessary to allow proper communication between all Glue resources.

• When creating ENIs to attach to Glue resources, only private IP addresses will
be granted to them to guarantee their security. If your resources need to connect
to endpoints over the public internet, the lack of public IP addresses will make
it impossible.

• When creating a development endpoint, any attached security groups will need to include
access to TCP port 22 to allow for SSH logins – otherwise, the endpoint will be inaccessible.

• Connections to databases will require the involved security groups to allow the necessary
traffic. For instance, if you’re connecting to a MySQL database, you will need to allow traffic
on TCP port 3306.

Network 203

In the next section, we’ll discuss the requirements and considerations to connect to resources on the
public internet.

Connecting to resources on the public internet

As mentioned in the previous section, Glue resources will only get private IP addresses, which makes
them unable to communicate with a resource on the public internet. Although this can be a benefit
in terms of security, there are situations in which you might be interested in connecting over the
public internet, such as trying to reach a resource in your on-premise network or reading data from
a publicly-accessible API. There are two ways to make this possible:

• VPC endpoints: If this public communication is necessary for reaching an AWS service (for
instance, making an API call to AWS Secrets Manager in your ETL job code to retrieve credentials),
you can use VPC endpoints (https://docs.aws.amazon.com/vpc/latest/
privatelink/vpc-endpoints.html) to route it through AWS infrastructure instead
of the public internet. This is shown in the following diagram:

Figure 8.4 – Connecting over a VPC endpoint

Deploying a VPC endpoint in a subnet and updating its associated route table will direct
traffic internally, allowing you to communicate with AWS services securely.

https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints.html

Data Security204

• NAT Gateways: If, instead of an AWS service, you are trying to reach a public resource over the
internet, the only solution is to grant your resources a public IP address to communicate. VPC
NAT Gateways (https://docs.aws.amazon.com/vpc/latest/userguide/
vpc-nat-gateway.html) are NAT translation resources offered by AWS VPC that
multiplex private IP addresses behind a public one, assigned to the gateway itself. The following
diagram shows how such a connection happens:

Figure 8.5 – Connecting through a NAT Gateway

When using NAT Gateways, resources can initiate connections to the public internet. However, the
opposite can’t happen, which means they are still protected in your private subnet.

This covers all the ways of connecting to resources through the public internet. Next, we’ll discuss
other ways to connect to resources offered by AWS VPC.

VPC peering

VPC peering (https://docs.aws.amazon.com/vpc/latest/peering/what-is-
vpc-peering.html) is a VPC feature that allows traffic between two VPCs by simply adding
routes between them as if they were part of the same network. This feature allows you to solve a variety
of challenges that can affect your Glue connectivity.

Managing IP address pools

As mentioned previously, each ENI that’s created by Glue will be assigned an IP address from the
subnet it resides in. The amount of IP addresses is directly proportional to the number of nodes that
are part of the resource – for instance, in the case of ETL jobs, it will depend on the number of DPUs
or workers you assigned to the job.

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html

Network 205

There are certain situations in which there may not be enough IP addresses for the resource to run
properly. For instance, your VPC subnet could have a small range, or it could already have a large
number of resources running within it. Alternatively, you may want to run a large ETL job that requires
a significant number of addresses.

VPC peering allows you to solve this challenge by creating a new VPC subnet dedicated to Glue
resources receiving IP addresses. Since communication between the VPCs is as if they were part of
the same, Glue will be able to work without issues and the original VPC or its resources won’t have
to be modified.

Connecting to cross-account resources

VPC peering also allows you to create a peering relationship between VPCs in different accounts. This
allows for easy cross-account, private connections where a Glue resource can connect to a database
owned by a different account in the same organization, for instance.

Connecting to cross-region resources

VPC peering can also bridge two VPCs placed in different regions, allowing for private connections
through the AWS infrastructure and avoiding complicated setups to connect to resources in
other regions.

AWS PrivateLink

AWS PrivateLink (https://docs.aws.amazon.com/whitepapers/latest/
aws-vpc-connectivity-options/aws-privatelink.html) is a VPC service that
allows you to publish an endpoint into a VPC, ensuring that traffic between clients on the VPC and
the endpoint is always routed through the internal AWS infrastructure and never goes through the
public internet. PrivateLink can be used in Glue setups to, for example, publish an endpoint to a JDBC
database in the VPC where Glue resources run. PrivateLink endpoints can be published cross-account
and cross-region, enabling solutions for complex setups.

Connecting to resources in your on-premise network

Glue is also capable of reaching resources in your local network, allowing, for instance, you to crawl
your self-hosted JDBC databases. Just like with any other public resource, Glue can connect through
the public internet via a public endpoint; however, this is not a good approach in terms of security.
There are several AWS services and products that can help tackle this issue:

• AWS Direct Connect (https://aws.amazon.com/directconnect/) is an AWS
service that can establish a direct link between your on-premise data center and the AWS
infrastructure. This is a benefit not just in terms of security, but also that it can provide greatly
increased speeds and lower latency, which makes it easier to transfer datasets, for instance.

https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/aws-privatelink.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/aws-privatelink.html
https://aws.amazon.com/directconnect/

Data Security206

• AWS Site-to-Site VPN (https://docs.aws.amazon.com/vpn/latest/s2svpn/
VPC_VPN.html) allows you to create VPN connections between your on-premise network
and your AWS VPC. This will still route traffic over the public internet, but it will be encrypted
and protected as per the specifications of the VPN software of your choice.

• AWS Managed VPN (https://docs.aws.amazon.com/whitepapers/latest/
aws-vpc-connectivity-options/aws-managed-vpn.html) is similar to Site-
To-Site VPN in that it uses a VPN solution to encrypt traffic, but this software is managed and
deployed by AWS. This may reduce or eliminate the technical overhead of managing such a solution.

• Finally, the AWS Snow Family (https://aws.amazon.com/snow/) is
an alternative solution to establishing network links. These are hardware products
that can be delivered to your premises and allow you to copy and deliver your datasets
to AWS, who will then upload them to your account. This is a more effective solution if you are
intending to upload your data to AWS and stop using your on-premises network.

This covers all the options and features for network security. Now, let’s summarize this chapter.

Summary
In this chapter, we discussed all the aspects of security within AWS Glue. We talked about limiting
access through IAM permissions on both Glue and S3 and how to extend this through different AWS
accounts. We also talked about fine-grained access permissions through AWS Lake Formation.

We discussed how encryption works and how Glue relies on AWS KMS keys to encrypt and decrypt
data. We also discussed all the entities within Glue that can be encrypted. We saw different options
for auditing access to Glue resources.

Finally, we discussed how Glue works in terms of networking and discussed the different architectures
and AWS services that can be used to access resources over networks, including best practices when
it comes to connecting over the public internet.

This covers all aspects of security in terms of Glue within your AWS account. The next chapter will
also be related to security and permissions to some degree, as it will talk about data sharing and best
practices to let others access your Glue resources.

https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/aws-managed-vpn.html
https://docs.aws.amazon.com/whitepapers/latest/aws-vpc-connectivity-options/aws-managed-vpn.html
https://aws.amazon.com/snow/

9
Data Sharing

When you build a cloud-native data platform at scale on AWS, you may want to share your data
with multiple stakeholders under governance. Today, data sharing is one of the key topics in data
democratization for making business decisions driven by data and driving business. Typically, the
data platform is used by different users, such as data engineers, business analysts, and data scientists.

For example, data engineers own the data platform and maintain it, business analysts generate a daily
report that represents business revenue and end user activities, and data scientists may want to unveil
complex data patterns and build a data model for their applications. In such situations, these users can
belong to different business units and organizations. For enterprise data platforms, democratizing and
sharing data with different organizations under data governance securely is a high-demand requirement.

In this chapter, you will learn about three common data sharing strategies and characteristics, and
how you can share your data on AWS using AWS Glue and AWS Lake Formation through a step-by-
step tutorial with sample data. After completing this chapter, you will be able to design a data sharing
model by choosing a strategy that fits your use case. You will also gain some hands-on skills to build
a data sharing mechanism for your data platform.

In this chapter, we will cover the following topics:

• Overview of data sharing strategies

• Sharing data with multiple AWS accounts using S3 bucket policies and Glue catalog policies

• Sharing data with multiple AWS accounts using AWS Lake Formation permissions

Technical requirements
For this chapter, you need the following resources:

• An AWS account

• An AWS IAM role

• The AWS CLI

Data Sharing 208

Overview of data sharing strategies
At the time of writing, depending on the organizations and use cases, there are different ways to share
data. There are three typical strategies for sharing data:

• Single tenant

• Hub and spoke

• Data mesh

In this section, you will learn about each of these strategies and discuss their backgrounds, challenges,
and benefits.

Single tenant

Data lakes have become a popular approach for people who want to store and query data in a centralized
repository. It allows you to store all the structured data, semi-structured data, and unstructured data
at any scale. Here, cloud storage such as Amazon S3 fits well with data lakes because there are no data
size limits. You do not need to convert your data into a predefined fixed schema in advance. Instead,
you can just ingest data as-is. When you want to analyze the data, you can easily convert the data into
your preferred schema on the fly, then analyze it on top of the data lake.

The simplest use case is a single-tenant data platform. In this model, you will have all the components
in a single AWS account that is, an Amazon S3 bucket for data lake storage, AWS Glue Data Catalog
as a metadata store, Amazon Athena as the query engine, and more. To achieve data governance, you
can just focus on IAM permissions; you do not need to think about ways to share data across multiple
AWS accounts. This is simple and good for getting started, or for small use cases where you only have
a few stakeholders in your organization.

However, in real-world use cases, you may have multiple AWS accounts. This is because AWS best
practices recommend that you segregate your resources and workloads into multiple AWS accounts
to isolate resources and ownership, categorize workloads, and reduce the blast radius when things go
wrong. For such use cases, you will need to think about how organizations can collaborate through
the data, and how you can share the data across different AWS accounts.

The following screenshot shows how the single-tenant model works with two consumer applications
in the same account.

Overview of data sharing strategies 209

Figure 9.1 – Single-tenant model

In the single-tenant model, you must use one AWS account for all the components – that is, ingesting
data from data sources, storing data in data lakes, cataloging data, and consuming/analyzing data.

Hub and spoke

The hub-and-spoke model was introduced to achieve a cross-organization data platform. In this
model, a central “hub” account hosts all the data and metadata and shares it with multiple consumer
accounts. Consumer accounts receive the shared data and metadata and run analytic workloads on
their compute resources, such as Amazon Athena, Amazon Redshift, and so on. This centralized hub
model is intended to simplify both data engineering operations and end user experiences. For data
engineers who manage the data platform, the operational cost is not significant when they need to
manage a single data platform as a “hub.” For end users, all the data and metadata is stored in a single
hub so that end users have good visibility of the data. It won’t require deep technical expertise just to
consume the data, so it can also reduce training costs.

Typically, there are different stakeholders in the data platform. There can be multiple data sources owned
by different teams. There can also be different consumers who analyze the data and make decisions.
The central data engineering team is responsible for managing the data lake in the following ways:

• Collecting data from the different data sources

• Enriching data to meet business requirements

• Ingesting the data into the data lakes

• Orchestrating components to extract, transform, and load data

Data Sharing 210

• Maintaining the end-to-end data flow

• Ensuring that the data platform meets business SLAs, such as data freshness, data accuracy,
cost, and so on

However, the central team has the problem of managing data through this kind of central data platform.
Since the data pipeline is owned by the central team but data sources are owned by other teams, it
is hard for the central team to understand the specific needs of a data domain. This can cause issues
in terms of ownership and accountability. In addition, there is the challenge of scaling. For example,
you may need to transport data into the hub account, even though it is already on cloud storage.
Furthermore, you may also require intervention from the central data engineering team when you
want to add more datasets or change the way you enrich and validate the data.

The following diagram shows how the hub-and-spoke model works with a single hub account and
two consumer accounts:

Figure 9.2 – Hub-and-spoke model

Data mesh

A data mesh is a design pattern that addresses the challenges of scaling, ownership, and accountability
that the hub-and-spoke model often faces by introducing the data-as-a-product paradigm. The data
mesh strategy is designed to overcome these challenges by allowing the data owner teams to build
and publish the data as a product and making the teams accountable for the data.

Overview of data sharing strategies 211

A data mesh defines how you organize and deliver data as a product. The data is published by the data
owner and shared with the consumers. A data mesh also provides federated access across consumers in
different teams and organizations through a central catalog in the mesh account. Each organization will
be a data owner who is responsible for maintaining the end-to-end data flow by building, operating,
and serving the data products. They are also responsible for maintaining the data quality by monitoring
and resolving any data. Data accountability lies with the data owner.

Data product owner teams are responsible for maintaining the data catalog regularly so that it’s up-to-
date and keeping the data discoverable and searchable on the catalog. These are the domain experts of
the datasets in both the content and the data platform. When usage increases, the consumers of the
data product may report some data issues, such as increased data latency and missing records. The data
product team is the only team that can solve these data issues because they understand the context of
the data, know the architecture of the data processing pipeline, and can identify the procedure to fix
the issues. This reduces the overall friction for the data flow, where the data product team is responsible
for the datasets and is accountable for the consumers, although the central data engineering team tends
to be responsible for the dataset and accountable for the consumers in the traditional hub-and-spoke
model. With the data mesh model, it is natural for them to keep the reliability of the data flow and
the quality of the data, and improve the end-to-end data flow.

However, the data mesh model may not be the right pattern for your use case, and sometimes, it can
be overkill since it brings more complexity than the hub-and-spoke model. You need to carefully
validate whether your use case fits the data mesh pattern or not.

The following diagram shows how the data mesh model works with multiple accounts:

Figure 9.3 – Data mesh model

Data Sharing 212

You can find more background information and reference architectures in the Design a data mesh
architecture using AWS Lake Formation and AWS Glue blog (https://aws.amazon.com/
blogs/big-data/design-a-data-mesh-architecture-using-aws-lake-
formation-and-aws-glue/).

Sharing data with multiple AWS accounts using S3 bucket
policies and Glue catalog policies
In this section, you will learn how to share your data with multiple AWS accounts using an S3 bucket
policy and a Glue catalog policy.

When your use case is simple, and you want to share your data with a small number of accounts, it
is possible to grant data access in S3 bucket policies (https://docs.aws.amazon.com/
AmazonS3/latest/userguide/bucket-policies.html) and metadata access in
Glue catalog resource policies (https://docs.aws.amazon.com/glue/latest/dg/
glue-resource-policies.html). You will set these up in the following sections.

Scenario 1 – sharing data from one account with another using S3
bucket policies and Glue catalog policies

In the following scenario, there are two accounts – the producer account and the consumer account.
Here, the producer account wants to share its table with the consumer account, and the consumer
account wants to run SELECT queries against the shared table on Amazon Athena.

Prerequisite – S3

Let’s look at the prerequisite for setting up the S3 resources. Follow these steps in the producer account:

1. Create a sample JSON Line (JSONL) file called product_customer_sales.json:

{"product_name":"Introduction to
Cloud","category":"Ebooks","price":15,"customer_
name":"Barbara Gordon","email":"gordon@example.
com","phone":"117.835.2584","purchased_at":"2022-04-
21T11:40:00Z"}

{"product_name":"Best practices on data
lakes","category":"Ebooks","price":25,"customer_name":"Tanya
Fowler","email":"tanya@example.net","phone":"(067)150-
0263","purchased_at":"2022-04-28T08:20:00Z"}

{"product_name":"Data Quest","category":"Video
games","price":30,"customer_name":"Rebecca
Thompson","email":"thompson@example.net","phone":"001-469-964-

https://aws.amazon.com/blogs/big-data/design-a-data-mesh-architecture-using-aws-lake-formation-and-aws-glue/
https://aws.amazon.com/blogs/big-data/design-a-data-mesh-architecture-using-aws-lake-formation-and-aws-glue/
https://aws.amazon.com/blogs/big-data/design-a-data-mesh-architecture-using-aws-lake-formation-and-aws-glue/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-policies.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-policies.html
https://docs.aws.amazon.com/glue/latest/dg/glue-resource-policies.html
https://docs.aws.amazon.com/glue/latest/dg/glue-resource-policies.html

Sharing data with multiple AWS accounts using S3 bucket policies and Glue catalog policies 213

3897x9041","purchased_at":"2022-03-30T01:30:00Z"}

{"product_name":"Final Shooting","category":"Video
games","price":20,"customer_name":"Rachel
Gilbert","email":"gilbert@example.com","phone":"001-510-198-
4613x23986","purchased_at":"2022-04-01T02:00:00Z"}

2. Create a simple-datalake-<your-producer-account-id> S3 bucket in your
preferred region using the AWS CLI (replace the <your-producer-account-id>
placeholder with your AWS account ID):

$ BUCKET_NAME="simple-datalake-<your-producer-account-id>"

$ aws s3api create-bucket --bucket ${BUCKET_NAME} --create-
bucket-configuration LocationConstraint=us-west-2

If you choose us-east-1, please remove the --create-bucket-configuration
parameter.

3. Upload files to the S3 bucket by copying the sample data to your bucket:

$ aws s3 cp product_customer_sales.json s3://${BUCKET_NAME}/
simple_datalake/pcs/

With that, you have copied the sample data to your S3 bucket.

Prerequisite – Glue

Let’s look at the prerequisite for setting up the Glue resources. Follow these steps in the producer account:

1. Create a database called simple_datalake in Glue Data Catalog by running the CREATE
DATABASE DDL on Athena:

CREATE DATABASE simple_datalake

2. Create a pcs table in Glue Data Catalog by running the CREATE TABLE DDL on Athena
(replace the <your-producer-account-id> placeholder with your AWS account ID):

CREATE EXTERNAL TABLE simple_datalake.pcs(

 product_name string,

 category string,

 price int,

 purchased_at string,

 customer_name string,

 email string,

 phone string)

Data Sharing 214

ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe'

STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.
TextInputFormat'

OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.
HiveIgnoreKeyTextOutputFormat'

LOCATION 's3://simple-datalake-<your-producer-account-id>/
simple_datalake/pcs/'

TBLPROPERTIES ('classification'='json')

Please note that databases, tables, and partitions can be created in different ways. This time, we chose
to run DDL on Athena to simplify the scenario. Of course, you can use the following as well:

• The Glue Data Catalog API

• A Glue crawler

• A Glue job

• DDL

Now, there is the new pcs table in the simple_datalake database. You can query the table like so:

SELECT * FROM simple_datalake.pcs

You will see four sample records in the result set:

Figure 9.4 – The SELECT query’s result in the pcs table

Sharing data with multiple AWS accounts using S3 bucket policies and Glue catalog policies 215

Configuring S3 bucket policies and Glue Catalog resource policies

Follow these steps to configure S3 bucket policies and Glue catalog resource policies so that you can
share data from one account to another:

1. [Producer] Grant permission on the Glue Catalog resource policy.

The producer will need to share the table on AWS Glue Data Catalog by introducing
the following resource policy (replace the <your-producer-account-id> and
<your-consumer-account-id> placeholders with your AWS account IDs):

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "glue:GetDatabase",

 "glue:GetDatabases",

 "glue:GetTable",

 "glue:GetTables",

 "glue:GetTableVersion",

 "glue:GetTableVersions",

 "glue:GetPartition",

 "glue:GetPartitions",

 "glue:BatchGetPartition",

 "glue:SearchTables"

],

 "Principal": {

 "AWS": [

 "arn:aws:iam::<your-consumer-account-
id>:root"

]

 },

 "Resource": [

 "arn:aws:glue:us-west-2:<your-producer-account-
id>:table/simple_datalake/pcs",

 "arn:aws:glue:us-west-2:<your-producer-account-
id>:database/simple_datalake",

 "arn:aws:glue:us-west-2:<your-producer-account-

Data Sharing 216

id>:catalog"

]

 }

]

 }

Save the preceding JSON as catalog-policy.json and run the following command
to put the resource policy in your Glue Catalog:

$ aws glue put-resource-policy --policy-in-json file://./
catalog-policy.json --enable-hybrid TRUE --region us-west-2

2. [Producer] Grant permission on the S3 bucket policy.

If the producer account wants to grant read-only access to your pcs table, which is located
at s3://simple-datalake-<your-producer-account-id>/simple_
datalake/pcs/, to the consumer account, the S3 bucket will need to be configured
with the following S3 bucket policy (replace the <your-producer-account-id>
and <your-consumer-account-id> placeholders with your AWS account IDs):

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Principal": {

 "AWS": [

 "arn:aws:iam::<your-consumer-account-
id>:root"

]

 },

 "Action": [

 "s3:GetObject"

],

 "Resource": "arn:aws:s3:::simple-datalake-<your-
producer-account-id>/simple_datalake/pcs/*"

 },

 {

 "Effect": "Allow",

 "Principal": {

 "AWS": [

Sharing data with multiple AWS accounts using S3 bucket policies and Glue catalog policies 217

 "arn:aws:iam::<your-consumer-account-
id>:root"

]

 },

 "Action": [

 "s3:ListBucket"

],

 "Resource": "arn:aws:s3:::simple-datalake-<your-
producer-account-id>"

 }

]

 }

Save the preceding JSON as bucket-policy.json and run the following
command to put the bucket policy in your S3 bucket (replace the <your-producer-
account-id> placeholder with your AWS account ID):

$ aws s3api put-bucket-policy --bucket simple-datalake-<your-
producer-account-id> --policy file://./bucket-policy.json

3. [Consumer] Connect to the Glue Data Catalog shared by the producer:

I. Open the Athena console.

II. Click Data sources.

III. At the top right, click Connect data source.

IV. In the Data source selection section, click S3 - AWS Glue Data Catalog, then Next.

V. In the AWS Glue Data Catalog section, click AWS Glue Data Catalog in another account.

VI. For Data source details, enter the following information:

 � Data source name: Enter producer_catalog

 � Catalog ID: Enter the AWS account ID of the producer account ID

VII. Click Next, then Create data source.

Data Sharing 218

Now. you can select the new producer_catalog data source instead of the default of
AwsDataCatalog in the Athena query editor in the consumer account. Run Athena
from the consumer account, as follows:

Figure 9.5 – The SELECT query’s result in the consumer account

To summarize, we configured the producer account to grant permissions on the Glue Catalog resource
policy and grant permissions on the S3 bucket policy. After that, we configured the consumer account
to register the new data source in Athena so that it points to the producer’s Glue Data Catalog. You
will notice that there was no need to create/update any of the Glue catalog resources on the consumer
account side. All the changes in the producer account will be visible and accessible without you needing
to perform any manual operations in the consumer account.

This model works in simple use cases and is easy to understand. However, there are some challenges,
as follows:

• First, you need to maintain both S3 bucket policies and Glue Data Catalog resource policies
every time you want to grant or revoke access.

• Second, you need to manage permissions at the S3 object (file) level, even if your daily operation
may be SQL style. When you know only tables and run only SQLs, you may not know about
the underlying files you are touching in your queries. However, when you manage permissions
in an S3 bucket policy, you need to find the underlying files under the target table and manage
the relationship between the logical table and the physical files on S3. In addition, you cannot
manage permissions at a more granular level, such as the column level or row level, since the
S3 bucket policy can only be defined at the file level.

• Third, S3 bucket policies are limited to 20 KB in size, while Glue Data Catalog resource policies
are limited to 10 KB in size. If you want to have a central place to manage all the permissions and
have more flexibility in terms of granularity, you should try using Lake Formation permissions.

Sharing data with multiple AWS accounts using AWS Lake Formation permissions 219

In the next section, you will learn about a scalable way to achieve cross-account data sharing using
AWS Lake Formation permissions.

Sharing data with multiple AWS accounts using AWS Lake
Formation permissions
In this section, you will learn how to share data with multiple AWS accounts using AWS Lake
Formation permissions.

Lake Formation permission model

As you learned in the previous section, there are challenges in managing S3 bucket policies and Glue
Data Catalog resource policies. AWS Lake Formation is the service that is designed to overcome
those challenges and simplify data platform management. Lake Formation provides a central layer for
defining, classifying, tagging, and managing fine-grained access control to the AWS Glue Data Catalog
and Amazon S3 locations. The permission model is designed in an RDBMS-like style so that you can
grant permissions on databases, tables, or columns instead of S3 objects. Once you have granted access
to tables with Lake Formation permissions, Lake Formation automatically manages both data access
and metadata access under the hood, so you don’t need to manually take care of granting individual
data access and metadata access.

Lake Formation cross-account sharing

The AWS Lake Formation permission model also simplifies cross-account configurations. With Lake
Formation permissions, you can easily secure and manage data lakes across multiple AWS accounts
at scale.

In terms of Lake Formation cross-account access control, there are two different approaches to sharing
your databases and tables with another account:

• One approach is to use Lake Formation’s named resource-based access control

• The other is to use Lake Formation’s tag-based access control. This is a recommended approach.

Lake Formation tag-based access control is recommended because of its scalability and maintainability.
We will look at these options in detail in the following sections.

Data Sharing 220

Lake Formation named resource-based access control

Lake Formation named resource-based access control is a configuration option that manages permissions
based on specific Data Catalog resources such as databases, tables, and columns. In this access control
model, you can grant or revoke permissions on Lake Formation resources using the resource names. You
can learn more by reading Cross-Account Access: How It Works: https://docs.aws.amazon.
com/lake-formation/latest/dg/crosss-account-how-works.html.

We only recommend using named resource-based access control when you prefer granting permissions
explicitly to individual resources. It works with a small number of resources, but if you have a large
number of resources, then you should use Lake Format tag-based access control.

Lake Formation tag-based access control

Lake Formation tag-based access control is a configuration option that manages permissions based on
logical attributes called LF-tags, instead of specific resources. It requires two separate configurations:
LF-tag – Data Catalog resources (databases, tables, and columns), and LF-tag – Lake Formation
principals (IAM users, roles, SAML users, and QuickSight users). First, LF-tags need to be configured
on Data Catalog resources. Second, you must grant and revoke permission on the LF-tag (instead
of specific Data Catalog resources) to Lake Formation principals. With these configurations, Lake
Formation allows you to access those resources when the LF-tag that the principal has permission on
matches the LF-tag that the resource has.

LF-tag-based access control is efficient and useful in environments that are growing rapidly. Imagine
a scenario where there are five databases, and each database has 10 tables. There are three different
organizations, and each organization has specific visibility per table. Today, a new employee joins your
organization, and you need to grant the required permissions as a data lake administrator. Without
LF-tag-based access control, you need to grant access to five individual databases and 50 tables for this
user. With LF-tag-based access control, all you need to do is grant access to the LF-tag that matches the
organization’s permission for this user. LF-tag-based access control also helps with situations where
resource-based policies become too complicated as you will need far fewer permission configurations
than in traditional resource-based access control.

You can learn more about tag-based access control by reading Easily manage your data lake at scale
using AWS Lake Formation Tag-based access control: https://aws.amazon.com/blogs/
big-data/easily-manage-your-data-lake-at-scale-using-tag-based-
access-control-in-aws-lake-formation/.

We recommend Lake Formation tag-based access control for the following use cases:

• You have a large number of Data Catalog resources (databases, tables, and columns) and
principals (IAM users, roles, and more) that you need to grant access to

• You want to manage data access based on logical attributes or classifications of data

• You want to grant permissions dynamically, especially for new tables and principals

Sharing data with multiple AWS accounts using AWS Lake Formation permissions 221

To learn more, please read Securely share your data across AWS accounts using AWS Lake Formation:
https://aws.amazon.com/blogs/big-data/securely-share-your-data-
across-aws-accounts-using-aws-lake-formation/.

Scenario 2 – sharing data from one account with another using
Lake Formation Tag-based access control

In this scenario, we will use Lake Formation tag-based access control to share tables. There are two
accounts: the producer account and the consumer account. Here, the producer account wants to
share its table with the consumer account, and the consumer account wants to run SELECT queries
on the shared table:

Figure 9.6 – Architecture of scenario 2

Data Sharing 222

In addition to the preceding use case, there is a security requirement to hide specific columns from the
consumer. The table has seven columns: product_name, category, price, purchased_at,
customer_name, email, and phone. The producer wants to share this table with the consumer
account for business reasons but does not want to share either the email or phone columns since
they contain sensitive information. On the other hand, the consumer wants to grant access to this
shared pcs table to people that belong to the analyst decision. You can achieve this by following
the steps in the next section.

Prerequisite – S3

The following prerequisite is required to set up the S3 resources. Follow these steps in the producer
account:

1. Create a sample JSONL file called product_customer_sales.json:

{"product_name":"Introduction to
Cloud","category":"Ebooks","price":15,"customer_
name":"Barbara Gordon","email":"gordon@example.
com","phone":"117.835.2584","purchased_at":"2022-04-
21T11:40:00Z"}

{"product_name":"Best practices on data
lakes","category":"Ebooks","price":25,"customer_name":"Tanya
Fowler","email":"tanya@example.net","phone":"(067)150-
0263","purchased_at":"2022-04-28T08:20:00Z"}

{"product_name":"Data Quest","category":"Video
games","price":30,"customer_name":"Rebecca
Thompson","email":"thompson@example.net","phone":"001-469-964-
3897x9041","purchased_at":"2022-03-30T01:30:00Z"}

{"product_name":"Final Shooting","category":"Video
games","price":20,"customer_name":"Rachel
Gilbert","email":"gilbert@example.com","phone":"001-510-198-
4613x23986","purchased_at":"2022-04-01T02:00:00Z"}

2. Create a standard-datalake-<your-producer-account-id> S3 bucket in
your preferred region using the AWS CLI (replace the <your-producer-account-id>
placeholder with your AWS account ID):

$ BUCKET_NAME="standard-datalake-<your-producer-account-id>"

$ aws s3api create-bucket --bucket ${BUCKET_NAME} --create-
bucket-configuration LocationConstraint=us-west-2

If you choose us-east-1, please remove the --create-bucket-configuration
parameter.

Sharing data with multiple AWS accounts using AWS Lake Formation permissions 223

3. Upload the files to the S3 bucket by copying the sample data to your bucket:

$ aws s3 cp product_customer_sales.json s3://${BUCKET_NAME}/
standard_datalake/pcs/

With that, you’ve copied the sample data to your S3 bucket. In the next section, you will set up a Glue
table for this file on S3.

Prerequisite – Glue

The following prerequisite is required to set up various Glue resources – that is, the Glue database,
Glue table, and its partitions – so that you can use them in the subsequent sections. Follow these steps
in the producer account:

1. Create a standard_datalake database on Glue Data Catalog by running the CREATE
DATABASE DDL on Athena:

CREATE DATABASE standard_datalake

Create a pcs table on Glue Data Catalog by running the CREATE TABLE DDL on
Athena (replace the <your-producer-account-id> placeholder with your AWS
account ID):

CREATE EXTERNAL TABLE standard_datalake.pcs(

 product_name string,

 category string,

 price int,

 purchased_at string,

 customer_name string,

 email string,

 phone string)

ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe'

STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.
TextInputFormat'

OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.
HiveIgnoreKeyTextOutputFormat'

LOCATION 's3://standard-datalake-<your-producer-account-id>/
standard_datalake/pcs/'

TBLPROPERTIES ('classification'='json')

With that, all the required Glue resources, the standard_datalake database, and the pcs table
have been set up. You will use these resources in a sample dataset on your data lake.

Data Sharing 224

Prerequisite – Lake Formation and IAM

The following prerequisite is required to set up baseline configurations for the Lake Formation resources.
Follow these steps in both the producer account and the consumer account:

1. First, you must create a Data Lake Administrator if you do not have one. The Data Lake
Administrator is an IAM user or an IAM role that has special privileges on Lake Formation
resources. You will use this in the subsequent steps: https://docs.aws.amazon.com/
lake-formation/latest/dg/getting-started-setup.html#create-
data-lake-admin.

2. Next, you must update your default Lake Formation settings to migrate from traditional
IAM-only access control to Lake Formation access control.

3. Sign in to the Lake Formation console using the Data Lake Administrator.

4. In the left menu, under the Data catalog category, click Settings. You will see the following
settings:

Figure 9.7 – Updating the default permissions for Lake Formation resources

5. Deselect the Use only IAM access control for new databases and Use only IAM access control
for new tables in new databases checkboxes.

6. Click the Save button.

Once you have done this, all your new databases and the new tables in those new databases will start
following the Lake Formation access control model. Before updating this setting, special Lake Formation
permissions are granted for IAM_ALLOWED_PRINCIPAL (any principals that are allowed through
IAM authorization) on your databases and tables to keep backward compatibility. After updating the
setting, the default permissions will be revoked, so you need to grant Lake Formation permission on
those databases and tables expressly.

Next, to enable Lake Formation access control on the tables located in the standard-datalake-
<your-producer-account-id> S3 bucket, follow these steps in the producer account:

1. From the left menu, under the Register and ingest category, click Data lake locations.

2. Click Register location. You will see the following output:

Sharing data with multiple AWS accounts using AWS Lake Formation permissions 225

Figure 9.8 -- Register location

3. For Amazon S3 path, enter s3://standard-datalake-<your-producer-
account-id>/.

4. Click the Register location button.

Now, all the Glue tables under this data lake location will start following Lake Formation access control.

Follow these steps in the consumer account:

1. Open the IAM console.

2. Create the DataAnalyst user by attaching the AmazonAthenaFullAccess AWS
managed policy.

Now, all the IAM and Lake Formation resources have been successfully configured.

Data Sharing 226

Step 1 – configuring Glue catalog policies

The producer needs to share the table on AWS Glue Data Catalog by introducing the following
resource policy (replace the <your-producer-account-id> and <your-consumer-
account-id> placeholders with your AWS account IDs):

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "glue:*"

],

 "Principal": {

 "AWS": [

 "arn:aws:iam::<your-consumer-account-
id>:root"

]

 },

 "Resource": [

 "arn:aws:glue:us-west-2:<your-producer-account-
id>:table/*",

 "arn:aws:glue:us-west-2:<your-producer-account-
id>:database/*",

 "arn:aws:glue:us-west-2:<your-producer-account-
id>:catalog"

],

 "Condition": {

 "Bool": {

 "glue:EvaluatedByLakeFormationTags": true

 }

 }

 }

]

 }

Sharing data with multiple AWS accounts using AWS Lake Formation permissions 227

You will notice that the preceding policy is a coarse-grained policy that allows glue:* actions for
any databases and tables in the producer account. This lets Lake Formation manage fine-grained access
control. This is still safe because the glue:EvaluatedByLakeFormationTags condition
forces consumers to be authorized by Lake Formation permissions.

Save the preceding JSON as catalog-policy-lf.json and run the following command to
put the resource policy in your Glue Catalog:

$ aws glue put-resource-policy --policy-in-json file://./
catalog-policy-lf.json --enable-hybrid TRUE --region us-west-2

Note that if you want to keep the existing policy you created in the previous section, you need to
merge the catalog policies, as follows:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "glue:GetDatabase",

 "glue:GetDatabases",

 "glue:GetTable",

 "glue:GetTables",

 "glue:GetTableVersion",

 "glue:GetTableVersions",

 "glue:GetPartition",

 "glue:GetPartitions",

 "glue:BatchGetPartition",

 "glue:SearchTables"

],

 "Principal": {

 "AWS": [

 "arn:aws:iam::<your-consumer-account-
id>:root"

]

 },

 "Resource": [

 "arn:aws:glue:us-west-2:<your-producer-account-

Data Sharing 228

id>:table/simple_datalake/pcs",

 "arn:aws:glue:us-west-2:<your-producer-account-
id>:database/simple_datalake",

 "arn:aws:glue:us-west-2:<your-producer-account-
id>:catalog"

]

 },

 {

 "Effect": "Allow",

 "Action": [

 "glue:*"

],

 "Principal": {

 "AWS": [

 "arn:aws:iam::<your-consumer-account-
id>:root"

]

 },

 "Resource": [

 "arn:aws:glue:us-west-2:<your-producer-account-
id>:table/*",

 "arn:aws:glue:us-west-2:<your-producer-account-
id>:database/*",

 "arn:aws:glue:us-west-2:<your-producer-account-
id>:catalog"

],

 "Condition": {

 "Bool": {

 "glue:EvaluatedByLakeFormationTags": true

 }

 }

 }

]

 }

With that, your Glue Catalog policy has been successfully configured.

Sharing data with multiple AWS accounts using AWS Lake Formation permissions 229

Step 2 – configuring Lake Formation permissions (producer)

Next, let’s configure Lake Formation permissions using Lake Formation tags. This will allow you to
publish your table from the producer account to the consumer account. Follow the steps provided in
the following sections in the producer account.

Defining an LF-tag

Follow these steps to create a new LF-tag:

1. Sign in to the Lake Formation console using the Data Lake Administrator user.

2. From the left menu, under the Permissions category, click LF-tags under Administrative
roles and tasks.

3. Click the Add LF-tag button. You will see the following output:

Figure 9.9 – Add LF-Tag

4. For Key, enter Confidentiality, and for Values, enter private and public. Then,
click Add LF-tag.

Now, you have a new LF-tag called Confidentiality that has two different values: private
and public. We will use this LF-tag to manage access to the sample dataset.

Data Sharing 230

Attaching an LF-tag

Attach the LF-tag that contains the public value to your standard_datalake database and
update the value from public to private for the email and phone columns to indicate that
this column contains sensitive data. Now, follow these steps:

1. From the left menu, under the Data catalog category, click Databases.

2. Select the standard_datalake database and, from the Actions menu, click Edit LF-tags.

3. Click Assign new LF-Tag to enter a new key and its value. You will see the following output:

Figure 9.10 – Edit LF-Tags: standard_datalake

4. Add the Confidentiality key and the public value.

5. Click Save.

6. Then, select the standard_datalake database and click View tables.

7. Click the link to the pcs table.

8. Under Schema, click Edit schema.

9. Select the checkboxes for the email and phone columns and click Edit tags. You will see
the following output:

Sharing data with multiple AWS accounts using AWS Lake Formation permissions 231

Figure 9.11 – Edit LF-Tags: review_body

10. Update the value of the Confidentiality key from public to private.

11. Click Save.

12. Click Save as new version.

The Confidentiality LF-tag and its public value have been configured to the standard_
datalake database, and also recursively applied to the pcs table automatically. After that, the
LF-tag’s values were updated from public to private for the email and phone columns.
This means that those who have Confidentiality=public LF-tag permissions can view all
the columns except the email and phone columns.

Granting LF tag permission to the consumer account

Follow these steps to grant LF-tag permission to the consumer:

1. From the left menu, under the Permissions category, click LF-tag permissions under
Administrative roles and tasks.

2. Click Grant. You will see the following output:

Data Sharing 232

Figure 9.12 – Grant LF-tag permissions

3. For Principals, select External accounts.

4. For AWS account or AWS organization, enter the consumer account ID and press Enter.

5. For LF-Tag permission scope, choose the Confidentiality key and the public value.

6. For LF-tag permissions, select Describe.

7. Click Grant.

Sharing data with multiple AWS accounts using AWS Lake Formation permissions 233

Now, the Confidentiality LF-tag is visible from the consumer account and can be used to
define data permissions that can share the data with the consumer account.

Granting data permission to the consumer account

Follow these steps to grant data permission using the Confidentiality LF-tag:

1. From the left menu, under Permissions, click Data lake permissions.

2. Click Grant. You will see the following output:

Figure 9.13 – Grant data permissions

Data Sharing 234

3. For Principals, choose External accounts.

4. For AWS account or AWS organization, enter the consumer account ID and press Enter.

5. For LF-tags or catalog resources, select Resources matched by LF-Tags (recommended).

6. Select Confidentiality as the key and public as the value.

7. For Database permissions, select Describe under Database permissions and Describe under
Grantable permissions.

8. For Table permissions, select Select and Describe under Table permissions and select Select
and Describe under Grantable permissions.

9. Click Grant.

With that, the data permission that uses the LF-tag has been configured.

Step 3 – configuring Lake Formation permissions (consumer)

Complete the following steps in the consumer account.

