

Simplify Big Data
Analytics with
Amazon EMR

A beginner's guide to learning and implementing
Amazon EMR for building data analytics solutions

Sakti Mishra

BIRMINGHAM—MUMBAI

Simplify Big Data Analytics with Amazon EMR
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and
distributors, will be held liable for any damages caused or alleged to have been caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

Group Product Manager: Sunith Shetty
Publishing Product Manager: Reshma Raman
Senior Editor: Tazeen Shaikh
Content Development Editor: Shreya Moharir
Technical Editor: Devanshi Ayare
Copy Editor: Safis Editing
Project Coordinator: Aparna Nair
Proofreader: Safis Editing
Indexer: Sejal Dsilva
Production Designer: Nilesh Mohite
Marketing Coordinator: Priyanka Mhatre

First published: March 2022
Production reference: 1170222

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-107-9
www.packt.com

http://www.packt.com

I dedicate this to everyone who doesn't settle down after achieving
their goals but instead is encouraged to define the next one by pushing

their limits.

Contributors

About the author
Sakti Mishra is an engineer, architect, author, and technology leader with over 16 years
of experience in the IT industry. He is currently working as a senior data lab architect at
Amazon Web Services (AWS).

He is passionate about technologies and has expertise in big data, analytics, machine
learning, artificial intelligence, graph networks, web/mobile applications, and cloud
technologies such as AWS and Google Cloud Platform.

Sakti has a bachelor's degree in engineering and a master's degree in business
administration. He holds several certifications in Hadoop, Spark, AWS, and Google
Cloud. He is also an author of multiple technology blogs, workshops, white papers and is a
public speaker who represents AWS in various domains and events.

About the reviewers
Suvojit Dasgupta is a senior data architect with AWS, focusing on data engineering
and analytics. In his 17 years of experience, he has led multiple strategic initiatives to
design, build, migrate, modernize, and operate petabyte-scale data platforms for Fortune
500 companies. He is passionate about data architecture and takes pride in building
well-architected solutions. In his free time, he likes to explore new technologies and listen
to audio books. You can follow Suvojit on Twitter at @suvojitdasgupta.

Praveen Gupta is currently a data engineering manager with AWS, and has over 17 years
of experience in the IT industry. Praveen started his career as an ETL/reporting developer
working on traditional RDBMSs and reporting tools. Since 2014, he has been working on
the AWS cloud on projects related to data science/machine learning and building complex
data engineering pipelines on AWS. He specializes in data ingestion, big data processing,
reporting, and building massive data warehouses at the petabyte scale for his customers,
helping them make data-driven decisions. Praveen has an undergraduate degree and a
master's degree, both in computer science from UIUC, USA. Praveen lives in Portland,
USA with his wife and 8-year-old daughter.

Table of Contents
Preface

Section 1: Overview, Architecture, Big Data
Applications, and Common Use Cases of
Amazon EMR
1
An Overview of Amazon EMR

What is Amazon EMR? 4
What is big data? 4
Hadoop – processing framework to
handle big data 5
Overview of Amazon EMR – managed
and scalable Hadoop cluster in AWS 8
A brief history of the major big
data releases 9

Benefits of Amazon EMR 9
Decoupling compute and storage 11
Persistent versus transient clusters 12

Integration with other AWS
services 14
Amazon S3 with EMR File System (EMRFS) 15
Amazon Kinesis Data Streams (KDS) 15
Amazon Managed Streaming for
Kafka (MSK) 15
AWS Glue Data Catalog 15
Amazon Relational Database
Service (RDS) 16

Amazon DynamoDB 16
Amazon Redshift 16
AWS Lake Formation 17
AWS Identity and Access
Management (IAM) 17
AWS Key Management Service (KMS) 17
Lake House architecture overview 17

EMR release history 19
Comparing Amazon EMR
with AWS Glue and AWS Glue
DataBrew 21
AWS Glue 21
AWS Glue DataBrew 23
Choosing the right service for your
use case 24

Summary 26
Test your knowledge 27
Further reading 27

viii Table of Contents

2
Exploring the Architecture and Deployment Options

EMR architecture deep dive 30
Distributed storage layer 31
YARN – cluster resource manager 32
Distributed processing frameworks 33
Hadoop applications 33

Understanding clusters
and nodes 34
Uniform instance groups 35
Instance fleet 36

Using S3 versus HDFS for
cluster storage 37
HDFS as cluster-persistent storage 37
Amazon S3 as a persistent data store 38

Understanding the cluster
life cycle 39
Options to submit work to the cluster 41

Submitting jobs to the cluster as
EMR steps 41

Building Hadoop jobs with
dependencies in a specific
EMR release version 43
EMR deployment options 44
Amazon EMR on Amazon EC2 44
Amazon EMR on Amazon EKS 45
Amazon EMR on AWS Outposts 49
EMR pricing for different
deployment options 51
Monitoring and controlling your costs
with AWS Budgets and Cost Explorer 54

Summary 55
Test your knowledge 55
Further reading 56

3
Common Use Cases and Architecture Patterns

Reference architecture for
batch ETL workloads 58
Use case overview 59
Reference architecture walkthrough 59
Best practices to follow during
implementation 61

Reference architecture for
clickstream analytics 62
Use case overview 63
Reference architecture walkthrough 63
Best practices to follow during
implementation 65

Reference architecture for
interactive analytics and ML 66
Use case overview 67
Reference architecture walkthrough 68
Best practices to follow during
implementation 70

Reference architecture for
real-time streaming analytics 71
Use case overview 72
Reference architecture walkthrough 72
Best practices to follow during
implementation 75

Table of Contents ix

Reference architecture for
genomics data analytics 76
Use case overview 76
Reference architecture walkthrough 76
Best practices to follow during
implementation 78

Reference architecture for
log analytics 79

Use case overview 79
Reference architecture walkthrough 80
Best practices to follow during
implementation 83

Summary 83
Test your knowledge 84
Further reading 84

4
Big Data Applications and Notebooks Available in
Amazon EMR

Technical requirements 86
Understanding popular big
data applications in EMR 86
Hive 87
Presto 92
Spark 94
HBase 98
Hue 106
Ganglia 110

Machine learning frameworks
available in EMR 111

TensorFlow 111
MXNet 112

Notebook options available
in EMR 112
EMR Notebooks 113
JupyterHub 115
EMR Studio 118
Zeppelin 120

Summary 120
Test your knowledge 121
Further reading 121

Section 2: Configuration, Scaling, Data
Security, and Governance

5
Setting Up and Configuring EMR Clusters

Technical requirements 126
Setting up and configuring
clusters with the EMR console's
quick create option 126

Advanced configuration for
cluster hardware and software 129
Understanding the Software
Configuration section 130

x Table of Contents

Understanding Steps 132
Understanding the Hardware
Configuration section 133
Understanding general configurations 136
Understanding Security Options 139

Working with AMIs and
controlling cluster termination 140
Working with AMIs 141
Controlling the EMR cluster
termination process 144

Troubleshooting and logging
in your EMR cluster 151
Tools available to debug your
EMR cluster 151
Viewing and restarting cluster
application processes 153
Troubleshooting a failed cluster 154
Troubleshooting a slow cluster 158
Logging in your EMR cluster 161

Summary 164
Test your knowledge 165
Further reading 165

6
Monitoring, Scaling, and High Availability

Technical requirements 168
Monitoring your EMR cluster 168
Monitoring clusters and applications
with web user interfaces 169
Monitoring cluster metrics with
CloudWatch monitoring 176
EMR API audit logging with AWS
CloudTrail 180

Scaling cluster resources 183
Managed scaling in EMR 184
Autoscaling in EMR with a custom
policy for instance groups 190

Manually resizing your EMR cluster 195
Comparing managed scaling
with autoscaling 197

Cluster cloning and high
availability with multiple
master nodes 198
High availability with multiple
master nodes 198
Cloning an existing EMR cluster 203

Summary 204
Test your knowledge 204
Further reading 205

7
Understanding Security in Amazon EMR

Technical requirements 208
Understanding the basics
of security 208

Creating security configurations 210
Specifying a security configuration for
your cluster 211

Table of Contents xi

AWS IAM integration with
Amazon EMR 212
Configuring an IAM service role for
your EMR cluster 213
Configuring IAM roles for EMRFS 218
Integrating IAM roles in applications
that invoke AWS services directly 219
Allowing users and groups to create
and modify roles 220
Identity-based policies and
best practices 220
Understanding authentication to
cluster nodes 221

Understanding data protection
in EMR 222

Encrypting data at rest for EMRFS
on Amazon S3 data 222
Encrypting data in transit for EMRFS
on Amazon S3 data 225

Role of security groups and
interface VPC endpoints 226
Controlling cluster network traffic
with security groups 226
Connecting to Amazon EMR on an EC2
cluster using an interface VPC endpoint 230
Connecting to Amazon EMR on an EKS
cluster using an interface VPC endpoint 232

Summary 233
Test your knowledge 233
Further reading 234

8
Understanding Data Governance in Amazon EMR

Technical requirements 236
Understanding data catalog
and access management
options 236
Using AWS Glue Data Catalog 238
Integrating AWS Glue Data Catalog
with Amazon EMR 238
Permission management on top of a
data catalog 240

Understanding Amazon EMR
integration with AWS Lake
Formation 240
Integrating Lake Formation with
Amazon EMR 241

Launching an EMR cluster with Lake
Formation 243
Setting up EMR notebooks to work
with
Lake Formation 245

Understanding Amazon EMR
integration with Apache Ranger
 246
Setting up Apache Ranger in EMR 248
Understanding Apache Ranger plugins 251

Summary 253
Test your knowledge 254
Further reading 254

xii Table of Contents

Section 3: Implementing Common Use Cases
and Best Practices

9
Implementing Batch ETL Pipeline with Amazon EMR and
Apache Spark

Technical requirements 258
Use case and architecture
overview 258
Architecture overview 259

Implementation steps 260
Creating Amazon S3 buckets 260
Creating the AWS Lambda function 263
Configuring an S3 file arrival event to
trigger the Lambda function 266
Triggering the EMR job 268

Validating the output using
Amazon Athena 271

Defining a virtual Glue Data Catalog
table on top of Amazon S3 data 271
Querying output data using Amazon
Athena standard SQL 272

Spark ETL and Lambda
function code walk-through 274
Understanding the AWS Lambda
function code 274
Understanding the PySpark script
integrated into the EMR step 276

Summary 276
Test your knowledge 277
Further reading 277

10
Implementing Real-Time Streaming with Amazon EMR and
Spark Streaming

Technical requirements 280
Use case and architecture
overview 280
Architecture overview 281

Implementation steps 282
Creating Amazon S3 buckets 282
Creating the Amazon Kinesis
data stream 283
Creating and configuring the Kinesis
Data Generator tool 285