Creating a database

In this section, you will create a new database in the consumer account to add a resource link that
points to the producer account. A resource link is a configuration that links to a local or shared
database or table. It is required when you want to share your tables among multiple accounts. You
can create a resource link with any preferred name to avoid name conflicts in a consumer account.
Follow these steps:

1. Sign in to the Lake Formation console using the Data Lake Administrator user.

2. From the left menu, under Data catalog, click Databases.

3. Click Create database.

4. Select Database; do not select Resource link here.

5. For Name, enter standard_datalake_consumer.

6. Click Create database.

Creating a resource link under the database

Follow these steps to create a resource link pointing to the pcs table in the producer account:

1. From the left menu, under Data catalog, click Databases. You will see the standard_
datalake database that was shared from the producer account.

2. Select the standard_datalake database and click View tables.

Sharing data with multiple AWS accounts using AWS Lake Formation permissions 235

3. Select the pcs table and, in the Actions menu, click Create resource link. You will see the
following output:

Figure 9.14 – Create resource link

4. For Resource link name, enter pcs_link.

5. For Database, select standard_datalake_consumer.

6. Click Create.

Now, you can query the shared table in the consumer account using the Data Lake Administrator
user. Open the Athena query editor and choose AwsDataCatalog under the Data Source. Run
the following query on the Amazon Athena console:

SELECT * FROM standard_datalake_consumer.pcs_link

Data Sharing 236

As shown in the following screenshot, there will be four sample records in the result set:

Figure 9.15 – The SELECT query’s result executed by the Data Lake

Administrator user in the consumer account

You will notice that the records do not have either the email column or the phone column. This
is because you marked the columns with an LF-tag where Confidentiality is private, and
you only granted access to the consumer with an LF-tag where Confidentiality is public,
not with an LF-tag where Confidentiality is private.

Defining an LF-tag

If you want to manage granular permissions for the IAM users and roles inside the consumer account,
you can define a separate LF-tag and grant data permissions to the IAM users and roles using it. You
will learn how to do this in the next few sections.

Note that Lake Formation tags are defined as resources in a single account, so LF-tags created in the
producer account are not available to the consumer account. This means that the consumer account
cannot use the producer account’s LF-tag when granting access to the resource links. If you want to
manage granular permissions for the IAM users and roles inside the consumer account, you need to
create new LF-tags in the consumer account and grant separate permissions by using the new LF-tags
on the resource links.

In this scenario, imagine that there are two different job roles in the consumer account – analyst and
engineer – and you want to manage the visibility of the data based on these job roles.

Sharing data with multiple AWS accounts using AWS Lake Formation permissions 237

Follow these steps to define a separate set of LF-tags:

1. Sign in to the Lake Formation console using the Data Lake Administrator user.

2. From the left menu, under the Permissions category, click LF-tags under Administrative
roles and tasks.

3. Click Add LF-tag. You will see the following output:

Figure 9.16 – Add LF-Tag

4. For Key, enter Division.

5. For Values, enter analyst and engineer.

6. Click Add LF-tag.

With that, you have defined a separate set of LF-tags: the key is Division and the values are
analyst and engineer.

Data Sharing 238

Attaching an LF-tag

Follow these steps to attach the separate Division LF-tag to the Data Catalog resources:

1. From the left menu, under Data catalog, click Databases.

2. Select the standard_datalake_consumer database and, from the Actions menu,
click Edit LF-tags.

3. Click Assign new LF-Tag. You will see the following output:

Figure 9.17 – Edit LF-Tags: standard_datalake_consumer

4. Add the Division key and the analyst value

5. Click Save.

With that, your standard_datalake_consumer database has been configured with the
Division LF-tag.

Granting LF-tag permission to the IAM user in the consumer account

Follow these steps to grant LF-tag permission to the IAM users who reside in the consumer account
to achieve granular access control:

1. From the left menu, under the Permissions category, click LF-tag permissions under
Administrative roles and tasks.

2. Click Grant. You will see the following output:

Sharing data with multiple AWS accounts using AWS Lake Formation permissions 239

Figure 9.18 – Grant LF-tag permissions

3. For Principals, select IAM users and roles.

4. For IAM users and roles, select the DataAnalyst IAM user.

5. For LF-Tag permission scope, select the Division key and the analyst value.

6. For LF-tag permissions, select Describe. Then, click Grant.

Data Sharing 240

Granting data permission to the IAM user in the consumer account

Follow these steps to grant data permission using the LF-tag to the IAM users in the consumer account:

1. From the left menu, under Permissions, click Data lake permissions.

2. Click Grant. You will see the following output:

Figure 9.19 – Granting data permissions to DataAnalyst

Sharing data with multiple AWS accounts using AWS Lake Formation permissions 241

3. For Principals, select IAM users and roles.

4. For IAM users and roles, select the DataAnalyst IAM user.

5. For LF-tags or catalog resources, select Resources matched by LF-Tags (recommended).

6. Select the Division key and the analyst value.

7. For Database permissions, select Describe under Database permissions and Describe under
Grantable permissions.

8. For Table permissions, select Select and Describe under Table permissions and Select and
Describe under Grantable permissions.

9. Click Grant.

Now, DataAnalyst can query against the shared pcs table through the pcs_link resource
link. As shown in the following screenshot, there will be four sample records in the result set:

Figure 9.20 – The SELECT query’s result executed by DataAnalyst in the consumer account

As you can see, the records do not contain the email and phone columns. With that, you’ve
configured cross-account Lake Formation permissions using Lake Formation LF-tags and confirmed
that they work as expected on Athena queries.

Data Sharing 242

Summary
In this chapter, you learned about three common data sharing strategies: single-tenant, hub-and-spoke,
and data mesh. You also learned how to share data with different accounts using AWS Glue and AWS
Lake Formation, as well as the benefits of doing so. At this point, you can design your data sharing
model by choosing the strategy that fits your use case. You also gained hands-on skills in building
a data sharing mechanism for your data platform.

In the next chapter, you will learn how to manage the data processing pipeline end to end.

10
Data Pipeline Management

Our data is composed of a lot of data types, such as IoT device logs, user logs, web server logs, and
business reports. This data is generally stored in multiple data sources, such as relational databases,
NoSQL databases, data warehouses, and data lakes, based on your applications, business needs, and
rules. In this situation, there might be cases where you must obtain aggregated data results for user
analysis, cost reports, and building machine learning models. To obtain the results, you may need to
implement data processing flows to read data from multiple data sources by using a programming
language, SQL, and so on. We usually call these flows data pipelines.

Recent pipeline flows consist of extracting data from data sources, transforming the data on computing
engines, and loading the data into other data sources. This kind of pipeline is called an extract,
transform, and load (ETL) pipeline, and it is used in a lot of cases. Additionally, the extract, load,
and transform (ELT) and extract, transformation, load, and transformation (EtLT) patterns are
used these days.

As you grow your data and data sources, the number of data pipelines increases. This can usually cause
problems in scaling data pipelines, such as how you can build, operate, manage, and maintain pipelines.
Therefore, effectively building and using data pipelines is one of the keys to effectively utilizing and
operating your data for the growth of your company, organization, and team.

To tackle these problems, in this chapter, we’ll look at data pipelines and the best practices to manage
them. In particular, this chapter covers the following topics:

• What are data pipelines?

• Selecting the appropriate data processing services for your analysis

• Orchestrating your pipelines with workflow tools

• Automating how you provision your pipelines with provisioning tools

• Developing and maintaining your data pipelines

Data Pipeline Management 244

Technical requirements
For this chapter, if you wish to follow some of the walkthroughs, you will require the following:

• Internet access to GitHub, S3, and the AWS console (specifically the console for AWS Glue,
Amazon Step Functions, Amazon Managed Workflows for Apache Airflow, AWS CloudFormation,
and Amazon S3)

• A computer with Chrome, Firefox, Safari, or Microsoft Edge installed and the AWS Command
Line Interface (AWS CLI)

Note
You can use not only the AWS CLI but also AWS CLI version 2. In this chapter, we have used the
AWS CLI (not version 2). You can set up the AWS CLI (and version 2) by going to https://
docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-
started.html.

You will also need an AWS account and an accompanying IAM user (or IAM role) with sufficient
privileges to complete this chapter’s activities. We recommend using a minimally scoped IAM policy
to avoid unnecessary usage and making operational mistakes. You can find the IAM policy for this
chapter in this book’s GitHub repository at https://github.com/PacktPublishing/
Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter10.
This IAM policy includes the following access:

• Permissions to create a list of IAM roles and policies for creating a service role for an AWS
Glue ETL job.

• Permissions to read, list, and write access to an Amazon S3 bucket.

• Permissions to read and write access to Glue Data Catalog databases, tables, and partitions.

• Permissions to read, list and write access to Glue ETL Jobs, Crawlers, Triggers, Workflows
and Blueprints.

• Permission to read, list and write access to AWS Step Functions resources.

• Permission to read, list and write access to Amazon Managed Workflows for Apache Airflow
(MWAA) resources.

• Permissions to read, list and write access to AWS CloudFormation resources.

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter10
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter10

What are data pipelines? 245

If you haven’t set up the following resources, create or install necessary resources by following
AWS documents:

• An S3 bucket for reading and writing data by AWS Glue. If you haven’t had it yet, you can create
one by going to the AWS console (https://s3.console.aws.amazon.com/s3/
home) and choosing Create bucket. You can also create a bucket by running the aws s3api
create-bucket --bucket <your_bucket_name> --region us-east-1
AWS CLI command.

• The environment for Glue Blueprints. If you haven’t set it up yet, you need to install the relevant
modules and SDKs to use Glue Blueprints. Please refer to https://docs.aws.amazon.
com/glue/latest/dg/developing-blueprints-prereq.html.

• The Amazon Managed Workflows for Apache Airflow (MWAA) environment. If you haven’t set
it up yet, you need to create the environment from the MWAA console (https://console.
aws.amazon.com/mwaa/home#environments). Please refer to https://docs.
aws.amazon.com/mwaa/latest/userguide/get-started.html. At the
time of writing, the latest Airflow version in MWAA is 2.2.2. This is the version we used.

What are data pipelines?
We generally use the word pipeline for a set of elements that are connected in a process, such as oil
pipelines, gas pipelines, marketing pipelines, and so on. In particular, an element that is put into
a pipeline is moved out via defined routes in a pipeline as output.

In computing, a data pipeline (or simply a pipeline) is referred to as a set of data processing elements
that are connected in some series. Through a data pipeline, a set of elements are moved and transformed
from various sources into destinations based on your implementation. A data pipeline usually consists
of multiple tasks, such as data extraction, processing, validation, ingestion, pre-processing for machine
learning use, and so on. Regarding the input and output of data pipelines, for example, the input is
application logs, server logs, IoT device data, user data, and so on. The output of a data pipeline is
analysis reports, a dataset for machine learning. The following diagram shows an example of a pipeline:

Figure 10.1 – A data pipeline that writes processed logs to an Amazon Redshift table

https://s3.console.aws.amazon.com/s3/home
https://s3.console.aws.amazon.com/s3/home
https://docs.aws.amazon.com/glue/latest/dg/developing-blueprints-prereq.html
https://docs.aws.amazon.com/glue/latest/dg/developing-blueprints-prereq.html
https://console.aws.amazon.com/mwaa/home#environments
https://console.aws.amazon.com/mwaa/home#environments
https://docs.aws.amazon.com/mwaa/latest/userguide/get-started.html
https://docs.aws.amazon.com/mwaa/latest/userguide/get-started.html

Data Pipeline Management 246

In this example, server logs are stored in S3 as raw data and are processed into an analysis report,
then written to Amazon Redshift.

Usually, we run multiple pipelines as workflows by using scripts or automation tools. This creates
various processed data to meet the various needs of multiple teams across multiple environments,
such as multiple systems, programming languages, and so on.

Why do we need data pipelines?

We build and use data pipelines to process data and get results so that we can use the data further.
Let’s take a look at some popular use cases of data pipelines:

• Data aggregation: Through data pipelines, your data is processed and aggregated to generate
a result that meets customer, team, and organization needs, such as analysis reports, cost usage
reports, user activity reports, and so on. After processing the data via data pipelines, it’s stored
in various places, such as databases, data warehouses, and so on. If necessary, the aggregated
data can be processed and combined with other aggregated data to generate a new report.

• Data cleansing: This use case is usually used for the raw data in your storage, such as application
logs, user activity logs, server logs, IoT device data, and so on. Raw data often includes corrupted
or garbage records. If you transform the raw data into data that other members such as analysts
can process and visualize, you need to clean the raw data and also transform the data so that it
matches your data source interface. For example, if analysts run analytic queries for a company’s
data warehouse, you need to transform the data into a new format so that it is compatible with
the data warehouse schema.

• Data anonymization: Sensitive records in your data are masked and transformed as a password
through data pipelines. This process aims to provide privacy protection. This type of data pipeline
often consists of multiple tasks that process sensitive information based on various levels of
privacy. For example, let’s say that some data may include a user ID that must be masked for
one team. However, another team needs that record, so the data doesn’t need to be processed.

Now that we’ve looked at some data pipeline use cases, others are available. Data pipelines are widely
used to process and transform data into a new form of data for future use.

How do we build and manage data pipelines?

So far, we’ve seen that a data pipeline is a set of data processing flows that consist of elements of data
processing and data storage. We’ve also seen that data pipelines are used for data aggregation, cleansing,
anonymization, and more.

What are data pipelines? 247

To achieve this kind of data processing with pipelines, you need to design and build pipelines.
Additionally, you need to update and maintain your pipelines based on your needs and data, such
as organization/team updates, data schema changes, system updates, and so on. To effectively build
and manage your data pipelines, you must understand the four main components of data pipeline
management. We will cover these in the following sub-sections.

Selecting data processing services for your analysis

When you build a pipeline that extracts/writes data from/to your data storage, such as Amazon
S3, relational databases, data warehouses, and so on, as a first step, you need to determine which
data processing engines or services you use and how you process the data with them. To select data
processing services, you need to consider things such as data usage, data format, data processing time,
data size (which you try to process), and the relevant requirements such as the service latency, usability,
flexibility, and so on. We’ll cover the details of selecting data processing services in the Selecting the
appropriate data processing services for your analysis section.

Orchestrating data pipelines with workflow tools

After building data pipelines combined with data processing services and your data sources, you may
need to automate running your pipelines as a workflow to easily and safely run them without manual
work. For example, you can create a scheduled-based workflow that automatically runs multiple
pipelines, including multiple data processing jobs and multiple data sources, every morning. To run
these pipelines, you don’t need to manually run them one by one. You’ll learn how to orchestrate your
pipelines and workflow tools in the Orchestrating your pipelines with workflow tools section.

Automating how you provision your data pipelines and workflows

You can automatically run multiple data pipelines as a workflow with workflow tools. So, how can
you build and manage multiple workflows if you have a lot of workflows? For example, let’s assume
you need to build hundreds of data pipelines that consist of the same data processing but various data
sources. You can’t imagine creating those pipelines each by one.

For this kind of use case, you can provision pipelines and workflows by using a template you define
resources in with various provisioning tools, which we’ll look at in the Automating how you provision
your pipelines with provisioning tools section. Additionally, using provisioning tools, you can not only
automate provisioning resources but also manage your resources via a template. By defining your
pipeline resources with a template without manual operations in GUI applications, you can manage
them with a versioning system and safely deploy them on your system by applying tests.

Data Pipeline Management 248

Developing and maintaining data pipelines

To build data pipelines and the relevant components, you also need to think about how you build them.
In particular, you need to continuously update them without bugs based on company/organization/
team requirements, business needs, and so on. To achieve effective development cycles, a good solution
is to apply the software practices of continuous integration (CI) and continuous delivery (CD) to
your data pipeline development process. These concepts help with problem detection, productivity,
release cycles, and so on. You learn how to utilize these concepts in your data pipelines development
and management in the Developing and maintaining your data pipelines section. You’ll learn how to
develop Glue ETL jobs locally and how to deploy the ETL jobs and workflows in your environment
in the section.

Next, we will cover four topics that we’ve looked at previously in terms of building and managing data
pipelines using AWS Glue and combining it with other AWS services.

Selecting the appropriate data processing services for
your analysis
One of the most important steps in using data processing pipelines is selecting the data processing
services that meet the requirements for your data. In particular, you need to pay attention to
the following:

• Whether your computing engine can process the data with the fastest speed you can allow

• Whether your computing engine can process all your data without any errors

• Whether you can easily implement data processing

• Whether the resource of your computing engine can easily be scaled as the amount of data
increases (for example, you can scale it without making any changes to your code)

For example, if your data processing service doesn’t have more memory capacity than your data, what
does the computing engine do to your job? Having less memory capacity can cause out-of-memory
(OOM) issues in your processing jobs and cause job failures. Even if you can process the data with
that small memory capacity, it will slow down your data processing compared to processing the data
in memory since you need to put some data aside in your disk to avoid issues. As another example,
assuming that your job processes your data with a single node, what happens to your processing job
in the future if the amount of data increases? You may need to scale up or scale out your computing
resource for the engine as the job will need more time to process data as the amount of data increases.
Then, when your computing engine reaches its limits in terms of its processing capabilities, you may
need to select another computing engine that can process your data.

Selecting the appropriate data processing services for your analysis 249

AWS provides multiple data processing services, such as AWS Lambda, AWS Glue, Amazon Athena,
Amazon EMR, and more to match your environment’s use cases and needs. In this section, we’ll walk
through each AWS-provided service for building data pipelines. Then, you’ll learn how to choose the
engine that satisfies your needs.

AWS Batch

AWS Batch is a fully managed service for running batch computing workloads based on your
definition. Computing resources for AWS Batch are managed by AWS instead of customers. AWS
Batch automatically provisions the resources and also optimizes your workload distribution based
on workloads.

To run your batch computation, you must submit a unit of work, such as a shell script, a Linux
executable, or a Docker container image, to AWS Batch. This definition is handled as a job. You can
also flexibly define how jobs run – in particular, how many resources, such as CPU and memory, will
be used, how many concurrency jobs will run, when AWS Batch executes jobs, and so on.

To use AWS Batch as a data processing service, you need to create a unit of work, a resource definition,
and job scheduling. It runs on a single instance that you specify, so you need to care about resource
limits such as memory, CPU, and so on. For more details about AWS Batch, please refer to https://
docs.aws.amazon.com/batch/latest/userguide/what-is-batch.html.

Amazon ECS

Amazon Elastic Container Service (ECS) is a fully managed container orchestration service based
on your container in a task definition. ECS also provides a serverless option, which is called AWS
Fargate. Using Fargate, you don’t need to manage resources, handle capacity planning, or isolate
container workloads for security purposes.

Using ECS, all you need to do is build Docker images. After building these Docker images, you can
deploy and run your images on ECS. You can also use this service as not only an application service
but also as a data processing engine for big data. For example, you can deploy Apache Spark clusters,
Kinesis Data Streams consumers, and Apache Kafka consumers by building Docker images.

Regarding container resources, ECS provides a wide variety of container instance types that are
provided by Amazon EC2. Therefore, allocated resources such as memory and vCPUs are based on
your instance images. Please refer to https://docs.aws.amazon.com/AmazonECS/
latest/developerguide/ECS_instances.html regarding container instances.

AWS Lambda

AWS Lambda is a serverless computing service that runs your implemented code as Lambda functions
on AWS-managed high-availability resources. All you need to do is write your code with a supported
programming language, such as Python, Java, Node.js, Ruby, Go, or .NET, and a custom runtime.

https://docs.aws.amazon.com/batch/latest/userguide/what-is-batch.html
https://docs.aws.amazon.com/batch/latest/userguide/what-is-batch.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_instances.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_instances.html

Data Pipeline Management 250

Based on requests to Lambda, Lambda runs your defined Lambda functions with scaling automatically
to respond to the requests. It can respond to up to 1,000 per second. You can use Lambda for a lot of
use cases. The following are some examples:

• It can process batch-based data stored in S3

• It can process streaming-based data from streaming data sources such as DynamoDB Streams,
Kinesis Data Streams, Managed Streaming Kafka, and others.

• It can work as an orchestrator of data pipelines to run data processing services such as AWS
Glue, Amazon Athena, Amazon EMR, and others.

In addition to implementing the Lambda function code, you can set Lambda’s resource configuration
as follows:

• Memory (MB): This determines the amount of memory that’s available for your Lambda
function. You can set this value between 128 MB and 10,240 MB. Regarding CPUs, they are
linearly in proportion to the amount of memory that’s been configured (at 1,769 MB, a function
has the equivalent of 1 vCPU).

• Timeout (seconds): This determines the Lambda execution timeout. If a function’s execution
exceeds this timeout, its execution is stopped. You can set this value to a maximum of 15 minutes.

Additionally, you can set asynchronous invocation, function concurrency, and so on.

As we’ve discussed, Lambda can be used in a lot of use cases and situations based on its implementation
style. Therefore, it might be good to start using Lambda as a data processing service if you don’t have a
big data software environment such as Apache Hadoop, Apache Spark, and so on. Note that Lambda
has memory limitations and that sometimes, duplicate invocation occurs.

Amazon Athena

Amazon Athena is a serverless query service. It allows you to run standard SQL queries for various
data sources, such as CSV, JSON, Apache Parquet, Apache ORC, and so on, which are stored in
your data stores, such as Amazon S3, JDBC/ODBC resources, and so on. Athena is based on Presto
(https://prestodb.io), which provides a distributed SQL engine. This is useful for running
ad hoc queries to obtain the analytical results of your data.

The Athena console provides an interactive view for users to easily run SQL queries, as shown in the
following screenshot:

https://prestodb.io

Selecting the appropriate data processing services for your analysis 251

Figure 10.2 – Obtaining analytic data results by running a SQL query from the Athena console

In addition to the console, you can access Athena with APIs (https://docs.aws.amazon.
com/athena/latest/APIReference/Welcome.html), SDKs (https://aws.
amazon.com/getting-started/tools-sdks/), and more.

Athena can work with Glue Data Catalog as a Hive-compliant resource. Using Athena, you can create
and read tables in/from the Data Catalog. If you need a data processing pipeline, you can build it
with Athena. For example, you can build a simple pipeline so that Athena extracts data from S3 after
creating a table with a Glue crawler, then writes the aggregated data to S3 using the access to Athena.
This pipeline can be built by implementing a script that automates Athena queries and running the
StartQueryExecution API (https://docs.aws.amazon.com/athena/latest/
APIReference/API_StartQueryExecution.html) with AWS SDKs.

Athena charges your queries based on their data scanning size in terabytes. For more details about
pricing, please refer to https://aws.amazon.com/athena/pricing/.

NOTE – Athena Service Quotas
When using Athena, you need to consider that Athena has default query quotas. For more
information about service quotas, please refer to https://docs.aws.amazon.com/
athena/latest/ug/service-limits.html.

https://docs.aws.amazon.com/athena/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/athena/latest/APIReference/Welcome.html
https://aws.amazon.com/getting-started/tools-sdks/
https://aws.amazon.com/getting-started/tools-sdks/
https://docs.aws.amazon.com/athena/latest/APIReference/API_StartQueryExecution.html
https://docs.aws.amazon.com/athena/latest/APIReference/API_StartQueryExecution.html
https://aws.amazon.com/athena/pricing/
https://docs.aws.amazon.com/athena/latest/ug/service-limits.html
https://docs.aws.amazon.com/athena/latest/ug/service-limits.html

Data Pipeline Management 252

AWS Glue ETL jobs

In AWS Glue ETL jobs, you can choose from Spark, Spark Streaming, and a Python shell. We’ll
look at these types here.

Spark

In terms of Spark, you can run Apache Spark applications as Glue jobs (hereafter, Glue Spark jobs) and
process your data within Glue and Spark frameworks. To run Glue Spark jobs, you don’t need to set
up any resources for the computation. However, you need to implement scripts to process your data
with Scala, Python (called PySpark), or SQL (called SparkSQL). Glue and Spark also provide many
methods so that data processing can be enabled easily with a few pieces of code. The Data ingestion
from streaming a data source section in Chapter 3, Data Ingestion, describes what Glue Spark is and
how to use it. In Glue Spark jobs, you can choose a worker type that defines the memory, vCPUs,
and disk size of each worker. Worker type is determined by your processing workloads, such as
Standard for general use cases, G.1X for memory-intensive jobs, and G.2X for machine learning
(ML) transform jobs.

Each worker type has a fixed allocated memory, vCPUs, and disk. At the time of writing, the details
shown in the following table about these allocated resources are correct:

Figure 10.3 – Allocated resources of each worker type

In addition to the worker types, you need to set the number of workers, which defines how many
workers with a specific worker type concurrently process your data.

The worker type and the number of workers define the capacity of the Glue computing resource
(in other words, the Spark cluster) for your job. Specifically, they define how much memory and
disk the job can use and how much concurrency the job processes. For example, when you set 10
G.1X workers to your Glue Spark job, the job can use a maximum of 160 GB memory, 40 vCPUs,
and 640 GB disk for your entire Spark cluster.

Selecting the appropriate data processing services for your analysis 253

Note – Data Processing Units (DPUs) and Maximum Capacity
The number of DPUs defines how many resources are allocated to your job. You are charged
based on the DPUs you use in your job (please refer to https://aws.amazon.com/
glue/pricing/ for more information). A DPU has 4 vCPUs with compute capacity and
16 GB of memory.

The maximum capacity is the same as the number of DPUs (for example, if you set 10 DPUs,
the maximum capacity is also 10). When you choose Glue 1.0 and the Standard worker type,
you need to set the Maximum capacity option instead of the Number of workers option.

Using Glue Spark jobs, you can use a distributed processing engine based on Spark, process your data
with a lot of data processing methods, easily scale computing resources by changing the number of
workers, and more.

Spark Streaming

Spark Streaming is one of the modules in Apache Spark for processing streaming data. This is different
from Spark, which is typically used for batch jobs. Spark Streaming is used for streaming jobs for
Glue (hereafter, Glue Streaming jobs). You can also implement Glue Streaming jobs with Scala,
Python, or SQL, similar to Glue Spark jobs. The Data ingestion from streaming a data source section in
Chapter 3, Data Ingestion, describes what Glue Streaming is and how to use it.

Regarding worker types and the number of workers for Glue Streaming jobs, you can configure them
in the same way as you configure Glue Spark jobs. If you process the streaming data from streaming
sources such as Amazon Kinesis Data Streams, Apache Kafka, and others, you can use this type. You
are charged based on the DPUs per second you used in your job.

Python shell

If you select the Python shell type, you can run pure Python scripts, not PySpark, as Glue jobs (hereafter,
Python shell jobs) on the Glue environment. Similar to the other Glue job types, you don’t need to set
up any resources for the computation. The Data ingestion from the Amazon S3 object store section in
Chapter 3, Data Ingestion, describes what a Python shell is and how to use one.

Regarding worker types and the number of workers, you can only set the maximum capacity or DPUs
for a Python shell job, not the worker types and number of workers. In particular, you can set the value
to 0.0625 (the default DPU value) or 1. In addition to this, Python shell jobs can be integrated with
other Glue components such as crawlers and Glue Spark jobs using a Glue workflow (which we’ll see
later in this chapter). You can also configure the job’s timeout. The default is 48 hours.

When you don’t need distributed processing via Spark jobs but you have a long-running job that, for
example, simply checks multiple objects in S3 and deletes some objects based on a condition, you can
use this type. You are charged based on the DPUs per second you selected (0.0625 or 1) in your job.

https://aws.amazon.com/glue/pricing/
https://aws.amazon.com/glue/pricing/

Data Pipeline Management 254

Amazon EMR

Amazon EMR (hereafter, EMR) provides a cluster management platform where you can run multiple
big data-related applications such as Apache Hadoop, Apache Spark, Apache Hive, Presto/Trino,
Apache HBase, Apache Flink, TensorFlow, and others in their latest versions. In addition to these
applications, EMR also provides a lot of functionalities such as steps, bootstrap actions, and cluster
configuration. We’ll provide a summary of EMR here.

When you run multiple software applications, you don’t always need to call each service API or log in
each console/interactive shell. You can run these applications via EMR Steps (https://docs.aws.
amazon.com/emr/latest/ManagementGuide/emr-work-with-steps.html),
which runs applications on your behalf by adding your application implementation to EMR Steps.

You can also configure your cluster, such as its size, EC2 instance types, multiple versions of applications
that match your needs, and so on. You can also add the software that you need to create an EMR
cluster via the EMR Bootstrap action (https://docs.aws.amazon.com/emr/latest/
ManagementGuide/emr-plan-bootstrap.html). This can be defined by implementing
scripts and setting these scripts when creating the cluster. It’s also possible to connect to AWS Glue
Data Catalog.

Compared to AWS Glue, EMR enables you to provide various flexible options for selecting applications,
cluster size, cluster scaling, cluster nodes, customizing the cluster node system, and so on. Furthermore,
you can choose a cluster running environment from Amazon EC2 (EMR on EC2), Amazon EKS
(EMR on EKS), AWS Outposts, and Serverless (this is a preview feature). However, note that EMR is
not serverless except for EMR Serverless, so you need to manage clusters yourself.

Regarding EMR pricing, you are charged based on your running node type and running duration.
For more details, please refer to https://aws.amazon.com/emr/pricing/.

Orchestrating your pipelines with workflow tools
After selecting the data processing services for your data, you must build data processing pipelines
using these services. For example, you can build a pipeline similar to the one shown in the following
diagram. In this pipeline, four Glue Spark jobs extract the data from four databases. Then, each job
writes data to S3. In terms of the data stored in S3, the next Glue Spark job processes the four tables’
data and generates an analytic report:

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-work-with-steps.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-work-with-steps.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-bootstrap.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-bootstrap.html
https://aws.amazon.com/emr/pricing/

Orchestrating your pipelines with workflow tools 255

Figure 10.4 – A pipeline that extracts data from four databases, stores S3,

and generates an analytic report by the aggregation job

So, after building a pipeline, how do you run each job? You can manually run multiple jobs to extract
multiple databases. Once this has happened, you can run the job to generate a report. However, this
can cause problems. One such problem is not getting a result if you run the generating report job
before all the extracting jobs are completed. Another problem is that it will take a long time to generate
a report if one of the extracting jobs takes a lot of time.

To avoid these problems, you can orchestrate pipelines with workflow tools such as AWS Glue
workflows, AWS Step Functions, Apache Airflow, and others. Workflow tools for big data pipelines
generally orchestrate not only multiple jobs but also multiple pipelines.

Recent modern workflow tools, such as the ones mentioned previously, represent the flow of jobs and
the dependencies of jobs in a pipeline as a graph – in particular, a directed acyclic graph (DAG). A
DAG has direction for each edge, but no directed cycles. In a cycle graph, the first and last edges are
equal. The following diagram shows a DAG that represents the workflow example from earlier in this
section, which involved generating a report pipeline:

Figure 10.5 – A DAG workflow for generating a report pipeline

Data Pipeline Management 256

Using workflow tools, you can manage multiple jobs and pipelines as one workflow. Regarding the
example of generating a report, a workflow tool can run each job, which may include extracting data
from multiple databases, waiting for each job to complete, and generating a report. Thus, you don’t
need to run each job manually.

In this section, we’ll walk through the workflow tools that AWS provides and learn how to combine
them with the data processing services we looked at in the Selecting the appropriate data processing
services for your analysis section:

• AWS Glue workflows

• AWS Step Functions

• Amazon Managed Workflows for Apache Airflow (MWAA)

First, we’ll look at AWS Glue workflows.

Using AWS Glue workflows

AWS Glue workflows allow you to create workflows that combine dependent Glue functionalities such
as crawlers and ETL jobs as an orchestrator. In particular, Glue workflows execute crawlers and ETL
jobs using Glue Trigger, which triggers crawlers and ETL jobs based on your configuration, such as
on-demand, scheduled, or conditional, or via an EventBridge trigger. More information was provided
in the Triggers section of Chapter 2, Introduction to Important AWS Glue Features. In addition to the
role of the orchestrator, Glue workflows allow you to monitor each workflow component’s status, such
as the success of ETL jobs, the failure of crawler runs, and so on.

To learn how we can configure and run Glue workflows, let’s orchestrate a simple data pipeline by
building a pipeline and using Glue workflows.

Example – orchestrating the pipeline that extracts data and generates a
report using Glue workflows

In this example, we’ll create a data pipeline that generates a customer reviews count report by aggregating
each marketplace review in the Amazon Customer Reviews dataset (https://s3.amazonaws.
com/amazon-reviews-pds/readme.html). Then, we’ll run this pipeline by creating
a workflow. This workflow will run the pipeline by doing the following:

1. The Glue workflow will trigger the crawler (ch10_1_example_workflow_acr), which
analyzes a table schema of the sales data and populates a table in Glue Data Catalog.

2. After running the crawler, the workflow will trigger the ETL job (ch10_1_example_
workflow_gen_report), which will generate a report by computing sales by each
product category and year. Then, the job will populate the report table in the Data Catalog.

Let’s start by creating the data pipeline.

https://s3.amazonaws.com/amazon-reviews-pds/readme.html
https://s3.amazonaws.com/amazon-reviews-pds/readme.html

Orchestrating your pipelines with workflow tools 257

Step 1 – creating a data pipeline with a Glue crawler and an ETL job

We'll download product sales data and create the Crawler which populates a table in the Data Catalog
based on the table schema of the sales data. Follow these steps:

1. Download the product sales data (sales-data.json) on your local machine from https://
github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-
AWS-Glue/blob/main/Chapter10/sales-data.json Once downloading is
completed, upload the file to your Amazon S3 bucket using the command; aws s3 cp sales-data.
json s3://<your-bucket-and-path>/sales or from the S3 console (https://s3.console.
aws.amazon.com/s3/buckets)

2. Access Crawlers (https://console.aws.amazon.com/glue/home?region=us-
east-1#catalog:tab=crawlers) on the AWS Glue console and choose Add crawler.

3. Type ch10_1_example_workflow as the crawler’s name and click Next.

4. Choose Data stores for Crawler source type and Crawl all folders for Repeat crawls of S3
data stores. Then, click Next.

5. Choose Specified path in my account in the Crawl data in section and specify s3://<your-
bucket-and-path>/sales/ that is the data location of sales-data.json for Include path. Then,
click Next.

6. Set No for Add another data store.

7. Choose your IAM role for this crawler. You can also create an IAM role by clicking Create an
IAM role.

8. Set Run on demand for Frequency.

9. Choose your database to create the report table in and type example_workflow_ in Prefix
added to tables (optional) for the table.

10. Then, review your crawler’s configuration. If everything is OK, click Finish.

NOTE: Specification of table name created by Crawler
The table name that Crawler creates is determined as <Prefix><The deepest path
that you specified in Include path>. For example, if you set example_
workflow_ to Prefix, and s3://<your-bucket-and-path>/sales/ to Include
path, Crawler creates the table with its name example_workflow_sales.

At this point, you will see the ch10_1_example_workflow crawler on the console.

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/sales-data.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/sales-data.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/sales-data.json
https://s3.console.aws.amazon.com/s3/buckets
https://s3.console.aws.amazon.com/s3/buckets
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=crawlers
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=crawlers

Data Pipeline Management 258

Now, let’s create an ETL job to process the dataset and create a report table. Follow these steps:

1. Download the Glue job script from this book’s GitHub repository (https://github.
com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-
Glue/blob/main/Chapter10/workflow-tools/glue-workflows/
ch10_1_example_workflow_gen_report.py).

2. Open Jobs in the AWS Glue Studio console (https://console.aws.amazon.com/
gluestudio/home?region=us-east-1#/jobs). Then, choose Spark script editor
in the Create job section and Upload and edit an existing script in the Options section. Now,
upload the job script by clicking Choose file:

Figure 10.6 – The view for creating a Glue job in AWS Glue Studio

3. After uploading the ch10_1_example_workflow_gen_report.py, click Create.

4. Type ch10_1_example_workflow_gen_report as the job’s name and choose your
IAM Role for running the Glue job.

5. Scroll down the page and set Requested number of workers to 3, Job bookmark to Disable,
and Number of retries to 0.

6. Then, set each of your S3 bucket paths, using the details shown in the following screenshot:

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/glue-workflows/ch10_1_example_workflow_gen_report.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/glue-workflows/ch10_1_example_workflow_gen_report.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/glue-workflows/ch10_1_example_workflow_gen_report.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/glue-workflows/ch10_1_example_workflow_gen_report.py
https://console.aws.amazon.com/gluestudio/home?region=us-east-1#/jobs
https://console.aws.amazon.com/gluestudio/home?region=us-east-1#/jobs

Orchestrating your pipelines with workflow tools 259

Figure 10.7 – Setting a script, Spark event logs, and temporary locations

7. Scroll down the page and set s3://crawler-public/json/serde/json-serde.
jar to Dependent JARs path.

8. Save the job.

Now that you’ve created the data pipeline, you will create a workflow by using the crawler and glue
job you created.

Data Pipeline Management 260

Step 2 – creating a workflow

Let’s create a workflow that will manage the crawler and ETL job that you created in Step 1 – creating
a data pipeline with a Glue crawler and an ETL job. Follow these steps:

1. Open Workflows in the AWS Glue console (https://console.aws.amazon.com/
glue/home?region=us-east-1#etl:tab=workflows;workflowView=w
orkflow-list) and click Add workflow.

2. Set ch10_1_example_workflow_gen_report as the workflow’s name and set the
following workflow run properties:

I. Key: datalake_location, Value: s3://<your-bucket-and-path>; this
is the report data S3 path.

II. Key: database, Value: <the db name which you set to the Crawler
you created in Step 1>; this is the table of the Amazon Customer Review
dataset.

III. Key: table, Value: example_workflow_sales; this table is created by the
crawler and its name is set to this value.

IV. Key: report_year, Value: 2021; In this example, 2021 is set as the value.

3. Then, click Add workflow at the bottom of the page.

4. After adding the workflow, you can create a Glue trigger to run your workflow. Click Add trigger:

Figure 10.8 – Adding a trigger to the workflow

5. Go to the Add new tab, type ch10_1_example_workflow_ondemand_start as
the workflow’s name, and set On demand for Trigger type. Then, click Add.

https://console.aws.amazon.com/glue/home?region=us-east-1#etl:tab=workflows;workflowView=workflow-list
https://console.aws.amazon.com/glue/home?region=us-east-1#etl:tab=workflows;workflowView=workflow-list
https://console.aws.amazon.com/glue/home?region=us-east-1#etl:tab=workflows;workflowView=workflow-list

Orchestrating your pipelines with workflow tools 261

6. At this point, you will be able to see the first trigger in the Graph tab. Let’s add the Crawler
first. Click Add node, as shown in the following screenshot:

Figure 10.9 – Adding a node to the workflow

7. Go to the Crawlers tab, specify the ch10_1_example_workflow crawler, and click Add.

8. You will see the crawler in your workflow diagram. Now, create a new trigger to run the ETL
job. Click Add trigger in the workflow diagram.

9. In the Add new tab, type ch10_1_example_workflow_event_gen_report as a
new trigger name. Set Event as its trigger type and Start after ALL watched event as its trigger
logic. Then, click Add.

10. The following screenshot shows the additional trigger that starts running ETL jobs. To set the
job for this trigger, click Add node:

Figure 10.10 – Adding a new Glue job node to the workflow

Data Pipeline Management 262

11. Go to the Jobs tab, specify the ch10_1_example_workflow_gen_report job, and
click Add.

Once you’ve configured the workflow, you will see the following diagram in the Graph tab:

Figure 10.11 – The workflow diagram

Now, you’re ready to run the workflow! This is what we’ll do in the next step.

Step 3 – running the workflow

You can run the workflow via the Glue console. Follow these steps:

1. Go back to the workflow in the Glue console and choose your workflow (ch10_1_example_
workflow_gen_report). Then, choose Actions and click Run.

2. After starting the workflow, you can see the workflow’s running status by going to View run
details in the History tab.

3. Once the workflow has finished running, you will see each node’s status, as shown in the
following diagram (this workflow run may take around 4 or 5 minutes):

Orchestrating your pipelines with workflow tools 263

Figure 10.12 – The completed graphical workflow

The workflow run is now completed. Finally, let’s check the result.

Step 4 – checking the result

By running this workflow, two tables were created by the crawler and the ETL job, and the reviews
count report was provided as output in the S3 bucket you specified as datalake_location in
Step 2 – creating a workflow. Let’s have a look at these resources:

• The two tables that were created (you can see these tables in the Glue Data Catalog at https://
console.aws.amazon.com/glue/home#catalog:tab=tables):

 � example_workflow_sales: This was created by the crawler; that is, ch10_1_
example_workflow. This table contains the table schema of the sales data.