Creating an Amazon EMR cluster and
configuring a Spark Streaming job 291

Validating output using
Amazon Athena 296
Defining a virtual Glue Catalog table
on top of Amazon S3 data 297
Querying output data using a standard
SQL query in Amazon Athena 297

Spark Streaming code
walk-through 298

Table of Contents xiii

Summary 300
Test your knowledge 301

Further reading 301

11
Implementing UPSERT on S3 Data Lake with Apache Spark
and Apache Hudi

Technical requirements 304
Apache Hudi overview 305
Popular use cases 307
Registering Hudi data with your Hive
or Glue Data Catalog metastore 308

Creating an EMR cluster and
an EMR notebook 308
Creating an EMR cluster 309
Creating an EMR notebook 311
Creating an Amazon S3 bucket 312

Interactive development with
Spark and Hudi 314
Creating a PySpark notebook for
development 314
Integrating Hudi with our PySpark
notebook 315
Executing Spark and Hudi scripts in
your notebook 319

Summary 327
Test your knowledge 327
Further reading 328

12
Orchestrating Amazon EMR Jobs with AWS Step Functions
and Apache Airflow/MWAA

Technical requirements 330
Overview of AWS Step
Functions 330
Integrating AWS Step Functions
to orchestrate EMR jobs 332

Overview of Apache Airflow
and MWAA 336
Integrating Airflow to trigger
EMR jobs 337
Summary 338
Test your knowledge 338
Further reading 339

13
Migrating On-Premises Hadoop Workloads to Amazon EMR

Understanding migration
approaches 342

Lift and shift 343
Re-architecting 345

xiv Table of Contents

Hybrid architecture 346

Migrating data and metadata
catalogs 346
Migrating data 346
Migrating metadata catalogs 350

Migrating ETL jobs and Oozie
workflows 352
Migrating Oozie workflows 353

Testing and validation 356
Validating metadata quality 356
Validating data quality 357

Best practices for migration 359
Summary 361
Test your knowledge 362
Further reading 362

14
Best Practices and Cost-Optimization Techniques

Best practices around EMR
cluster configurations 364
Choosing the correct cluster type
(transient versus long-running) 364
Best practices around sizing
your cluster 366

Optimization techniques for
data processing and storage 371
Best practices for cluster
persistent storage 371
Best practices while processing data
using EMR 374

Security best practices 374
Configuring edge nodes outside of the
cluster to limit connectivity 375
Integrating logging, monitoring, and
audit controls into your cluster 376

Blocking public access to your
EMR cluster 376
Protecting your data at rest and
in transit 377

Cost-optimization techniques 377
Cost savings with compute resources 377
Cost savings with storage 379
Integrating AWS Budgets and
Cost Explorer 379
AWS Trusted Advisor 381
Cost allocation tags 382

Limitations of Amazon EMR
and possible workarounds 383
Summary 385
Test your knowledge 386
Further reading 386

Index
Other Books You May Enjoy

Preface
As the usage of internet-related services, computers, and smart products increases, the
amount of data produced by them has also increased exponentially. The data produced by
them is extremely valuable for addressing business problems, as you can analyze the data to
derive insights that can help in faster decision making and forecasting business growth.

These datasets are large and complex enough that traditional data processing technologies
can't handle them efficiently, and that is why distributed processing frameworks such as
Hadoop and Spark evolved. Amazon Elastic MapReduce (EMR) provides a managed
offering for Hadoop ecosystem services, so that businesses can focus on building analytics
pipelines and save time on managing infrastructure. This makes Amazon EMR the top
choice for Hadoop, Spark, and big data workloads.

As the amount of data continues to grow, big data analytics will become a common skill
that everybody will need to have to be successful in their career or business. Before EMR,
it was expensive to try out Hadoop or Spark workloads as they require clusters of servers
for setup. But with Amazon EMR's pay-as-you-go model, you can spin up small clusters
quickly, scale them as needed, and terminate them when the job finishes.

Organizations that want to get started with Amazon EMR or are planning to migrate
existing Hadoop workloads to EMR, as well as college-fresh graduates who want to upskill
in EMR, will find this book very useful and will be able to dive deep into different EMR
features and architecture patterns.

While writing this book, I have kept in mind that it should be useful to both beginners
and technologists who want to learn advanced concepts of EMR. I also expect you to have
some basic knowledge of AWS and Hadoop so that you can understand better and easily
dive deep into advanced concepts.

By the end of this book, you will be able to comfortably architect and implement
Hadoop-/Spark-based solutions with transient (job-based) or persistent (multi-tenant/
long-running) EMR clusters. In addition, you will be able to understand how a complete
end-to-end data analytics solution can be implemented with Amazon EMR for batch,
real-time streaming, or interactive workloads. You will also gain knowledge about
migration approaches, best practices, and cost optimization techniques that you can
follow while implementing big data analytics workloads with EMR.

xvi Preface

Who this book is for
This book is targeted at data engineers, data analysts, data scientists, and solution
architects who are interested in building data analytics pipelines with Hadoop ecosystem
services such as Hive, Spark, Presto, HBase, and Hudi. It is required that you have some
prior basic knowledge of a few Hadoop ecosystem components and AWS, as well as
experience with a programming language such as Python or Scala.

What this book covers
Chapter 1, An Overview of Amazon EMR, will give you an overview of Amazon EMR
and its benefits compared to on-premises Hadoop clusters. Also, we will look at how
EMR compares with other Spark-based AWS services such as AWS Glue and AWS
Glue DataBrew.