 � example_workflow_sales_report: This was created by the ETL job; that is,
ch10_1_example_workflow_gen_report. This table has the table schema which
includes, reported year as a partition key.

• The generated report data in the S3 bucket. The ETL job writes the report data in the S3 path
as s3://<your-specified-bucket-and-path>/serverless-etl-and-
analysis-w-glue/chapter10/example-workflow/report/. You can view
the following bucket path and data by using the AWS CLI command:

$ aws s3 ls s3://<your-bucket-path>/serverless-etl-
and-analysis-w-glue/chapter10/example-workflow/report/
--recursive

https://console.aws.amazon.com/glue/home#catalog:tab=tables
https://console.aws.amazon.com/glue/home#catalog:tab=tables

Data Pipeline Management 264

YYYY-MM-dd 01:23:45 799 <path>/serverless-etl-and-
analysis-w-glue/chapter10/example-workflow/report/report_
year=2021/run-xxxxxxxxxx-part-block-0-0-r-00113-snappy.
parquet

• The ETL job output in the CloudWatch logs. You can access the log link from the Glue Studio
console by choosing Output logs in the Runs tab. The page will redirect you to the CloudWatch
Logs console. Choose the Spark driver task ID that doesn’t have an underscore (_) in the name
of the Log stream; that is, jr_ea5565f6e248aa49dbbb….

You will see the following generated report. This report shows the product sales by each
category in 2021:

Figure 10.13 – The Glue job’s output in the Spark driver task log

In this section, we’ve done the following:

• Created a pipeline that is composed of a crawler and an ETL job:

 � The crawler populates a table in the Data Catalog

 � The ETL job generates a report by referring to the table data

• Created the workflow, which consists of two triggers for running the crawler and the ETL job.
This workflow runs each component in the pipeline.

• Run the workflow and checked the result.

In this example, we learned that Glue workflows allow you to run data pipelines that consist of multiple
crawlers and jobs. However, you may think that it’s a bit hard to build multiple workflows that have
multiple triggers/crawlers/ETL jobs because you need to set each component one by one. This can be
solved by using provisioning tools such as AWS CloudFormation, Glue Blueprints, and so on. We’ll
look at these tools in the Automating how you provision your pipelines with provisioning tools section.
Next, we’ll look at another workflow tool: AWS Step Functions.

Orchestrating your pipelines with workflow tools 265

Using AWS Step Functions

AWS Step Functions is a serverless orchestration service that allows you to combine multiple AWS
services such as AWS Lambda, AWS Glue, and so on. It can also be used to orchestrate and run multiple
data pipelines, including multiple AWS data processing services and their related data storage. You
can define workflows with Step Functions’ graphical console, which visualizes your workflows.

Step Functions consists of state machines and tasks. Let’s look at them in more detail:

• A state machine is a workflow.

• A task is a state (or a step) in a workflow. This state represents a single unit of work that’s
performed by a state machine.

To define a Step Functions workflow, you must create a state machine that has and combines multiple
tasks, such as invoking a Lambda function, starting a Glue job run, running an Athena query, and so on.

Step Functions can handle AWS Glue APIs and you can create ETL workflows via Step Functions.
Next, we’ll orchestrate the same data pipeline that we built in the previous Glue workflows example
by building a workflow with Step Functions.

Example – orchestrating the pipeline that extracts data and generates
a report using Step Functions

In this example, we’ll create the same data pipeline that we did in the Example – orchestrating the
pipeline that extracts data and generates a report using Glue workflows section. Then, we’ll orchestrate
the pipeline with Step Functions’ workflow. This pipeline will generate a product sales report by
computing sales by each product category and year.

The Step Functions’ workflow runs the pipeline by doing the following:

1. Step Functions’ workflow triggers the crawler (ch10_2_example_workflow_acr),
which analyzes a table schema of the sales data and populates a table in Glue Data Catalog.

2. After starting the crawler, the workflow polls the crawler’s running status. If it confirms that
the crawler has finished running, it triggers the ETL job (ch10_2_example_workflow_
gen_report), which generates a report by computing sales by each product category and
year. Then the job populates the report table in the Data Catalog.

First, let’s create the pipeline.

Data Pipeline Management 266

Step 1 – creating a data pipeline with a Glue crawler and an ETL job

In this example, we’ll create the crawler and the ETL job. These will have the same configuration as the
crawler (ch10_1_example_workflow) and ETL job (ch10_1_example_workflow_
gen_report) we created in the Example – orchestrating the pipeline that extracts data and generates
a report using Glue workflows section. If you haven’t created the crawler and ETL job, please refer to
that section. Follow these steps:

1. Go to Crawlers (https://console.aws.amazon.com/glue/home?region=us-
east-1#catalog:tab=crawlers) in the AWS Glue console and choose ch10_1_
example_workflow. Then, choose Duplicate crawler from the Action tab.

2. Type ch10_2_example_workflow as the crawler’s name and choose Output in the
left pane.

3. In the crawler’s Output view (in the left pane), type example_workflow_sfn_ in Prefix
added to tables (optional) for the table.

4. After reviewing the crawler’s configuration, click Finish.

5. Next, you must create the Glue job. Before creating the job, download the Glue job script from this
book’s GitHub repository (https://github.com/PacktPublishing/Serverless-
ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-
tools/step-functions/ch10_2_example_workflow_gen_report.py).

6. Open the job in the AWS Glue Studio console (https://console.aws.amazon.
com/gluestudio/home?region=us-east-1#/jobs). Then, choose the ch10_1_
example_workflow_gen_report job and choose Clone job from the Actions tab to take over
the previous job configuration.

7. On the Job details tab, type ch10_2_example_workflow_gen_report as the job’s name.
Confirm that the script’s filename is ch10_2_example_workflow_gen_report.py.

8. On the Script tab, copy the downloaded job script to the editor. Then, click Save to save the job.

Next, we’ll create a Step Functions state machine by combining it with a Glue crawler and an ETL job.

Step 2 – creating a state machine

In this step, we’ll create a step machine that orchestrates a Glue crawler and an ETL job:

1. Before creating the job, download the state machine definition from this book’s GitHub
repository (https://github.com/PacktPublishing/Serverless-ETL-
and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-
tools/step-functions/ch10_2_example_sfn.json).

2. Open the AWS Step Functions console (https://console.aws.amazon.com/
states/home#/statemachines) and click Create state machine.

https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=crawlers
https://console.aws.amazon.com/glue/home?region=us-east-1#catalog:tab=crawlers
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10_2_example_workflow_gen_report.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10_2_example_workflow_gen_report.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10_2_example_workflow_gen_report.py
https://console.aws.amazon.com/gluestudio/home?region=us-east-1#/jobs
https://console.aws.amazon.com/gluestudio/home?region=us-east-1#/jobs
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10_2_example_sfn.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10_2_example_sfn.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10_2_example_sfn.json
https://console.aws.amazon.com/states/home#/statemachines
https://console.aws.amazon.com/states/home#/statemachines

Orchestrating your pipelines with workflow tools 267

3. On the Define state machine page, click Write your workflow in code and then Standard in
the Type section. Then, copy the downloaded definition to the script editor (by clicking the
Reload button, you can see the visualized workflow, as shown in the following screenshot).
After copying the script, click Next:

Figure 10.14 – Defining the state machine

As we’ve discussed, this state machine polls the crawler’s running status periodically (every
20 seconds). After that, the state machine starts the ETL job.

4. On the Specify details page, type ch10_2_example_workflow_sfn as the state machine’s
name and click Create new role (the IAM Role that includes the necessary permission is created
by AWS). Regarding the Logging section, by default, logging configuration is not enabled. If
necessary, you can set any log level such as ALL, ERROR, and so on.

When you scroll down the page, you may see a notification about insufficient permissions
that states “Permissions for the following action(s) cannot be auto-generated ….” After creating
the state machine, we’ll add these permissions to the IAM Role.

5. Click Create state machine. Upon doing this, the state machine you defined will be created.

Data Pipeline Management 268

6. To add the insufficient permission to the IAM Role for the state machine, open the IAM
console (https://console.aws.amazon.com/iamv2/home#/policies) and
create a new IAM policy. Copy the policy file in this bok’s GitHub repository (https://
github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-
AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/
ch10-2-sfn-additional-glue-policy.json). After creating the policy, attach
it to the IAM Role.

Now, you’re ready to run the workflow. We’ll do this in the next section via the Step Functions console.

Step 3 – running the state machine

Let’s run the workflow. In this step, we’ll run it manually from the Step Functions console. You can also
invoke the state machine via the StartExecution API (https://docs.aws.amazon.
com/step-functions/latest/apireference/API_StartExecution.html).
Follow these steps:

1. Go back to the Step Functions console, choose the ch10_2_example_workflow_sfn
state machine, and click Start execution.

2. Specify the following input to the state machine. You can copy the input from this book’s GitHub
repository: https://github.com/PacktPublishing/Serverless-ETL-and-
Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/
step-functions/ch10_2_input.json. Note that we need to replace the values of
--datalake_locaiton and --table. These parameters are processed by the state
machine and passed to the ETL job as job parameters:

Figure 10.15 – The input to the state machine

https://console.aws.amazon.com/iamv2/home#/policies
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10-2-sfn-additional-glue-policy.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10-2-sfn-additional-glue-policy.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10-2-sfn-additional-glue-policy.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10-2-sfn-additional-glue-policy.json
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10_2_input.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10_2_input.json
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/step-functions/ch10_2_input.json

Orchestrating your pipelines with workflow tools 269

3. After starting the execution, you will be able to see the running status of each task. Once the
execution has finished, you will see the following diagram:

Figure 10.16 – The completed workflow diagram

Now, let’s check out the result of executing the workflow.

Step 4 – checking the result

Here, we get the same result that we got in the Orchestrating the pipeline that extracts data and generates
a report by Glue workflows section. Therefore, we won’t look at the result in detail here, but we will
look at the output:

• Two tables were created in the Data Catalog:

 � example_workflow_sfn_sales: This was created by ch10_1_example_
workflow crawler.

 � example_workflow_sfn_sales_report: This was created by the ch10_2_
example_workflow_gen_report job.

Data Pipeline Management 270

• The report data was generated in the S3 path as s3://<your-specified-bucket-
and-path>/serverless-etl-and-analysis-w-glue/chapter10/
example-workflow-sfn/report/.

• The ETL job’s output shows the sales data of each category and year in CloudWatch Logs. You
can access this log from the Glue job, as we’ve seen previously.

In this example, we learned that Step Functions also provides running data pipelines that consist of
multiple crawlers and jobs, similar to what Glue workflows provide. Using Step Functions, you can
manage your workflows using a JSON-like template. This can make it easier to build and manage
workflows compared to manually creating workflows via a GUI application because all you need to
do is manage your templates.

Step Functions supports not only AWS Glue but also other AWS services such as AWS Lambda,
Amazon Athena, and others. By using Step Functions, you can create various workflows by combining
multiple AWS services.

Now, let’s look at Amazon Managed Workflows for Apache Airflow (MWAA) one of many available
workflow tools.

Using Amazon Managed Workflows for Apache Airflow

MWAA is a distributed orchestration service that provides programmatic workflow management.
MWAA is based on Apache Airflow (https://airflow.apache.org), whose resources
are managed by AWS. Airflow runs workflows that are expressed as DAGs, as defined by Python. By
defining workflows as DAGs, Airflow orchestrates and schedules your workflows. We won’t explain
the details of Airflow in this book, but you can refer to the public Airflow documentation if you want
to learn more: https://airflow.apache.org/docs/apache-airflow/stable/
concepts/index.html.

You can use MWAA to create workflows that combine not only AWS Glue but also other AWS services,
such as Amazon Athena, Amazon EMR, and others. Next, we’ll learn how to combine MWAA with
AWS Glue by creating the same workflow that we created in the previous two examples.

Example – orchestrating the pipeline that extracts data and generates
a report using MWAA

In this example, you’ll learn how to use MWAA as a workflow tool for Glue by creating the same
workflow and pipeline that you created for Glue workflows and Step Functions. In the workflow,
MWAA runs a crawler. After completing the crawler run, it starts an ETL job. If you haven’t set up
the MWAA environment yet, please refer to https://docs.aws.amazon.com/mwaa/
latest/userguide/get-started.html (this document link is also provided in the
Technical requirements section).

https://airflow.apache.org
https://docs.aws.amazon.com/mwaa/latest/userguide/get-started.html
https://docs.aws.amazon.com/mwaa/latest/userguide/get-started.html

Orchestrating your pipelines with workflow tools 271

Step 1 – creating a data pipeline with a Glue crawler and an ETL job

First, download the Glue job script from this book’s GitHub repository at https://github.
com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/
blob/main/Chapter10/workflow-tools/mwaa/ch10_3_example_workflow_
gen_report.py. The crawler and the ETL job that you will create here will be the same ones that
you created in Step 1 – creating a data pipeline with a Glue crawler and an ETL job in the Example –
orchestrating the pipeline that extracts data and generates a report using Glue workflows section. You’ll
create the following resources with updating configuration:

• Crawler (ch10_3_example_workflow): Create this crawler by replicating ch10_2_
example_workflow_acr crawler. Update the table prefix that the crawler creates
from example_workflow_sfn_ to example_workflow_mwaa_.

• ETL job (ch10_3_example_workflow_gen_report): Create this job by copying
the ch10_2_example_workflow_gen_report job. Update the job script from
ch10_2_example_workflow_gen_report.py to ch10_3_example_workflow_
gen_report.py (this can be downloaded from the aforementioned GitHub repository).

Now that you’ve created the crawler and job, you must set up the workflow via MWAA.

Step 2 – creating a workflow with MWAA

To create and run the DAG, you need to upload the DAG file that’s been written in Python to the S3 bucket
that is specified for your MWAA environment. The DAG file (ch10_3_example_workflow_
dag.py) can be downloaded from this book’s GitHub repository at https://github.com/
PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/
main/Chapter10/workflow-tools/mwaa/ch10_3_example_workflow_dag.
py. After downloading it, upload it to the DAG location in your S3 bucket.

After uploading the DAG file, you will see the ch10_3_example_workflow_mwaa workflow
from Airflow UI. Now, you can trigger this workflow by using the Trigger button in the Actions
column in the Airflow UI.

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/mwaa/ch10_3_example_workflow_gen_report.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/mwaa/ch10_3_example_workflow_gen_report.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/mwaa/ch10_3_example_workflow_gen_report.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/mwaa/ch10_3_example_workflow_gen_report.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/mwaa/ch10_3_example_workflow_dag.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/mwaa/ch10_3_example_workflow_dag.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/mwaa/ch10_3_example_workflow_dag.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/workflow-tools/mwaa/ch10_3_example_workflow_dag.py

Data Pipeline Management 272

Step 3 – checking the result

After running the workflow, you will see the following DAG execution result from the Airflow UI. In
particular, you will see if the DAG was successful or not, as well as concrete components such as the
sales_crawl task (which is ch10_3_example_workflow crawler-run) and gen_report
(which is ch10_3_example_workflow_gen_report job-run):

Figure 10.17 – The DAG’s execution result in Airflow UI

You will also see each of the component’s results, as follows:

• The example_workflow_mwaa_sales table is created by the sales_crawl task.

• The example_workflow_mwaa_sales_report table is created by the gen_report
task.

• The gen_report task also writes the data in your specified S3 path.

By walking through this basic example, you’ve learned that you can also use MWAA as a workflow
tool for Glue. Using MWAA, you can programmatically manage your workflows with Python. This can
also make it easier to build and manage workflows compared to manually creating them. Additionally,
you can provision workflows more safely by adding testing code steps (such as unit tests, integration
tests, and so on) to your development life cycle.

utomating how you provision your pipelines with provisioning tools 273

As Step Functions does, MWAA supports not only Glue but also other AWS services, such as Amazon
Athena, Amazon EMR, and others. You can find more examples of creating workflows, including Glue
by MWAA in the AWS Glue public document and AWS big data blog posts. If you’re interested in this
example, please refer to the Further reading section at the end of this chapter.

As you’ve seen, several workflow tools, such as Glue workflows, Step Functions, and MWAA, can
run your pipeline components step by step based on your workflow’s definition, such as scheduling,
on-demand, and so on. However, you need to create pipeline components before building and running
workflows. If you need to create pipelines that consist of a lot of components, it’s not easy to manually
create, update, and replicate the pipelines, which you did in each of the preceding examples. To make
these operations easy, you can use another tool that builds resources on your behalf. This tool is
generally called provisioning tools. We’ll look at this in the next section.

utomating how you provision your pipelines with
provisioning tools
In the previous section, Orchestrating your pipelines with workflow tools, you learned how to orchestrate
multiple pipelines and automate how they run with one tool. Using workflow tools for multiple pipelines
can not only avoid human error but can also help you understand what pipelines do.

Note that as your system grows, you will build a lot of pipelines, and then you will build workflows
to orchestrate them. If you have a lot of workflows as your system grows, you may need to consider
how you should manage them. If you manually build several workflows and deploy them on your
system, similar to how you would build and run pipelines manually, you may build some workflows
that contain bugs. You can do this by specifying incorrect data sources, connecting incorrect pipeline
jobs, and so on. As a result, this will corrupt your data and system, and pipeline job failures will occur
due to broken workflows being deployed.

So, how can you avoid these kinds of errors when building workflows? One of the solutions involves
using provisioning tools such as AWS CloudFormation (https://aws.amazon.com/
cloudformation/), AWS Glue Blueprints (https://docs.aws.amazon.com/glue/
latest/dg/blueprints-overview.html), Terraform (https://www.terraform.
io), which is provided by Hashicorp, and others.

https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/glue/latest/dg/blueprints-overview.html
https://docs.aws.amazon.com/glue/latest/dg/blueprints-overview.html
https://www.terraform.io
https://www.terraform.io

Data Pipeline Management 274

Provisioning tools generally deploy resources defined in the template, which you specify as JSON,
YAML, and so on. Here’s a simple example template of AWS CloudFormation, which creates the
glue_db database and then the glue_table table in your Glue Data Catalog:

Figure 10.18 – An example of a CloudFormation template

As mentioned previously, in this example, by using provisioning tools, you can manage your pipelines
and workflows as a template that’s in JSON, YAML format, and so on. In addition to this, there are
provisioning tools that allow you to define and manage your pipelines and workflows as code. For
example, you can define your data pipelines with popular programming languages, and you can also
safely deploy them by running your resource definition code. AWS Glue provides this programmatic
resource definition functionality via AWS Glue Blueprints. Other tools are provided by AWS for
this purpose, such as AWS Cloud Development Kit (AWS CDK), which automatically creates
CloudFormation templates based on your code.

In this section, you’ll learn how to build and manage your workflows and pipelines with provisioning
tools. Specifically, we’ll focus on the following two services, which are provided by AWS:

• AWS CloudFormation

• AWS Glue Blueprints

First, we’ll look at AWS CloudFormation.

utomating how you provision your pipelines with provisioning tools 275

Provisioning resources with AWS CloudFormation

AWS CloudFormation allows you to model and set up AWS resources with a template where you
define the necessary resources. CloudFormation mainly provides the following features for users:

• Simplifying your resource management: All you need to do is create or update a template.
Based on this template, CloudFormation sets up resources for your environment on your behalf.

• Quickly replicating your resources: Once you have defined a template, by reusing it, you can
create or update your resources over and over.

• Controlling and tracking changes in your resources: By defining your resources as a text-based
file (we’ve been calling this a template), you can control and track your resources.

You can define the resources that you want to deploy, and related resource properties in a template in
JSON or YAML format. In CloudFormation, defined resources in a template are handled as a single
unit. This unit is called a stack. If you want to change your running resources and update a stack, you
can create sets of your proposed changes before making changes to them. These sets are called change
sets. They allow you to see how your running resources change before you update them.

By using CloudFormation for your data pipelines, you can build data pipeline resources such as data
processing services, workflows, and more with a template. Additionally, CloudFormation can track
changes in your pipeline resources. Once you have defined data pipelines and workflows in a template,
you don’t need to manually create or update pipelines with GUI tools. Therefore, CloudFormation helps
not only easily provision resources but also avoid human error, such as workflow misconfiguration
and incorrectly setting data processing engines.

CloudFormation covers a lot of AWS services, including Glue. Through a template, you can set up Glue
resources such as databases, tables, crawlers, jobs, and more. To learn more about the Glue resources
that CloudFormation covers, please refer to https://docs.aws.amazon.com/glue/
latest/dg/populate-with-cloudformation-templates.html.

Now, let’s learn how to set up a schedule-based data pipeline that consists of Glue ETL jobs and Glue
workflows by defining resources in a CloudFormation template.

Example – provisioning a Glue workflow using a CloudFormation template

In this example, you will extend the data pipeline that you created in the Orchestrating your pipelines
with workflow tools section. In particular, you will provision the ch10_4_example_cfn_ Glue
workflow by CloudFormation (this workflow has been omitted in each component name in the
following diagram). This workflow runs each component in the pipeline as follows:

1. The ondemand_start component triggers the acr crawler, which populates a table based
on the sales data.

https://docs.aws.amazon.com/glue/latest/dg/populate-with-cloudformation-templates.html
https://docs.aws.amazon.com/glue/latest/dg/populate-with-cloudformation-templates.html

Data Pipeline Management 276

2. After crawler-run is completed, event_run_partitioning triggers the
partitioning job. This job extracts the data from the Amazon Customer Reviews dataset
and writes the data to the S3 path with year and month-based partitioning.

3. Once the partitioning job has finished running, event_run_gen_report triggers
the gen_report job. This job generates the same report that the job in the Orchestrating
your pipelines with workflow tools section did:

Figure 10.19 – The Glue workflow graph you’ll create via CloudFormation

Let’s create this workflow using CloudFormation.

Step 1 – putting ETL job scripts in your S3 bucket

Before provisioning the resources via CloudFormation, copy the necessary job scripts to your S3
bucket by using the S3 console or the aws s3 cp <your_local_script_location>
s3://<your-bucket-and-path>/ AWS CLI command. You can download these job scripts
from the following GitHub repository links:

• https://github.com/PacktPublishing/Serverless-ETL-and-
Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-
tools/cloudformation/ch10_4_example_cf_partitioning.py

• https://github.com/PacktPublishing/Serverless-ETL-and-
Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-
tools/cloudformation/ch10_4_example_cf_gen_report.py

Next, you’ll provision the crawler, ETL jobs, and workflow.

Step 2 – provisioning triggers, the crawler, ETL jobs, and the workflow via
a CloudFormation template

You can provision the resources in this book’s GitHub repository with a CloudFormation template
(https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-
with-AWS-Glue/blob/main/Chapter10/provisioning-tools/cloudformation/
ch10_4_example_cf.yml). Follow these steps:

1. Open the CloudFormation console (https://console.aws.amazon.com/
cloudformation/home) and click Create stack, then With new resources (standard),
at the top right of the page.

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/cloudformation/ch10_4_example_cf_partitioning.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/cloudformation/ch10_4_example_cf_partitioning.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/cloudformation/ch10_4_example_cf_partitioning.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/cloudformation/ch10_4_example_cf_gen_report.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/cloudformation/ch10_4_example_cf_gen_report.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/cloudformation/ch10_4_example_cf_gen_report.py
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/cloudformation/ch10_4_example_cf.yml
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/cloudformation/ch10_4_example_cf.yml
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/cloudformation/ch10_4_example_cf.yml
https://console.aws.amazon.com/cloudformation/home
https://console.aws.amazon.com/cloudformation/home

utomating how you provision your pipelines with provisioning tools 277

2. Choose Template is ready and upload your downloaded YAML file (ch10_4_example_
cf.yml).

3. Follow each description and type in the necessary information. Then, click Next so that you can
provision the resources. It will take a few minutes to create resources via the CloudFormation stack:

Figure 10.20 – The AWS Management console view for filling in parameters

Data Pipeline Management 278

4. Once resource provisioning has been completed, the stack’s status will appear as CREATE_
COMPLETE on the CloudFormation console.

Next, you will check the provisioned resources.

Step 3 – checking the provisioned resources

You will see the following resources that have been provisioned by the CloudFormation stack on the
Glue console:

• Triggers:

 � ch10_4_example_cf_ondemand_start

 � ch10_4_example_cf_event_run_partitioning

 � ch10_4_example_cf_event_run_gen_report

• Crawler: ch10_4_example_cf

• ETL jobs:

 � ch10_4_example_cf_partitioning

 � ch10_4_example_cf_gen_report

• Workflow: ch10_r_example_cf

This workflow visualizes the same diagram as the one shown in Figure 10.43.

You can also run this workflow by choosing Run from the Actions menu in the Glue console (https://
console.aws.amazon.com/glue/home#etl:tab=workflows). In addition to the
same generated reports that we got in the previous section, the pipeline also replicates the Amazon
Customer Reviews dataset to the S3 bucket that you specified as the CloudFormation stack parameter.
In particular, you will be able to see the replicated files by using the following AWS CLI command:

$ aws s3 ls s3://<your-bucket-and-path>/serverless-etl-and-
analysis-w-glue/chapter10/example-cf/data/ --recursive

YYYY-MM-dd 01:23:45 XXXX <path>/serverless-etl-and-
analysis-w-glue/chapter10/example-cf/data/category=grocery/
year=2021/month=6/run-xxxxxxxxxx-part-block-0-0-r-xxxxx-snappy.
parquet

https://console.aws.amazon.com/glue/home#etl:tab=workflows
https://console.aws.amazon.com/glue/home#etl:tab=workflows

utomating how you provision your pipelines with provisioning tools 279

In this example, you learned that CloudFormation helps with the resource provisioning process. If you
create that workflow and pipeline on the AWS Glue console, you need to create and configure at least
seven components – that is, three triggers, one crawler, two ETL jobs, and this workflow. Additionally,
if you try to replicate this workflow too many times, the process will be difficult (for example, if you
replicate this into 10 workflows, you need to set up at least 70 components). However, if you create a
CloudFormation template and create resources using that template, it becomes easier to set up multiple
workflows compared to setting up each workflow manually from the Glue console.

You can find more examples of Glue resource provisioning by CloudFormation in the AWS Glue
public document and AWS big data blog posts. If you’re interested in such examples, please refer to
the Further reading section at the end of this chapter.

Provisioning AWS Glue workflows and resources with AWS Glue
Blueprints

AWS Glue Blueprints allows you to create and share AWS Glue workflows by defining your workflow
as a single blueprint, which is similar to using a template. In particular, you can build pipelines by
specifying Glue ETL jobs, a crawler, and related parameters that are passed to your Glue jobs, crawlers,
workflows, and so on in your blueprint. Based on a blueprint, Glue Blueprints automatically generate
workflows. Therefore, you don’t need to manually set up workflows from the AWS Glue console.

To create a blueprint, you need to define the following components and package them as a ZIP archive file:

• A layout file implemented by Python: You can define crawlers, ETL jobs, and the relevant
workflow, including your pipeline logic, in this file. When the layout file is run by Glue, your
defined workflows are returned and generated.

• A configuration file: You need to set the function name that returns workflows and is defined
in the layout file. You can set relevant workflow components such as the workflow names, data
types, user input properties, and so on.

• ETL job scripts and the relevant files (optional): Here, you can specify the location of your
ETL job scripts to create them and specify the relevant files in the layout to process them.

Let’s look at a basic example of a blueprint that consists of a layout file (layout.py) and a configuration
file (blueprint.cfg). By applying this blueprint for Glue, the workflow that contains an ETL
job, sample_etl_job_bp, will be created. The job’s configuration, such as the Glue job’s script
location, Glue job role, worker type, and so on, is set by the implementation in the layout.py
file. Additionally, you can set any Glue job script location by parameterizing the script location that’s
defined in ScriptLocation, in parameterSpec, in blueprint.cfg.

Data Pipeline Management 280

The following code shows the Glue workflow and component definitions in layout.py:

def generate_layout(user_params, system_params):

 etl_job = Job(

 Name=»sample_etl_job_bp",

 Command={

 «Name»: «glueetl",

 «ScriptLocation": user_params['ScriptLocation'],

 «PythonVersion": "3"},

 Role=»your_glue_job_role",

 WorkerType="G.1X",

 NumberOfWorkers=5,

 GlueVersion="3.0")

 return Workflow(Name="sample_worflow_bp",
Entities=Entities(Jobs=[etl_job]))

The following code shows the Glue workflow parameter configuration in blueprint.cfg:

{

 «layoutGenerator": "project.layout.generate_layout",

 «parameterSpec": {

 «ScriptLocation": {

 «type»: «S3Uri»,

 «collection»: false,

 «description»: «Specify the S3 path to store your
glue job script.»

 }

 }

}

After creating a workflow with this blueprint, you will be able to see the workflow in the AWS Glue
console, as shown in the following screenshot:

utomating how you provision your pipelines with provisioning tools 281

Figure 10.21 – A workflow that includes an ETL job generated by a blueprint

Using Glue Blueprints, you can easily create, replicate, and manage your workflow by implementing a
layout file with Python and a configuration file with JSON. The AWS Glue public document (https://
docs.aws.amazon.com/glue/latest/dg/blueprints-overview.html) shows
what Glue Blueprints is, as well as what your job role needs to do based on three patterns of personas,
such as Developer, Administrator, and Data Analyst. Next, you will set up the scheduled-based workflow
that you tried to set up in the Provisioning a Glue workflow using a CloudFormation template section.
You will do so by implementing a blueprint that includes a layout file and the necessary configuration.

Example – provisioning a Glue workflow using Glue Blueprints

In this example, by using Glue Blueprints, you will build the same workflow and pipeline that you
did in the Provisioning a Glue workflow using a CloudFormation template section. In particular, the
following resources will be provisioned via Glue Blueprints:

• Workflow: ch10_5_example_bp: This generates a report by running the necessary
crawler and ETL jobs

• Triggers:

 � ch10_5_example_bp_ondemand_start: The entry point of the workflow. This
triggers the ch10_5_example_bp crawler

https://docs.aws.amazon.com/glue/latest/dg/blueprints-overview.html
https://docs.aws.amazon.com/glue/latest/dg/blueprints-overview.html

Data Pipeline Management 282

 � ch10_5_example_bp_event_run_partitioning: This triggers the ch10_5_
example_bp_partitioning job

 � ch10_5_example_bp_event_run_gen_report: This triggers the ch10_5_
example_bp_gen_report job

• Crawler: ch10_5_example_bp: This populates a table based on the Amazon Customer
Reviews dataset

• ETL jobs:

 � ch10_5_example_bp_partitioning: This extracts the dataset and writes the data
to S3 with year and month-based partitioning

 � ch10_5_example_bp_gen_report: This generates the sales report

To create and provision those resources, complete the following steps.

Step 1 – downloading and uploading the blueprint package

Download the ZIP-archived package from this book’s GitHub repository: https://github.
com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/
blob/main/Chapter10/provisioning-tools/blueprints/chapter10_5_
example_bp.zip. This package includes the following layout, configuration, and relevant job
scripts. You can also view the content of each script in this book’s GitHub repository (https://
github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-
Glue/tree/main/Chapter10/provisioning-tools/blueprints/scripts):

• layout.py

• blueprint.cfg

• ch10_5_example_bp_partitioning.py

• ch10_5_example_bp_gen_report.py

In this example, the two job scripts (ending with .py) are copied to the S3 location that you specify
with layout.py. After downloading the ZIP package, upload it to your S3 bucket.

Step 2 – provisioning triggers, the crawler, ETL jobs, and the workflow via the
blueprint

Now, you’re ready to provision the resources. First, you need to set up the blueprint. Follow these steps:

1. Access Blueprints in the Glue console (https://console.aws.amazon.com/
glue/home#etl:tab=blueprints) and click Add blueprint.

2. Type ch10_5_example_bp as the blueprint’s name and specify the S3 path where you
uploaded the package. Then, click Add blueprint.

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/blueprints/chapter10_5_example_bp.zip
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/blueprints/chapter10_5_example_bp.zip
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/blueprints/chapter10_5_example_bp.zip
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/blob/main/Chapter10/provisioning-tools/blueprints/chapter10_5_example_bp.zip
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter10/provisioning-tools/blueprints/scripts
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter10/provisioning-tools/blueprints/scripts
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter10/provisioning-tools/blueprints/scripts
https://console.aws.amazon.com/glue/home#etl:tab=blueprints
https://console.aws.amazon.com/glue/home#etl:tab=blueprints

utomating how you provision your pipelines with provisioning tools 283

Once the blueprint’s status is active, you must create the workflow. Follow these steps:

1. Click Create workflow on the Blueprints page.

2. Type in the necessary information, as shown in the following screenshot. Then, click Next so
that you can provision the resources. After that, click Submit:

Figure 10.22 – Workflow configuration

Data Pipeline Management 284

3. Once the blueprint successfully creates the ch10_5_example_bp workflow, go to View
in the Actions menu in the Blueprints console. You will see the following output:

Figure 10.23 – Blueprint run status

Next, you will check the provisioned resources.

Step 3 – checking the provisioned resources

First, you can check the resources that have been created – that is, the workflow, triggers, the crawler,
and the ETL jobs. The workflow visualizes the same graph as the one shown in Figure 10.43.

You can also run this workflow in the Glue console (https://console.aws.amazon.com/
glue/home#etl:tab=workflows). Similar to what happened in the Provisioning a Glue
workflow using a CloudFormation template section, the workflow replicates the Amazon Customer
Reviews dataset to the specified S3 bucket and generates the report.

Blueprints also make provisioning resources easier than setting up resources manually from the
Glue console. In addition to this basic example, you can try out more advanced examples by going to
the GitHub repository provided by AWS: https://github.com/awslabs/aws-glue-
blueprint-libs/tree/master/samples.

Developing and maintaining your data pipelines
Finally, let’s learn how to grow and maintain data pipelines. Your requirements and demands for data
are always changing based on your company’s growth, market behaviors, business matters, technological
shifts, and more. To meet the requirements and demands for data, you need to develop and update
your data pipelines in a short period. Additionally, you need to care about the mechanism for detecting
problems in your data pipeline implementations, safe pipeline deployment to avoid breaking your
pipelines, and so on. For these considerations, you can apply the following system and concepts to
your data pipeline development cycles. These are based on DevOps practices:

• Version control systems (VCSs): You can track changes, roll back code, trigger tests, and so
on. Git is one of the most popular VCSs (more precisely, a distributed VCS).

• Continuous integration (CI): This is one of the software practices for building and testing all
the changes on your system and integrating them only after successful tests.

https://console.aws.amazon.com/glue/home#etl:tab=workflows
https://console.aws.amazon.com/glue/home#etl:tab=workflows

Developing and maintaining your data pipelines 285

• Continuous delivery (CD): This is similar to the concept of CI but is an extension of the concept.
CI is usually for a single code base, while CD is for your systems. CD aims to continuously
check if components, systems, and infrastructures have been prepared for production. The
deployment usually needs explicit approvals. Sometimes, the deployment process is automated,
which means that committed changes are instantly deployed on production after all tests are
successfully passed. This automatic deployment is called continuous deployment.

There are a lot of references to deployment pipelines (NOT data pipelines), including the CI/CD
process, such as about what CI/CD is, how to build CI/CD pipelines, and so on. Furthermore, actual
deployment pipelines depend on company, organization, team, and system environments. Therefore,
we won’t cover the deployment process in this section. However, we will look at the basic development
process of data pipelines by focusing on AWS Glue and the related tools we’ve seen so far:

• Developing AWS Glue ETL jobs locally

• Deploying your AWS Glue ETL jobs

• Deploying your workflows and pipelines using provisioning tools such as Infrastructure as
Code (IaC)

First, you will learn how to develop Glue ETL jobs locally.

Developing AWS Glue ETL jobs locally

AWS Glue provides various local development environments for effectively coding Glue ETL job scripts.
You can use various environments for your local development. Let’s take a look at each module quickly:

• AWS Glue ETL Library: You can download the ETL library on your desktop and develop
Glue ETL jobs using Python or Scala. The public documentation (https://docs.aws.
amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.
html) shows how to use the library.

• Docker images for Glue ETL: You can also use the ETL jobs with Docker images (https://
hub.docker.com/r/amazon/aws-glue-libs) provided by AWS. At the time of
writing, up to Glue 3.0 is supported. We won’t cover the steps to develop Glue ETL jobs with a
Docker image, but you can refer to the concrete steps that use PyCharm by going to https://
aws.amazon.com/blogs/big-data/developing-aws-glue-etl-jobs-
locally-using-a-container/.

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-libraries.html
https://hub.docker.com/r/amazon/aws-glue-libs
https://hub.docker.com/r/amazon/aws-glue-libs
https://aws.amazon.com/blogs/big-data/developing-aws-glue-etl-jobs-locally-using-a-container/
https://aws.amazon.com/blogs/big-data/developing-aws-glue-etl-jobs-locally-using-a-container/
https://aws.amazon.com/blogs/big-data/developing-aws-glue-etl-jobs-locally-using-a-container/

Data Pipeline Management 286

• Interactive Session: This is one of the Glue functionalities that allows you to develop Glue ETL
jobs easily. You can interactively develop your ETL job scripts on Jupyter Notebook by connecting
the Glue ETL job system. In the Glue Studio console, you can set up Jupyter Notebook and use
it for development purposes. Furthermore, AWS Glue provides a Python module so that you
can connect from your local desktop to the Glue job system and use the interactive session.
You can install the module via pip from https://pypi.org/project/aws-glue-
sessions/. Please refer to the public document for details about the setup steps: https://
docs.aws.amazon.com/glue/latest/dg/interactive-sessions.html.

Note – Local Development Restrictions
When you use the local library, at the time of writing, the JobBookmarks, Glue parquet writer,
and FillMissingValues/FindMatches transforms in Glue ML are not supported. You need to
use them within the Glue job system.

Regarding the Glue ETL job development cycle, Interactive Session is one of the ways to start checking
how you process data, how you can implement Glue job scripts, and so on. If you already have Jupyter
Notebook, you can use it on the Glue Studio console by uploading it to the console. You can also
use Glue ETL Library and Docker images for your Glue ETL jobs development cycle to write tests,
implement code, commit changes, build a package, and more.

Next, you will learn how to deploy your developed Glue ETL job code in the Glue job system.

Deploying AWS Glue ETL jobs

In this section, you’ll learn how to deploy Glue ETL jobs by applying changes to your code base. When
you initially create or update your ETL jobs, the following two styles are considered:

• Update your job scripts and relevant packages in the S3 location: In this style, you define the
ETL jobs first. Then, you continuously update the scripts and packages in the S3 location that
you specified as a script filename, Python library path, dependent Jars path, and/or reference
files path in your ETL jobs.

• Deploy your Glue jobs: In addition to updating job scripts and packages, you can deploy your
Glue job by using provisioning tools. We’ll look at this in the next section.

For both styles, you can create a CI/CD pipeline and make it take on the following challenges while
developing ETL jobs:

• Continuous development with unit and integration tests

• Continuous integration and build

• Testing ETL jobs for actual (small) datasets

https://pypi.org/project/aws-glue-sessions/
https://pypi.org/project/aws-glue-sessions/

Developing and maintaining your data pipelines 287

• Testing the quality of datasets

• Delivering ETL jobs in test and production environments

For these challenges, AWS provides developer tools (https://aws.amazon.com/
tools/#DevOps_and_Automation) such as AWS CodeCommit, AWS CodePipeline, AWS
CodeBuild, and others. You can build CI/CD pipelines by combining these tools. There is a variety
of AWS-provided tools to help with the development process, but we will cover the ones mentioned
previously as they are often used in the ETL jobs development process to create a basic pipeline. Let’s
take a quick look at each tool and how to use it in the ETL jobs development process.

• AWS CodeCommit: This is an AWS-managed version control service. You can use it as a code
repository to manage your job scripts using Git. CodeCommit can also integrate with other
AWS tools such as AWS CodeBuild, AWS CodePipeline, AWS Lambda, and others.

• AWS CodeBuild: This is an AWS-managed build service. By using CodeBuild, you can compile
your code, run tests, and create artifacts for deployment. CodeBuild covers various environments,
such as operating systems (Amazon Linux 2, Ubuntu, and Windows Server 2019), programming
language runtimes (Java and Python), build tools (Apache Maven and Gradle), and so on.
You can also specify your custom image as a build environment. CodeBuild supports not only
CodeCommit as a source provider but also Amazon S3, GitHub, BitBucket, and more. You can
build, test, and create an updated ETL job script in this process.

• AWS CodePipeline: This is an AWS-managed continuous delivery service. By defining release
pipelines, CodePipeline automates the pipelines, including build, test, and deploy. For CodePipeline,
you define the source, build, and deploy stages. For the source stage, you can specify your code
repository and its branch, such as AWS CodeCommit, Amazon ECS, Amazon S3, GitHub, and
so on. For the build stage, you can select AWS CodeBuild or Jenkins. For the deploy stage, you
can select a deployment provider, such as AWS CloudFormation, AWS ECS, or Amazon S3.
For example, if you select Amazon S3 as your deployment provider, CodePipeline delivers your
job scripts in your ETL job’s S3 location. Then, you can run the updated job.

By using these tools, you can effectively develop Glue ETL jobs in a CI/CD pipeline.

Note – Data Quality Tests
AWS provides Deequ (https://github.com/awslabs/deequ), an open source
data quality unit test tool. This tool checks whether your data is malformed or corrupted, and
then computes quality metrics of your data. Please refer to the Managing data quality section
in Chapter 6, Data Management, to learn how to use Deequ with Glue. If you wish to consider
data quality tests for your data processing, please refer to the following blog post: https://
aws.amazon.com/blogs/big-data/test-data-quality-at-scale-
with-deequ/. This describes how to use it within Apache Spark.

Now, let’s learn how to deploy workflows and pipelines.

https://aws.amazon.com/tools/#DevOps_and_Automation
https://aws.amazon.com/tools/#DevOps_and_Automation
https://github.com/awslabs/deequ
https://aws.amazon.com/blogs/big-data/test-data-quality-at-scale-with-deequ/
https://aws.amazon.com/blogs/big-data/test-data-quality-at-scale-with-deequ/
https://aws.amazon.com/blogs/big-data/test-data-quality-at-scale-with-deequ/

Data Pipeline Management 288

Deploying workflows and pipelines using provisioning tools such
as IaC

In this section, you’ll apply the concept of the CI/CD pipeline for AWS Glue ETL jobs to the data pipelines
and workflows you’ve developed. You can also manage the development process of your workflows,
data pipelines, and relevant components such as Glue ETL jobs, Glue crawlers, and so on using CI/CD
pipelines. In particular, you can use template-based workflows or provisioning tools to automatically
deploy and manage your data processing infrastructure. This infrastructure management is based on
IaC, which applies software development practices to infrastructure automation. By managing your
infrastructure based on code, you can automate building or changing your infrastructure quickly and
safely within CI, CD, and so on.

Regarding workflows and data pipelines, you can build, test, and deploy workflows and their relevant
components in CI/CD pipelines by developing template-based files or provisioning tools such as AWS
Step Functions, JSON templates, AWS CloudFormation, YAML templates, MWAA Python DAGs,
Blueprint Python code, and more.

Let’s take a quick look at the example from the Provisioning AWS Glue workflows and resources with
AWS Glue Blueprints section. There, you defined workflows, a crawler, and Glue ETL jobs in the
same repository and deployed each component. Blueprints allows you to programmatically manage
workflows and the relevant components. Therefore, you can manage workflows, crawlers, and ETL
jobs in the same repository as a data pipeline resource. You can also add tests for Blueprints, not just
ETL job scripts. Then, you can build, test, and deploy the Blueprints code and ETL job scripts at the
same time in a CI/CD pipeline that contains your data processing infrastructure. This can make your
development process safer and faster compared to manually validating your infrastructure code.

Summary
In this chapter, you learned how to build, manage, and maintain data pipelines. As the first step of
constructing data pipelines, you need to choose your data processing services based on your company/
organization/team, supported software, cost, your data schema/size/numbers, your data processing
resource limit (memory and CPU), and so on.

After choosing the data processing service, you can run data pipeline flows using workflow tools.
AWS Glue provides AWS Glue workflows as workflow tools. Other tools you can use for this process
include AWS Step Functions and Amazon Managed Workflows for Apache Airflow. We looked at
each tool by covering examples.

Then, you learned how to automate provisioning workflows and data pipelines with provisioning tools
such as CloudFormation and AWS Glue Blueprints.

Further reading 289

Finally, you learned how to develop and maintain workflows and data pipelines based on CI and CD. To
achieve this, AWS provides a variety of developer tools such as AWS CodeCommit, AWS CodeBuild, and
AWS CodePipeline. You also learned how to safely deploy workflows and data pipelines based on IaC.

In the next chapter, you will learn to monitor your data platform and also learn about its specific
components like AWS Glue.

Further reading
To learn more about what was covered in this chapter, take a look at the following resources:

• Examples of provisioning Glue resources by AWS CloudFormation:

 � https://docs.aws.amazon.com/glue/latest/dg/populate-with-
cloudformation-templates.html

 � Build a serverless event-driven workflow with AWS Glue and Amazon Eventbridge: https://
aws.amazon.com/jp/blogs/big-data/build-a-serverless-event-
driven-workflow-with-aws-glue-and-amazon-eventbridge/

• An example of creating workflows using AWS Glue and MWAA: https://aws.amazon.
com/blogs/big-data/building-complex-workflows-with-amazon-
mwaa-aws-step-functions-aws-glue-and-amazon-emr/

https://docs.aws.amazon.com/glue/latest/dg/populate-with-cloudformation-templates.html
https://docs.aws.amazon.com/glue/latest/dg/populate-with-cloudformation-templates.html
https://aws.amazon.com/jp/blogs/big-data/build-a-serverless-event-driven-workflow-with-aws-glue-and-amazon-eventbridge/
https://aws.amazon.com/jp/blogs/big-data/build-a-serverless-event-driven-workflow-with-aws-glue-and-amazon-eventbridge/
https://aws.amazon.com/jp/blogs/big-data/build-a-serverless-event-driven-workflow-with-aws-glue-and-amazon-eventbridge/
https://aws.amazon.com/blogs/big-data/building-complex-workflows-with-amazon-mwaa-aws-step-functions-aws-glue-and-amazon-emr/
https://aws.amazon.com/blogs/big-data/building-complex-workflows-with-amazon-mwaa-aws-step-functions-aws-glue-and-amazon-emr/
https://aws.amazon.com/blogs/big-data/building-complex-workflows-with-amazon-mwaa-aws-step-functions-aws-glue-and-amazon-emr/

Section 3 –
Tuning, Monitoring, Data

Lake Common Scenarios, and
Interesting Edge Cases

Here, you will learn various ways to monitor and troubleshoot an AWS Glue job. You will also learn
about different ways to consume data after it is processed by AWS Glue and apply the concepts
introduced in this book to real-world data transformation scenarios.

This section includes the following chapters:

• Chapter 11, Monitoring

• Chapter 12, Tuning, Debugging, and Troubleshooting

• Chapter 13, Data Analysis

• Chapter 14, ML Integration

• Chapter 15, Architecting Data Lakes for Real-World Scenarios and Edge Cases

11
Monitoring

In the previous chapter, you learned how to build and manage your data pipeline with AWS Glue in
detail. With that knowledge, you are now able to build a data platform powered by AWS Glue. Cool!
But this is not the end of your work with the data platform. It is just the starting point.

Imagine that you have built your data platform using AWS Glue. If your data platform does not
meet the predefined business requirements, end users will be confused and won’t be able to make
a reasonable decision based on the data. If your data platform gives outdated results, the decisions
made based on the data will also be outdated. If your data platform is too slow, end users won’t be
able to make timely decisions and could lose business opportunities. If your data platform does not
check data quality and accuracy, no one can use it for critical decisions. If no end users query your
data platform due to a lack of knowledge, your data platform is meaningless.

To monitor the preceding situations, you need to have some visibility of what’s going on, what situations
need to be detected, and how to react to them. It is crucial to monitor your data platform to make
and keep it valuable.

In this chapter, we will start with the bigger perspective of monitoring the entire data platform before
diving deep into specific components such as AWS Glue. Through the topics discussed in this chapter,
you will learn how to monitor your data platform and improve your data platform efficiently. Then,
you will dive deep into how to monitor AWS Glue jobs, crawlers, and catalogs, and also learn how to
monitor other services such as Amazon Athena, Amazon Redshift, and more.

In this chapter, we will cover the following topics:

• Defining a service-level agreement (SLA) for a data platform

• Monitoring the SLA of a data platform

• Managing the components of a data platform

• Analyzing usage

Monitoring294

Defining an SLA for a data platform
When operating a data platform, it is essential to define a healthy state for the entire data platform and
maintain that state. Think about what kind of state the data platform should be in. It would be good
to define an SLA as an indicator of health. This SLA does not always need to be communicated to end
users but is used as an internal indicator to measure whether your data platform is healthy or not.

The basic strategy is to maintain a certain data platform state where the SLA is met and then recover
to the normal state when it fails. In other words, monitoring is performed to understand when the
platform has deviated from a normal state to an abnormal state, and recovery is performed to return
the data platform from an abnormal state to a normal state, as illustrated in the following diagram:

Figure 11.1 – The monitoring cycle

Now, I would like to look at an example of how to define the health of a data platform. First, there are
a few key perspectives of a data platform to consider:

• The freshness of the data

• The accuracy of the data

• The performance of the queries

• The overall cost of the data platform

Regarding the normal state of the freshness of data, one approach to define the normal state is to
determine a criterion, such as how long it can take from generating the data to the data being ready
for queries. An example SLA is a one-hour threshold for the latency between the event timestamp
and the timestamp that you can start querying from.

Another approach for defining the normal state of the freshness of data is to determine a deadline for
data to be ready for queries. For example, let’s say you have a business meeting at a fixed slot every
week, and you need to create a report to use for that meeting. In this scenario, the normal state can
be defined based on the fact that the data becomes available by the specified deadline. An example
SLA is that data needs to be ready by 9:00 a.m. every Wednesday.

You can also think of health criteria and SLAs in terms of data accuracy, performance, cost, and more.
You will need to organize your SLAs based on your use cases and your requirements.

Monitoring the SLA of a data platform 295

In this section, you learned how to define a good SLA for your data platform. In the next section, we
will learn how to monitor the defined SLA of your data platform.

Monitoring the SLA of a data platform
Let’s think about the implementation of a mechanism to monitor the health of a data platform. There
are two common strategies to identify the state of a data platform:

• Fact-based approach: Inspect the end user activities and retrieve the metrics.

• Simulation-based approach: Simulate the end user activities and measure
the metrics.

To monitor performance and cost SLAs, you can inspect the end user activities from the metrics
and log messages. For Amazon Athena, you will see a variety of metrics including query planning
time and total execution time via Amazon CloudWatch (https://docs.aws.amazon.
com/athena/latest/ug/query-metrics-viewing.html) or Amazon Athena’s
query history (https://docs.aws.amazon.com/athena/latest/ug/querying.
html#queries-viewing-history). For Amazon Redshift, you can rely on system tables:
SVL_QUERY_SUMMARY (https://docs.aws.amazon.com/redshift/latest/dg/
using-SVL-Query-Summary.html) and SVL_QUERY_REPORT (https://docs.
aws.amazon.com/redshift/latest/dg/using-SVL-Query-Report.html).

To monitor the SLA on the freshness and the accuracy of data, you can retrieve an end user’s query
results or simulate end user queries to get the latest status. Typically, a simulation-based approach
is more useful because you can be flexible in terms of which value you rely on and how frequently
you monitor the state. It is similar to synthetic monitoring (https://en.wikipedia.org/
wiki/Synthetic_monitoring) for web applications and systems.

For example, you can run queries to select records that have been ordered by timestamp
to extract the latest record to see how much latency you have in your data platform.
Here’s an example Athena query to extract the latest record using ORDER BY based on
the date column:

Figure 11.2 – An Athena query example to monitor data freshness

https://docs.aws.amazon.com/athena/latest/ug/query-metrics-viewing.html
https://docs.aws.amazon.com/athena/latest/ug/query-metrics-viewing.html
https://docs.aws.amazon.com/redshift/latest/dg/using-SVL-Query-Summary.html
https://docs.aws.amazon.com/redshift/latest/dg/using-SVL-Query-Summary.html
https://docs.aws.amazon.com/redshift/latest/dg/using-SVL-Query-Report.html
https://docs.aws.amazon.com/redshift/latest/dg/using-SVL-Query-Report.html

Monitoring296

As you learned in Chapter 9, Data Sharing, you can also monitor and manage data accuracy by defining
data quality rules. Data quality rules allow you to populate data quality metrics and identify whether
your data meets predefined criteria. You can use the result of data quality checks in your monitoring
system for your data platform.

In this section, you learned how to monitor an overall data platform. Next, we will cover how to
monitor each component of your data platform.

Monitoring the components of a data platform
Data platforms can consist of multiple components: data ingestion jobs, ETL jobs, data crawlers,
data catalogs, ad hoc query engines, BI dashboards, and more. In order to detect potential issues that
can affect an end user’s experience, it is recommended that you monitor the individual components
of your data platform. Here’s a list of key topics to monitor AWS Glue and its related components:

• Monitoring overall statistics

• Monitoring state changes

• Monitoring delay

• Monitoring performance

• Monitoring common failures

• Monitoring log messages

In the following sub-sections, we will look at each of these key topics in detail.

Monitoring overall statistics

For AWS Glue jobs, Glue Studio gives you an aggregated view of the overall statistics, as shown in
the following screenshot. This is useful for monitoring the trends of an entire AWS account/region:

Monitoring the components of a data platform 297

Figure 11.3 – Monitoring with Glue Studio

Monitoring state changes

For AWS Glue jobs, crawlers, and data catalogs, you can configure the Amazon EventBridge rules
(https://docs.aws.amazon.com/glue/latest/dg/automating-awsglue-
with-cloudwatch-events.html) to monitor state changes, including job failures, crawler
failures, and table partition updates. The rule also triggers an Amazon SNS topic, AWS Lambda
function, and other supported services to perform actions for automation, notification, and recovery.

For Amazon Athena queries, you can configure the Amazon EventBridge rules (https://docs.
aws.amazon.com/athena/latest/ug/athena-cloudwatch-events.html) to
monitor query state changes including query failures.

Monitoring delay

For AWS Glue jobs, you can configure a timeout threshold for job duration, stop the job to avoid
further charges, and trigger Amazon EventBridge rules for further actions.

For Amazon Athena queries, you can use CloudWatch metrics, such as TotalExecutionTime
(https://docs.aws.amazon.com/athena/latest/ug/query-metrics-
viewing.html), and configure a CloudWatch alarm for those metrics.

Additionally, you can configure scan size limits for your workgroup (https://docs.aws.
amazon.com/athena/latest/ug/workgroups-benefits.html) to cancel queries
that exceed the specified threshold to avoid any delay due to an unexpected amount of data.

https://docs.aws.amazon.com/glue/latest/dg/automating-awsglue-with-cloudwatch-events.html
https://docs.aws.amazon.com/glue/latest/dg/automating-awsglue-with-cloudwatch-events.html
https://docs.aws.amazon.com/athena/latest/ug/athena-cloudwatch-events.html
https://docs.aws.amazon.com/athena/latest/ug/athena-cloudwatch-events.html
https://docs.aws.amazon.com/athena/latest/ug/query-metrics-viewing.html
https://docs.aws.amazon.com/athena/latest/ug/query-metrics-viewing.html
https://docs.aws.amazon.com/athena/latest/ug/workgroups-benefits.html
https://docs.aws.amazon.com/athena/latest/ug/workgroups-benefits.html

Monitoring298

Monitoring performance

For AWS Glue Spark jobs, you can monitor CloudWatch metrics. To monitor further details and tune
the performance of the jobs, it is highly recommended that you enable Spark UI and use it:

Figure 11.4 – The event timeline on Spark UI

With Spark UI, you can identify how the Spark driver/executor works for your data,
what Spark DAG and the physical plan look like, how much memory is consumed per executor,
and more. It helps you to identify bottlenecks and optimize performance. You will learn more about
performance tuning techniques in Chapter 12, Tuning, Debugging, and Troubleshooting.

Monitoring common failures

For AWS Glue Spark jobs, AWS Glue job run insights (https://docs.aws.amazon.com/
glue/latest/dg/monitor-job-insights.html) that help you to troubleshoot and
solve common job failures based on predefined rules extracted from common failure scenarios. It
will give you the following insights:

• The line number of your job script

• Any exceptions

• Root cause analyses

• Recommended actions to solve the issue

https://docs.aws.amazon.com/glue/latest/dg/monitor-job-insights.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-job-insights.html

Monitoring the components of a data platform 299

It will help you solve common issues even if you do not have expertise in AWS Glue and Apache Spark.

To enable job insights, you need to select Generate job insights for your Glue Spark job in the Glue
Studio console, or the API/SDK, before running the job:

Figure 11.5 – Generate job insights

When your job with job insights fails, you can see failure details such as the line number, the last Spark
action executed, and concise time-ordered events from the Spark driver and executors in Amazon
CloudWatch Logs.

Monitoring log messages

For AWS Glue jobs, log messages for stdout/stderr are written into Amazon CloudWatch Logs.
If you enable continuous logging (https://docs.aws.amazon.com/glue/latest/
dg/monitor-continuous-logging.html), Spark driver/executor logs are also written
into Amazon CloudWatch Logs.

If you want to use an application-specific custom logger, you can retrieve the logger from GlueContext
and use it in the Glue job script, as follows:

from awsglue.context import GlueContext

from pyspark.context import SparkContext

glueContext = GlueContext(SparkContext.getOrCreate())

logger = glueContext.get_logger()

logger.info("info log message")

logger.warn("warn log message")

logger.error("error log message")

Additionally, the custom logger writes into CloudWatch Logs via continuous logging.

You can also enable debug logging in Spark. This is useful for detailed troubleshooting. For
SparkContext sc, you can set the log level using the following code:

sc.setLogLevel("DEBUG")

For SparkSession spark, you can set the log level using the following code:

spark.sparkContext.setLogLevel("DEBUG")

https://docs.aws.amazon.com/glue/latest/dg/monitor-continuous-logging.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-continuous-logging.html

Monitoring300

In this section, you learned how to monitor individual components (such as Glue, Athena, and more)
on your data platform. Next, we will go over the general concept of analyzing end user activities on
your data platform.

Analyzing usage
Due to the nature of a data platform, it is not practical to build it once and leave it as it is without any
updates. This is because data volume, velocity, and variety increase day by day. Also, how the data
is consumed and utilized can often vary. It is practical to build a platform based on the minimum
requirement, start using it, measure end user activities, and continuously improve it based on end
user feedback.

After you release the data platform to end users, you might see issues such as
the following:

• Less usage than expected

• Less adoption in specific teams

• Too many escalations from end users

To make the data platform useful for your end users, you need to maintain and keep improving the
platform by tracking and analyzing end user activities.

Let’s look at how user activity can be measured for each type of activity. For example, if it is a simple
data reference, it can be recorded and measured in the Amazon S3 server access logs, AWS CloudTrail,
and more. From a query execution perspective, it’s a good idea to look at the query log for each service.
For Amazon Athena, 45 days of query history are recorded. From this evidence, you can gather the
following insights:

• Common query patterns

• Popular tables/datasets

• Unique users

• Queries per user/team/organization

Other than that, with end user escalations, you can notice a lack of documentation.

For example, if you see too few unique users or too small a number of queries being made by a user/
team/organization, it is possible that the stakeholders have not been notified correctly, the queries
are not well documented, and more.

It is important to continuously evolve the data platform without leaving it as it is. Here is a diagram
that shows you how analysis and improvement go hand-in-hand:

Summary 301

Figure 11.6 – Continuous improvement

As you can see in the preceding diagram, once you build a data platform, you should analyze usage
and gather user feedback. Based on the usage and the feedback, you can take appropriate actions such
as adding more datasets, increasing the number of analysis engines that are supported, enhancing
documentation, promoting the data platform, improving usage policy, and more.

In this way, you can build a truly usable data platform by iteratively developing and operating it
through repeated evaluation and improvement.

Summary
In this chapter, you learned how to monitor your entire data platform and your AWS Glue components
and related services. Additionally, you learned how to analyze end user activities. Monitoring is
essential to keep an SLA and also continuously improve a data platform. Now you should be able
to define a reasonable SLA based on the requirement and implement a mechanism to monitor your
data platform efficiently.

In the next chapter, you will learn more details about how to tune, debug, and troubleshoot issues
when using AWS Glue.

12
Tuning, Debugging, and

Troubleshooting

In the previous chapter, we explored some of the fundamental concepts involved in monitoring AWS
Glue workloads, such as defining and monitoring service-level agreements (SLAs) of the data platform,
as well as monitoring components of the data platform such as overall statistics, state changes, delay,
performance, common failures, and log messages. We also explored how we can analyze usage using
logs emitted by different AWS services based on the use case.

Based on the insights gained by monitoring AWS Glue workloads or downstream applications, we
will be able to understand whether our workload is running optimally and whether we have over- or
under-provisioned resources, and determine whether there is room for improvement. We can tune and
enhance our workflows to obtain better performance and thereby save time and resources required
by the components of our data integration workflow.

Upon completing this chapter, you will be able to explain how we can tune AWS Glue workloads to
ensure we are taking full advantage of the resources we are allocating to our workloads. You will also
be able to troubleshoot/debug some of the common issues we encounter in AWS Glue.

In this chapter, we will look at the following topics:

• Tuning AWS Glue workloads

• Troubleshooting and debugging common issues in AWS Glue extract, transform, load (ETL)

Now, let’s explore some of the mechanisms we can use to tune our AWS Glue workloads based on the
insights gathered by monitoring AWS Glue workloads or downstream applications and query engines.

Tuning, Debugging, and Troubleshooting304

Tuning AWS Glue workloads
Based on our discussions in the previous chapter, we already know that AWS Glue is a serverless data
integration service wherein different components are bundled with a number of optimizations that
cover most use cases—most being the operative word here. The optimizations already in place may
not be the perfect fit for our use case, and they can be further improved to get the most out of the
resources we are allocating.

It is still up to us to monitor workloads and implement optimizations where necessary to ensure that
we are making use of resources efficiently. The performance of any Glue component is dependent on
a number of factors such as input data, resources allocated, configuration, and the actual workflow itself.

Now, let’s discuss some of the tuning mechanisms we can use to optimize different components of
AWS Glue.

Tuning AWS Glue crawlers

As discussed in the previous section, the performance of a Glue component depends on factors such
as input data, configuration, resources allocated, and the workflow itself. Similarly, for AWS Glue
crawlers, the performance of the crawler run depends on a number of factors. Some key factors that
influence the performance of an AWS Glue crawler run are noted here: type of input data store, number
of items or objects to crawl/scan, and crawler configuration.

For instance, let’s consider an AWS Glue crawler run where the crawler is crawling data in an Amazon
Simple Storage Service (Amazon S3) location. In this case, if the directory structure is complex,
the location contains a lot of small files/objects, and sampling/incremental crawl configurations are
disabled, then the crawler would obviously be slower as it has to read a huge number of individual
objects to infer a schema, build metadata, and populate the Data Catalog. In such cases, there are
a number of optimizations we can implement to reduce the latency of a crawler run.

If the Amazon S3 location contains a large number of objects, we can specify the sample size parameter
in the crawler configuration. It is important to note that while specifying sample size may improve
the crawler runtime, this won’t impact the time taken by the query engine to read source data. To
improve the query runtime as well, we can run an ETL job to compact the data and reduce the number
of files/objects. This can be achieved by using coalesce() or repartition() transforms in
Apache Spark.

Similarly, if we are crawling Amazon DynamoDB, MongoDB, and Amazon DocumentDB data
stores, we can implement sampling to reduce the amount of data scanned by using the Enable data
sampling option.

Tuning AWS Glue workloads 305

If a dataset in an Amazon S3 data store is constantly growing and if the schema remains unchanged, the
only reason to run a crawler on this dataset would be to register new partitions. In such cases, we can
use the Incremental Crawl feature to only crawl new data that was written to an Amazon S3 location.
When this feature is enabled, the Glue crawler keeps track of the lastModifiedTimeStamp
value of Amazon S3 objects and determines whether the objects need to be crawled.

The compute infrastructure provisioned for crawlers is completely managed on the service side, and
we do not have any control over the compute capacity allocated. So, the only optimizations we can
apply for crawlers are configuration changes and input data optimization.

Now that we know how to improve crawler runtime, let’s take a look at how we can tune AWS Glue
ETL job performance.

Tuning the performance of AWS Glue Spark ETL jobs

Based on our discussions in the previous chapters, it is clear to us that we can monitor AWS Glue ETL
jobs and gather job execution insights using a number of avenues—AWS CloudWatch metrics, logs
written by AWS Glue ETL jobs, Spark UI, and AWS Glue job insights. Each of these tools/utilities
provides different types of insights into job execution. We can use insights gathered from different
tools/utilities to tune and optimize the job to make sure we are utilizing the resources efficiently.

The bottlenecks in an AWS Glue ETL job could be because of a number of reasons—for instance,
there could be demanding stages or straggling tasks that are impeding the performance of the entire
job. We can monitor ETL job metrics to identify such bottlenecks and implement optimizations. That
being said, it is important to note that there is no one-size-fits-all approach to optimizing ETL jobs,
and the series of steps required to optimize a particular job may be different from the ones required
to optimize another job. Let’s consider a few example scenarios to understand this better.

Optimizing ETL jobs with a straggler task

Consider an ETL job that has a non-uniform workload distribution that may be caused by a data skew
(also known as a hot partition issue), and one of the tasks is processing a huge portion of the dataset.
This doesn’t just mean that the job is slow because one task in a particular executor is processing most
of the data while the other executors are idle; there are chances that the jobs might fail with out-of-
memory (OOM) or disk space issues if the amount of data being processed exceeds the resource
allocation of the executor node.

Now that we know the importance of addressing the straggler task issue, how do we identify whether
our ETL job run is experiencing this issue? We can monitor the driver and executor memory and
central processing unit (CPU) CloudWatch metrics emitted by the job run to see whether all executors
are busy.

Tuning, Debugging, and Troubleshooting306

If we notice that just one executor is busy and the rest of the executors are idle, then we have a bottleneck
in our ETL job that needs to be addressed. Since the metrics emitted to CloudWatch have timestamps,
we can use these timestamps to check the timeline in Spark event history logs (Spark UI) to identify
operations being carried out by the ETL job around that time and focus on optimizing that particular
section of our ETL. If event history logs are not available, we can check the Spark driver logs available
in the /aws-glue/jobs/error log group in AWS CloudWatch Logs.

Let’s say that in our example scenario here, we have a straggler task because of data skew and one
task is processing most of the dataset, and we have identified that issue was happening during the
JOIN operation. One way to solve this issue is to redistribute the workload across all executors by
repartitioning the dataset based on the join key before performing the JOIN operation, as follows:

repartitionedDF = dataframe0.repartition(100,"JOIN_Key")

Here, we have identified dataframe0 to contain a data skew that is affecting JOIN performance.
To mitigate the issue, we are repartitioning the dataset into 100 partitions and distributing the dataset
using the JOIN_Key key. Now, when we perform the JOIN operation in the next step, the operation
will be distributed across different executors and not handled by just one executor.

Data skew is just one of the scenarios that can cause straggler task issues. There may be other use cases
where this kind of issue can occur. The idea here is to identify such bottlenecks and make sure the
workload is distributed and the resources allocated to the job are being used efficiently.

Optimizing ETL jobs with too many tasks

In the previous section, we discussed the issue where one or a few tasks were slowing down the job
by processing a large volume of data. In this section, we will be looking at the other side of the coin
where we have too many tasks for the job to execute and not enough resources.

Truth be told, this is one of the most common issues we face while executing a Glue ETL job. There are
a number of use cases where a Glue ETL job can end up with too many tasks in the directed acyclic
graph (DAG) and takes a long time to finish executing.

For instance, based on our discussions in the previous chapters, we know that by default, Spark uses
a 1:1 mapping with the number of input partitions and the number of files/objects in the data source
if the size of the file is less than the block size for the file format. If the file format and compression
codec combination used is splittable, then the number of partitions created is equivalent to the number
of splits generated. If the file format and the compression codec used cannot be split (for example,
JavaScript Object Notation (JSON) data compressed in gzip format), then we have a much bigger
problem as individual files have to be read by the ETL job and decompressed in memory before any
operation can be performed.

Tuning AWS Glue workloads 307

If our data source has a large number of small files, Spark will eventually create a large number of tasks
to read the data store, and the number of tasks that can be run in parallel is restricted by the number
of CPU cores available. Having a large number of input files not only slows down the job due to the
input/output (I/O) effort involved but can also potentially cause the job to fail as the metadata of the
files in the data store is tracked by the driver and stored in driver memory before it is ingested into the
ETL job. If the data store has too many files, there is a possibility that the driver memory gets filled
up with file metadata and there is no memory available to actually execute the ETL job.

The solution to this problem is to reduce the number of tasks created by reading the input files in groups,
perform compaction on the source data to reduce the number of files, or use predicate pushdown
filtering to only read the data relevant to our ETL job.

We have discussed the option of reading input files in larger groups in Chapter 3, Data Ingestion, using
the Grouping feature in AWS Glue ETL. This option essentially overrides Spark’s default behavior by
reading multiple files in the same input partition, thereby reducing the number of tasks created. While
this is a very useful feature to optimize our ETL job, there are still limitations to this feature, the main
one being that this feature does not support Optimized Row Columnar (ORC), Parquet, and Avro
file formats. In such cases, we can resort to the option of compacting our source data.

Now, compaction can be done in a number of different ways. The most common approach to compact
a dataset is to use another ETL job and output a lower number of partitions. While Apache Spark is the
preferred choice by a majority of data engineers, source data can also be compacted using a number
of other tools and frameworks, such as Apache Hive, Presto, and s3-dist-cp.

If the dataset is in Parquet format and a catalog table for the dataset is registered in AWS Lake Formation
as a GOVERNED table, we can use the built-in feature of Lake Formation to perform compaction. You
can follow the steps available in the AWS Lake Formation documentation (https://docs.aws.
amazon.com/lake-formation/latest/dg/data-compaction.html) to enable data
compaction on a partitioned Parquet dataset registered as a governed table in AWS Lake Formation.

If grouping or compaction is not an option, we can use predicate filtering to filter out unnecessary
data when a dynamic frame is being created. We can use the push_down_predicate parameter
to perform predicate filtering. This parameter will be evaluated when the data is being read and only
Amazon S3 objects matching the predicate expression are used in the ETL job. This is quite a powerful
feature in optimizing an ETL job. Consider a use case where you are analyzing a dataset of almost a
decade to identify sales trends for a particular month. There is no need to read the entire dataset as
we are focusing on a particular month. In such cases, we can use predicate pushdown to push the
filter onto the storage level and only read the relevant dataset.

https://docs.aws.amazon.com/lake-formation/latest/dg/data-compaction.html
https://docs.aws.amazon.com/lake-formation/latest/dg/data-compaction.html

Tuning, Debugging, and Troubleshooting308

Now, let’s assume that in the same ETL job, we are reading the dataset using a catalog table, and the
dataset is partitioned based on year, month, day, and hour. Even though we have optimized
our data read operation by implementing predicate pushdown, the metadata for the entire table is
pulled into the ETL job before Spark filters out unnecessary partitions. To avoid this, we can specify
an additional catalogPartitionPredicate parameter that offloads the filtering of catalog
partitions to the AWS Glue service, and only the catalog partitions matching the predicate expression
are returned. This will reduce the I/O effort required in performing a getPartition() API call
and matching the predicate expression specified in the push_down_predicate parameter.

The catalog partition predicate feature uses the partition keys registered as an index in the table
configuration to perform filtering at the data catalog level, and it is much quicker to perform filtering
at the catalog level compared to fetching all partitions registered in the table and performing filtering
within the ETL job. You can refer to the AWS Glue documentation (https://docs.aws.
amazon.com/glue/latest/dg/aws-glue-programming-etl-partitions.
html#aws-glue-programming-etl-partitions-cat-predicates) to learn more
about pushdown predicates in AWS Glue ETL.

One of the other reasons why an AWS Glue ETL job would end up with a lot of tasks is that we are
using a transformation that is generating a large number of tasks. In such cases, identify the operation
causing the bottleneck, restrict the number of tasks created, and ensure we have enough compute
resources to handle the tasks.

If the number of tasks created is way too high, we may end up exhausting the driver memory as the
Spark driver is responsible for tracking tasks created, and an increase in the number of tasks increases
driver memory consumption. This will eventually cause the ETL job to fail with OOM errors.

Optimizing JDBC- and MongoDB-based ETL jobs

In this section, we will take a look at different optimization techniques to improve the performance
of ETL jobs when reading from Java Database Connectivity (JDBC) and MongoDB data stores.

One of the biggest selling points of Apache Spark is that it offers a framework to ingest and reshape
data in a distributed environment. However, when reading from a JDBC data store, Spark relies on
the user to provide a partitioning strategy to read the data in parallel. If the user does not specify the
number of partitions or the column(s) to partition by, Spark uses a single JDBC connection to read
the entire table, and this can slow down the entire ETL job significantly. We have discussed how we
can address this specific issue using hashpartitions in the Data ingestion from JDBC data stores
section of Chapter 3, Data Ingestion.

In the same chapter, we have also discussed how we can use the fetchSize parameter to fetch
rows from the JDBC data store in batches instead of fetching the entire table in one round trip. When
we set the fetchSize parameter, this will be passed down to JDBC PreparedStatement
and informs the driver of the number of rows to fetch per round trip. This parameter is extremely
helpful in tuning the amount of data transferred, thereby reducing the pressure on executor memory.

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-partitions.html#aws-glue-programming-etl-partitions-cat-predicates
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-partitions.html#aws-glue-programming-etl-partitions-cat-predicates
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-partitions.html#aws-glue-programming-etl-partitions-cat-predicates

Tuning AWS Glue workloads 309

If we are not interested in the entire table when reading from a JDBC data store, we can pass a SELECT
query with a predicate expression using the query parameter.

For example, if we are just interested in values less than 100 in the id column, we can do the following
in our ETL script:

connection_postgres_options = {

 "url": "jdbc:postgresql://HOSTNAME:5432/gluetest",

 "query": "select * FROM test where id < 100",

 "dbtable": "test",

 "secretId":"glue/postgres_test_db",

 "ssl": "true",

 "sslmode": "verify-full",

 "customJdbcDriverS3Path": "s3://S3_BUCKET/ postgresql.jar",

 "customJdbcDriverClassName": "org.postgresql.Driver"}

datasource0 = glueContext.create_dynamic_frame.from_options(

 connection_type="postgresql",

 connection_options=connection_postgres_options

)

As you can see, we still fetch all the columns using SELECT * in our query, but we are reducing the
data fetched by using a WHERE condition. If we want to filter out any of the columns, we can do so
using AWS Glue/Apache Spark transforms.

Similarly, when reading a MongoDB/DocumentDB data store, by default AWS Glue will read the
entire collection. We can define a JSON string that denotes MongoDB’s aggregation pipeline, and this
will ensure that the filtering and aggregation operations defined in the pipeline string are performed
at a MongoDB level instead of through a Spark ETL job. You can see an illustration of this in the
following code snippet:

pipelineJSON = "{'$match': {'type': 'peach'}}"

mongo_options = {

 "uri": "MONGO_CONN_STR",

 "database": "test",

 "pipeline": pipelineJSON,

 "collection": "fruits",

 "username": "mongodb_test",

 "password": "XXXXXXX"

}

dynamic_frame = glueContext.create_dynamic_frame.from_options(

Tuning, Debugging, and Troubleshooting310

 connection_type="mongodb",

 connection_options=mongo_options

)

In the preceding example, we are filtering documents by the type column name with the value
"peach". We can perform more advanced operations using MongoDB aggregation pipelines—for
example, filtering documents with fields that contain data of a specific type, as follows:

pipelineJSON = "{'$match': {'creationDate': {'$type': 'date'},
'uid': {'$type': 'string'}}}"

Here, we are filtering documents based on the data type of the creationDate and uid fields. We
are essentially ignoring documents that don’t have values matching the data type specified.

Pipeline aggregations are incredibly helpful, both in reducing the amount of data read and ensuring
the data being read conforms to a specific schema. There are other optimizations we can apply while
reading data from MongoDB data stores, such as defining a partitioner class and configuration options
for the partitioner class selected. The values for these configuration options are to be selected based
on the use case. If our use case does not require a specific partitioner class to be defined, we can let
the connector use the default options.

We can find a list of partitioner classes and configuration options supported in the AWS Glue
documentation (https://docs.aws.amazon.com/glue/latest/dg/aws-glue-
programming-etl-connect.html#aws-glue-programming-etl-connect-
mongodb).

In this section, we discussed how we can tune the performance of a Glue Spark ETL job in specific
use cases. For our discussion, we explored two to three scenarios here. There are a number of other
optimizations we haven’t discussed related to performance tuning, as it is a vast topic and largely
depends on the specific use case and the performance bottleneck we are trying to address.

A rule of thumb here is to ensure that we are using compute resources efficiently by distributing the
workload evenly, we have enough compute resources allocated to complete our ETL job, and we do
not have too many pending tasks/operations waiting for resources to be allocated or blocked by a
certain action within the ETL job.

Now that we have seen different optimization techniques for some of the use cases related to AWS
Glue Spark ETL jobs and AWS Glue crawlers, let’s take a look at some common issues we face while
executing our AWS Glue workloads and how we can solve them.

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-mongodb
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-mongodb
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-connect.html#aws-glue-programming-etl-connect-mongodb

Troubleshooting and debugging common issues in AWS Glue ETL 311

Troubleshooting and debugging common issues in AWS
Glue ETL
While AWS Glue makes it easy to implement data integration workloads using different components/
microservices, depending on the user configuration and use case we may encounter a number of
issues. In this section, we will discuss some common issues we may encounter while working with
AWS Glue and different methods to solve those specific issues one by one.

ETL job failures

A Glue ETL job can fail for a number of reasons. Most job failures can be attributed to issues with
configuration or resource provisioning, depending on the use case. Let’s explore some common issues
we may come across while working with Glue ETL.

OOM errors

When working with a large volume of data, it is not uncommon for us to run into OOM errors. OOM
errors can appear in both drivers and executors, depending on the use case. How we approach the
issue largely depends on where exactly the issue is occurring, whether in the driver or the executor.

Driver OOM

The Apache Spark driver is responsible for a number of things: executing user code, translating it to a
DAG, coordinating with the cluster manager, distributing the workload to executors, and coordinating
with all executors to ensure tasks are scheduled and executed successfully. As you might have guessed
by now, most of these operations are carried out in memory.

Some common reasons for the driver to run out of memory are listed here:

• A large number of input files

• A large number of dynamic frames and transformations being defined, causing driver stack
space to overflow

• A large amount of data being brought into the driver

• Too many tasks being generated as part of ETL code

If the Spark driver OOM is caused by a large number of input files’ metadata being tracked in the driver,
we can avoid such situations by enabling the useS3ListImplementation option in AWS Glue
ETL. This option will inform AWS Glue to cache file lists in batches instead of all file metadata being
cached in memory all at once. It is a best practice to use this option with job bookmarking enabled to
ensure we are not fetching metadata for files that are not necessary for our job run.

Tuning, Debugging, and Troubleshooting312

It is imperative to ensure that the source code is optimized as well and not just the input dataset. For
instance, collect() or count() statements are widely used by users to print information to logs
while authoring and debugging ETL scripts. However, it is important to make sure we remove these
statements when we finish authoring such scripts. Methods such as collect() and count()
collect results on the driver and consume memory, which eventually leads to Spark driver OOM
issues. We need to focus especially on collect() calls as they are extremely notorious for causing
driver OOM issues.

The logic behind this is simple—when we are working on a sample dataset, we are bringing in a few
rows to the driver when we call collect(). However, when we are running the same code on a large
dataset, we end up bringing a huge volume of data into the driver memory, and this leads to driver OOM.

If we are seeing stack overflow errors in the Spark driver, this means that we are adding too many
operations into the Spark DAG. This can happen when we are creating new DynamicFrames in a loop
and performing different transformations on each of these DynamicFrames. For example, if we are
reading all JDBC tables in a database in the same ETL job and there are hundreds of tables, this will
end up causing Spark to build a DAG so large that it can no longer fit into the stack memory space.