Chapter 2, Exploring the Architecture and Deployment Options, will dive into EMR
architecture; its life cycle; types of clusters; deployment options such as EMR on Elastic
Compute Cloud (EC2), EMR on Elastic Kubernetes Service (EKS), and EMR on AWS
Outposts; and the pricing models for each.

Chapter 3, Common Use Cases and Architecture Patterns, will explain some popular big
data use cases for EMR and cover how you can build an end-to-end architecture for batch
or real-time streaming and interactive analytics use cases.

Chapter 4, Big Data Applications and Notebooks Available in Amazon EMR, will give you
an overview of a few of the popular Hadoop ecosystem services in EMR, such as Hive,
Presto, and Spark. We will also look at a few popular machine learning frameworks,
such as TensorFlow and MXNet, as well as the different notebook options available for
interactive development.

Chapter 5, Setting Up and Configuring EMR Clusters, is where you will learn how to set up
an EMR cluster, dive deep into its advanced configurations, learn how you can debug and
troubleshoot cluster failures, and then get an overview of its SDKs and APIs.

Chapter 6, Monitoring, Scaling, and High Availability, is where you will learn about cluster
monitoring, cloning, and high availability. Then, you will dive deep into different scaling
aspects and understand the difference between managed and auto scaling.

Chapter 7, Understanding Security in Amazon EMR, will explain how you can make your
cluster secure, covering authentication and authorization with AWS IAM, data encryption
at rest and in transit, and how to leverage AWS security groups to control connectivity to
your cluster.

Preface xvii

Chapter 8, Understanding Data Governance in Amazon EMR, covers external Hive
Metastore and Glue Data Catalog integration and how you can implement granular
permission management with AWS Lake Formation and Apache Ranger.

Chapter 9, Implementing Batch ETL Pipeline with Amazon EMR and Apache Spark, takes
you through a step-by-step guide to implementing a batch Extract, Transform, and Load
(ETL) pipeline with Amazon EMR and Apache Spark.

Chapter 10, Implementing Real-Time Streaming with Amazon EMR and Spark Streaming,
contains a step-by-step guide to implementing a real-time streaming ETL pipeline with
Kinesis Data Stream, Amazon EMR, and Spark Streaming.

Chapter 11, Implementing UPSERT on S3 Data Lake with Apache Spark and Apache Hudi,
teaches you how to do interactive development with an EMR notebook, as well as how to
integrate UPSERT on an S3 data lake with Apache Hudi and Spark.

Chapter 12, Orchestrating Amazon EMR Jobs with AWS Step Functions and Apache Airflow/
MWAA, gives you an overview of AWS Step Functions, Amazon-managed Airflow, and
how to integrate them to build a workflow for your EMR-based data pipelines.

Chapter 13, Migrating On-Premises Hadoop Workloads to Amazon EMR, discusses
how you can migrate your on-premises Hadoop workloads to Amazon EMR, covering
migrating data, catalog metadata, and ETL jobs. Also, you will learn about some of the
best practices you can follow during the migration process.

Chapter 14, Best Practices and Cost Optimization Techniques, discusses some of the best
practices you can follow related to EMR cluster configuration, ETL processes, file storage,
and security. Then, you will learn about some of the cost optimization techniques you can
follow, the limitations of EMR, and some workarounds for them.

To get the most out of this book
To follow along with the hands-on parts of the book, you need to have an AWS account with
IAM permissions and an SSH client (for example, PuTTY on Windows) to connect to your
EMR master node.

xviii Preface

Before executing any of the sample code in the book, please make sure you replace the
variables mentioned with your environment variables, and also make sure you have the
IAM permissions required to execute the commands or scripts.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

The solutions given in the book are meant to give you a kick start with some sample datasets.
Please move to the next stage of your learning by integrating more complex transformations
that might be more applicable to your business. Also, make sure you follow the least-
privileges principle while setting up production clusters.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Simplify-Big-Data-Analytics-with-
Amazon-EMR-. If there's an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in Action
The Code in Action videos for this book can be viewed at https://bit.ly/3HM9dpj.

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801071079_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "For example, the following sample JSON specifies configurations
for the core-site and mapred-site classifications and includes Hadoop and
MapReduce properties with values that you plan to override in the cluster."

https://github.com/PacktPublishing/Simplify-Big-Data-Analytics-with-Amazon-EMR-
https://github.com/PacktPublishing/Simplify-Big-Data-Analytics-with-Amazon-EMR-
https://github.com/PacktPublishing/Simplify-Big-Data-Analytics-with-Amazon-EMR-
https://github.com/PacktPublishing/
https://bit.ly/3HM9dpj
https://static.packt-cdn.com/downloads/9781801071079_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801071079_ColorImages.pdf

Preface xix

A block of code is set as follows:

 "Properties": {

 "mapred.tasktracker.map.tasks.maximum": "10",

 "mapreduce.map.sort.spill.percent": "0.80",

 "mapreduce.tasktracker.reduce.tasks.maximum": "20"

 }

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

 "Classification": "core-site",

 "Properties": {

 "hadoop.security.groups.cache.secs": "500"

Any command-line input or output is written as follows:

aws emr create-cluster --instance-type m5.2xlarge --release-
label emr-6.4.0 --security-configuration <mySecurityConfigName>

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "If you are
creating a transient cluster that needs to execute a few steps and then auto terminate, then
you can select Step execution for Launch mode."