In such cases, the recommendation would be to author the script in such a way that the table names
are read from job parameters and multiple instances of the same job are being executed concurrently.
The getResolvedOptions() utility method in AWS Glue is extremely helpful in such use cases
to read job parameters in our ETL script. You can refer to the AWS Glue documentation (https://
docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-
extensions-get-resolved-options.html) to read more about this utility method and
view instructions on how to use it.

If we are encountering driver OOM issues because too many tasks were created, the recommendation
would be to replace the ETL code causing this issue with more optimized code. For example, this is
known to happen when we use reduceByKey() in our ETL code. Here, the goal is to ensure that
the number of tasks is not too high for the driver to keep track of.

Now that we have seen some use cases that can cause Spark driver OOM, let’s explore some use cases
that can cause executor OOM.

Executor OOM

Similar to driver OOM, executor OOM can cause job failures as well. Most executor OOM errors can
be typically resolved by scaling (vertical or horizontal, depending on the use case) resources assigned
to the AWS Glue ETL job. However, a more sensible approach would be to examine the root cause of
the issue before we blindly allocate more resources to the ETL job.

Executor OOMs can occur for a number of reasons, and the first step in addressing these issues is to
identify which operation in our ETL job is causing executor OOM errors. The Spark UI, CloudWatch
metrics, and CloudWatch Logs are extremely helpful in addressing executor OOM issues.

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-get-resolved-options.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-get-resolved-options.html
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-get-resolved-options.html

Troubleshooting and debugging common issues in AWS Glue ETL 313

One of the common causes of executor OOM is that the task is processing a large amount of data that
cannot fit into executor memory. If this is the case, the solution would be to optimize data load and
ensure it is being done in parallel. The approach used to achieve this differs based on the data store
we are working with.

For Amazon S3 data stores, the number of partitions is determined by data layout. If it is possible to
optimize data layout before running Glue ETL. If our data store has large, unsplittable files, no amount
of horizontal scaling will help. The recommendation here would be to optimize the data layout before
using Glue ETL to transform the data.

As discussed in the earlier sections of this chapter, JDBC reads using DynamicFrames can be parallelized
using hashpartitions and hashfields/hashexpressions. If we are using Spark
DataFrames instead of dynamic frames, we will have to use numPartitions, partitionColumn,
lowerBound, and upperBound parameters for JDBC reads. You can read more about these
parameters in the Apache Spark documentation (https://spark.apache.org/docs/
latest/sql-data-sources-jdbc.html).

If an executor OOM issue is happening with the DynamoDB read, the number of partitions created
during the read operation is defined by the dynamodb.splits parameter, and the solution would
be to increase the number of splits. While increasing the number of splits reduces the amount of data
read per split, we also need to make sure that we have allocated enough workers to our ETL job to
avoid tasks being backlogged in a pending state.

Executor OOMs can happen after the data read during transformations as well, and not just during data
reads. In such cases, the best approach would be to identify the operation that was being performed
when the Spark executor ran out of memory. Both Spark UI and driver logs can be helpful in these
situations. If the executor OOM occurs during JOIN operations, we can try converting Glue dynamic
frames to Spark DataFrames. AWS Glue dynamic frames are based on resilient distributed datasets
(RDDs), and RDD joins may result in more data shuffling than a DataFrame join. We can also reduce
shuffle operations by repartitioning based on the join key just before performing a JOIN operation.
This will essentially reduce the amount of shuffling required to perform a JOIN operation. This
method can be used to reduce shuffling when we are writing partitioned data as well, in which case
we would be repartitioning based on partition keys instead of JOIN keys.

You can refer to the AWS Big Data Blog post titled Optimize memory management in AWS Glue,
available at https://aws.amazon.com/blogs/big-data/optimize-memory-
management-in-aws-glue/, for more detailed information on different OOM use cases and
how we can mitigate issues.

The Apache Spark framework has a number of query optimization techniques built into the Spark
SQL engine: Catalyst Optimizer (used for query plan optimization for Spark SQL queries), Project
Tungsten (focuses on optimizing memory and CPU utilization by Spark), and Adaptive Query
Execution (AQE—reoptimizes and adjusts query plans based on runtime metrics), to name a few.
These optimizations are enabled by default in Spark depending on the Spark version being used.

https://spark.apache.org/docs/latest/sql-data-sources-jdbc.html
https://spark.apache.org/docs/latest/sql-data-sources-jdbc.html
https://aws.amazon.com/blogs/big-data/optimize-memory-management-in-aws-glue/
https://aws.amazon.com/blogs/big-data/optimize-memory-management-in-aws-glue/

Tuning, Debugging, and Troubleshooting314

AQE and AWS Glue
AQE was made available in the Apache Spark 3.0 release and is available for use in AWS Glue
3.0 (Apache Spark 3.1.1). We can use the spark.sql.adaptive.enabled configuration
parameter to enable AQE in AWS Glue ETL 3.0.

In this section, we discussed different causes of OOM errors in both the Spark driver and the executor
and how we can address issues in each of those scenarios. In the upcoming sections, let’s explore
a few other common reasons why an ETL job would fail.

Permission issues

An AWS Glue ETL job can fail for permission issues originating from different sources. For instance,
a job could fail because it is missing permissions to call a specific API in the Identity and Access
Management (IAM) policy or it might be missing permissions to the AWS Key Management Service
(AWS KMS) encryption key, permissions to Amazon S3 data stores, and Lake Formation catalog
permissions. The only way to correctly debug permission issues is to check ETL job driver logs and find
the stack trace containing the error message and check the operation that failed and the originating
service. For instance, let’s consider the following error message:

botocore.exceptions.ClientError: An error occurred
(AccessDeniedException) when calling the GetAuthorizationToken
operation: User: arn:aws:sts:: xxxxxxxxxxxx:assumed-role/
AWSGlueServiceRole-roleName/GlueJobRunnerSession is not
authorized to perform: ecr:GetAuthorizationToken on resource: *

In the preceding error message, it is clear that the IAM role being used by the AWS Glue ETL
job (AWSGlueServiceRole-roleName) does not have enough permissions to call the
ecr:GetAuthorizationToken action. The solution here would be to grant permissions in
the IAM policy for this action on resource *. This is known to happen when a Glue ETL job is getting
an Elastic Container Registry (ECR) container image for a Marketplace connector.

Let’s take a look at another error message here:

org.apache.hadoop.hive.ql.exec.DDLTask.
MetaException(message:Insufficient Lake Formation permission(s)
on s3://BUCKET/path (Service: AWSGlue; Status Code: 400; Error
Code: AccessDeniedException; Request ID: xxxxxxxx-xxxx-xxxx-
xxxx-xxxxxxxxxxxx; Proxy: null))

In this particular error message, we can see that the IAM role is missing permissions to the Amazon
S3 path in AWS Lake Formation. For instance, if an Amazon S3 path is managed by Lake Formation
and the IAM role used by the job hasn’t been granted permission to access this path, we will run into
such errors. The solution here would be to grant permissions to relevant Amazon S3 locations in
AWS Lake Formation.

Troubleshooting and debugging common issues in AWS Glue ETL 315

Similarly, let’s take a look here at another error message:

The ciphertext refers to a customer master key that does not
exist, does not exist in this region, or you are not allowed
to access. (Service: AWSKMS; Status Code: 400; Error Code:
AccessDeniedException; Request ID: 336e2c35-88b7-4859-ba2a-
da4e2bb9f5c3; Proxy: null)

The issue here is with the AWS KMS key in use. The best approach, in this case, would be to check
AWS CloudTrail event history for events from the kms.amazonaws.com event source and check
the key and the API being called. Once you have these pieces of information, make sure the IAM role
being used by AWS Glue has the necessary permissions in both the AWS IAM policy and the AWS
KMS key policy to perform the action in question.

Now that we know how to identify and mitigate permission issues, let’s take a look at other issues that
can cause AWS Glue ETL job failures.

Disk space-related error – No space left on device

This error message relates to the local disk space usage on the executor node. Spark uses the local
disk for a number of reasons, and one of the most common use cases is that when the Spark executor
memory is full, it starts spilling the content to the disk, and this can cause the disk attached to the
executor node to fill up and cause job failures.

If the job failed because of this reason, the first step is to identify the root cause of the issue. If the
issue was caused because of memory spilled to the disk, we can try using a bigger worker type (try a
G.1X or G.2X worker type).

If the issue is still occurring, we can try to increase the number of shuffle partitions by tuning the
spark.sql.shuffle.partitions Spark configuration parameter—this will redistribute the
workload better. We can try to use the AWS Glue S3 shuffle service feature to write shuffle data to the
Amazon S3 location. There’s a downside to this approach as well. Considering the S3 location is being
used for shuffle spills, the I/O effort required to read and write shuffle data is significantly higher—
Amazon S3 reads/writes are computationally more expensive than memory/disk reads and writes. You
can refer to the AWS Big Data Blog post titled Introducing Amazon S3 shuffle in AWS Glue (https://
aws.amazon.com/blogs/big-data/introducing-amazon-s3-shuffle-in-
aws-glue/) for a detailed explanation of how the AWS Glue S3 shuffle service works.

If none of these options works, we can implement bounded execution to limit the amount of data
processed within an ETL job run and process the data in multiple batches. You can refer to the Workload
partitioning with bounded execution for Amazon S3 data stores section of Chapter 3, Data Ingestion
for more information on the Bounded execution feature.

https://aws.amazon.com/blogs/big-data/introducing-amazon-s3-shuffle-in-aws-glue/
https://aws.amazon.com/blogs/big-data/introducing-amazon-s3-shuffle-in-aws-glue/
https://aws.amazon.com/blogs/big-data/introducing-amazon-s3-shuffle-in-aws-glue/

Tuning, Debugging, and Troubleshooting316

Amazon S3 503 Slow Down errors

This is one of the most common errors we may come across when working with large datasets. This
issue happens when AWS Glue ETL sends a large amount of application programming interface
(API) requests to Amazon S3 API servers and the requests get throttled.

Amazon S3 API servers impose the following API limits by default: 3500 PUT/COPY/POST/DELETE
or 5500 GET/HEAD requests per second per prefix in a bucket (reference: https://docs.aws.
amazon.com/AmazonS3/latest/userguide/optimizing-performance.html).

Now, to resolve this issue, we have to identify whether we are being throttled during read operations
or write operations and try to reduce the number of API requests being made from our ETL job. This
can be achieved by checking the stack trace captured in the AWS CloudWatch logs for the job run
and looking for the S3 operation being performed (for example, listBucket, putObject, or
getObject). Depending on the operation being performed, there are a number of approaches we
can take—depending on the use case—to reduce the number of API calls.

For instance, we can limit the number of files being read and thereby reduce the number of API
requests made by using predicate pushdown filters and bounded execution.

If we are experiencing this issue during write, some of the ways we can fix this issue are noted here:
we can redistribute the workload across different prefixes by introducing a new partition key in the
data target, or we can reduce Spark partitions by using coalesce() or repartition() before
writing the dataset. For Parquet data writes, we can use an EMR File System (EMRFS) S3-optimized
committer to perform writes using a multi-part upload strategy that uses a smaller number of Amazon
S3 API calls.

Essentially, the idea here is to identify the operation that is getting throttled and reduce the number
of API calls being made using different strategies, depending on the use case. You can refer to the
AWS Big Data Blog article titled Best practices to optimize data access performance from Amazon EMR
and AWS Glue to Amazon S3 (https://aws.amazon.com/blogs/big-data/best-
practices-to-optimize-data-access-performance-from-amazon-emr-
and-aws-glue-to-amazon-s3/), which discusses the Amazon S3 503 SlowDown issue
in detail and outlines possible solutions for different use cases.

Now that we know how to identify the root cause of some common issues in AWS Glue ETL and how
to address these options, it is clear from our discussion that the procedure to address any of these
issues has something in common—we start by investigating the root cause of the issue by looking at
the metrics and logs from different sources and looking at the error message(s) available. Consider the
source of the error message (APIs/AWS service errors, data plane errors—errors thrown by libraries
within Glue components), the type of error (for example, permissions; throttling), and then identify
the cause of the error message (usually outlined in the form of error codes or messages).

https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance.html
https://aws.amazon.com/blogs/big-data/best-practices-to-optimize-data-access-performance-from-amazon-emr-and-aws-glue-to-amazon-s3/
https://aws.amazon.com/blogs/big-data/best-practices-to-optimize-data-access-performance-from-amazon-emr-and-aws-glue-to-amazon-s3/
https://aws.amazon.com/blogs/big-data/best-practices-to-optimize-data-access-performance-from-amazon-emr-and-aws-glue-to-amazon-s3/

Summary 317

Once we have the root cause, we identify the offending component or configuration and replace it
with an appropriate source code or configuration fix and test the application. A similar approach can
be used to tune and troubleshoot any component of AWS Glue, and not just AWS Glue ETL jobs. As
mentioned in our earlier discussions, developing and maintaining a data integration workflow is an
iterative process and often requires a lot of retries before we can come up with a fully functioning
workflow that is suitable for our use case.

Summary
In this chapter, we discussed some of the options available at our disposal to tune AWS Glue Spark
ETL jobs and AWS Glue crawlers based on the use case and understood how the procedure to tune
a Glue ETL job or Glue crawler depends on data layout (input data type, partitioning structure,
compression codec), crawler/job configuration, and downstream application/query engines. During
our discussion on ETL job tuning, we explored different use cases and learned how to identify ETL jobs
with straggler tasks and demanding stages and how we can optimize performance. We also discussed
how to optimize ETL jobs with too many tasks and JDBC-/MongoDB-based ETL jobs to ensure we
are using the resources allocated to the job to run quite efficiently.

We also outlined some common issues we may come across while working with an AWS Glue Spark
ETL job and discussed different methods or steps to take to identify and mitigate such issues. It is
important to note that while we discussed different issues we may encounter while working with Glue
ETL, this is not an exhaustive list, and we may run into other issues. That being said, the approach to
debug or mitigate an issue remains the same for any issue encountered. AWS Support Engineering
is known to publish Knowledge Center articles addressing specific issues for different AWS services
based on common trends in support cases raised by AWS customers. A list of Knowledge Center
articles addressing specific issues related to AWS Glue can be found at https://aws.amazon.
com/premiumsupport/knowledge-center/#AWS_Glue.

In the next chapter, we will be discussing some of the concepts of data analysis, such as running ad
hoc queries using Amazon Athena and Amazon Redshift Spectrum. We will be exploring how we can
take advantage of AWS Lake Formation-governed tables and run time-travel queries, and how we can
perform near-real-time analysis using AWS Glue streaming. We will also be exploring how we can
visualize data using Amazon QuickSight and how we can use an elastic/OpenSearch stack to search
our dataset. This will help us understand how we can efficiently use the data output from AWS Glue
with different downstream applications and query engines.

https://aws.amazon.com/premiumsupport/knowledge-center/#AWS_Glue
https://aws.amazon.com/premiumsupport/knowledge-center/#AWS_Glue

13
Data Analysis

In the previous chapter, we looked at the various buckets of Glue job expectation messages, why they
occur, and how to handle them.

We learned about the impact of data skewness, how that can adversely impact job execution, and the
techniques you can use to fix it. Additionally, we looked at some of the common reasons for Out-of-
Memory (OOM) errors and the out-of-the-box mechanisms that are available in AWS Glue to handle
them. Some of these tools and techniques can be used to be more effective in resource utilization in
a pay-as-you-go cloud-native world. These techniques can not only be used for efficient processing
but also help you reduce the processing time in a world that increasingly needs answers as quickly
as possible.

But the question is, why put in all this effort? Why process data? This brings us to our current topic.
One of the reasons for processing data is to analyze it. You might want to analyze the data to look at
the larger picture or perhaps visualize the data in a way that makes some vital information stand out.
Alternatively, you might want to search for a specific piece of information from a large pile, or you
might want to check out the journey of a certain data item as it morphs from one state into another as
a result of various factors that influence it. Sometimes, data is also processed for feature engineering
to enable better predictions from Machine Learning (ML) models.

Each of the possibilities of data analysis listed earlier requires a special kind of processing. For example,
the processing required for feature engineering is going to be different from the processing required
for creating BI visualizations. Similarly, a search requirement on unstructured data might be better
fulfilled if the data is stored as a NoSQL object, and a BI report might work better if the data is stored
in a Relational Database Management System (RDBMS) data warehouse in Kimball’s star format.

Data Analysis320

In this chapter, we will learn how AWS Glue can be used for diverse transformations, each suited for
a specific objective. We will start by creating a sample dataset. This dataset will be used across the
sections of this chapter. Then, we will dive into the common tools used for data analysis in the world
of AWS. AWS Glue is often used to write this data. Then, we will look into Transactional Data Lakes
and see how we can leverage technologies such as Apache Hudi and Delta Lake to upsert data in a
data lake. We will follow this up with the mechanism used to write data in AWS Lake Formation’s
governed tables. Then, we will venture into the streaming area and use native Glue’s method to consume
streaming data, be it from Apache Kafka or Amazon Kinesis. Additionally, we will look at how we can
use Hudi’s DeltaStreamer in Glue to consume data from Apache Kafka. Finally, we will try to insert
data into an OpenSearch domain and query it through OpenSearch Dashboards.

In this chapter, we will be covering the following topics:

• Creating Marketplace connections

• Creating the CloudFormation stack

• The benefit of ad hoc analysis and how a data lake enables it

• Creating and updating Hudi tables using Glue

• Creating and updating Delta Lake tables using Glue

• Inserting data into Lake Formation’s governed tables

• Consuming streaming data using Glue

• Glue’s integration with OpenSearch

• Cleaning up

We will start by creating some Marketplace connections. These Marketplace connections will be used
as input into the CloudFormation template. The CloudFormation template that is shipped with this
chapter will create 12 Glue jobs, an Amazon Redshift cluster, an Amazon MSK cluster, and an Amazon
OpenSearch domain. Additionally, we will use all of the network plumbing and any other resources
that might be required to understand the chapter.

Note
While I have taken care to use the minimum number of resources required for the execution of
the code shipped with this chapter, please use your judgment to implement the CloudFormation
template. Please delete the stack as soon as you have understood the concepts, and please take
care when changing the network setting of the CloudFormation template to suit the needs
of your organization. The CloudFormation template shipped with this chapter is built with a
general requirement in mind. These requirements might not align with the guidelines of your
organization. The reader bears the responsibility for any issues resulting from the implementation
of the CloudFormation template, such as network and security compliance issues or the cost
implications of creating the CloudFormation stack.

Creating Marketplace connections 321

Creating Marketplace connections
We are going to create Marketplace connections for the Glue Hudi connector, the Glue Delta Lake
connector, and the OpenSearch connector. We will be using these connectors in our code samples,
and the names of these connectors will be used as input to the CloudFormation stack.

Creating the Glue Hudi connection

Let’s begin by creating the Glue Hudi connection:

1. Navigate to AWS Marketplace (https://aws.amazon.com/marketplace/),
search for the Apache Hudi Connector for AWS Glue product, and click on
Continue to Subscribe:

Figure 13.1 – Subscribe to Apache Hudi Connector for AWS Glue

2. Click on Accept Terms:

Figure 13.2 – Accept the terms

https://aws.amazon.com/marketplace/

Data Analysis322

3. After some time, when your request has been processed, the Continue to Configuration button
will be enabled. Click on it:

Figure 13.3 – The Continue to Configuration button

4. Select Glue 3.0 as the Fulfillment option setting, select 0.9.0 (Feb 16, 2022) as the Software
version setting, and click on the Continue to Launch button that is present in the upper-right
corner of the screen:

Figure 13.4 – Fill in the required options

Creating Marketplace connections 323

5. Click on the Usage instructions link:

Figure 13.5 – Launch the software

6. Click on the Activate the Glue connector from AWS Glue Studio link:

Figure 13.6 – Activating the Glue connector

Data Analysis324

7. Give a name to the connection, and then click on the Create connection and activate
connector button. Make a note of the name of the connection. This will be one of the inputs
to the CloudFormation template:

Figure 13.7 – Create a connection

Now we will follow the same process for creating Delta Lake and Amazon OpenSearch connections.

Creating the CloudFormation stack 325

Creating a Delta Lake connection

Search for Delta Lake Connector for AWS Glue in the Marketplace. We will use 1.0.0-2
(Feb 14, 2022) as the Software version setting and Glue 3.0 as the Fulfilment option setting. Make a
note of the name you give to the connection. This name will be an input to the CloudFormation template.

Creating an OpenSearch connection

Search for Elasticsearch Connector for AWS Glue in the Marketplace. Use the one
owned by Amazon Web Services. We will use 7.13.4-2 (Feb 14, 2022) as the Software version setting
and Glue 3.0 as the Fulfilment option setting. Make a note of the name you give to the connection.
This name will be an input to the CloudFormation template:

Figure 13.8 – Elasticsearch Connector for AWS Glue

Now we will be creating a CloudFormation stack. The stack will create all the network elements such
as VPCs, subnets, and security groups along with Glue jobs and other resources such as a Redshift
cluster, an OpenSearch cluster, and an MSK cluster. These resources will help you to successfully
execute the Glue jobs associated with various sections of this chapter.

Creating the CloudFormation stack
First, let’s go through the prerequisites for this section.

Prerequisites for creating the CloudFormation stack

Make sure that the Amazon OpenSearch, Delta Lake, and Apache Hudi connections have been
created. Also, make sure that you have a KeyPair. This KeyPair will be used to connect to one of the
EC2 instances created by the CloudFormation template.

Data Analysis326

The CloudFormation template will create IAM roles and policies, too. These roles and policies are
required for the jobs to function. Please review the definition of these roles, policies, networks, and
security groups, and ensure that they align with the standards of your organization. In the following
sections, first, we will create the stack and then create the dataset.

Creating the stack

The CloudFormation stack creates 61 resources. These resources can be found in the Resources tab
of the CloudFormation stack.

Import the template in CloudFormation and enter the name of the stack, the name of the Apache
Hudi Marketplace connection, the name of the Delta Lake Marketplace connection, the name of the
Amazon OpenSearch connection, the username and password for both the Redshift master user
and the Amazon OpenSearch master user, the IP of your laptop, and the KeyPair that will be used
to connect to the EC2 created by the CloudFormation (CFn). Keep the default settings for the rest
of the parameters.

Please note that the password for Amazon OpenSearch master user must have at least 8 characters:
one uppercase character, one lowercase character, one number, and one of the #$! special characters.
The password for the Redshift master user must have at least 8 characters: one uppercase character,
one lowercase character, and one number. Special characters are not allowed.

After the CloudFormation stack has been created, follow the next section to create a dataset.

Creating a dataset

Before we start looking at various techniques for data analysis, let’s start by creating a basic dataset
to work with.

Navigate to the AWS Glue Studio console (https://console.aws.amazon.com/
gluestudio/home), check the checkbox next to the 01 - Seed data job for Data Analysis Chapter
job, and click on the Run Job button:

Figure 13.9 – The AWS Glue Studio console

https://console.aws.amazon.com/gluestudio/home
https://console.aws.amazon.com/gluestudio/home

The benefit of ad hoc analysis and how a data lake enables it 327

The CloudFormation template shipped with this chapter will have created this job and the associated
resources, such as the S3 bucket, the IAM roles and policies, and the AWS Glue Catalog database,
that are required to run the job.

Now you can go to the AWS Glue Studio monitoring page (https://console.aws.amazon.
com/gluestudio/home?#/monitoring) and check the status of the job. Note that you might
see a lag for a few seconds for the job execution to be reflected on the AWS Glue Studio monitoring
page (https://console.aws.amazon.com/gluestudio/home?#/monitoring):

Figure 13.10 – Checking the status of the jobs

The successful completion of this job will create an employees table in chapter-data-
analysis-glue-database.

Now that we have some data, let’s understand the past and current patterns of data analysis.

The benefit of ad hoc analysis and how a data lake enables it
Before the start of the data lake pattern, organizations used to offload their data into a data warehouse
for analysis. This involved creating an Extraction, Transformation, and Load (ETL) pipe. Creating
ETL pipes, moving the data into a warehouse, and creating reports take a substantial amount of time
and resource investment. By the time all of this has finished, the requirements will have changed
because of the change in the business over a period of time. Sometimes, business users discovered
that they didn’t get what they ordered and that there was a gap in requirement and implementation.

https://console.aws.amazon.com/gluestudio/home?#/monitoring
https://console.aws.amazon.com/gluestudio/home?#/monitoring
https://console.aws.amazon.com/gluestudio/home?#/monitoring

Data Analysis328

For example, a business user could request sales data, resulting in the IT team moving the sales data
into the warehouse. However, the sales data in the warehouse might not be of the grain that the
business user needs or does not include the sales data from all the sources of sales information. All
of this involves a massive amount of rework.

With the advent of data lakes, organizations moved from code to configuration. Unlike a data warehouse,
which requires the creation or modification of an ETL job, bringing a new source into the data lake
usually involves adding a configuration to existing pipes. This is possible because the first layer of a
data lake is generally the raw or the bronze layer and, usually, involves an extract and load job. Data
is brought into this layer in a business-agnostic fashion. Since there is no transformation involved,
the same jobs can be reused to bring in newer sources.

This hugely reduces the time required to make the data available, as bringing it from a new source to the
data lake no longer requires any development effort and is, now, purely an operations ticket. However,
this data in the raw/bronze layer is generally in the format of the source and is not standardized. This
brings about the need for a semi-processed layer. This is generally called the silver layer.

Generally, the transformation between the bronze layer and the silver layer is also business agnostic.
This is because the silver layer is considered the single source of truth for all downstream systems.
We don’t know what requirements we might have in the future. Hence, transforming the data in any
way creates a possibility of not being able to transform it differently if we get such a requirement in
the future.

However, the transformation from bronze to silver includes common sense operations such as
partitioning, compression, the addition of audit columns, and creating derived fields. All of these
operations are coded such that the jobs remain reusable for any new sources that we might have
to bring in. The transformed data can be easily pulled by all the downstream systems that need it.
Additionally, the transformations are designed to provide traceability to the ops team if they have to
troubleshoot some data inconsistency in the downstream systems.

By now, we understand that the data is made available in the silver bucket using reusable code, but
how do we access this data? That is where the central metadata catalog comes in. The AWS Glue Data
Catalog can be the central repository of metadata, and the metadata can either be updated from within
the Glue jobs or using AWS Glue crawlers. Other services, such as Amazon Athena and Amazon EMR,
can also update the AWS Glue Data Catalog. The AWS Glue Data Catalog (https://docs.aws.
amazon.com/glue/latest/dg/components-overview.html#data-catalog-
intro) is also accessible from other AWS services such as Amazon EMR, Amazon RDS, Amazon
Redshift Spectrum, Amazon Athena, and any application that is compatible with the Apache Hive
metastore. Additionally, you can configure the AWS Glue Data Catalog of a different AWS account
(https://docs.aws.amazon.com/athena/latest/ug/data-sources-glue-
cross-account.html).

https://docs.aws.amazon.com/athena/latest/ug/data-sources-glue-cross-account.html
https://docs.aws.amazon.com/athena/latest/ug/data-sources-glue-cross-account.html

The benefit of ad hoc analysis and how a data lake enables it 329

With this feature, business analysts do not have to wait for the creation of the ETL pipelines for the
data to be available in the warehouse but can directly query the silver bucket using the AWS Glue Data
Catalog. This enables them to do an analysis of the data and understand exactly which transformation
has to be formalized and coded into the ETL pipelines and brought to the warehouse. This saves a
lot of IT effort.

Now, that we understand the tangible benefit of ad hoc analysis and how a data lake enables it, let’s look
at the two primary means of computing in AWS that are used for ad hoc analysis. They are Amazon
Athena and Amazon Redshift Spectrum.

Amazon Athena

Amazon Athena is a serverless interactive query service, based on the Presto platform, that can leverage
the AWS Glue Data Catalog for getting the table metadata. Because Amazon Athena is serverless,
there is no infrastructure to set up or manage.

While we will primarily use Amazon Athena for querying purposes, it can do a lot more than just
that. We will spend the next few paragraphs learning about some of the most important features of
Amazon Athena and what makes it so powerful. We discuss these features because Amazon Athena
is one of the most important and widely used tools for data exploration and analysis in the AWS
world. Having a good understanding of Amazon Athena is going to be important to be effective in
data exploration on AWS.

Amazon Athena uses an asynchronous query arrangement. When a user submits a SQL query,
Amazon Athena uses a hot cluster to execute the query and then writes the processed result into a
temporary S3 location. Then, these results are read and returned to the client. You can use the AWS
portal to use Amazon Athena, or you can also use the Athena JDBC driver (https://docs.aws.
amazon.com/athena/latest/ug/connect-with-jdbc.html) in any application,
such as SQL Workbench (https://www.sql-workbench.eu/downloads.html), that
supports a JDBC connection. Additionally, you can use the identities stored in Okta for configuring
federated access to Athena using JDBC and Lake Formation (https://docs.aws.amazon.
com/athena/latest/ug/security-athena-lake-formation-jdbc-okta-
tutorial.html). You can also use Microsoft’s Azure Active Directory (AD) or Ping Identity’s
PingFederate for authentication. Additionally, you can choose to use the Amazon Athena ODBC
drivers (https://docs.aws.amazon.com/athena/latest/ug/connect-with-
odbc.html).

Recently, Amazon Athena upgraded to version 2 of the Athena engine, which is based on Presto
0.217. This brings new features and performance enhancements to the JOIN, ORDER BY, and
AGGREGATE operations.

https://docs.aws.amazon.com/athena/latest/ug/connect-with-jdbc.html
https://docs.aws.amazon.com/athena/latest/ug/connect-with-jdbc.html
https://www.sql-workbench.eu/downloads.html
https://docs.aws.amazon.com/athena/latest/ug/security-athena-lake-formation-jdbc-okta-tutorial.html
https://docs.aws.amazon.com/athena/latest/ug/security-athena-lake-formation-jdbc-okta-tutorial.html
https://docs.aws.amazon.com/athena/latest/ug/security-athena-lake-formation-jdbc-okta-tutorial.html
https://docs.aws.amazon.com/athena/latest/ug/connect-with-odbc.html
https://docs.aws.amazon.com/athena/latest/ug/connect-with-odbc.html

Data Analysis330

The integration with the AWS Glue Data Catalog allows the creation of a unified metadata repository
across multiple AWS services. While the AWS Glue Data Catalog is generally used for the unified
metadata store, you can also connect Athena to an external Hive metastore (https://docs.
aws.amazon.com/athena/latest/ug/connect-to-data-source-hive.html).

In Amazon Athena, most results are delivered within seconds, and you are charged based on the
amount of data scanned by the query (https://aws.amazon.com/athena/pricing/).
Because you are charged for the amount of data scanned, you can greatly reduce your bills by following
the best practices related to compression and partitioning that were introduced in Chapter 5, Data
Layout. Also, you can use Amazon Athena workgroups to track costs, and control and set limits on
each workgroup to control costs. You can also add tags to these workgroups and then use Tag-Based
IAM access policies (https://docs.aws.amazon.com/athena/latest/ug/tags-
access-control.html) to control permissions.

Amazon Athena query metrics can be published to CloudWatch. Then, these metrics can be used to
create alarms that can trigger actions based on the alarms. Also, you can also use the Explain Analyze
(https://docs.aws.amazon.com/athena/latest/ug/athena-explain-
statement.html) statement in Amazon Athena to get the computational cost of each operation
in a SQL query.

Additionally, Amazon Athena can use the fine-grained access control rules set up in your AWS Lake
Formation. AWS Lake Formation allows administrators to configure column-, row-, and even cell-
level permissions (https://docs.aws.amazon.com/lake-formation/latest/
dg/data-filtering.html).

Amazon Athena also supports Atomicity, Consistency, Isolation, and Durability (ACID) transactions
to allow for DML operations such as inserts, updates, and deletes along with the ability to time travel.
This ACID transaction feature (https://docs.aws.amazon.com/athena/latest/
ug/acid-transactions.html) is based on the open source Apache Iceberg (https://
iceberg.apache.org/). Additionally, Amazon Athena supports read operations on AWS Lake
Formation governed tables and Apache Hudi tables (https://docs.aws.amazon.com/
athena/latest/ug/querying-hudi.html).

Apart from querying the data in S3, you can also query the data in other data stores such as Amazon
CloudWatch Logs, Amazon DynamoDB, Amazon DocumentDB, and Amazon RDS, and JDBC-compliant
relational data sources, such as MySQL and PostgreSQL, under the Apache 2.0 license using Amazon
Athena Federated Query feature (https://docs.aws.amazon.com/athena/latest/
ug/connect-to-a-data-source.html). Prebuilt Athena data source connectors exist
for these sources. You can also deploy your own connector to connect to a data source (https://
docs.aws.amazon.com/athena/latest/ug/connect-to-a-data-source-
lambda.html).

https://docs.aws.amazon.com/athena/latest/ug/connect-to-data-source-hive.html
https://docs.aws.amazon.com/athena/latest/ug/connect-to-data-source-hive.html
https://aws.amazon.com/athena/pricing/
https://docs.aws.amazon.com/athena/latest/ug/tags-access-control.html
https://docs.aws.amazon.com/athena/latest/ug/tags-access-control.html
https://docs.aws.amazon.com/athena/latest/ug/athena-explain-statement.html
https://docs.aws.amazon.com/athena/latest/ug/athena-explain-statement.html
https://docs.aws.amazon.com/lake-formation/latest/dg/data-filtering.html
https://docs.aws.amazon.com/lake-formation/latest/dg/data-filtering.html
https://docs.aws.amazon.com/athena/latest/ug/acid-transactions.html
https://docs.aws.amazon.com/athena/latest/ug/acid-transactions.html
https://iceberg.apache.org/
https://iceberg.apache.org/
https://docs.aws.amazon.com/athena/latest/ug/querying-hudi.html
https://docs.aws.amazon.com/athena/latest/ug/querying-hudi.html
https://docs.aws.amazon.com/athena/latest/ug/connect-to-a-data-source.html
https://docs.aws.amazon.com/athena/latest/ug/connect-to-a-data-source.html
https://docs.aws.amazon.com/athena/latest/ug/connect-to-a-data-source-lambda.html
https://docs.aws.amazon.com/athena/latest/ug/connect-to-a-data-source-lambda.html
https://docs.aws.amazon.com/athena/latest/ug/connect-to-a-data-source-lambda.html

The benefit of ad hoc analysis and how a data lake enables it 331

Amazon Athena is also used in combination with AWS Step Functions (https://aws.amazon.
com/step-functions/) to create a data processing pipeline that is orchestrated in AWS
Step Functions and processed using Amazon Athena. These data processing pipelines can use
User-Defined Functions (UDFs) (https://docs.aws.amazon.com/athena/latest/
ug/querying-udf.html) in Amazon Athena for reusable and standardized processing that
has to be used multiple times within the same pipeline or across multiple pipelines. Additionally, the
same USING EXTERNAL FUNCTION syntax that was used with UDFs can be used to run the ML
inference using Amazon SageMaker (https://aws.amazon.com/sagemaker/). Now,
let’s look at some of the Amazon Athena features that can help us be more efficient in querying data.

You can create views in Athena to simplify the querying process for less SQL-savvy resources and to
ensure consistent results for common queries.

Often, data exploration requires parsing nested structures and arrays. Amazon Athena supports both
of these and can also parse a JSON object. This flexibility to parse complex structures helps Amazon
Athena enable data exploration on less-than-perfect data. Amazon Athena also supports queries on
geospatial data. The input data should be in WKT (Well-known text) format or JSON-encoded
geospatial data format. Amazon Athena can also be configured to query AWS CloudTrail logs, Amazon
CloudFront logs, Classic Load Balancer logs, Application Load Balancer logs, Amazon VPC flow logs,
and Network Load Balancer logs.

Additionally, you can parameterize the queries that are used more often. This is done using the PREPARE
and EXECUTE statements (https://docs.aws.amazon.com/athena/latest/ug/
querying-with-prepared-statements.html). You also have the option to save the
queries per workgroup.

Querying in Athena

In the previous section, we learned about the various features of Athena that can help to simplify data
exploration in AWS. In this section, we will look at a simple example for querying the data.

Run the following query in your Athena console. You should be able to see the data inserted in the
01 - Seed data job for Data Analysis Chapter job in the Creating a dataset section:

SELECT * FROM "AwsDataCatalog"." chapter-data-analysis-glue-
database"."employees" order by emp_no;

https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://docs.aws.amazon.com/athena/latest/ug/querying-udf.html
https://docs.aws.amazon.com/athena/latest/ug/querying-udf.html
https://aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/athena/latest/ug/querying-with-prepared-statements.html
https://docs.aws.amazon.com/athena/latest/ug/querying-with-prepared-statements.html

Data Analysis332

You will see the following output:

Figure 13.11 – Query output in the Athena console

So far, we have created sample data using Glue jobs, we have learned about the various features for
data exploration in Athena, and we have also queried our sample data through Athena.

Next, we will look at another tool for exploring data in Amazon S3.

Amazon Redshift Spectrum

Redshift Spectrum is a feature within the Redshift toolset. It is a mechanism used to query S3 data by
employing massive parallelism to query the data on a big data scale. The feature also enables Redshift
to offload a part of the query compute such as aggregation and filtering to the spectrum layer. Just like
Athena, Amazon Redshift Spectrum can query data from the AWS Glue Data Catalog or an external Hive
metastore. So, tables created in the AWS Glue Data Catalog can be accessed within Redshift through
Redshift Spectrum using an external schema. Later in this section, we will check a related example.

Users can also partition the data, and the intelligent spectrum layer can prune those partitions when
users query for the specific data within the partitions. Because the data lives externally, the same data
can be accessed in multiple Redshift clusters through the spectrum layer. Other big data technologies
such as Hudi can be used to create a transactional data lake. Redshift supports Copy-on-Write
(CoW) Hudi tables (https://hudi.apache.org/docs/concepts.html#copy-
on-write-table). Check out the documentation (https://docs.aws.amazon.com/
redshift/latest/dg/c-spectrum-external-tables.html#c-spectrum-
column-mapping-hudi) for supported Hudi versions. We will discuss Hudi tables in more
detail in the following sections. Updates to the CoW Hudi tables are available in Redshift through
the Spectrum layer.

The benefit of ad hoc analysis and how a data lake enables it 333

Additionally, you can query Delta Lake (https://delta.io/) tables through Redshift Spectrum.
The data from Redshift Spectrum can be joined with the data maintained within Redshift. You can
also use data handling options (https://docs.aws.amazon.com/redshift/latest/
dg/t_setting-data-handling-options.html) to define Spectrum’s behavior when
it finds unexpected values in the columns of external tables. Spectrum supports the row and column
level rules that have been set up for your data lake security for governed tables. Additionally, data in S3
accessed via Spectrum can be used to hydrate the materialized views in Redshift (https://docs.
aws.amazon.com/redshift/latest/dg/materialized-view-overview.html).

One of the major improvements in Spectrum, which was introduced a few years ago, was the support
for bloom filters. A bloom filter is a probabilistic, memory-efficient data structure that accelerates join
queries. Redshift decides on its own whether to use the bloom filter for a query at runtime. Spectrum
supports modern BI tools by enabling you to query for complex and nested data types (https://
docs.aws.amazon.com/redshift/latest/dg/tutorial-query-nested-
data.html) such as structs, arrays, or maps in S3 data.

Now that we understand Redshift Spectrum, let’s create an external schema in Redshift to query the
table that we created using the 01 - Seed data job for Data Analysis Chapter job in the Creating
a dataset section.