Tips or Important Notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us
at customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if you
would report this to us. Please visit www.packtpub.com/support/errata and fill
in the form.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata

xx Preface

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Share Your Thoughts
Once you've read Simplify Big Data Analytics with Amazon EMR, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page for this book and
share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1-801-07107-1

This section will provide an overview of Amazon EMR, along with its architecture, cluster
nodes, features, benefits, different deployment options, and pricing. Then it will provide
an overview of different big data applications EMR supports and showcase common
architecture patterns we see with Amazon EMR.

This section comprises the following chapters:

• Chapter 1, An Overview of Amazon EMR

• Chapter 2, Exploring the Architecture and Deployment Options

• Chapter 3, Common Use Cases and Architecture Patterns

• Chapter 4, Big Data Applications and Notebooks available in Amazon EMR

Section 1:
Overview, Architecture,

Big Data Applications,
and Common Use Cases

of Amazon EMR

1
An Overview of

Amazon EMR
This chapter will provide an overview of Amazon Elastic MapReduce (EMR), its benefits
related to big data processing, and how its cluster is designed compared to on-premises
Hadoop clusters. It will then explain how Amazon EMR integrates with other Amazon
Web Services (AWS) services and how you can build a Lake House architecture in AWS.

You will then learn the difference between the Amazon EMR, AWS Glue, and AWS Glue
DataBrew services. Understanding the difference will make you aware of the options
available when deploying Hadoop or Spark workloads in AWS.

Before going into this chapter, it is assumed that you are familiar with Hadoop-based big
data processing workloads, have had exposure to AWS basis concepts, and are looking
to get an overview of the Amazon EMR service so that you can use it for your big data
processing workloads.

The following topics will be covered in this chapter:

• What is Amazon EMR?

• Overview of Amazon EMR

• Decoupling compute and storage

• Integration with other AWS services

4 An Overview of Amazon EMR

• EMR release history

• Comparing Amazon EMR with AWS Glue and AWS Glue DataBrew

What is Amazon EMR?
Amazon EMR is an AWS service that provides a distributed cluster for big data
processing. Now, before diving deep into EMR, let's first understand what big data
represents, for which EMR is a solution or tool.

What is big data?
The beginnings of enormous volumes of datasets date back to the 1970s, when the world
of data was just getting started with data centers and the development of relational
databases, despite the fact that the concept of big data was still relatively new. These
technology revolutions led to personal desktop computers, followed by laptops, and then
mobile computers over the next several decades. As people got access to devices, the data
being generated started growing exponentially.

Around the year 2005, people started to realize that users generate huge amounts of data.
Social platforms, such as Facebook, Twitter, and YouTube generate data faster than ever, as
users get access to smart products or internet-related services.

Put simply, big data refers to large, complex datasets, particularly those derived from new
data sources. These datasets are large enough that traditional data processing software
can't handle its storage and processing efficiently. But these massive volumes of data are
of great use when we need to derive insights by analyzing them and then address business
problems with it, which we were not able to do before. For example, an organization can
analyze their users' or customers' interactions with their social pages or website to identify
their sentiment against their business and products.

Often, big data is described by the five Vs. It started with three Vs, which includes data
volume, velocity, and variety, but as it evolved, the accuracy and value of data also became
major aspects of big data, which is when veracity and value got added to represent it as five
Vs. These five Vs are explained as follows:

• Volume: This represents the amount of data you have for analysis and it really varies
from organization to organization. It can range from terabytes to petabytes in scale.

• Velocity: This represents the speed at which data is being collected or processed for
analysis. This can be a daily data feed you receive from your vendor or a real-time
streaming use case, where you receive data every second to every minute.

What is Amazon EMR? 5

• Variety: When we talk about variety, it means what the different forms or types
of data you receive are for processing or analysis. In general, they are broadly
categorized into the following three:

 � Structured: Organized data format with a fixed schema. It can be from relational
databases or CSVs or delimited files.

 � Semi-structured: Partially organized data that does not have a fixed schema, for
example, XML or JSON files.

 � Unstructured: These datasets are more represented through media files, where
they don't have a schema to follow, for example, audio or video files.

• Veracity: This represents how reliable or truthful your data is. When you plan
to analyze big data and derive insights out of it, the accuracy or quality of the
data matters.

• Value: This is often referred to as the worth of the data you have collected as it is
meant to give insights that can help the business drive growth.

With the evolution of big data, the primary challenge became how to process such huge
volumes of data, because the typical single system processing frameworks were not
enough to handle them. It needed a distributed processing computing framework that can
do parallel processing.

After understanding what big data represents, let's look at how the Hadoop processing
framework helped to solve this big data processing problem statement and why it became
so popular.

Hadoop – processing framework to handle big data
Though there were different technologies or frameworks that came to handle big data,
the framework that got the most traction is Hadoop, which is an open source framework
designed specifically for storing and analyzing big datasets. It allows combining multiple
computers to form a cluster that can do parallel distributed processing to handle gigabyte-
to petabyte-scale data.

6 An Overview of Amazon EMR

The following is a data flow model that explains how the input data is collected, stored
into Hadoop Distributed File System (HDFS), then processed with Hive, Pig, or Spark
big data processing frameworks and the transformed output becomes available for
consumption or is transferred to downstream systems or external vendors. It represents
a high-level data flow, where input data is collected and stored as raw data. It then gets
processed as needed for analysis and then made available for consumption:

Figure 1.1 – Data flow in a Hadoop cluster

The following are the main basic components of Hadoop:

• HDFS: A distributed filesystem that runs on commodity hardware and provides
improved data throughput as compared to traditional filesystems and higher
reliability with an in-built fault tolerance mechanism.