The CloudFormation template shipped with this chapter creates a role cal led
HandsonSeriesWithAWSGlueRSRole and a Redshift cluster to enable us to use Amazon Redshift
Spectrum to query the data from S3. Please navigate to the IAM console (https://console.aws.
amazon.com/iamv2/home#/roles/details/HandsonSeriesWithAWSGlueRSRole)
and check out the definition of this role to ensure that it is compliant with your organization. This
role will be used by Amazon Redshift to access the AWS Glue Data Catalog:

1. Go to the Redshift SQL workbench console (https://console.aws.amazon.com/
sqlworkbench/home?#/client).

2. Click on the Redshift cluster created by the CloudFormation template. You can get this from
the RedshiftClusterId key of the Outputs tab of the CloudFormation stack:

Figure 13.12 – The Redshift cluster in Redshift query editor v2

https://delta.io/
https://docs.aws.amazon.com/redshift/latest/dg/t_setting-data-handling-options.html
https://docs.aws.amazon.com/redshift/latest/dg/t_setting-data-handling-options.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/tutorial-query-nested-data.html
https://docs.aws.amazon.com/redshift/latest/dg/tutorial-query-nested-data.html
https://docs.aws.amazon.com/redshift/latest/dg/tutorial-query-nested-data.html
https://console.aws.amazon.com/sqlworkbench/home?#/client
https://console.aws.amazon.com/sqlworkbench/home?#/client

Data Analysis334

3. Select the Database user name and password option and enter the username and password
entered during the creation of the CloudFormation stack. You can keep the default value of
dev for the Database field. Click on the Create connection button:

Figure 13.13 – The Database username and password options

4. Make sure that the dev database has been selected at the top:

Figure 13.14 – Selecting the dev database

The benefit of ad hoc analysis and how a data lake enables it 335

5. Enter the following command, and click on the Run button:

create external schema chapter_data_analysis_schema
from data catalog database 'chapter-data-analysis-glue-
database' region '<region>' iam_role 'arn:aws:iam::<aws_
account_id>:role/HandsonSeriesWithAWSGlueRSRole';

Replace region and aws_account_id in the preceding command.

Here, database is the AWS Glue Data Catalog database. This database was created
through the CloudFormation stack.

6. Now, expand the dev database. You should notice the chapter_data_analysis_schema
schema underneath it. Now you should be able to see the employees table created in the
Creating a dataset section:

Figure 13.15 – Expanding the dev database option

7. Run the following SELECT query to see the data loaded into the Glue Data Catalog table:

SELECT * FROM "dev"."chapter_data_analysis_
schema"."employees" order by emp_no;

Data Analysis336

The output is as follows:

Figure 13.16 – Data in the Glue Data Catalog table

Alright, so we saw how the data written in S3 can be accessed by both Redshift and Athena for analysis.
But what if the data had to be updated? One mechanism is to overwrite, that is, truncate and then
load the table. In some cases, this approach can be expensive. We can probably come up with a more
cost-optimized approach where we, first, partition the table and then only overwrite a partition.
However, this approach comes with its own drawbacks.

For this approach to work, the newer updates will have to be limited to only a few of the partitions
because if the newer updates are across partitions, then all of the partitions will have to be overwritten.
As you might have noticed, creating a logic to upsert data in a data lake can become quite complex
very quickly. An alternative is to use open source solutions such as Hudi and Delta Lake to make the
data lake more transactional. Solutions such as Hudi bring additional benefits, such as the ability to
create Merge on Read (MoR) or CoW (tables along with the ability to only query the incremental
data and time travel.

In order to simplify the process of using these open source technologies, the AWS Glue team came
up with AWS Glue custom connectors (https://aws.amazon.com/about-aws/whats-
new/2020/12/aws-glue-launches-aws-glue-custom-connectors/).

In this chapter, we will use quite a few Marketplace Glue connectors. Previously, you created Apache
Hudi, Delta Lake, and OpenSearch connections in the Creating Marketplace connections section. Now
we will use Apache Hudi and Delta Lake connections for upserting data in the S3 data lake.

https://aws.amazon.com/about-aws/whats-new/2020/12/aws-glue-launches-aws-glue-custom-connectors/
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-glue-launches-aws-glue-custom-connectors/

Creating and updating Hudi tables using Glue 337

Creating and updating Hudi tables using Glue
Apache Hudi is an open source data management tool that was initially developed by Uber. Its superpower
is enabling incremental data processing in a data lake. The Apache Hudi format is supported by a wide
range of tools on AWS such as AWS Glue, Amazon Redshift, Amazon Athena, and Amazon EMR.

The CloudFormation template, for this chapter, creates two Hudi batch jobs. They are 02 - Hudi
Init load for Data Analysis Chapter and 03 - Hudi Incremental load
for Data Analysis Chapter. Both of these jobs use the Hudi connection created in the
Creating the Marketplace connections section. Additionally, these jobs accept the target bucket as an
input parameter. This input parameter is prepopulated by the CloudFormation template. Navigate to
the job details page of the 02 - Hudi Init load for Data Analysis Chapter job
(https://console.aws.amazon.com/gluestudio/home?#/editor/job/02%20
-%20Hudi%20Init%20load%20for%20Data%20Analysis%20Chapter/details)
to check out the configurations for the job.

Now we will execute the Glue Hudi jobs to create Hudi tables in the Glue Data Catalog:

1. Navigate to the AWS Glue Studio console (https://console.aws.amazon.com/
gluestudio/home?#/jobs), check the checkbox next to 02 - Hudi Init load for Data
Analysis Chapter, and click on the Run Job button.

2. Now you can go to the AWS Glue Studio monitoring page (https://console.aws.
amazon.com/gluestudio/home?#/monitoring) and check the status of the job.
You might see a lag of a few seconds for the execution to show up on the monitoring page:

Figure 13.17 – Viewing the job status

3. After the job finishes, this job will create a Hudi table, and you will be able to query it in Athena
using the following query:

SELECT emp_no, name, department, city, salary FROM
"AwsDataCatalog"."chapter-data-analysis-glue-
database"."employees_cow" order by emp_no;

https://console.aws.amazon.com/gluestudio/home?#/jobs
https://console.aws.amazon.com/gluestudio/home?#/jobs
https://console.aws.amazon.com/gluestudio/home?#/monitoring
https://console.aws.amazon.com/gluestudio/home?#/monitoring

Data Analysis338

The results are as follows:

Figure 13.18 – The query results for the Hudi table

4. Now, let’s say that Jeff got a raise along with a transfer to Cincinnati. Additionally, let’s say that
Jeff ’s new salary is 75,000. Run the 03 - Hudi Incremental load for Data Analysis Chapter
job just as you ran the previous one. This job will help to update the information in the
employees_cow table. Note that the value of salary=75000 and city=Cincinnati
for emp_no=3 is hardcoded in this job.

5. Go to the go the AWS Glue Studio monitoring page (https://console.aws.amazon.
com/gluestudio/home?#/monitoring) and check the status of the job. You might
see a lag of a few seconds for the execution to show up on the monitoring page:

Figure 13.19 – Monitoring the status of the 03 - Hudi Incremental load for Data Analysis Chapter job

https://console.aws.amazon.com/gluestudio/home?#/monitoring
https://console.aws.amazon.com/gluestudio/home?#/monitoring

Creating and updating Delta Lake tables using Glue 339

6. After the successful completion of the job, run the query on the employees_cow table in
Amazon Athena again. You will notice that the record has been updated:

SELECT emp_no, name, department, city, salary FROM
"AwsDataCatalog"."chapter-data-analysis-glue-
database"."employees_cow" order by emp_no;

The results are as follows:

Figure 13.20 – The updated table

We just saw the use of Apache Hudi for upserting the data in a lake and querying the upserted data
in Athena. Now we will try to upsert the data using the Delta Lake connection created in the Creating
Marketplace connections section.

Creating and updating Delta Lake tables using Glue
Delta Lake is also an open source framework that was initially developed by Databricks. Similar to
Hudi, Delta Lake is also supported by Spark, Presto, and Hive among many others.

Data Analysis340

We will now execute the 04 - DeltaLake Init load for Data Analysis Chapter job to create a Delta Lake
table. The 04 - DeltaLake Init load for Data Analysis Chapter job was created by the CloudFormation
template executed earlier:

1. Run the Glue job: 04 - DeltaLake Init load for Data Analysis Chapter. Notice in the job
script that we are using Spark SQL to create a table definition in the Glue Catalog for the Delta
Table. Here is the Spark SQL statement from the code of the 04 - DeltaLake Init load for Data
Analysis Chapter job:

spark.sql("CREATE TABLE `chapter-data-analysis-
glue-database`.employees_deltalake (emp_no int,
name string, department string, city string,
salary int) ROW FORMAT SERDE 'org.apache.hadoop.
hive.ql.io.parquet.serde.ParquetHiveSerDe' STORED
AS INPUTFORMAT 'org.apache.hadoop.hive.ql.io.
SymlinkTextInputFormat' OUTPUTFORMAT 'org.apache.hadoop.
hive.ql.io.HiveIgnoreKeyTextOutputFormat' LOCATION
'"+tableLocation+"_symlink_format_manifest/'")

Also, notice that we have put /tmp/delta-core_2.12-1.0.0.jar in the Python
lib path argument. This can be seen in the following screenshot:

Figure 13.21 – Running the 04 - DeltaLake Init load for Data Analysis Chapter job

Creating and updating Delta Lake tables using Glue 341

Additionally, we generate symlink_format_manifest from within the Glue job.
This helps us to read the table from Athena or Presto.

2. Go to the AWS Glue Studio monitoring page (https://console.aws.amazon.com/
gluestudio/home?#/monitoring) and check the status of the job. Once the job is
complete, go to Athena, and execute the following statement:

SELECT * FROM "AwsDataCatalog"."chapter-data-analysis-
glue-database"."employees_deltalake" order by emp_no;

You will notice that the data has been inserted into the Glue Catalog table and can be
queried through Athena, as shown in the following screenshot:

Figure 13.22 – The result of the executed statement

3. Now, let’s say that we want to update city to Cincinnati and salary to 70000 for
emp_no = 3. Run the 05 - DeltaLake Incremental load for Data Analysis Chapter job
and let it finish. The value of salary=75000 and city=Cincinnati for emp_no=3
is hardcoded into this job.

https://console.aws.amazon.com/gluestudio/home?#/monitoring
https://console.aws.amazon.com/gluestudio/home?#/monitoring

Data Analysis342

4. Run the following query in Athena and notice that the data for emp_no = 3 has changed:

SELECT * FROM "AwsDataCatalog"."chapter-data-analysis-
glue-database"."employees_deltalake" order by emp_no;

The results are as follows:

Figure 13.23 – The updated data for emp_no = 3

In this section, we saw how we can create and update tables and data in the Glue Data Catalog using
Delta Lake. Now we will look at how we can insert data into governed tables.

Inserting data into Lake Formation governed tables
Governed tables are packed with a lot of features such as ACID transactions, automatic data compaction
for faster query response times, and time travel queries. Now we will go through the process of creating
Lake Formation governed tables using Glue jobs:

1. Go to the Outputs tab of the CloudFormation stack and grab the S3 path for the
LakeFormationLocationForRegistry key.

Inserting data into Lake Formation governed tables 343

2. Go to AWS Lake Formation (https://console.aws.amazon.com/lakeformation/
home) and register the S3 location, from step 1, with Lake Formation, as shown in the following
screenshot:

Figure 13.24 – Registering the location

The format of this path is s3://<target_s3_bucket>/employees_
governed_table/. Make sure that you register it in the same region where you created
the Cloud Formation stack.

Note that you should use the AWSServiceRoleForLakeFormationDataAccess
role. This role has been granted access to the KMS key so that we can query the governed
table successfully.

https://console.aws.amazon.com/lakeformation/home
https://console.aws.amazon.com/lakeformation/home

Data Analysis344

3. Go to Data locations tab in Lake Formation and grant privi leges f rom
s3://<target_s3_bucket>/employees_governed_table/ to
HandsonSeriesWithAWSGlueJobRole. You will have to paste the s3://<target_
s3_bucket>/employees_governed_table/ path inside the Storage locations
textbox and select HandsonSeriesWithAWSGlueJobRole from the IAM users and roles
drop-down list:

Figure 13.25 – The Data locations tab

4. Run the 06 - Governed Table Create Table for Data Analysis Chapter job from Glue Studio,
just as you ran the previous jobs. This job will create employees_governed_table in
chapter-data-analysis-glue-database. After the job has been successfully
completed, you should be able to see the table in Athena.

5. Now we will load this table with data. Execute the 07 - Governed Table Init Load for Data
Analysis Chapter job. This code starts a transaction, loads the data, and then commits it.

6. After the job finishes, you will now be able to query the data in Athena. Run the following
command:

SELECT * FROM "AwsDataCatalog"."chapter-data-analysis-
glue-database"."employees_governed_table" order by emp_
no;

The following screenshot shows the data in the employees_governed_table table:

Consuming streaming data using Glue 345

Figure 13.26 – Data in the employees_governed_table table

In this section, we saw how governed tables can be used to ingest data in a data lake. The Glue job
used to ingest the data ran as a batch. In fact, in this chapter, all of the jobs that have been executed
so far have been batch jobs. These jobs include the jobs related to both Hudi and Delta Lake. Next,
we will look at how to stream ingestion jobs.

Consuming streaming data using Glue
Now that we understand how Glue works in batch mode, let’s understand the process of updating the
data coming through a stream.

The CloudFormation stack creates a Managed Streaming for Apache Kafka (MSK) cluster for this
purpose. You will have to create a Glue connection for this MSK cluster. It is important that you name
this connection as chapter-data-analysis-msk-connection. This connection is used
in the jobs that follow. These jobs get the Kafka broker details from the connection.

Data Analysis346

Creating chapter-data-analysis-msk-connection

We will execute Glue jobs to load data into an MSK topic and also consume data from the topic. Both
of these jobs require broker information and other details about the MSK cluster. Now we will create
an MSK connection in Glue. Please ensure that you put the name of the connection as chapter-
data-analysis-msk-connection. This is because the Glue jobs have been preconfigured
to use this name as the connection name:

1. Navigate to the Connections page in the AWS Glue console (https://console.aws.
amazon.com/glue/home?#catalog:tab=connections), and then go to the
Connections section.

2. Click on the Add connection button.

3. Set Connection type as Kafka and put Connection name as chapter-data-analysis-
msk-connection. Select the MSK cluster created using CloudFormation in the Select MSK
cluster drop-down list and ensure that the Require SSL connection flag has been checked.
Click on Next:

Figure 13.27 – Setting up the properties

https://console.aws.amazon.com/glue/home?#catalog:tab=connections
https://console.aws.amazon.com/glue/home?#catalog:tab=connections

Consuming streaming data using Glue 347

4. Select the VPC ID, one of the private subnet IDs, and a security group, and click on Next. You
should be able to get all of these values from the Outputs tab of the CloudFormation stack.
Click on Finish:

Figure 13.28 – Setting up access

Now that we have created an MSK connection in Glue, we will load data into a topic in the MSK
cluster. Later, we will consume data from the topic through Glue streaming jobs.

Loading and consuming data from MSK using Glue

Run the Python shell’s 08 - Kafka Producer for Data Analysis Chapter job. This job will use
chapter-data-analysis-msk-connection, as created in the preceding section, and
load data into the MSK cluster.

Data Analysis348

This job uses the AWS wrangler whl file and the kafka-python whl file to read the data from
the S3 path and load it into Kafka. Both of these whl files have been copied in the S3 bucket of your
account through the CloudFormation template and have been configured in the Glue Python shell
job. This job creates a chapter-data-analysis topic and then loads data into it.

After the job has successfully finished, you will have the data in the MSK cluster. Now we should
execute the Glue streaming jobs to consume the data from the topic.

Glue streaming job as a consumer of a Kafka topic

First, we will check out the traditional micro-batch pattern that is commonly employed to consume
streaming data using Glue.

Start the 09 - Kafka Consumer for Data Analysis Chapter job. This is a Spark streaming job that
consumes data from the chapter-data-analysis topic. It micro-batches the processing
using the forEachBatch (https://docs.aws.amazon.com/glue/latest/dg/
aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-
glue-api-crawler-pyspark-extensions-glue-context-forEachBatch)
method of GlueContext.

The forEachBatch method micro-batches the streaming dynamic frame. In the 09 - Kafka Consumer
for Data Analysis Chapter job, the micro-batch is 10 seconds. Each micro-batch is processed in the
processBatch method. In the 09 - Kafka Consumer for Data Analysis Chapter job, we write
the micro-batch into a Hudi table just as we had written one in the batch operation.

Notice that the processing of these micro-batches was no different from the processing of the Hudi
batch jobs shared earlier. Essentially, this means that the process can be applied to consume a stream
in other formats such as Delta Lake using the batch code for the Delta Lake shared earlier.

After a couple of minutes of execution, you should see the employees_cow_streaming table
under chapter-data-analysis-glue-database. You should be able to query it in
Athena using the following query:

SELECT emp_no,name,department,city,salary FROM
"AwsDataCatalog"."chapter_data_analysis"."employees_cow_
streaming" order by emp_no;

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-forEachBatch
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-forEachBatch
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-glue-context.html#aws-glue-api-crawler-pyspark-extensions-glue-context-forEachBatch

Consuming streaming data using Glue 349

The results are as follows:

Figure 13.29 – The results of the query

In this section, we used a streaming Glue job to consume data from a Kafka topic. In the next section,
we will use the Hudi DeltaStreamer (https://hudi.apache.org/docs/hoodie_
deltastreamer/) utility to consume data from the same Kafka topic.

Hudi DeltaStreamer streaming job as a consumer of a Kafka topic

Now that we have seen the traditional micro-batch method used to consume streaming sources in Hudi
tables using Glue, let’s look at the mechanism of using Hudi DeltaStreamer to consume streaming data.

Run the 10 - DeltaStreamer Kafka Consumer for Data Analysis Chapter job. Just as in the previous
job, this also uses the Hudi connection. However, notice that the dependent JARs path has been set to
/tmp/*. This is required to ensure that the right classes are available on the classpath. While some
of the configurations are similar to the configurations of the Hudi jobs that we created up till now,
the DeltaSteamer job requires the schema files for the source and target. Since our use case is about
replicating data, our source and target schema has the same file. The structure of this avro schema
file is as follows:

{

 "type":"record",

 "name":"employees",

 "fields":[{

https://hudi.apache.org/docs/hoodie_deltastreamer/
https://hudi.apache.org/docs/hoodie_deltastreamer/

Data Analysis350

 "name": "emp_no",

 "type": "int"

 }, {

 "name": "name",

 "type": "string"

 }, {

 "name": "department",

 "type": "string"

 },{

 "name": "city",

 "type": "string"

 },{

 "name": "salary",

 "type": "int"

 },{

 "name": "record_creation_time",

 "type": "float"

 }

]}

This file is written into your S3 bucket through CloudFormation, and the 10 - DeltaStreamer Kafka
Consumer for Data Analysis Chapter job is configured to use this avro schema file.

Once the job has been executing for 2–3 minutes, you should be able to see and query the employees_
deltastreamer table in chapter-data-analysis-glue-database, in Athena, using
the following query:

SELECT emp_no,name,department,city,salary FROM
"AwsDataCatalog"."chapter-data-analysis-glue-
database"."employees_deltastreamer" order by emp_no;

Consuming streaming data using Glue 351

The result is as follows:

Figure 13.30 – The 10 - DeltaStreamer Kafka Consumer for Data Analysis Chapter job results

Now we have our traditional Glue streaming and DeltaStreamer jobs running. This means that if we
add new data to our MSK topic, the data will be consumed by both of our jobs. Now we will load CDC
data into our topic. Our streaming jobs should consume and process the data. Our query through
Athena should be able to show the updated data in the processed tables since our streaming jobs are
using Hudi.

Creating and consuming CDC data through streaming jobs on Glue

Now, we will load CDC data into the MSK topic.

Run the 11 - Incremental Data Kafka Producer for Data Analysis Chapter job. This job adds the
following CDC data to the chapter-data-analysis topic:

{"emp_no": 3,"name": "Jeff","department": "Finance","city":
"Cincinnati","salary": 70000,"record_creation_time":now}

This job uses the same whl files as the 08 - Kafka Producer for Data Analysis Chapter job.

Data Analysis352

As soon as the job finishes, you should be able to see the update in both the employees_
deltastreamer and employees_cow_streaming tables. The following screenshot shows
the result in the employees_deltastreamer table:

Figure 13.31 – The results of the employees_deltastreamer table

The following screenshot shows the result in the employees_cow_streaming table:

Figure 13.32 – The results of the employees_cow_streaming table

Glue’s integration with OpenSearch 353

Since our Glue streaming jobs are configured to consider emp_no as the record key, it will automatically
update city and salary to the new values.

Note
Please shut down the Glue Streaming job so that you do not incur any additional charges.

Now we will discuss the process of loading the Amazon OpenSearch domain using Glue.

Glue’s integration with OpenSearch
Now, let’s focus on a search use case. Let’s say that you were interested in searching through log data.
Amazon OpenSearch could be your answer to that. Originally, it was forked from Elasticsearch and
comes with a visualization technology called OpenSearch Dashboards. OpenSearch Dashboards has
been forked from Kibana. OpenSearch can work on petabytes of unstructured and semi-structured
data. Additionally, it can auto-tune itself and use ML to detect anomalies in real time. Auto-Tune
analyzes cluster performance over time and suggests optimizations based on your workload.

For the purpose of this chapter, we will use our employee data as the source and show how we can
load the data into OpenSearch. Then, we will visualize the data in OpenSearch Dashboards.

The CloudFormation template creates a secret that stores the OpenSearch domain’s user ID and
password. The Marketplace connection created by you using the OpenSearch connector should have
this secret configured in it. This is because the Glue job will use this secret to authenticate against the
OpenSearch domain. Now we will set the secret in the Glue OpenSearch connection:

1. Navigate to the Connectors tab of the AWS Glue Studio console (https://console.aws.
amazon.com/gluestudio/home?#/connectors) and then go to the OpenSearch
connection that you created earlier. This connection should be in the Connections section.

https://console.aws.amazon.com/gluestudio/home?#/connectors
https://console.aws.amazon.com/gluestudio/home?#/connectors

Data Analysis354

2. Click on the Edit button:

Figure 13.33 – Editing the connection details

3. Go to the Connection access section and select ChapterDataAnalysisOSSecret from the drop-
down list. Then, click on the Save changes button. ChapterDataAnalysisOSSecret is created
by the CloudFormation template. The values of the OpenSearch master user and password
supplied during the Cloud Formation stack have been stored in this secret:

Glue’s integration with OpenSearch 355

Figure 13.34 – Filling in the connection properties

4. Run the 12 - OpenSearch Load for Data Analysis Chapter job. On the successful completion of
this job, the employee information will be available in the employees index of the OS domain.

5. Now that we have data in our OS domain, it’s time to access that. The CloudFormation template
has created a Windows EC2 instance for you to check the data. First, you will need the password
to the EC2 instance. Run the following command to retrieve the password:

aws ec2 get-password-data --instance-id <instance_id_
of_windows_ec2_instance> --priv-launch-key <key_file_
selected_during_the_creation_of_the_cloudformation_stack>
--query PasswordData | tr -d '"'

Data Analysis356

You can get the instance ID from the InstanceIDOfEC2InstanceForRDP key in
the Outputs tab of the CloudFormation stack.

6. Now, navigate to your remote desktop client and use the public IP address of the EC2 instance. Use
the password from the preceding step and Administrator as the username to log in. You can
get the public IP address of the EC2 instance from the PublicIPOfEC2InstanceForRDP
key in the Outputs tab of the CloudFormation stack.

If you had keyed in the correct IP address of your laptop in the ClientIPCIDR parameter
of the CloudFormation stack, then a security group rule to allow a Remote Desktop Protocol
(RDP) connection from your laptop on port 3389 should already be in place.

7. Install your favorite browser on the EC2 instance after logging in, and then open the OpenSearch
Dashboards URL. You can get this URL from the OpenSearchDashboardsURL key in
the Outputs tab of the CloudFormation stack.

8. Use the username and password entered for the OpenSearch domain during the
creation of the CloudFormation stack. Additionally, you can also retrieve it from the
ChapterDataAnalysisOSSecret secret in the AWS Secrets Manager (https://
console.aws.amazon.com/secretsmanager/home).

9. Click on the Explore on my own link, select the Private radio button in the Select your tenant
popup, and then click on the Confirm button:

Figure 13.35 – Selecting the private tenant option

https://console.aws.amazon.com/secretsmanager/home
https://console.aws.amazon.com/secretsmanager/home

Glue’s integration with OpenSearch 357

10. Click on Query Workbench from the left-hand pane:

Figure 13.36 – Query Workbench

11. Run the following query in the Query editor window. You will notice that the data is available
in OpenSearch to use:

select * from employees order by emp_no;

Data Analysis358

The following screenshot shows the data:

Figure 13.37 – The results in the Query editor window

In this section, we inserted data from Glue into OpenSearch and then queried it from OpenSearch
Dashboards.

Cleaning up
Delete the CloudFormation stack and remove the registration of the S3 location in AWS Lake Formation
along with the Data locations permissions that were granted manually for the governed tables part.

Summary 359

Summary
In this chapter, we learned how data in the data lake can be consumed through both Athena and
Redshift. Then, we saw how we can create transactional lakes using technologies such as Hudi and
Delta Lake. We then checked various mechanisms for consuming streaming sources in Glue using
the forEachBatch method and Hudi DeltaStreamer. Finally, we checked how the ElasticSearch
connector from the AWS Glue connector offerings can be used to push data into an OpenSearch
domain and consumed through OpenSearch Dashboards. This chapter familiarized you with the
most common patterns of data analysis and ETL using AWS Glue.

In the next chapter, we will learn about ML. We will find out more about the strengths and weaknesses
of SparkML and SageMaker and when to use each of those tools.

14
Machine Learning Integration

Machine learning (ML) is one of the cornerstones of today’s computing for any software-related
company. ML models are capable of making predictions or deductions based on past experience, provided
as training data. This enables a wide variety of applications with large benefits to any organization.

Because it relies on training data, ML is closely tied to data mining, data processing, and, in general,
any kind of extract, transform, load (ETL) process. Training data must be properly cleaned, formatted,
and classified before it can be fed to a model – a process that greatly affects the effectiveness of the
model itself. Because of this, services such as AWS Glue offer ML-specific features and integrations,
catered to making ML easier and more effective to use.

Training data preparation is not the only relationship ML has with ETL processes – it can also be used
to enhance and provide new transformations within the processes themselves, enabling new capabilities
that were not possible before. ML models can be used, for instance, to automatically detect duplicate
data or to tag columns in datasets based on specific properties.

In this chapter, we will cover the following topics:

• Glue ML transformations

• SageMaker integration

• Developing ML pipelines with Glue

By the end of this chapter, you will understand how ML transformations work with Glue, how to
combine Glue and SageMaker effectively to power all your ML needs, and how to deploy an ML
pipeline in the AWS cloud using Glue.

Machine Learning Integration362

Technical requirements
For this chapter, the only requirement is that you have access to this book’s GitHub repository page
(https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-
with-AWS-Glue).

Glue ML transformations
As mentioned previously, ML is not just an entity that reads the output data from ETL processes, but
also one that powers its transformations. ML models enable a wide variety of operations that were
not possible before due to computer intelligence limitations.

Because of this, Glue started to offer ML powered-operations with specific purposes under the ML
transforms feature. As the name suggests, ML transforms are specific kinds of Glue transforms that
are powered by ML models but must be trained and prepared before they can be used. Once they are
ready, they can be called from your ETL job’s code, just like other Glue transforms.

At the time of writing, Glue has only released one ML transform, FindMatches, which will automatically
find duplicated records within a dataset. Even though this seems like a simple task (most ETL engines
could provide this by simply comparing records and checking if they are equal, or if they share a
primary key), ML allows for duplicate detection, even in scenarios where records don’t have the same
identifier or primary key, or when all the fields are not the same.

The FindMatches operation enables use cases that were not possible or considerably harder before,
such as fraud detection (where a user may have created a duplicate account while trying to avoid a
ban) or finding duplicates in a product catalog (where two entries may have different capitalization
or spelling but refer to the same product).

As mentioned earlier, ML transforms must be trained, which means you will need sample training data,
but the transformation must be fine-tuned to the specifics of your dataset and use case. ML transforms
also abstract most of the logic that goes into training an ML model, enabling data engineers to take
advantage of ML without necessarily being experts on it.

In this section, we’ll go through the life cycle of an ML transform. We’ll learn how to create one, train
it, and use it in ETL jobs.

Creating an ML transform

Before the training stage, an ML transform must be created and configured according to the desired
results. To create an ML transform, you must provide the following:

• Job configuration parameters: Just like with ETL jobs, the transform will need an IAM role,
resource configuration, and security configurations.

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue

Glue ML transformations 363

• Source dataset parameters: The dataset to be read, plus the column within it to be used as a
primary key.

• ML tuning parameters: As with other ML models, the transformation can be configured to
favor precise or non-strict results, where the non-strict configuration would give more results
but also a larger number of false positives. A Glue ML transform also allows the user to decide
between spending extra resources to make the transform more accurate or saving costs by
having fewer results at the cost of less accuracy.

Once these have been set, the transform is created and is set to the Needs training state. Transforms in
this state cannot be used in ETL jobs, as they are required to go through the model training process first.

Training an ML transform

ML transforms follow a supervised learning mechanism called labeling. Within ML, data labeling is
a mechanism by which a human actor provides context to a dataset so that a machine can learn and
understand it. For instance, when creating an image object recognition ML model, a human could
take a set of pictures and label them based on the object shown in them (for example, “car”, “bicycle”,
or “orange”). This labeling can be as simple or as complex as required, and with it, the ML model can
understand the context of what it is trying to recognize based on the labels.

The same mechanism applies here. When training an ML transform, Glue will take a sample of the
records of the specified input dataset and provide it in a pre-formatted CSV file in an S3 path of the
user’s choice. The user can then download the file, inspect the records, and label them accordingly by
filling out the label column in the CSV file. For instance, let’s say we have the following sample records:

Figure 14.1 – Sample records with an empty label column

Machine Learning Integration364

The labeling should look like this, considering we are trying to identify duplicated records:

Figure 14.2 – Sample records with a filled label column

As you can see, the labeling process consists of setting the same label identifier for records that refer
to the same book, even if the records are slightly different in terms of title or authors. This process is
quite literally teaching the ML model how different records refer to the same entity.

There are several considerations regarding how this works:

• The value of the label column can be anything (a number, a letter, or a word), so long as it
is consistent and the same for equal rows.

• The file will also contain a second column called labeling_set_id. This column identifies
different groups of rows with their own, separate labeling. Label values can be repeated across
different labeling sets without causing a match.

• The file you upload to S3 for Glue to take as labels must be a UTF-8-encoded CSV file, the
columns of which must be the same as the source dataset’s, plus the label and labeling_
set_id columns.

Once the labeling file is ready, it can be uploaded to S3 and provided to Glue so that it can train the
transform’s model. Upon being uploaded, Glue can perform two calculations:

• Transform quality estimation: This is an estimation of how good the transform is at doing its
job, as specified by several percentage values.

• Column importance: This calculation determines how relevant the columns in the dataset are
to the success of the transform. Irrelevant columns can be omitted and the transform would
still be able to find matches.

Glue ML transformations 365

The labeling process is repeatable and can be done an unlimited number of times. If the results of
the quality estimation process (or the results of your ETL jobs that rely on the ML transform) are not
good enough, the labeling process can be repeated to improve the accuracy of the model through
human curation.

Using an ML transform

Once the transform has been trained at least once, it will change status to Ready for use. A transformation
in this state can be used within ETL jobs. The FindMatches ML transform can be used in two modes:
regular and incremental. Let’s start by looking at a regular invocation:

findmatches_result = FindMatches.apply(

frame = my_dynamic_frame,

transformId = "tfm-d03f274ad2f0136dacc5bcb54deced1eea54371a",
transformation_ctx = "findmatches")

As you can see, the transform simply needs the DynamicFrame to apply the transformation to, as well
as the ID of the trained transformation. The result of this operation (findmatches_result) will
be a DynamicFrame with the same schema as the input one, but with two added columns:

• match_id: If the ML model considers two rows are the same, they will have the same value
for this column – for instance, two matching rows may have a match_id value of 2, whereas
a different pair of matching rows may have a value of 3.

• match_confidence_score: This represents a number between 0 and 1 that estimates
the quality of the decision made by the model.

Using these two columns, a pipeline could automatically cull duplicated records, provided that the
confidence score is high enough, for example.

Using FindMatches in this way lets users detect duplicates in a dataset. However, it can cause
challenges. If new records were to come in and had to be matched against the previous ones, they
would have to be added to the already-existing table, and the transform would have to be executed
against the entire dataset. This approach is doable but will increase the execution time and resource
consumption as the dataset becomes larger. Because of this, Glue provides an incremental way of
using a transform:

findincrementalmatches_result = FindIncrementalMatches.apply(

existingFrame = my_dynamic_frame,

incrementalFrame = my_incremental_data,

transformId = "tfm-d03f274ad2f0136dacc5bcb54deced1eea54371a",
computeMatchConfidenceScores = true,

transformation_ctx = "findincrementalmatches")

Machine Learning Integration366

When using FindIncrementalMatches, several parameters must be provided:

• existingFrame: This represents the already existing and cleaned dataset.

• incrementalFrame: This represents the batch of new records that must be matched
against the already-existing ones.

• transformId: This is the ID of the trained transformation.

• computeMatchConfidenceScores: A Boolean value that determines whether the
match_confidence_score column should be generated or not.

Using FindIncrementalMatches allows for faster, easier, and less resource-intensive match
detection and should always be used for incremental setups.

Running ML training tasks and ML ETL jobs

Training an ML model and using ML-based transformations is a resource-intensive task that often
requires additional memory. Because of this, it is always recommended to use larger EC2 instance
types, or in the case of Glue resources, worker types. When training an ML transformation or running
an ML-based ETL job, we recommend always using the G.2X worker type unless you know the task
is simple and small in advance.

SageMaker integration
Amazon SageMaker is AWS’s primary service for ML development. It provides a set of tools and
features that lets users handle all the stages of the ML development pipeline, from data collection and
preparation to model deployment and hosting.

Just like any other ML tool, SageMaker relies on the concept of model training to get models up to
the accuracy level expected from them. And as we mentioned previously, training ML models usually
requires large amounts of data to be prepared and processed. Because of this, SageMaker offers native
integration with Apache Spark (https://docs.aws.amazon.com/sagemaker/latest/
dg/apache-spark.html), which provides model-training capabilities using an AWS-tailored
version of Spark.

One of the most important features SageMaker offers is serverless notebooks (https://docs.aws.
amazon.com/sagemaker/latest/dg/nbi.html). A notebook instance is a serverless
EC2 instance that runs Jupyter (https://jupyter.org), a web-based code execution service
that lets users run code and visualize results interactively through the concept of notebooks. Code
running in notebooks can be written in a variety of languages and use as many external libraries and
frameworks as necessary, including Apache Spark. That said, the code within the notebook is usually
executed locally unless a framework provides the capabilities to do otherwise.

https://docs.aws.amazon.com/sagemaker/latest/dg/apache-spark.html
https://docs.aws.amazon.com/sagemaker/latest/dg/apache-spark.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi.html
https://jupyter.org

Developing ML pipelines with Glue 367

To execute SageMaker features using Apache Spark jobs in a proper cluster environment, SageMaker
offers AWS Glue integration. This allows users to execute Spark code written in a SageMaker notebook
in a Glue Development Endpoint rather than locally within the notebook instance – which is always
recommended to take advantage of Spark’s concurrent execution model.

Glue-integrated SageMaker notebooks have the following limitations and considerations:

• They can only be launched from the Glue web console.

• The Development Endpoint they attach to must be launched in a VPC.

• Just like with ETL jobs, the security group attached must contain a self-referencing inbound
rule that allows all traffic. This ensures that communication between the notebook and the
endpoint, as well as between all the nodes of the endpoint, is possible.

Once a notebook has been launched, the Sparkmagic kernel can be used to run code within the
Development Endpoint. Even though this feature was originally designed to run the SageMaker Spark
library, you can also use it to interactively run and debug your regular ETL job code in a notebook easily.

In the next section, we’ll discuss ways to orchestrate the elements we discussed previously into a
pipeline using Glue and SageMaker.

Developing ML pipelines with Glue
The combination of SageMaker’s model-hosting features and libraries, plus Glue’s data preparation
and orchestration features, allow you to create complex and highly-configurable ML pipelines. In this
architecture, each service is responsible for different roles:

• Glue handles data handling and orchestration. Data handling includes extraction, processing,
preparation, and storage. Orchestration refers to the overall execution of the pipeline itself.

• SageMaker handles all ML-related tasks such as model creation, training, and hosting.

Several components are critical to this, as follows:

• Glue workflows are the main form of orchestration in Glue. Workflows allow users to define
graph-based chains of crawlers, ETL jobs, and triggers, and to see their execution visually in
the web console.

• Python Shell jobs are a sub-class of Glue ETL jobs that are designed to run plain Python
scripts instead of PySpark ones. They are similar to AWS Lambda functions but come with
fewer restrictions since they don’t have a time or memory limit. Python Shell jobs are typically
used to automate tasks in an ETL pipeline using the AWS SDK or to run any code that does
not need the capabilities of Spark in a cheaper, faster-to-launch environment.

Machine Learning Integration368

• SageMaker Model hosting allows users to create an ML model and host it in the AWS cloud.
Users don’t have to worry about managing hardware or infrastructure to hold the model, and
SageMaker provides tools to train and access the model in different ways.

A Glue-based ML pipeline would consist of a workflow where the following steps take place:

1. Data extraction: A Spark-based Glue ETL job obtains data from a source and stores it in
intermediate, temporary storage, such as S3.

2. Data preparation: A second Spark-based Glue ETL job takes the output of Step 1 and prepares
the dataset for ML usage using ETL transformations.

3. Model creation and training: Using the AWS SDK, a Glue Python Shell job creates an ML
model hosted in SageMaker and starts a SageMaker training job using the dataset that was
created in Step 2. Once the model has been trained, a SageMaker inference endpoint is created
to let other applications use the model.

Interaction with the workflow (starting it and notifying its completion) can be handled with Amazon
SQS queues and messaging (https://aws.amazon.com/sqs/).

Parts of the pipeline could be replaced by other services if Glue’s capabilities are not enough, although
orchestration would have to be handled with a different feature since Glue workflows only orchestrate
Glue resources. The following are some examples:

• The data extraction phase could be handled by any other ETL service in AWS, such as Amazon
EMR, AWS Batch, or AWS Data Exchange.

• The data preparation phase could potentially be handled better by AWS Glue DataBrew,
a service specifically designed for visual data preparation. Alternatively, you could also use
Amazon EMR or AWS Batch.

• Pipeline orchestration can be handled by AWS Step Functions, CloudWatch events, or even
Lambda functions.

With this, we’ve discussed everything about ML data pipelines using Glue.

Summary
In this chapter, we discussed all aspects of ML within AWS Glue. We talked about Glue ML transforms,
what they are, how they are trained, and how they can be used. We also discussed AWS SageMaker and
how it can integrate with Glue resources to accelerate the execution of ML code in notebooks. Finally,
we analyzed reference architectures and services for ML pipelines using AWS Glue and SageMaker.

These concepts should have given you a complete overview of how Glue can be used for ML purposes,
and how Glue can fit into your ML architecture in the AWS cloud. In the next chapter, we will talk
about the data lake architecture and designing use cases for real-world scenarios.

https://aws.amazon.com/sqs/

15
Architecting Data Lakes

for Real-World Scenarios
and Edge Cases

We are now well versed in the concept of a data lake, a centralized repository that allows you to store
all your structured and unstructured data at any scale. Since a data lake primarily focuses on storage,
it does not require as much processing power as other methods (such as the data warehouse), making
it easier, faster, and more cost-effective to scale up as data volumes grow.

The data lake is not just a repository – it requires a well-designed data architecture, along with proper
planning and management. As it is driven by a data-based design, it helps you rapidly ingest raw data
before any business requirements come into the picture. There are a variety of tools you can use for
ingesting raw data into a data lake, including ETL tools such as Ab Initio, Informatica, and DataStage.

This chapter mainly covers practical examples of real-world data problems that exhibit certain
bottlenecks and how to overcome these. By the end of this chapter, you should be familiar with
common data problems, such as various ETL optimization techniques you can apply with AWS Glue
to handle large volumes of data, handling a large number of small files, common performance issues
with join operations involving fact and dimension tables, and how you design a data layout for highly
selective queries with AWS Glue.

In this chapter, we’re going to cover the following main topics:

• Running a highly selective query on a big fact table using AWS Glue

• Dealing with Join performance issues with big fact and small dimension tables in ETL workloads

• Solving Join problems involving big fact and big dimension tables using AWS Glue

Architecting Data Lakes for Real-World Scenarios and Edge Cases370

• Reducing time on read operations involving large-dimension tables using AWS Glue grouping

• Solving S3 eventual consistency problems and faster writes to Amazon S3 for large fact table
datasets using AWS Glue

Technical requirements
To follow along with the examples in this chapter, you will need the following:

• Access to GitHub, S3, and the AWS console (specifically AWS Glue, AWS Lake Formation,
and Amazon S3).

• A computer with Chrome, Safari, or Microsoft Edge installed and the AWS command-line
interface (AWS CLI):

 � Regarding the AWS CLI, you can use not only the AWS CLI but also AWS CLI version
2. In this chapter, the AWS CLI (not version 2) will be used. You can set up the AWS CLI
(and version 2) by going to https://docs.aws.amazon.com/cli/latest/
userguide/cli-chap-getting-started.html.

• An AWS account and an accompanying IAM user (or IAM role) with sufficient privileges to
complete this chapter’s activities. We recommend using a minimally scoped IAM policy to
avoid unnecessary usage and making operational mistakes. You can get the IAM policy for
this chapter from this book’s GitHub repository, which can be found at https://github.
com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-
Glue. This IAM policy includes the following access:

 � Permissions to create a list of IAM roles and policies for creating a service role for an AWS
Glue ETL job

 � Permissions to read, list, and write access to an Amazon S3 bucket

 � Permissions to read and write access to Glue Data Catalog databases, tables, and partitions

• An S3 bucket for reading and writing data by AWS Glue. If you haven’t done so yet, you can
create one via the AWS console (https://s3.console.aws.amazon.com/s3/
home). You can also create a bucket by running the following AWS CLI command:

aws s3api create-bucket --bucket <your_bucket_name>
--region us-east-1

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue
https://s3.console.aws.amazon.com/s3/home
https://s3.console.aws.amazon.com/s3/home

Running a highly selective query on a big fact table using AWS Glue 371

Running a highly selective query on a big fact table using
AWS Glue
We will start with one of the common data processing use cases, where you would end up scanning
a large volume of data but it returns a selected value as a result. For example, if you want to find out
the city with the highest population within the US, it would end up scanning data for more than
19,000 cities and then returning only one city as a result. Working with a large volume of data comes
with the challenges of high amounts of processing costs and spending a lot of time scaling them. You
should know the right techniques for data filtering to avoid any kind of data processing bottlenecks.

In this section, you will learn how to handle highly selective queries with AWS Glue. Let’s say that
you have a use case to query a big fact table that consists of humongous clickstream data stored in
Amazon S3 that contains billions of records. The clickstream data stores information that’s been
collected about a user while they browse through a website or use a web browser. You are looking
to query the dataset to check how much time a specific customer had spent on a given website at a
specific time or how many views were generated for a specific product for a given timeframe. These
are considered highly selective queries. It can be an intense operation and creates a bottleneck when
it comes to scanning billions of records and returning the data. Under the hood, the Apache Spark
driver splits the overall query into tasks and sends these tasks to executor processes on different nodes
of the cluster. To improve query performance, one strategy is to reduce the data that is read by the
Spark executors. One way to prevent loading data that is not needed is to use Glue partition indexes,
which reduce the data movement and query processing time. This becomes even more important if
the executors are not on the same physical machine as the data.

In the next section, you will learn how to use AWS Glue to implement a solution to be able to run highly
selective queries efficiently. We will demonstrate how to use the Glue partition indexing technique.
The solution provided uses an AWS Glue crawler to crawl an S3 table and then conduct an analysis
using Spark SQL queries with Glue interactive sessions, as shown in the following diagram:

Figure 15.1 – Handling a highly selective query with AWS Glue

Architecting Data Lakes for Real-World Scenarios and Edge Cases372

As illustrated in the preceding diagram, the solution works as follows:

1. An AWS Glue crawler parses the schema from AWS S3 and registers the table in AWS Glue
Data Catalog with the metadata.

2. The Glue interactive sessions use Spark SQL and AWS Glue Data Catalog as their external schema
stores for the newly written data in Amazon S3. You can perform highly selective queries on
the data by using interactive sessions to query Amazon S3 directly using SQL.

So far, we have understood how you can handle running highly selective queries with AWS Glue with
Glue’s partition index feature. Now, let’s get hands-on by preparing the test data and running some
of the sample highly selective queries.

Hands-on tutorial

In this tutorial, we will use the AWS CLI to prepare the test data, create a Glue database and Glue
crawlers, and define partition indexing on tables to see how it works and helps with highly selective
queries. Follow these steps:

1. Prepare the test data: We will use a partitioned dataset from a sample clickstream data
source to work with partition indexing with Glue Data Catalog. You can execute the following
commands using the AWS CLI. It will take about 6 to 8 minutes to copy the data. Notice that
we loaded data for customers 1, 2, and 3. Execute the following commands after replacing
${YOUR_BUCKET_NAME} with your respective AWS S3 bucket:

aws s3 sync s3://aws-jupyterhubtest/glue-book/uservisits_
parquet1/customer=1/ s3://${YOUR_BUCKET_NAME}/input/
clkstreamdata/customer=1/ --exclude "*" --include
"visitYearMonth=1998*"

aws s3 sync s3://aws-jupyterhubtest/glue-book/uservisits_
parquet1/customer=2/ s3://${ YOUR_BUCKET_NAME }/input/
clkstreamdata/customer=2/ --exclude "*" --include
"visitYearMonth=1998*"

aws s3 sync s3://aws-jupyterhubtest/glue-book/
uservisits_parquet1/customer=3/ s3://${BUCKET_NAME}/
input/clkstreamdata/customer=3/ --exclude "*" --include
"visitYearMonth=1998*"

2. Create the database: The following command will create a Glue database called serverless_
glue. This database is created using the AWS CLI for the partition index:

aws glue create-database \

 -- serverless_glue "{\"Name\":\"workload_
partitioning\"}" \

Running a highly selective query on a big fact table using AWS Glue 373

Note
You can also use the Glue console to create partition indexed tables. For more information,
go to https://docs.aws.amazon.com/glue/latest/dg/partition-
indexes.html#partition-index-creating-table.

Go to the AWS Glue console and click Databases on the left. You will see a database called
serverless_glue.

3. Create the crawler: The following command will create a Glue crawler called crawl-table-
without-partition-index, a database called serverless_glue, and an S3 path
called s3://${BUCKET_NAME}/input/clkstreamdata/:

aws glue create-crawler \

--name crawl-table-without-partition-index \

--role ${YOUR_GLUE_SERVICE_ROLE} \

--database-name serverless_glue \

--table-prefix tbl_without_index_ \

--targets "{\"S3Targets\": [{\"Path\": \"s3://${YOUR_
BUCKET_NAME}/input/clkstreamdata /\"}]}"

The following command will create a Glue crawler called crawl-table-with-
partition-index, a database called serverless_glue, and an S3 path called
s3://${BUCKET_NAME}/input/clkstreamdata/:

aws glue create-crawler \

--name crawl-table-with-partition-index \

--role ${YOUR_GLUE_SERVICE_ROLE} \

--database-name serverless_glue \

--table-prefix tbl_with_index_ \

--targets "{\"S3Targets\": [{\"Path\": \"s3://${YOUR_
BUCKET_NAME}/input/clkstreamdata /\"}]}"

Verify that the crawlers have been created successfully in the Glue console.

4. Start the crawlers: Now that we have created both crawlers, we will run the crawlers using the
AWS CLI. It will take a minute or two for each crawler to run. You can also start them in the
Glue console, as you did earlier. You can run them one by one or in parallel:

aws glue start-crawler --name crawl-table-without-
partition-index

aws glue start-crawler --name crawl-table-with-partition-
index

Architecting Data Lakes for Real-World Scenarios and Edge Cases374

Once the crawlers have finished running, we can view the results by clicking Tables on
the left of the page. We should see two new tables that were created by the crawlers: tbl_
with_index_clkstreamdata and tbl_without_index_clkstreamdata.

Click on the tbl_with_index_clkstreamdata and tbl_without_index_
clkstreamdata tables – you will see the table schema that was automatically generated
by the crawler based on the Parquet files. Notice the partition columns that were identified
by both crawlers in both table definitions.

5. Add a partition index to a table: You can define partition indexes for a given table in AWS
Glue Data Catalog at any point in time. You can use the CreateTable API with a required
list of PartitionIndex objects to create a brand-new table in AWS Glue Data Catalog. For
an existing table in AWS Glue Data Catalog, you can use the CreatePartitionIndex
API to add partition indexes. In total, you can have three partition indexes on a table. For the
tbl_with_index_clkstreamdata table, the possible index that was identified by the
crawler is (customer, visityearmonth).

Run the following command in the CLI to add a partition to the tbl_with_index_
clkstreamdata table. We will add a partition index using both partition columns that
were identified by the crawler:

aws glue create-partition-index \

--database-name serverless_glue \

--table-name tbl_with_index_clkstreamdata \

--partition-index
Keys=customer,visityearmonth,IndexName=idxbycustvym

Click tbl_with_index_clkstreamdata to review the table schema. On the
schema page, click the Partitions and indices button at the top right to validate the partition
index that was created in the previous step.

To ensure that the partition index has been created, you can check the status column. First, it will
show its status as Creating. This process can take some time, depending on how many partitions are
present for the given table. Once the status is Active, you can test the partition index using a Glue
interactive session (a Spark notebook).

Testing the partition index via a Spark notebook

Now that our partition index has been created, we will query the dataset in AWS Glue Data Catalog
using a Glue interactive session. Follow these steps to run spark-sql queries against the tables
that were created in the previous section:

1. Open an interactive session from the AWS Glue console and initiate a SparkSession:

Spark

Running a highly selective query on a big fact table using AWS Glue 375

2. Run select against the serverless_glue.tbl_without_index_clkstreamdata
table. This table has no partition index on it. Capture the time to run using the %%time Spark
magic command:

%%time

%%sql

select count(*)

from serverless_glue.tbl_without_index_clkstreamdata

where customer = 2 and visityearmonth = 199210

3. Run select against the serverless_glue.tbl_with_index_clkstreamdata
table. This table has a partition index on it. Capture the time to run using the %%time Spark
magic command:

%%time

%%sql

select count(*)

from serverless_glue.tbl_with_index_clkstreamdata

where customer = 2 and visityearmonth = 199210

4. Notice the difference between the wall time for the same query targeting two tables.

5. The results of the query are the same. The queries have the same filter applied to the same
dataset on S3 but the execution times it took to run the queries are different. The query against
the serverless_glue.tbl_with_index_clkstreamdata table was completed
much faster than the query against the serverless_glue.tbl_without_index_
clkstreamdata table.

6. In a scenario where no partition index is present on the serverless_glue.tbl_
without_index_clkstreamdata table, AWS Glue will make a GetPartitions
API call with all the partitions present in the table and then filter the partitions that were used
in the query expression. These highly selective queries without partition indexes can result
in higher I/O because the number of partitions typically increases over time, whereas using
partition indexes makes a great performance optimization technique. In our test case, the
serverless_glue.tbl_without_index_clkstreamdata table was loaded
with three times more partitions than when querying serverless_glue.tbl_with_
index_clkstreamdata. This becomes even more evident when you have more partitions
than what was provided by our sample dataset.

In this section, you learned how to perform highly selective queries on a big fact table using Glue’s
partition index feature. In the next section, we will cover another real-world use case scenario that
deals with performance issues when it comes to performing Join operations between a big fact and a
small dimension table in ETL pipelines.

Architecting Data Lakes for Real-World Scenarios and Edge Cases376

Dealing with Join performance issues with big fact and small
dimension tables in ETL workloads
In a scenario where you are joining a big fact table with a small dimension table, Spark can apply the
join operation using two different join techniques – it can use a Sort Merge/Shuffle Hash join if both
tables are bigger or a Broadcast join if one of the datasets for the underlying table is small enough to
be stored in the Spark memory of all executors.

A broadcast join can significantly increase performance and helps with optimizing join operations.
A join operation can result in a large data shuffle across the network between the different executors
running on multiple workers. This leads to out-of-memory (OOM) errors or data spilling to physical
disks on the respective workers. While using a broadcast join, you must ensure the smaller table is
broadcasted to the executors running on the worker nodes. By doing so, each of the executors running
on the workers will be capable enough to handle these join operations between the big fact table and
the small dimension table. A broadcast join will be automatically applied if the dimension table is
smaller than 10 MB. You can still enforce a broadcast join and let Spark know which table it needs
to be applied to.

The following code shows how to use a join operation between a big fact table and a small dimension
table and ensure the broadcast join is used:

val ClickstreamFactDF = ClickstreamFactRDD.toDF

val SessionDimensionDF = SessionDimensionRDD.toDF

// Applying Broadcast

val tmpSessionDimension = broadcast(SessionDimensionDF.
as("SessionDimension"))

val joinedDF = ClickstreamFactDF.
join(broadcast(tmpSessionDimension),

 $"Session_key" === $"S_key", // join by ClickstreamFact.
depID == SessionDimension.id

 "inner")

// Show the explain plan and confirm the table is marked for
broadcast

joinedDF.explain()

== Physical Plan ==

*BroadcastHashJoin [Session_key#14L], [S_key#18L], Inner,
BuildRight

Dealing with Join performance issues with big fact and small dimension tables in ETL workloads 377

:- *Range (0, 100, step=1, splits=8)

+- BroadcastExchange HashedRelationBroadcastMode(List(input[0,
bigint, false]))

 +- *Range (0, 100, step=1, splits=8

Now, let’s look at an example to understand whether you should use broadcasting or not.

In this exercise, you will be joining two tables: clickstream_fact_table and session_
dimension_table. First, let’s see how big they are:

clickstream_fact_table.count // #rows 1,201,233,333

Session_dimension_table.count // #rows 2,922,556

Now, we can try to perform a join operation without broadcasting to see how long it takes:

val t0 = System.nanoTime()

// Create the Execution Plan

clickstream_fact_table = clickstream_fact_table.join(session_
dimension_table,

 clickstream_fact_table.col("session_key") ===
session_dimension_table.col("s_key"))

// Perform an action to run the execution

Clickstream_fact_table.count

val t1 = System.nanoTime()

println("Elapsed time: " + (t1 - t0)/10e8 + "s")

Output: Elapsed time: 215.115751969s

Now, what happens if we broadcast the dimension table? By making a simple addition to the join
operation – that is, replacing the dimension_table variable with the broadcast (dimension_
table), we can force Spark to handle our tables using a broadcast:

val t0 = System.nanoTime()

// Create the Execution Plan

Clickstream_fact_table = clickstream_fact_table.
join(broadcast(session_dimension_table),clickstream_fact_table.
col("session_key") === session_dimension_table.col("s_key"))

Architecting Data Lakes for Real-World Scenarios and Edge Cases378

// Perform an action to run the execution

Clickstream_fact_table.count

val t1 = System.nanoTime()

println("Elapsed time: " + (t1 - t0)/10e8 + "s")

Output: Elapsed time: 61.1358s

Using the broadcast join between a big fact table and a small dimension table resulted in 70% faster
execution. When you use a broadcast join with a small-sized table, you need to ensure it will remain
small to medium in size in the future so that you don’t run into OOM exceptions or make your
application code problematic.

In this section, you learned how to deal with Join performance issues when it comes to performing
join operations between a large fact table dataset and a small dimension table dataset. We explained the
concept of a broadcast join and how useful it can be in these scenarios since it saves a lot of execution
time and cost. In the next chapter, we will learn how to solve an edge-case problem involving using
a join operation between a large fact table and a large-dimension table.

Solving Join problems involving big fact and big
dimension tables using AWS Glue
Whether you are a data engineer, big data architect, or business analyst, one thing you need to do is
scale your data processing and ETL batch workloads. In this section, we are going to talk about one of
Glue’s Spark runtime optimization features: workload partitioning with bounded execution. This can
help you handle join operations between a large fact table and a dimension table. We will also provide
a hands-on tutorial to demonstrate the difference this feature can make concerning performance. This
feature works in conjunction with AWS Glue bookmarks, which we discussed in Chapter 2, Introduction
to Important AWS Glue Features. It can help you break down your complex and humongous workloads
by bounding the execution of the respective Spark applications. In layman’s terms, you can partition
your ETL workloads by putting a restriction in place for each of these independent workloads to
process a certain number of files sequentially or in parallel. The following diagram depicts an ETL
architecture for this use case:

Solving Join problems involving big fact and big dimension tables using AWS Glue 379

Figure 15.2 – Handling join operations between a large fact table and dimension tables

Keeping this architecture in mind, let’s talk about a scenario where you want to process and perform
join operations between a big fact table (NYC taxi trips fact dataset) and a dimension table (payments
dimension dataset) and write the resultant data to the target – Amazon S3. In our experience, some of
the common errors you can primarily run into while executing this use case are OOM issues with a
Spark driver as a result of listing billions of files in Amazon S3 for the fact table, or OOM issues with
a Spark executor as a result of data skew in the fact table. We will show you how to handle these edge
case scenarios using workload partitioning. This can help you avoid these problems by setting up the
bounded execution for Spark applications.

In the next section, we will see how the workload partitioning feature performs when it comes to
performing join operations between a large fact table and a dimension table and how it can be optimized.
You can follow the steps provided to create the problematic use case or just follow the subset of steps
provided in the Solution section.

Hands-on tutorial

To create a problematic scenario for the use case we are trying to solve, we used a public dataset called
NYC TLC data, which is available at https://registry.opendata.aws/nyc-tlc-
trip-records-pds/. We did some pre-processing on the original dataset to create our test
datasets for the fact and dimension tables. Our setup included two large datasets – one for the NYC
taxi trips fact dataset, which contains 1.3 million objects totaling 42 GB, and another for the NYC taxi
trips payment dataset, which contains 1.3 million objects with a total size of 17 GB.

https://registry.opendata.aws/nyc-tlc-trip-records-pds/
https://registry.opendata.aws/nyc-tlc-trip-records-pds/

Architecting Data Lakes for Real-World Scenarios and Edge Cases380

Now, let’s create the problematic scenario step by step and implement the solution. In this section, we
will use the AWS CLI to create a Glue database and Glue crawlers and define workload partitioning
while reading data using Glue DynamicFrames to see how it works and helps with join operations
between a large fact and a dimension table. Follow these steps:

1. Prepare the test data: We will use a partitioned dataset from a sample NYC taxi data source
to work with workload partitioning. You can execute the following commands using the
AWS CLI. It will take about 6 to 8 minutes to copy the data. Notice that we loaded data for a
couple of years from these sample datasets. Execute the following commands after replacing
${YOUR_BUCKET_NAME} with your respective AWS S3 bucket:

A. Copy the fact table data: To create some sample datasets, run the following command to
copy the data for multiple years ranging from year=2010 to year=2020:

aws s3 cp --recursive s3://aws-jupyterhubtest/glue-book/
trips_fact_data/ s3://aws-isgaur-logs/book_test_data/
trips_fact_data/ --exclude "*" --include "year=2010/*"
--endpoint-url https://s3-accelerate.amazonaws.com

B. Copy the dimension table data: To create some sample datasets, run the following command
to copy the data for multiple years ranging from year=2010 to year=2020:

aws s3 cp --recursive s3://aws-jupyterhubtest/glue-book/
payments_dim_data/ s3:// ${YOUR_BUCKET_NAME}/input/
payments_dim_data/ --exclude "*" --include "year=2010/*"
--endpoint-url https://s3-accelerate.amazonaws.com

2. Create the database: The following command will create a Glue database called workload_
partitioning. This database will be created using the AWS CLI for demonstrating workload
partitioning. Run the following command in the AWS CLI.

Go to the AWS Glue console and click Databases on the left. You will see a database called
workload_partitioning. Replace profile and endpoint per the region
where you are running this command:

aws glue create-database \

 --database-input "{\"Name\":\"workload_
partitioning\"}" \

 --profile my_profile \

 --endpoint https://glue.us-west-2.amazonaws.com

Solving Join problems involving big fact and big dimension tables using AWS Glue 381

3. Create the crawler: The following command will create a Glue crawler called crawl-nyc-
trips-taxi-fact-table, a database called workload_partitioning, and an
S3 path called s3://${BUCKET_NAME}/input/trips_fact_data/:

aws glue create-crawler \

--name crawl-nyc-trips-taxi-fact-table \

--role ${YOUR_GLUE_SERVICE_ROLE} \

--database-name workload_partitioning \

--targets "{\"S3Targets\": [{\"Path\": \"s3://${YOUR_
BUCKET_NAME}/input/trips_fact_data/\"}]}"

The following command will create a Glue crawler called crawl-nyc-trips-
payments-dim-table, a database called workload_partitioning, and an S3
path called s3://${BUCKET_NAME}/input/payments_dim_data/:

aws glue create-crawler \

--name crawl-nyc-trips-payments-dim-table \

--role ${YOUR_GLUE_SERVICE_ROLE} \

--database-name workload_partitioning \

--targets "{\"S3Targets\": [{\"Path\": \"s3://${YOUR_
BUCKET_NAME}/input/payments_dim_data/\"}]}"

Verify that the crawlers were created successfully in the Glue console.

4. Start the crawlers: Once we have created both crawlers, we will run the crawlers using the
CLI. It will take a minute or two for each crawler to run. You can also start them in the Glue
console, as you did earlier. You can run them one by one or in parallel:

aws glue start-crawler --name crawl-nyc-trips-taxi-fact-
table

aws glue start-crawler --name crawl-nyc-trips-payments-
dim-table

Once the crawlers have finished running, you can view the results by clicking Tables
on the left of the page. You should see that two new tables were created by the crawlers:
payments_dim_data and trips_fact_data.

Click on the trips_fact_data and payments_dim_data tables to see the table
schema that was automatically generated by the crawler based on the Parquet files. Notice
that the partition columns that were identified by both crawlers are in both table definitions.

Architecting Data Lakes for Real-World Scenarios and Edge Cases382

5. Run a Glue job: By now, you know how to create a Glue job. Once a job has been created, we can
enable AWS Glue job bookmarks to use with AWS Glue DynamicFrames to take advantage of
incremental processing. The sample Spark application code can be found in this book’s GitHub
repository at https://github.com/PacktPublishing/Serverless-ETL-
and-Analytics-with-AWS-Glue/tree/main/Chapter15. This code does
not use bounded execution just yet because we are going to demonstrate what happens when
we run Spark applications and perform join operations between a large fact and a dimension
table. We will apply the bounded execution after the first iteration, hence executing it using
workload partitioning to conclude the demo.

When we executed the first iteration of this code as is without bounded execution, the Spark driver
struggled with the memory due to a large number of objects in both the fact and dimension tables.
There were 1.6 million objects in trips_fact_data, whereas payments_dim_data had
approximately 1 million objects. In this scenario, the Spark driver must keep a track of the objects in
its memory and, at the same time, keep a track of the number of Spark tasks. It eventually failed with
a Spark driver OOM error:

Figure 15.3 – Spark driver memory peaked above 50% and led to OOM

To conclude, you can check the Spark driver and executor memory profile using AWS Glue job metrics.
The job metric graph will look like what’s shown in the preceding screenshot.

Solution

To overcome this Spark driver OOM error, we modified the previously written code so that it uses
workload partitioning and includes the boundedFiles parameter as additional_options.
We will only process 95,000 files from the trips_fact_data and payments_dim_data
data sources. As the Spark application will only process 95,000 files, hence it will put less pressure on
the Spark driver. Bounded execution keeps track of the files and partitions with the specified bound
concerning the number of files. One thing to note here is bounded execution works well along with job
bookmarks and we need to ensure it’s enabled beforehand. As we already know, job bookmarks keep
track of already processed files and partitions from the source data based on the timestamp and path.

https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter15
https://github.com/PacktPublishing/Serverless-ETL-and-Analytics-with-AWS-Glue/tree/main/Chapter15

Solving Join problems involving big fact and big dimension tables using AWS Glue 383

The following code snippet shows the changes that can be made in the code to implement workload
partitioning with bounded execution:

tripsfactDyf = glueContext.create_dynamic_frame.from_
catalog(database = "trips_fact_data", table_name = "trips_fact_
data", transformation_ctx = "datasource0", additional options =
{"boundedFiles" : "95000"})

paymentDimDyf = glueContext.create_dynamic_frame.from_
catalog(database = "workload_partitioning", table_name =
"payments_dim_data", transformation_ctx = "datasource0"",
additional options = {"boundedFiles" : "95000"})

Once these changes have been made, we can rerun our Spark application. We will find that the Spark
driver memory consistently stayed below 50% with a peak of 25% but that the Spark executors struggled
with heavy memory usage. This caused the job to eventually fail with an executor OOM error:

Figure 15.4 – Spark driver memory peaked below 50% but executors are stuggling with memory

Now, let’s use a more conservative bound for the number of files to be processed in a given iteration.
Here, we changed the boundedFiles value to 45,000 files:

tripsfactDyf = glueContext.create_dynamic_frame.from_
catalog(database = "trips_fact_data", table_name = "trips_fact_
data", transformation_ctx = "datasource0", additional_options =
{"boundedFiles" : "45000"})

paymentDimDyf = glueContext.create_dynamic_frame.from_
catalog(database = "workload_partitioning", table_name =
"payments_dim_data", transformation_ctx = "datasource0"",
additional_options = {"boundedFiles" : "45000"})

Architecting Data Lakes for Real-World Scenarios and Edge Cases384

This time, the Spark application ran without any driver or executor memory problems. Based on your
use case, you can perform benchmarking to find the optimal value for boundedFiles that would
work for your workloads. To conclude with an optimal value, you may require multiple iterations of
the Spark application to be executed. One of the other great advantages of using workload partitioning
is that it allows you to execute multiple Spark applications in parallel for the same dimension and fact
datasets. Let’s assume that, in your production environment, you have a strict SLA to meet for data
processing. You can optimize this problem by creating more than one copy of the Glue job. Then, to
process a subset of the data from the input data sources, you can take advantage of Glue’s push-down
predicate with bounded execution.

The following are two pieces of code from two different Glue jobs that are processing data from the
same trips_fact_data and payments_dim_data tables. However, each of these are from
different input partitions – that is, 2020 and 2021, respectively:

• The following code is for Glue job 1:

tripsfactDyf = glueContext.create_dynamic_frame.
from_catalog(database = "trips_fact_data", table_
name = "trips_fact_data", transformation_ctx =
"datasource0",push_down_predicate=("year=2020"),
additional_options = {"boundedFiles" : "45000"})

paymentDimDyf = glueContext.create_dynamic_frame.from_
catalog(database = "workload_partitioning", table_name =
"payments_dim_data", transformation_ctx = "datasource0"",
,push_down_predicate=("year=2020"), additional_options =
{"boundedFiles" : "45000"})

• The following code is for Glue job 2:

tripsfactDyf = glueContext.create_dynamic_frame.
from_catalog(database = "trips_fact_data", table_
name = "trips_fact_data", transformation_ctx =
"datasource0",push_down_predicate=("year=2021"),
additional options = {{"boundedFiles" : "45000"})

paymentDimDyf = glueContext.create_dynamic_frame.from_
catalog(database = "workload_partitioning", table_name =
"payments_dim_data", transformation_ctx = "datasource0"",
,push_down_predicate=("year=2021"), additional options =
{{"boundedFiles" : "45000"})

Once these jobs have been created, you can use AWS Glue workflows to execute them in parallel.

Reducing time on read operations using AWS Glue grouping 385

In this section, you learned how to perform a join operation between a large fact table and a large-
dimension table using Glue’s workload partitioning feature. You also learned how to divide large
workloads into partitioned workloads so that you can read from a single data source in parallel, thus
reducing the overall time for such workloads. In the next section, you will learn how to process the
data in a large-dimension table, which can contain millions of small files, in Amazon S3.

Reducing time on read operations using AWS Glue
grouping
Let’s assume you have an edge use case where you have over 1 billion rows in one of your dimension
table data sources available in Amazon S3 and that you have written some ETL code in a Glue job.
This code reads millions of small files with billions of rows with a standard Glue worker, does some file
conversion, and writes the files back to S3. In this section, you will learn how to deal with expensive
Spark read operations, especially while reading the data from large-dimension tables with AWS Glue.

As we know, Glue manages provisions and manages the resources that are required to perform ETL
for you. That being said, when you encounter OOM exceptions thrown by the Spark driver, we need
to understand how Spark works to resolve them. Once the Glue job is executed, the Glue console
provides you with the ETL metrics and memory profiles for each job run you execute, which helps
you identify job abnormalities and performance issues, similar to the one shown here:

Figure 15.5 – ETL metrics showing performance issues while reading millions of small files

As you can see, the memory of the Spark driver (the blue line) exceeds the threshold of 50%, and
once it reaches 100, the job fails with an OOM exception and is killed. The executors (the green line)
haven’t even started to use any memory yet. In this instance, the transformation that was performed
in ETL isn’t the problem here. There is no data movement and the Spark tasks haven’t been distributed
to the executors yet.

Architecting Data Lakes for Real-World Scenarios and Edge Cases386

The problem is that Spark tries to make large recursive calls to the S3 list method. The S3 list method
becomes too expensive in this scenario since there are too many small files in the S3 dataset – in this
case, your large-dimension table. As we know, the Spark driver’s job is to record the file metadata it
reads and store it in the driver’s memory. This leads to OOM errors with the Spark driver.

The best practice for solving this problematic use case while dealing with large-dimension tables is
to use the grouping feature from Glue. When enabled and used with a Glue DynamicFrame, it allows
Spark to form a group for multiple small files and assign this group of files to a single Spark task rather
than individual files. Using this feature, you can significantly reduce the memory pressure on the
Spark driver as it stores significantly less information in memory about fewer tasks. This reduces the
probability of OOM exceptions while reading from these large-dimension tables. The downside of not
using this feature is that Spark would process individual files using a single Spark task. Eventually, the
Spark driver would get the status of each of these Spark tasks individually, which would overwhelm
the Spark driver and lead to an OOM error.

Now, let’s learn how to configure this feature within a Glue ETL job and take advantage of it. The
following boilerplate code examples for Scala and PySpark use the AWS Glue DynamicFrame API
in an ETL script with the configuration that is required to enable the AWS Glue grouping feature:

#Scala Example when you are reading directly from Amazon S3

glueContext.getSourceWithFormat(

 connectionType = "s3",

 options = JsonOptions(Map("paths" -> s3Paths,

 "groupFiles" -> "inPartition",

 "useS3ListImplementation" -> true)),

 format = "xml",

 formatOptions = JsonOptions(Map("rowTag" -> "our-row-tag"))

).getDynamicFrame()

#PySpark Example when you are reading directly from Amazon S3

 df = glueContext.create_dynamic_frame.from_options(

 "s3", {'paths': ["s3://s3path/"],

 'recurse':True,

 'groupFiles': 'inPartition',

 'groupSize': '1048576'},

 format="json")

Reducing time on read operations using AWS Glue grouping 387

If you want to read the data directly from AWS Glue Catalog, you can set grouping configuration
parameters in the following two ways:

• Edit the table definition and provide these parameters as key values:

Figure 15.6 – Editing table details in Glue Data Catalog

Architecting Data Lakes for Real-World Scenarios and Edge Cases388

• Provide these parameters while creating a DynamicFrame within the ETL script:

#PySpark Example

datasource = Gluecontext.create_dynamic_frame_from_
catalog(

 database= "many_files_dataset",

 table_name ="Json_2k_million",

 additional_options= {"groupsize"
:1024*1024*1024},"groupFiles": "acrossPartition")

In the preceding boilerplate scripts, there are some important things to note:

• The configurations you can tweak per your use case are groupFiles, groupSize, and
recurse. AWS Glue enables grouping when you have more than 50,000 input files in the
Amazon S3 data source by default.

• You can still set groupFiles to inPartition if you want to group a large number of
small files in Amazon S3 data sources and perform benchmarking.

• groupSize is purely an optional configuration that allows Spark tasks to process a certain
amount of data while reading and then process it as a single AWS Glue DynamicFrame partition.
Be careful when using a considerably small or large groupSize values because it can result
in significant task parallelism or underutilization of the resources in the Glue environment.

• You can use the recurse config with grouping, which allows you to recursively read all the
files in the subdirectories for the Amazon S3 path provided.

• You can use useS3ListImplementation along with grouping to help resolve OOM
exceptions.

In this section, you learned how to solve a problematic use case – that is, optimizing read operations
for the large-dimension table. You experimented with using the AWS Glue grouping technique, which
helps solve small file problems that can run into OOM issues. You learned how to use this configuration
while reading the data from Amazon S3 and Glue Data Catalog. Using grouping, you can ensure the
ETL pipelines do not run into these corner cases and build a scalable ETL pipeline.

Solving S3 eventual consistency problems using AWS Glue 389

Solving S3 eventual consistency problems using AWS Glue
Let’s assume you have a use case where you are dealing with writing huge data into Amazon S3 – that
is, you have a clickstream fact table dataset in Parquet format but the Spark application fails with an
exception File not found error. When running Spark jobs on Amazon S3, Spark writes the output to
a _TEMPORARY prefix in S3, then moves the data from _TEMPORARY to its final destination. In
S3, a move is a rename operation. If the move happens immediately after the write operation, there is
a chance of eventual consistency, which causes this move operation to fail. You will see that it failed
due to a Rename failed or File not found error message. In this section, you will learn how to handle
these problematic scenarios and fix them in the long term. The following diagram shows the S3
eventual consistency model:

Figure 15.7 – S3 eventual consistency model

First, let’s understand how the S3 eventual consistency model works. The important concept to
understand here is that the file rename process in a POSIX-based filesystem is a metadata-only
operation. Only the pointer changes and the file remain as is on disk. For example, I have a file called
abc.txt and I want to rename it xyz.txt. This is an instantaneous and atomic process. The xyz.
txt file’s last modified timestamp remains the same as the abc.txt file’s last modified timestamp.
On the other hand, in AWS S3 (the object store), the file that was renamed under the hood is a copy
followed by a delete operation. The source file is copied to the destination and then the source file is
deleted. So, aws s3 mv changes the last-modified timestamp of the destination file, unlike what
happens in the POSIX filesystem. The metadata here is a key-value store where the key is the file
path and the value is the content of the file. There is no such process as changing the key and getting
this done immediately. The renaming process depends on the size of the file. If there is a directory
rename (there is nothing called directory in S3 so for simplicity, we can assume a recursive set of files
is a directory), then it depends on the number of files inside the directory, along with the size of each
file. So, in a nutshell, renaming is a very expensive operation in S3 compared to this being done in a
normal filesystem. S3 comes with two kinds of consistency: read after write and eventual consistency.
In some cases, it results in a File not found error, files being added and not listed, or files being deleted
or not removed from the list.

Architecting Data Lakes for Real-World Scenarios and Edge Cases390

To deal with this problem, you have two options:

• Use glueparquet.

• Use an S3-optimized output committer.

Let’s look at each of these options in detail.

Using glueparquet

Using glueparquet as the output format will internally change the output committer to
DirectOutputCommiter, which does not do renames. To understand this concept better, let’s
see what the PARQUET file looks like under the hood:

Figure 15.8 – Parquet file format internals

Let’s talk about the preceding figure. The following are the generic properties for a Parquet file format
that you should be familiar with. They help you choose between the different file formats that are
available in the big data ecosystem:

• Parquet file uses a magic number (4 bytes) that acts as a separator and helps identify the
beginning and end of the file.

• Following the first magic number, there are several row groups and then a footer.

Solving S3 eventual consistency problems using AWS Glue 391

• FileMetaData is placed in the footer because the Parquet file metadata is written once the
actual data is written. The row groups contain the data.

• The Parquet file contains three types of metadata: file metadata, column (chunk) metadata,
and page header metadata.

Apache Parquet format is typically faster for reads compared to writes because it has the columnar
storage layout and also offers a precomputed schema that is written along with the data. Now, let’s
understand why a regular Parquet file format can cause issues while writing large fact table datasets
in Amazon S3. The problem is that, when using the Parquet file format with a Glue DynamicFrame,
Spark does not know the complete schema. Hence, the number of buffers is unknown. This leads to an
additional pass over the dataset, which is an expensive operation and leads to more time in the overall
execution. This may lead to failures during the write operation. By introducing glueparquet when
it’s time to write each executor, you can compute the schema of the data it has in memory. Doing a pass
over the data in memory is way faster than in disk, so there are no performance issues. The executor
creates one buffer for each column group. As rows are being written, if a row with a new column comes
in, new buffers are created. When the buffers are full, data is written to disk:

Figure 15.9 – Illustration of a glueparquet write

Architecting Data Lakes for Real-World Scenarios and Edge Cases392

It uses a different committer called DirectOuputCommitter that also does not do any rename
operations, hence saving a significant amount of I/O processing while performing write operations in
Spark. When the data is available to write, the writer computes and merges the schema dynamically
at runtime, leading to faster job runtimes. In comparison to a regular Apache Parquet writer, it does
not perform an extra scan over the input dataset to infer the schema. It enables schema evolution by
allowing you to add and delete new columns. The following is a boilerplate PySpark script example
that demonstrates how to use the glueparquet format option:

glueContext.write_dynamic_frame.from_options(

frame = dyFrame,

 connection_type = "s3",

 connection_options = {"path": output_dir},

 format = "glueparquet",

 format_options = {"compression": "snappy",

 blockSize = block_size,

 pageSize = page_size})

The following default values are set for the configurations:

• compression is "snappy"

• blockSize is 128 MB

• pageSize is 1 MB

blockSize specifies the size of a row group that is buffered in memory, while pageSize specifies
the size for compression that will be used. When the read operation is executed, each page can be
decompressed independently. It is the smallest unit in a Parquet file that must be read fully to access
a single record.

S3-optimized output committer

Now, let’s talk about the last option that we have to deal with this problem. You can use the EMRFS
S3-optimized committer, which is an alternative OutputCommitter implementation that is
optimized for writing Parquet files to Amazon S3 when using EMRFS. Glue can use EMR’s S3-optimized
output committer in Spark applications that use Spark SQL, DataFrames, or datasets to write Parquet
files. In terms of performance, it is considered better than DirectOutputCommiter, which we
discussed in the previous section.

Solving S3 eventual consistency problems using AWS Glue 393

Now, let’s discuss the problems that the S3-optimized output committer can address:

• List and rename operations are considered expensive in Spark applications while doing write
operations. This committer helps improve a Spark application’s performance by avoiding both
of these operations during the job and task commit phases.

• Glue ETL jobs run on the Apache Spark framework, which writes all the output to a temporary
directory in S3 by default. When all the executors have finished writing, the files are moved
from this temporary directory to your selected destination path.

• S3 does not use the concept of directories (everything is a named prefix), so this move operation
is just a rename to change the file’s prefix. Sometimes, the jobs fail while writing the data to S3.

The best way to address this is to enable the EMRFS S3-optimized committer, which is available in Glue.
It removes such errors by using optimized S3 write logic. Whenever you or one of your applications
writes a file to S3, there’s a very small time window where the file needs to be propagated throughout
S3’s backend system. If you try to access that file within that window of time (as in, immediately after
writing it), there’s a chance the file has not finished propagating and S3 will return an error.

To enable this feature with AWS Glue, you can supply the necessary key pair value via the AWS Glue
console when creating or updating an AWS Glue job. Setting the value to true enables the committer.
By default, the flag is turned off:

Key : --enable-s3-parquet-optimized-committer.

Value : true

This feature is available with Glue 2.0 onward and is used by default in Glue 3.0. There are certain
scenarios where this committer will not be used, even if you have enabled it. Please check https://
docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-committer-
reqs.html for more details.

In this section, you learned how to solve Amazon S3’s eventual consistency problem and enable faster
write operations, which involves writing data to Amazon S3 for large fact table datasets. You learned
about what the S3 eventual consistency model is all about and how it works. Then, we explained the
solutions to this problem by using either the glueparquet file format or an S3-optimized committer
with AWS Glue. For both these options, you understood the different file committers that are involved
to help you choose one over the other in real-world data processing problems.