• Yet Another Resource Negotiator (YARN): When multiple compute nodes are
involved with parallel processing capability, YARN helps to manage and monitor
compute CPU and memory resources and also helps in scheduling jobs and tasks.

• MapReduce: This is a distributed framework that has two basic modules, that is,
map and reduce. The map task reads the data from HDFS or a distributed storage
layer and converts it into key-value pairs, which then becomes input to the reduce
tasks, which ideally aggregates the map output to provide the result.

• Hadoop Common: These include common Java libraries that can be used across all
modules of the Hadoop framework.

In recent years, the Hadoop framework became popular because of its massively parallel
processing (MPP) capability on top of commodity hardware and its fault-tolerant nature,
which made it more reliable. It was extended with additional tools and applications to
form an ecosystem that can help to collect, store, process, analyze, and manage big data.
Some of the most popular applications are as follows:

• Spark: An open source distributed processing system that uses in-memory caching
and optimized execution for fast performance. Similar to MapReduce, it provides
batch processing capability as well as real-time streaming, machine learning, and
graph processing capabilities.

What is Amazon EMR? 7

• Hive: Allows users to use distributed processing engines such as MapReduce, Tez,
or Spark to query data from the distributed filesystem through the SQL interface.

• Presto: Similar to Hive, Presto is also an open source distributed SQL query engine
that is optimized for low-latency data access from the distributed filesystem. It's
used for complex queries, aggregations, joins, and window functions. The Presto
engine is available as two separate components in EMR, that is, PrestoDB and
PrestoSQL or Trino.

• HBase: An open source non-relational or NoSQL database that runs on top of the
distributed filesystem that provides fast lookup for tables with billions of rows and
millions of columns grouped as column families.

• Oozie: Enables workflow orchestration with Oozie scheduler and coordinator
components.

• ZooKeeper: Helps in managing and coordinating Hadoop component resources
with inter-component-based communication, grouping, and maintenance.

• Zeppelin: An interactive notebook that enables interactive data exploration using
Python and PySpark kind of frameworks.

Hadoop provides a great solution to big data processing needs and it has become popular
with data engineers, data analysts, and data scientists for different analytical workloads.
With its growing usage, Hadoop clusters have brought in high maintenance overhead,
which includes keeping the cluster up to date with the latest software releases and adding
or removing nodes to meet the variable workload needs.

Now let's understand the challenges on-premises Hadoop clusters face and how Amazon
EMR comes as a solution to them.

Challenges with on-premises Hadoop clusters
Before Amazon EMR, customers used to have on-premises Hadoop clusters and faced the
following issues:

• Tightly coupled compute and storage architecture: Clusters used to use HDFS
as their storage layer, where the data node's disk storage contributes to HDFS. In
the case of node failures or replacements, there used to be data movement to have
another replica of data created.

8 An Overview of Amazon EMR

• Overutilized during peak hours and underutilized at other times: As the
autoscaling capabilities were not there, customers used to do capacity planning
beforehand and add nodes to the cluster before usage. This way, clusters used to
have a constant number of nodes; during peak usage hours, cluster resources were
overutilized and during off-hours, they were underutilized.

• Centralized resource with the thrashing of resources: As resources get
overutilized during peak hours, this leads to the thrashing of resources and affects
the performance or collapse of hardware resources.

• Difficulty in upgrading the entire stack: Setting up and configuring services was
a tedious task as you needed to install specific versions of Hadoop applications and
when you planned to upgrade, there were no options to roll back or downgrade.

• Difficulty in managing many different deployments (dev/test): As the cluster
setup and configuration was a tedious task, developers didn't have the option to
quickly build applications in new versions to prove feasibility. Also, spinning up
different development and test environments was a time-consuming process.

To overcome the preceding challenges, AWS came up with Amazon EMR, which is a
managed Hadoop cluster that can scale up and down as workload resource needs change.

Overview of Amazon EMR – managed and scalable
Hadoop cluster in AWS
To give an overview, Amazon EMR is an AWS tool for big data processing that provides a
managed, scalable Hadoop cluster with multiple deployment options that includes EMR
on Amazon Elastic Compute Cloud (EC2), EMR on Amazon Elastic Kubernetes Service
(EKS), and EMR on AWS Outposts.

Amazon EMR makes it simple to set up, run, and scale your big data environments by
automating time-consuming tasks such as provisioning instances, configuring them with
Hadoop services, and tuning the cluster parameters for better performance.

Amazon EMR is used in a variety of applications, including Extract, Transform, and
Load (ETL), clickstream analysis, real-time streaming, interactive analytics, machine
learning, scientific simulation, and bioinformatics. You can run petabyte-scale analytics
workloads on EMR for less than half the cost of traditional on-premises solutions and
more than three times faster than open source Apache Spark. Every year, customers
launch millions of EMR clusters for their batch or streaming use cases.

Before diving into the benefits of EMR compared to an on-premises Hadoop cluster, let's
look at a brief history of Hadoop and EMR releases.

Benefits of Amazon EMR 9

A brief history of the major big data releases
Before we go further, the following diagram shows the release period of some of the
major databases:

Figure 1.2 – Diagram explaining the history of major big data releases

As you can see in the preceding diagram, Hadoop was created in 2006 based on Google's
MapReduce whitepaper and then AWS launched Amazon EMR in 2009. Since then, EMR
has added a lot of features and its recent launch of Amazon EMR on EKS provides the
great capability to run Spark workloads in Kubernetes clusters.