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-committer-reqs.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-committer-reqs.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-committer-reqs.html

Architecting Data Lakes for Real-World Scenarios and Edge Cases394

Summary
In this chapter, you learned about some of the best practices for dealing with real-world problems
and how to run highly selective queries on big fact tables. After that, you learned how to run highly
selective queries by experimenting with the Glue partition indexing technique, which allows you to
query humongous fact tables and make data retrieval smooth. Next, you learned how to deal with join
performance issues between a large fact table and a small dimension table. Here, you learned how to
use the broadcast mechanism to optimize the join operation.

After that, you learned how to deal with dimension tables when something goes wrong and you don’t
have a way to partition the workloads into smaller workloads. Here, you applied a Glue bounded
execution with Glue bookmarks to restrict the number of files that can be processed with incremental
workloads. For the edge case scenario, where you read a large-dimension table, you learned how to
configure Glue jobs to use the grouping technique, which put less pressure on the Spark driver, thus
avoiding OOM issues. Lastly, you learned how to deal with S3 eventual consistency and the best
practice to handle faster writes to Amazon S3 for large fact tables.

Index

A
access control

AWS Glue 182
configuring 181
IAM permissions 181
Lake Formation permissions 189, 190
S3 bucket policies 187, 188
S3 object ownership 188, 189

Active Directory (AD) 329
Adaptive Query Execution (AQE) 313
ad hoc analysis

benefit 327
Airflow documentation

reference link 270
Amazon Athena

about 102, 160, 161, 250, 251, 329-331
data, querying 331, 332
reference link 160

Amazon Athena Federated Query
reference link 330

Amazon Athena pricing
reference link 251

Amazon Athena service quotas
about 251
reference link 251

amazon/aws-glue-libs
reference link 285

Amazon Customer Reviews Dataset
reference link 256

Amazon DocumentDB 23
Amazon Elastic Container Service (ECS)

about 249
reference link 249

Amazon Elastic MapReduce (Amazon EMR)
about 254
reference link 157

Amazon EMR pricing
reference link 254

Amazon Kinesis
reference link 174

Amazon Kinesis connection properties
reference link 58

Amazon Managed Workflows for
Apache Airflow (MWAA)

reference link 270
using 270

Amazon Managed Workflows for Apache
Airflow (MWAA), example

data pipeline, creating with ETL job 271
data pipeline, creating with Glue crawler 271
pipeline, orchestrating that extracts

data and generates report 270

Index396

result, checking 272, 273
workflow, creating 271

Amazon RDS 23
Amazon RDS MySQL DB log

reference link 53
Amazon Redshift 23
Amazon Redshift Spectrum 332-336
Amazon Relational Database Service

(Amazon RDS) 162
Amazon Resource Name (ARN) 182
Amazon S3

about 89
data ingestion from 42-44
used, for optimizing data layout storage 109

Amazon S3 503 Slow Down errors 316
Amazon S3 data stores

workload partitioning, with
Bounded Execution 48, 49

Amazon S3, for large fact table datasets
data, writing with AWS Glue 389, 390

Amazon S3 reads
optimizing, with S3ListImplementation 48

Amazon S3 storage classes
reference link 109

Amazon SageMaker
integrating 366, 367
reference link 331

Amazon SageMaker Notebook Instances
reference link 366

Amazon Simple Notification
Service (Amazon SNS)

reference link 174
Amazon Simple Queue Service (Amazon SQS)

about 174
reference link 368

Apache Airflow
URL 270

Apache Hive
about 157, 158
reference link 157

Apache Hudi 337
Apache Hudi tables

creating, with AWS Glue 337-339
reference link 330
updating, with AWS Glue 337-339

Apache Iceberg
reference link 330

Apache Kafka connection properties
reference link 58

Apache Spark
about 10, 11, 159, 160
on AWS cloud 11
reference link 10

Apache Spark actions
reference link 11

Apache Spark usage, with Amazon SageMaker
reference link 366

application programming interface (API) 154
ApplyMapping transformation 77, 78
Athena JDBC driver

reference link 329
Athena queries, monitoring with

CloudWatch events
reference link 297

Athena queries, monitoring with
CloudWatch metrics

reference link 297
Atomicity, Consistency, Isolation, and

Durability (ACID) transactions
about 158, 330
reference link 330

auxiliary data encryption 195, 196
AWS

documentation link 158
used, for data querying 13

Index 397

AWS Batch
about 249
reference link 249

AWS Cloud Development Kit
(AWS CDK) 274

AWS CloudFormation
features 275
reference link 273
used, for provisioning resources 275

AWS CloudFormation, example
crawler, provisioning via CloudFormation

template 276-278
ETL job scripts, putting in S3 bucket 276
ETL jobs, provisioning via

CloudFormation template 276-278
Glue workflow, provisioning with

CloudFormation template 275, 276
provisioned resources, checking 278, 279
triggers, provisioning via CloudFormation

template 276-278
workflow, provisioning via

CloudFormation template 276-278
AWS CodeBuild 287
AWS CodeCommit 287
AWS CodePipeline 287
AWS Data Migration Service (AWS DMS)

about 7, 50
reference link 50

AWS Direct Connect
about 205
reference link 205

AWS Fargate 249
AWS Glue

about 11, 50, 89, 182
catalog side predicate pushdown, used

for filtering partitions 103
CDC data, consuming 351, 353
CDC data, creating 352, 353

cross-account access 184, 185
custom JDBC connectors 55-57
data integration with 16
data preparation, with source

code-based approach 75
features 18
integrating, with OpenSearch

domain 353-358
predicate pushdown, used for

filtering partitions 103
reference link 47
resource-based policies, versus

identity-based policies 182
service/tool, selecting 84, 85
tag-based access control 186, 187
used, for consuming stream data 345
used, for consuming stream

data from MSK 348
used, for creating Apache

Hudi tables 337-339
used, for creating Delta Lake tables 340-342
used, for data preparation 68, 69
used, for highly selective query

on big fact table 372
used, for loading stream data from MSK 348
used, for running highly selective

query on big fact table 371
used, for solving Join problems involving

big dimension table 378, 379
used, for solving Join problems

involving big fact table 378, 379
used, for updating Apache

Hudi tables 337-341
used, for updating Delta Lake tables 340-342
used, for writing data to Amazon S3 for

large fact table datasets 389, 390
AWS Glue, automating with

CloudWatch Events
reference link 297

Index398

AWS Glue Blueprints
about 12, 279
configuration file 279
ETL job scripts and relevant files 279
layout file, implemented by Python 279
reference link 273
used, for provisioning AWS Glue

resources 279-281
used, for provisioning AWS Glue

workflows 279-281
AWS Glue, components

AWS Glue Blueprints 12
AWS Glue Connections 12
AWS Glue Crawlers 12
AWS Glue DataBrew 12
AWS Glue Data Catalog 12
AWS Glue Elastic Views 12
AWS Glue ETL Jobs 12
AWS Glue Interactive Sessions 12
AWS Glue Schema Registry 12
AWS Glue Triggers 12
AWS Glue Workflows 12

AWS Glue Connections 12, 23, 24
AWS Glue Crawlers

about 12, 25-28
features 28
tuning 304, 305
workflow 26

AWS Glue Crawlers, features
Amazon S3 data store 28, 29
data sampling 28

AWS Glue custom connectors
reference link 336

AWS Glue DataBrew
about 12, 69
data quality, controlling with

DQ Rules 74, 75
profile jobs 73

recipe job 72
reference link 69
used, for visual data preparation 69-72

AWS Glue DataBrew data quality rules
about 147
reference link 147

AWS Glue DataBrew documentation
reference link 75

AWS Glue Data Catalog
about 12, 19
components 19
database 20
partitions 21, 22
tables 20, 21

AWS Glue Elastic Views 12
AWS Glue ETL

about 69, 75, 76
ApplyMapping transformation 77, 78
ErrorsAsDynamicFrame

transformation 83, 84
issues, troubleshooting 311
Join transformation 80
Relationalize transformation 78-80
RenameField transformation 81
Unbox transformation 81, 82
used, for data transformation 77

AWS Glue ETL jobs
about 33, 34
AWS Glue ETL Library 285
deploying 286, 287
developing, locally 285, 286
Docker images for Glue ETL 285
DynamicFrame 34-36
GlueContext 34
GlueParquet 37
interactive session 286
job bookmarks 36, 37
job scripts, updating in S3 location 286

Index 399

pipelines, deploying with IaC 288
Python shell 253
relevant packages, updating

in S3 location 286
Spark 252, 253
Spark Streaming 253
workflows, deploying with IaC 288

AWS Glue ETL Jobs 12
AWS Glue ETL Spark jobs

used, for running compaction 107
AWS Glue ETL transforms

parameters 84
AWS Glue Grouping

used, for processing data in large
dimension table 385-388

AWS Glue Interactive Sessions 12
AWS Glue job run insights

reference link 298
AWS Glue job scripts, for

developing and testing
reference link 285

AWS Glue pricing
reference link 253

AWS Glue PySpark ETL jobs
reference link 77

AWS Glue resources
provisioning, with AWS Glue

Blueprints 279-281
AWS Glue Scala ETL jobs

reference link 77
AWS Glue Schema Registry (GSR)

about 12, 31-33, 60
reference link 61

AWS Glue Schema Registry
Serializer/Deserializer

reference link 61
AWS Glue Spark ETL 45

AWS Glue Spark ETL jobs
performance tuning 305

AWS Glue-specific ETL
extensions 47
transformations 47

AWS Glue Studio
about 75, 76
URL 326

AWS Glue Triggers 12
AWS Glue workflows

about 12
provisioning, with AWS Glue

Blueprints 279-281
using 256

AWS Glue Workflows, example
pipeline, creating with ETL job 257-259
pipeline, creating with Glue crawler 257-259
pipeline, orchestrating with data

extracts and generates report 256
result, checking 263, 264
workflow, creating 260-262
workflow, running 262, 263

AWS Glue workloads
tuning 304

AWS Identity and Access Management (IAM)
reference link 181

AWS Key Management Service
(AWS KMS) 194, 314

AWS LakeFormation
about 89
used, for running compaction 108, 109

AWS Lake Formation, for secure sharing
data across AWS accounts

reference link 221
AWS Lambda

about 249
reference link 173

Index400

resource configuration, setting 250
use cases 250

AWS Lambda functions
reference link 174

AWS Managed VPN
about 206
reference link 206

AWS Marketplace connectors
reference link 62

AWS PrivateLink
about 205
reference link 205

AWS Site-to-Site VPN
about 206
reference link 206

AWS Snow Family
about 206
reference link 206

AWS Step Functions
reference link 173, 331
state machines 265
task 265
using 264

AWS Step Functions, example
data pipeline, creating with ETL job 265, 266
data pipeline, creating with

Glue crawler 265, 266
pipeline, orchestrating with data

extracts and generates report 265
result, checking 269, 270
state machine, creating 266-268
state machine, running 268, 269

AWS tools
reference link 287

AWS Transfer Family
reference link 42

B
BatchCreatePartition API

reference link 102
big data

distributed computing 8, 9
big fact table

highly selective query, running with
AWS Glue on 371, 372

Block size 91
bloom filter 333
Blueprints, overviewing in AWS Glue

reference link 281
bronze layer 328
bucketed and partitioned tables, creating

reference link 105
bucketing 104, 105

C
catalog side predicate pushdown

used, for filtering partitions
in AWS Glue 103

Catalyst Optimizer 313
central processing unit (CPU) 305
change sets 275
chapter-data-analysis-msk-connection

creating 346, 347
classifier 163
CloudFormation (CFn) 326
CloudFormation stack

creating 325, 326
dataset, creating 326, 327
prerequisites, for creating 325

columnar formats
used, for storing data 91

comma-separated values (CSV) 163

Index 401

compaction
about 106, 107
running, with AWS Glue ETL

Spark jobs 107
running, with AWS LakeFormation

acceleration 108, 109
compression 95, 96
conditional trigger 39
connection strings (URIs) 23
connection types, Glue connection

custom 202
marketplace 202
network 202

continuous delivery (CD) 248, 285
continuous deployment 285
continuous integration (CI) 248, 284
continuous logging, for AWS Glue jobs

reference link 299
Copy-on-Write (CoW) 336

reference link 332
crawl 167
crawler

creating 373
working with 373

CreatePartition API
about 102
reference link 102

cron expression
reference link 172

cross-account access 184, 185
reference link 220

cross-account access limitations
reference link 186

CSV Classifiers 31
custom classifiers

about 29-31
types 30

custom classifiers, types
CSV Classifiers 31
Grok Classifiers 30
JSON Classifiers 30
XML Classifiers 30

Customer Relationship Management (CRM) 6
Custom/Marketplace 23

D
data

inserting, into Lake Formation
governed tables 342-344

querying, in Amazon Athena 331, 332
storing, with columnar formats for

effective analytic workloads 91
data access, granting in S3 bucket policies

reference link 212
data aggregation 246
data anonymization 246
database

creating 372, 373
Data Catalog permissions

about 190
tag-based access control 191, 192

Data Catalog tables
updating, from ETL jobs 175

data cleansing 246
data content

hashing values 145, 146
masking values 143-145
securing 143

Data Definition Language (DDL) 156
data discovery 16, 17
data encryption 196, 197
data handling options

reference link 333

Index402

data ingestion
about 17
from Amazon S3 42-44
from file/object stores 42
from HDFS data stores 49
from JDBC data stores 50-55
from SaaS data stores 61-63
from streaming data sources 57-60

data, in large dimension table
processing, with AWS Glue

Grouping 385-388
data integration

about 16
with AWS Glue 16

data integration, with AWS Glue
data discovery 17
data ingestion 17
data preparation 17
data replication 18

data lake
about 7
used, for enabling ad hoc analysis 327-329

data layout
data storing, optimally 89, 90
file numbers and size, managing 89, 105
storage, optimizing based on data access 89
storage, optimizing with Amazon S3 109

Data lineage
about 179
Glue DataBrew 179

data marts 6
data mesh 210, 211
data mesh architecture, with AWS Lake

Formation and AWS Glue
reference link 212

data normalization
about 116, 117
data types, casting 117-120

date and time values, normalizing 131-135
error records, handling 136, 137
map column names, casting 117-120
missing values, handling 131
nested schemas, flattening 127-130
outliers, handling 131
scale, normalizing 130
schema, computing 121-124
schema, enforcing 124-126
schema inference 120, 121

data pipelines
about 245, 246
building 246
developing 248, 284, 285
maintaining 248, 284, 285
managing 246
need for 246
orchestrating, with workflow tools 24-256
provision, automating 247
provision, automating with

provisioning tools 273, 274
use cases 246

data platform
components, monitoring 296
SLA, defining 294
SLA, monitoring 295, 296
usage, analyzing 300

data platform, components
common failures, monitoring 298, 299
delay, monitoring 297
log messages, monitoring 299, 300
overall statistics, monitoring 296
performance, monitoring 298
state changes, monitoring 297

data preparation
about 17, 68
with AWS Glue 68, 69

data processing
types 4, 5

Index 403

data processing services
Amazon Athena 250, 251
Amazon ECS 249
Amazon EMR 254
AWS Batch 249
AWS Glue ETL jobs 252
AWS Lambda 249, 250
selecting, for analysis 247, 248

Data Processing Units (DPUs) 44, 167, 253
data profile

overview 73
data quality

AWS Glue DataBrew data quality rules 147
DeeQu 147-151
managing 147

data quality (DQ) ruleset 74
data quality test, for data processing

reference link 287
data querying

with AWS 13
data replication 18
data retrieval 89
data sharing strategies

data mesh 210, 211
hub-and-spoke model 209, 210
overview 208
single tenant 208

data sharing, with multiple AWS accounts
using AWS Lake Formation permissions

about 219
Glue catalog policies, configuring 226-228
Lake Formation cross-account sharing 219
Lake Formation named resource-

based access control 220
Lake Formation permission model 219
Lake Formation permissions

(consumer), configuring 234
Lake Formation permissions

(producer), configuring 229

Lake Formation tag-based
access control 220

prerequisite, for setting up
Glue resources 223

prerequisite, for setting up Lake
Formation and IAM 224, 225

prerequisite, for setting up S3
resources 222, 223

scenario 221, 222
data sharing, with multiple AWS

accounts using S3 bucket policies
and Glue catalog policies

about 212
Glue Catalog resource policies,

configuring 215-218
prerequisite, for setting up Glue

resources 213, 214
prerequisite, for setting up S3

resources 212, 213
S3 bucket policies, configuring 215-218
scenario 212

data storing, optimally
about 90
bucketing 104, 105
data, compressing 94-96
file format, selecting 90
partitioning 101, 102
splittable/unsplittable files 96

data tiers
COLD 109
HOT 109
WARM 109

data transformation
about 7
with AWS Glue ETL 77

data vaults 7
data warehouse 4, 5

Index404

DDL statements
about 156
Amazon Athena 160, 161
Apache Hive 157, 158
Apache Spark 159
Apache Spark 160

DeeQu 147-151, 287
DeeQu 2.x

reference link 148
Delta Lake

about 339
URL 333

Delta Lake connection
creating 325

Delta Lake tables
creating, with AWS Glue 340-342
updating, with AWS Glue 340-342

development endpoint
reference link 198

development endpoint connections 198
Directed Acyclic Graph (DAG) 11, 255, 306
Discretized stream 57
DQ Rules

used, for controlling data quality 74, 75
driver OOM errors 311, 312
Dstream 57
DynamicFrame 34-36
DynamoDB

reference link 196

E
Elastic Compute Cloud (EC2) 173
Elastic Container Registry (ECR)

container image 314
Elastic Kubernetes Service (EKS) 11
Elastic Network Interfaces (ENIs) 23, 200

EMR Bootstrap action
reference link 254

EMR File System (EMRFS)
about 45
reference link 45

encryption 193
encryption at rest

about 194
auxiliary data encryption 195, 196
data encryption 196
metadata encryption 194, 195

encryption in transit
about 197
development endpoint connections 198
FIPS encryption 198

encryption types
KMS-based encryption (SSE-KMS) 197
S3-based encryption (SSE-S3) 197

End-of-Life (EoL) 45
Enterprise Resource Planning (ERP) 6
ErrorsAsDynamicFrame

transformation 83, 84
ETL job failures

about 311
Amazon S3 503 Slow Down errors 316
disk space-related error 315
OOM errors 311
permission issues 314, 315

ETL jobs
Data Catalog tables, updating 175
optimizing, with straggler task 305, 306
optimizing, with too many tasks 306-308

ETL workloads
dealing, with Join performance issues

with big fact table in 376-378
dealing, with Join performance issues

with small dimension table in 376

Index 405

excludeStorageClasses option
used, for excluding S3 storage classes 112

executor OOM errors 51, 312, 313
Expiration actions 111
Extensible Markup Language (XML) 164
Extract, Load, Transform (ELT) 5
Extract, Transform, Load (ETL)

5, 117, 327, 361

F
features, AWS Glue

AWS Glue crawlers 25-28
AWS Glue Data Catalog 19
AWS Glue ETL jobs 33, 34
AWS Glue Schema Registry 31-33
custom classifiers 29-31
Glue connections 23, 24
Glue development endpoints 38
interactive sessions 38, 39
triggers 39, 40

Federal Information Processing
Standards (FIPS) 198

file format
selecting 90

file format, custom classifiers
CSV 171
Grok 171
JSON 171
XML 171

file numbers and sizes
managing 105

file/object stores
data ingestion from 42

FillMissingValues/FindMatches 286
filter pushdown 92
Financial Management Systems (FMSs) 6
FindMatches feature 17

FindMatches ML transform 365
fully-managed serverless data

integration service 16

G
garbage in, garbage out (GIGO) 68
geospatial data 331
Glue

used, for developing ML pipelines 367, 368
Glue-based ML pipeline

data extraction 368
data preparation 368
model creation and training 368

Glue connection
about 201, 202
parameters 201
type 202

GlueContext 34
Glue crawlers

about 162, 172
automation 173
behavior 162, 163, 172
configuration 167
incremental crawling 173
life cycle 167
S3 crawler behavior 163
S3 event-based crawling 174
scheduling 172, 173

Glue crawlers configuration
catalog deletion behavior 168
catalog update behavior 168
crawler behavior modification 169-171
custom classifiers 171
table schema inheritance 169

Glue DataBrew
about 179
datasets 179

Index406

jobs 179
projects 179
recipes 179

Glue Data Catalog
Lake Formation-governed tables 177, 178
table versioning 176

Glue Data Catalog API 154, 156
Glue development endpoints 38
Glue DynamicFrame 101
Glue ETL

Grouping feature 47
Glue Hudi connection

creating 321-324
Glue-integrated SageMaker notebook

limitations and considerations 367
Glue network architecture 199-201
glueparquet

about 37
using 390-392

Glue parquet writer 286
Glue resources

reference link 275
Glue Schema Registry (GSR) 57
Glue streaming job

about 253
executing 348, 349

Glue workflow, example
blueprint package, downloading 282
blueprint package, uploading 282
crawler, provisioning via Glue

Blueprints 282, 284
ETL jobs, provisioning via Glue

Blueprints 282, 284
provisioned resources, checking 284
triggers, provisioning via Glue

Blueprints 282, 284
workflow, provisioning via Glue

Blueprints 282, 284

Glue workflows
about 367
reference link 173

graphical user interface (GUI) 69
Grok Classifiers 30

H
Hadoop Distributed File System

(HDFS) 89, 158
hashing 145
hashing values 145, 146
HDFS data stores

data ingestion from 49
high availability (HA) 19
highly selective query

running, on big fact table with
AWS Glue 371, 372

highly selective query, running on big
fact table with AWS Glue

hands-on tutorial 372-374
hive metastore

reference link 330
Hive Query Language (HiveQL) 157
hub-and-spoke model 209, 210
Hudi DeltaStreamer

reference link 349
using, to consume stream data 349-351

Human Resource Management
Systems (HRMSs) 6

I
identifier (ID) 154
Identity and Access Management

(IAM) 158, 314

Index 407

identity-based policies
about 183, 184
versus resource-based policies 182

Incremental Crawl feature 305
incremental crawling 173
Infrastructure as Code (IaC)

about 285
used, for deploying pipelines 288
used, for deploying workflows 288

inputs and outputs (I/Os) 173

J
Java Database Connectivity (JDBC) 23, 187
JavaScript Object Notation (JSON) 154
Java Virtual Machine (JVM) 10
JBDC 202
JDBC-based ETL jobs

optimizing 308-310
JDBC data stores

data ingestion from 50-55
JDBC driver upgrades

reference link 55
JDBC, to other databases

reference link 54
job bookmarks 36, 37, 47, 286
Join operation issue

solving, with big dimension table
using AWS Glue 378, 379

solving, with big fact table using
AWS Glue 378, 379

Join performance issues
dealing, with big fact tables in

ETL workloads 376-378
Join performance issues

dealing, with small dimension tables
in ETL workloads 376-378

Join transformation 80
JSON Classifiers 30
JSON Lines (JSONL) file 122
Jupyter

URL 366

K
Kafka 23, 202
Key Management Service (KMS) 158
KMS-based encryption (SSE-KMS) 197

L
labeling process 363-365
Lake Formation governed tables

data, inserting into 342-344
Lake Formation permissions

about 189, 190
Data Catalog permissions 190
S3 data permissions, setting up 192, 193

Lake Formation permissions
(consumer), configuring

database, creating 234
data permission, granting to IAM user

in consumer account 240, 241
LF-tag, attaching 238
LF-tag, defining 236, 237
LF-tag permission, granting to IAM user

in consumer account 238, 239
resource link, creating under

database 234-236
Lake Formation permissions

(producer), configuring
about 229
data permission, granting to

consumer account 233, 234
LF-tag, attaching 230, 231

Index408

LF-tag, defining 229
LF tag permission, granting to

consumer account 231-233
layers 7
LF-tags 220
log data encryption

reference link 196

M
machine learning (ML) 16, 130, 252, 361
Managed Streaming for Apache

Kafka (MSK) 345
marketplace connections

creating 321
Delta Lake connection, creating 325
Glue Hudi connection, creating 321-324
OpenSearch connection, creating 325

masking values 143-145
materialized views

reference link 333
maximum capacity 253
Merge on Read (MoR) 336
metadata

maintaining 172
populating 154

metadata access, in Glue catalog
resource policies

reference link 212
metadata encryption 194, 195
metadata, populating

DDL statements 156
glue crawlers 162
Glue Data Catalog API, using 154, 156

ML ETL jobs
running 366

ML pipelines
developing, with Glue 367, 368

ML training tasks
running 366

ML transform
about 362
creating 362
training 363-365
using 365, 366

ML transform, creating
job configuration parameters 362
ML tuning parameters 363
source dataset parameters 363

MongoDB 23, 202
MongoDB-based ETL jobs

optimizing 308-310
MurmurHash

reference link 104
MySQL documentation

reference link 50

N
NAT Gateways

about 204
reference link 204

nested data types
reference link 333

network
about 198
connecting, to resources on

on-premise network 205
connecting, to resources on

public internet 203
Glue connection 201, 202
Glue network architecture 199-201
limitations 202
requirement, configuring 202

Network 23
normalized data model 4

Index 409

O
object lifecycles

managing, with S3 Lifecycle 109-111
objects

deleting, with purge_s3_path 113
deleting, with purge_table method 113

On-Demand Triggers 39
Online Analytical Processing (OLAP) 4
Online Transaction Processing (OLTP) 4
OOM errors

about 311
driver OOM 311, 312
executor OOM 312, 313

OpenSearch connection
creating 325

OpenSearch Dashboards 353
OpenSearch domain

used, for integrating AWS Glue 353-358
Optimized Row Columnar (ORC) 164
out-of-memory (OOM) 141-143, 248, 305

P
parameterized queries

reference link 331
Partition API

reference link 102
partition index

about 176
adding, to table 374
reference link 176
testing, via Spark notebook 374, 375

partitioning 102
partition management

about 175
partition indexes 176

partitions, viewing
reference link 101

permission management parameters
operations 190
principal 190
resource 190

permission to retrieve secret values
reference link 55

personally identifiable information
(PII) 73, 144

pipe-separated values (PSV) 171
predicate pushdown

about 92
used, for filtering partitions

in AWS Glue 103
Presto

reference link 160, 250
profile jobs 73
Project Tungsten 313
protocol buffer (protobuf) 32
provisioning tools

used, for automating data pipelines
provision 273, 274

purge_s3_path
used, for deleting objects 113

purge_table
reference link 113
used, for deleting objects 113

pushdown predicates, AWS Glue ETL
reference link 308

PyDeeQu 1.0.1
reference link 148

PySpark 252
Python shell 253
Python Shell jobs 367

Index410

R
RDS encryption

reference link 196
read-eval-print loop (REPL) 38, 159
read operation 21
recipe job 72
records

deduplicating 137, 138
Redshift Spectrum 102, 332
relational database management

systems (RDBMSs) 19
Relationalize transformation 78-80
Remote Desktop Protocol (RDP) 356
RenameField transformation 81
REpresentational State Transfer (REST) 155
requester-managed network interfaces

reference link 200
Resilient Distributed Datasets (RDDs) 35, 313
resource-based policies

about 183
versus identity-based policies 182

resources
provisioning, with AWS

CloudFormation 275
resources, provisioning via Glue Blueprints

crawler 282
ETL jobs 282
triggers 281
workflow 281

S
S3-based encryption (SSE-S3) 197
S3 bucket

reference link 196
S3 bucket policies 187, 188
S3 crawler behavior 163, 164

S3 crawler behavior, considerations
file compatibility 164
file group quantity 166
file similarity 165, 166
schema similarity 165

S3 data permissions
setting up 192, 193

S3 event-based crawling 174
S3 eventual consistency problems

dealing options 390
solving 389, 390

S3 eventual consistency problems,
dealing options

EMRFS S3-optimized committer,
using 392, 393

glueparquet, using 390-392
S3 Lifecycle

used, for managing object lifecycles 109-111
S3ListImplementation

used, for optimizing Amazon S3 reads 48
S3 object ownership 188, 189
S3 optimized output committer 392, 393
S3 storage classes

excluding 112
excluding, with excludeStorageClasses

option 112
purge objects 112
transitioning 112
transitioning, with transition_s3_path

or transition_table method 112
S3 storage classes, excluding

reference link 112
SaaS data stores

data ingestion from 61-63
SageMaker Model hosting 368
scheduled triggers 39
schema conflicts

managing, advanced options 45, 46

Index 411

schema flexibility 45
schema version identifier (version ID) 60
Secure Sockets Layer (SSL) 197
semi-structured formats 90
Serializer-Deserializer (SerDe) 20, 161
serverless ETL service 16
service-level agreement (SLA)

defining, for data platform 294
monitoring, of data platform 295, 296

silver layer 328
Simple Storage Service (S3) 7
single-tenant model 208
Software-as-a-Service (SaaS) 70
software development kits (SDKs) 154
source code-based approach

used, for data preparation in AWS Glue 75
Spark 252, 253
Spark DataFrame 101
Sparkmagic kernel 367
Spark notebook

partition index, testing via 374, 375
SparkSQL 252
Spark Streaming 57, 253
Spark Streaming Programming Guide

reference link 57
splittable files 96
SQL Workbench

reference link 329
stack 275
StartExecution API

reference link 268
storage lifecycle, managing

reference link 111
straggler task

ETL jobs, optimizing 305, 306
stream data

CDC data, consuming on
AWS Glue 351, 353

CDC data, creating on AWS Glue 351, 353
chapter-data-analysis-msk-

connection, creating 346, 347
consuming, from MSK with AWS Glue 347
consuming, with AWS Glue 345
Glue streaming job, executing 348, 349
Hudi DeltaStreamer, using to

consume 349-351
loading, from MSK with AWS Glue 347

streaming data sources
data ingestion 57-60

Stripe size 91
structured formats 90
Structured Query Language (SQL) 156
Structured Streaming 57
SVL_QUERY_REPORT

reference link 295
SVL_QUERY_SUMMARY

reference link 295
Synthetic Monitoring

reference link 295

T
tables

denormalizing 138-141
tab-separated values (TSV) 171
tag-based access control

about 186, 187
reference link 220

Terraform
reference link 273

test data
preparing 372

Transition actions 110
transition_s3_path or transition_table method

used, for transitioning S3 storage classes 112

Index412

transition_table
reference link 113

triggers
about 39, 40
types 39

triggers, types
Conditional Triggers 39
On-Demand Triggers 39
Scheduled Triggers 39

types, Glue connection
JBDC 202
Kafka 202
MongoDB 202

U
Unbox transformation 81, 82
unsplittable files 96
unstructured formats 90
User-Defined Functions (UDFs)

reference link 331
user interface (UI) 167

V
version control systems (VCSs) 284
visual data preparation

with AWS Glue DataBrew 69-72
VPC endpoints

about 203
reference link 203

VPC peering
about 204
cross-account resources, connecting to 205
cross-region resources, connecting to 205
IP address pools, managing 204
reference link 204

W
well-known text (WKT) 331
workflow tools

Amazon Managed Workflows for Apache
Airflow (MWAA), using 270

AWS Glue workflows, using 256
AWS Step Functions, using 264
provision, automating 247
used, for orchestrating data

pipelines 247-256
workload partitioning

using, Bounded Execution for
Amazon S3 data stores 48, 49

workload partitioning feature
performance, hands-on tutorial 379-382
solution 382-385

write operation 21

X
XML Classifiers 30

Y
Yet Another Resource Negotiator (YARN) 10

Z
zones 7

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packt.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packt.com

Other Books You May Enjoy414

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Simplify Big Data Analytics with Amazon EMR

Sakti Mishra

ISBN: 9781801071079

• Explore Amazon EMR features, architecture, Hadoop interfaces, and EMR Studio

• Configure, deploy, and orchestrate Hadoop or Spark jobs in production

• Implement the security, data governance, and monitoring capabilities of EMR

• Build applications for batch and real-time streaming data analytics solutions

• Perform interactive development with a persistent EMR cluster and Notebook

• Orchestrate an EMR Spark job using AWS Step Functions and Apache Airflow

https://www.packt.com/product/data/b17384-simplify-big-data-analytics-with-amazon-emr/

Other Books You May Enjoy 415

Time Series Analysis on AWS

Michaël Hoarau

ISBN: 9781801816847

• Understand how time series data differs from other types of data

• Explore the key challenges that can be solved using time series data

• Forecast future values of business metrics using Amazon Forecast

• Detect anomalies and deliver forewarnings using Lookout for Equipment

• Detect anomalies in business metrics using Amazon Lookout for Metrics

• Visualize your predictions to reduce the time to extract insights

https://www.packt.com/product/data/b17514-time-series-analysis-on-aws/

416

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Serverless ETL and Analytics with AWS Glue, we’d love to hear your thoughts!
If you purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site that
you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1-800-56498-8
https://packt.link/r/1-800-56498-8

	Cover
	Title page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Section 1 –
Introduction, Concepts,
and the Basics
of AWS Glue
	Chapter 1: Data Management – Introduction and Concepts
	Types of data processing – OLTP and OLAP
	Data warehouses and data marts
	Data lakes
	Data lakehouse
	Data mesh
	Distributed computing for big data
	Apache Spark
	Apache Spark on the AWS cloud

	AWS Glue
	Querying data using AWS

	Summary

	Chapter 2: Introduction to Important AWS Glue Features
	Data integration
	Integrating data with AWS Glue
	Data discovery
	Data ingestion
	Data preparation
	Data replication

	Features of AWS Glue
	AWS Glue Data Catalog
	Glue connections
	AWS Glue crawlers
	Custom classifiers
	AWS Glue Schema Registry
	AWS Glue ETL jobs
	Glue development endpoints
	AWS Glue interactive sessions
	Triggers

	Summary

	Chapter 3: Data Ingestion
	Technical requirements
	Data ingestion from file/object stores
	Data ingestion from Amazon S3
	Data ingestion from HDFS data stores

	Data ingestion from JDBC data stores
	AWS Glue custom JDBC connectors

	Data ingestion from streaming data sources
	AWS Glue Schema Registry

	Data ingestion from SaaS data stores
	Summary

	Section 2 –
Data Preparation, Management, and Security
	Chapter 4: Data Preparation
	Technical requirements
	Introduction to data preparation
	Data preparation using AWS Glue
	Visual data preparation using AWS Glue DataBrew
	Source code-based approach to data preparation using AWS Glue

	Selecting the right service/tool
	Summary

	Chapter 5: Data Layouts
	Technical requirements
	Why do we need to pay attention to data layout?
	Key techniques to optimally storing data
	Selecting a file format
	Compressing your data
	Splittable or unsplittable files
	Partitioning
	Bucketing

	Optimizing the number of files and each file size
	What is compaction?
	Compaction with AWS Glue ETL Spark jobs
	Automatic Compaction with AWS Lake Formation acceleration

	Optimizing your storage with Amazon S3
	Selecting suitable S3 storage classes for your data
	Using S3 Lifecycle for managing object lifecycles

	Summary
	Further reading

	Chapter 6: Data Management
	Technical requirements
	Normalizing data
	Casting data types and map column names
	Inferring schemas
	Computing schemas on the fly
	Enforcing schemas
	Flattening nested schemas
	Normalizing scale
	Handling missing values and outliers
	Normalizing date and time values
	Handling error records

	Deduplicating records
	Denormalizing tables
	Securing data content
	Masking values
	Hashing values

	Managing data quality
	AWS Glue DataBrew data quality rules
	DeeQu

	Summary

	Chapter 7: Metadata Management
	Technical requirements
	Populating metadata
	Glue Data Catalog API
	DDL statements
	Glue crawlers
	Crawler configuration

	Maintaining metadata
	Glue crawlers
	Updating Data Catalog tables from ETL jobs

	Partition management
	Partition indexes

	Versioning and rollback
	Table versioning
	Lake Formation-governed tables

	Lineage
	Glue DataBrew

	Summary

	Chapter 8: Data Security
	Technical requirements
	Access control
	IAM permissions
	Glue dependencies on other AWS services
	S3 bucket policies
	S3 object ownership
	Lake Formation permissions

	Encryption
	Encryption at rest
	Encryption in transit

	Network
	Glue network architecture
	Glue connections
	Network configuration requirements and limitations
	Connecting to resources on the public internet
	Connecting to resources in your on-premise network

	Summary

	Chapter 9: Data Sharing
	Technical requirements
	Overview of data sharing strategies
	Single tenant
	Hub and spoke
	Data mesh

	Sharing data with multiple AWS accounts using S3 bucket policies and Glue catalog policies
	Scenario 1 – sharing data from one account with another using S3 bucket policies and Glue catalog policies
	Prerequisite – S3
	Prerequisite – Glue
	Configuring S3 bucket policies and Glue Catalog resource policies

	Sharing data with multiple AWS accounts using AWS Lake Formation permissions
	Lake Formation permission model
	Lake Formation cross-account sharing
	Lake Formation named resource-based access control
	Lake Formation tag-based access control
	Scenario 2 – sharing data from one account with another using Lake Formation Tag-based access control
	Prerequisite – S3
	Prerequisite – Glue
	Prerequisite – Lake Formation and IAM
	Step 1 – configuring Glue catalog policies
	Step 2 – configuring Lake Formation permissions (producer)
	Step 3 – configuring Lake Formation permissions (consumer)

	Summary

	Chapter 10: Data Pipeline Management
	Technical requirements
	What are data pipelines?
	Why do we need data pipelines?
	How do we build and manage data pipelines?

	Selecting the appropriate data processing services for your analysis
	AWS Batch
	Amazon ECS
	AWS Lambda
	AWS Glue ETL jobs
	Amazon EMR

	Orchestrating your pipelines with workflow tools
	Using AWS Glue workflows
	Using AWS Step Functions
	Using Amazon Managed Workflows for Apache Airflow

	utomating how you provision your pipelines with provisioning tools
	Provisioning resources with AWS CloudFormation
	Provisioning AWS Glue workflows and resources with AWS Glue Blueprints

	Developing and maintaining your data pipelines
	Developing AWS Glue ETL jobs locally
	Deploying AWS Glue ETL jobs
	Deploying workflows and pipelines using provisioning tools such as IaC

	Summary
	Further reading

	Section 3 –
Tuning, Monitoring, Data Lake Common Scenarios, and Interesting Edge Cases
	Chapter 11: Monitoring
	Defining an SLA for a data platform
	Monitoring the SLA of a data platform
	Monitoring the components of a data platform
	Monitoring state changes
	Monitoring delay
	Monitoring performance
	Monitoring common failures
	Monitoring log messages

	Analyzing usage
	Summary

	Chapter 12: Tuning, Debugging, and Troubleshooting
	Tuning AWS Glue workloads
	Tuning AWS Glue crawlers
	Tuning the performance of AWS Glue Spark ETL jobs

	Troubleshooting and debugging common issues in AWS Glue ETL
	ETL job failures

	Summary

	Chapter 13: Data Analysis
	Creating Marketplace connections
	Creating the Glue Hudi connection
	Creating a Delta Lake connection
	Creating an OpenSearch connection

	Creating the CloudFormation stack
	Prerequisites for creating the CloudFormation stack

	The benefit of ad hoc analysis and how a data lake enables it
	Amazon Athena
	Amazon Redshift Spectrum

	Creating and updating Hudi tables using Glue
	Creating and updating Delta Lake tables using Glue
	Inserting data into Lake Formation governed tables
	Consuming streaming data using Glue
	Creating chapter-data-analysis-msk-connection
	Loading and consuming data from MSK using Glue
	Glue streaming job as a consumer of a Kafka topic
	Hudi DeltaStreamer streaming job as a consumer of a Kafka topic
	Creating and consuming CDC data through streaming jobs on Glue

	Glue’s integration with OpenSearch
	Cleaning up
	Summary

	Chapter 14: Machine Learning Integration
	Technical requirements
	Glue ML transformations
	Creating an ML transform
	Training an ML transform
	Using an ML transform

	SageMaker integration
	Developing ML pipelines with Glue
	Summary

	chapter 15: Architecting Data Lakes
for Real-World Scenarios
and Edge Cases
	Technical requirements
	Running a highly selective query on a big fact table using AWS Glue
	Hands-on tutorial

	Dealing with Join performance issues with big fact and small dimension tables in ETL workloads
	Solving Join problems involving big fact and big dimension tables using AWS Glue
	Hands-on tutorial
	Solution

	Reducing time on read operations using AWS Glue grouping
	Solving S3 eventual consistency problems using AWS Glue
	Using glueparquet
	S3-optimized output committer

	Summary

	Index
	Other Books You May Enjoy