Now is a good time to understand the benefits of Amazon EMR and how its cluster is
configured to decouple compute and storage.

Benefits of Amazon EMR
There are numerous advantages of using Amazon EMR, and this section provides an
overview of these advantages. This will in turn help you when looking for solutions based
on Hadoop or Spark workloads:

• Easy to use: You can set up an Amazon EMR cluster in minutes without having to
worry about provisioning cluster instances, setting up Hadoop configurations, or
tuning the cluster.

You get the ability to create an EMR cluster through the AWS console's user
interface (UI), where you have both quick and advanced options to specify
your cluster configurations, or you can use AWS command-line interface (CLI)
commands or AWS SDK APIs to automate the creation process.

• Low cost: Amazon EMR pricing is based on the infrastructure on top of which it is
deployed. You can choose from the different deployment options EMR provides, but
the most popular usage pattern is with Amazon EC2 instances.

10 An Overview of Amazon EMR

When we configure or deploy a cluster on top of Amazon EC2 instances, the pricing
depends on the type of EC2 instance and the Region you have selected to launch
your cluster. With EC2, you can choose on-demand instances or you can reduce the
cost by purchasing reserved instances with a commitment of usage. You can lower
the cost even further by using a combination of spot instances, specifically while
scaling the cluster with task nodes.

• Scalability: One of the biggest advantages of EMR compared to on-premises
Hadoop clusters is its elastic nature, using which you can increase or decrease the
number of instances of your cluster. You can create your cluster with a minimal
number of instances and then can scale your cluster as the job demands. EMR
provides two scalability options, autoscaling and managed scaling, which scales the
cluster based on resource utilization.

• Flexibility: Though EMR provides a quick cluster creation option, you have full
control over your cluster and jobs, where you can make customizations in terms
of setup or configurations. While launching the cluster, you can select the default
Linux Amazon Machine Images (AMIs) for your instances or integrate custom
AMIs and then install additional third-party libraries or configure startup scripts/
jobs for the cluster.

You can also use EMR to reconfigure apps on clusters that are already running,
without relaunching the clusters.

• Reliability: Reliability is something that is built into EMR's core implementation.
The health of cluster instances is constantly monitored by EMR and it automatically
replaces failed or poorly performing instances. Then new tasks get instantiated in
newly added instances.

EMR also provides multi-master configuration (up to three master nodes), which
makes the master node fault-tolerant. EMR also keeps the service up to date by
including stable releases of the open source Hadoop and related application software
at regular intervals, which reduces the maintenance effort of the environment.

• Security: EMR automatically configures a few default settings to make the
environment secure, including launching the cluster in Amazon Virtual Private
Cloud (VPC) with required network access controls and configuring security
groups for EC2 instances.

It also provides additional security configurations that you can utilize to improve
the security of the environment, which includes enabling encryption through AWS
KMS keys or your own managed keys, configuring strong authentication with
Kerberos, and securing the in-transit data through SSL.

Decoupling compute and storage 11

You can also use AWS Lake Formation or Apache Ranger to configure fine-grained
access control on the cluster databases, tables, or columns. We will dive deep into
each of these concepts in later chapters of the book.

• Ease of integration: When you build a data analytics pipeline, apart from EMR's
big data processing capability, you might also need integration with other services
to build the production-scale implementation.

EMR has native integration with a lot of additional services and some of the major
ones include orchestrating the pipeline with AWS Step Functions or Amazon
Managed Workflows for Apache Airflow (MWAA), close integration with AWS
IAM to integrate tighter security control, fine-grained access control with AWS Lake
Formation, or developing, visualizing, and debugging data engineering and data
science applications built in R, Python, Scala, and PySpark using the EMR Studio
integrated development environment (IDE).

• Monitoring: EMR provides in-depth monitoring and audit capability on the cluster
using AWS services such as CloudWatch and CloudTrail.

CloudWatch provides a centralized logging platform to track the performance of
your jobs and cluster and define alarms based on specific thresholds of specific
metrics. CloudTrail provides audit capability on cluster actions. Amazon EMR also
has the ability to archive log files in Amazon Simple Storage Service (S3), so you
can refer to them for debugging even after your cluster is terminated.

Apart from CloudWatch and CloudTrail, you can also use the Ganglia monitoring tool to
monitor cluster instance health, which is available as an optional software configuration
when you launch your cluster.

Decoupling compute and storage
When you integrate an EMR cluster for your batch or streaming workloads, you have the
option to use the core node's HDFS as your primary distributed storage or Amazon S3
as your distributed storage layer. As you know, Amazon S3 provides a highly durable and
scalable storage solution and Amazon EMR natively integrates with it.

With Amazon S3 as the cluster's distributed storage, you can decouple compute and
storage, which gives additional flexibility. It enables you to integrate job-based transient
clusters, where S3 acts as a permanent store and the cluster core node's HDFS is used for
temporary storage. This way, you can decouple different jobs to have their own cluster
with the required amount of resources and scaling in place and avoid having an always-on
cluster to save costs.

12 An Overview of Amazon EMR

The following diagram represents how multiple transient EMR clusters that contain
various steps can use S3 as their common persistent storage layer. This can also help for
disaster recovery implementation:

Figure 1.3 – Multiple EMR clusters using Amazon S3 as their distributed storage

Now that you understand how EMR provides flexibility to decouple compute and storage,
in the next section, you will learn how you can use this feature to create persistent or
transient clusters depending on your use case.

Persistent versus transient clusters
Persistent clusters represent a cluster that is always active to support multi-tenant
workloads or interactive analytics. These clusters can have a constant node capacity or
a minimal set of nodes with autoscaling capabilities. Autoscaling is a feature of EMR,
where EMR automatically scales up (adds nodes) or scales down (removes nodes) cluster
resources based on a few cluster utilization parameters. In future chapters, we will dive
deep into EMR scaling features and options.

Transient clusters are treated more as job-based clusters, which are short-lived. They get
created with data arrival or through scheduled events, do the data processing, write the
output back to target storage, and then get terminated. These also have a constant set of
nodes to start with and then scale to support the additional workloads. But when you have
transient cluster workloads, ideally Amazon S3 is used as a persistent data store so that
after cluster termination, you still have access to the data to perform additional ETL or
business intelligence reporting.

Decoupling compute and storage 13

Here is a diagram that represents different kinds of cluster use cases you may have:

Figure 1.4 – EMR architecture representing cluster nodes

As you can see, all three clusters are using Amazon S3 as their persistent storage layer,
which decouples compute and storage. This will facilitate scaling for both compute and
storage independently, where Amazon S3 provides scaling with 99.999999999% (11 9s)
durability and the cluster compute capacity can scale horizontally by adding more core or
task nodes.

As represented in the diagram, transient clusters can be scheduled jobs or multiple
workload-specific clusters running in parallel to do ETL on their datasets, where each
workload cluster might have workload-specific cluster capacity.

When you implement transient clusters, often the best practice is to externalize your Hive
Metastore, which means if your cluster gets terminated and becomes active again, it does
not need to create Metastore or catalog tables again. When you are externalizing Hive
Metastore of your EMR cluster, you have the option to use an Amazon RDS database as
a Hive Metastore or you can use AWS Glue Data Catalog as your Metastore.

14 An Overview of Amazon EMR

Integration with other AWS services
By now, you have got a good overview of Amazon EMR and its architecture, which can
help you visualize how you can execute your Hadoop workloads on Amazon EMR.

But when you build an enterprise architecture for a data analytics pipeline, be it batch
or real-time streaming, there are a lot of additional benefits to running in AWS. You can
decouple your architecture into multiple components and integrate various other AWS
services to build a fault-tolerant, scalable architecture that is highly secure.

Figure 1.5 – Representing EMR integration with other AWS services

The preceding figure is a high-level diagram that shows how you can integrate a few other
AWS services with Amazon EMR for an analytics pipeline. These are just a few sets of
services listed to give you an idea, but there are a lot of other AWS services that you can
integrate which you deem fit for your use case.

Now let's get an overview of these services and understand how they integrate with
Amazon EMR.

Integration with other AWS services 15

Amazon S3 with EMR File System (EMRFS)
Out of all the AWS services, Amazon S3 takes the top spot as any data analytics
architecture built on top of AWS will have S3 as a persistent or intermediate data store.
When we build a data processing pipeline with Amazon EMR, S3 integration is natively
supported through EMR File System (EMRFS). When a job communicates with an
Amazon S3 path to read or write data, it can access S3 with the s3:// prefix.

Amazon Kinesis Data Streams (KDS)
Amazon Kinesis Data Streams (KDS) is a commonly used messaging service within
AWS to build real-time streaming pipelines for use cases such as website clickstreams,
application log streams, and Internet of Things (IoT) device event streams. It is scalable
and durable and continuously captures gigabytes of data per second with multiple sources
ingesting to it and multiple consumers reading from it in parallel.

It provides Kinesis Producer Library (KPL), which data producers can integrate to
push data to Kinesis, and also provides Kinesis Consumer Library (KCL), which data-
consuming applications can integrate to access the data.

When we build a real-time streaming pipeline with EMR and KDS as a source, we can use
Spark Structured Streaming, which integrates KCL internally to access the stream datasets.

Amazon Managed Streaming for Kafka (MSK)
Similar to KDS, Apache Kafka is also a popular messaging service in the open source
world that is capable of handling massive volumes of data for real-time streaming. But it
comes with the additional overhead of managing the infrastructure.

Amazon Managed Streaming for Kafka (MSK) is a fully managed service built on top of
open source Apache Kafka that automates Kafka cluster creation and maintenance. You
can set up a Kafka cluster with a few clicks and use that as an event message source when
you plan to implement a real-time streaming use case with EMR and Spark Streaming as
the processing framework.

AWS Glue Data Catalog
AWS Glue is a fully managed ETL service that is built on top of Apache Spark with
additional functionalities, such as Glue crawlers and Glue Data Catalog. Glue crawlers help
autodetect the schema of source datasets and create virtual tables in Glue Data Catalog.

16 An Overview of Amazon EMR

With EMR 5.8.0 or later, you can configure Spark SQL in EMR to use AWS Glue Data
Catalog as its external metastore. This is great when you have transient cluster scenarios
that need an external persistent metastore or multiple clusters sharing a common catalog.

Amazon Relational Database Service (RDS)
Similar to Glue Data Catalog, you can also use Amazon Relational Database Service
(RDS) to be the external metastore for Hive, which can be shared between multiple
clusters as a persistent metastore.

Apart from being used as an external metastore, in a few use cases, Amazon RDS is also
used as an operational data store for reporting to which data gets ingested through EMR
big data processing, which pushes aggregated output to RDS for real-time reporting.

Amazon DynamoDB
Amazon DynamoDB is an AWS-hosted, fully managed, scalable NoSQL database that
delivers quick, predictable performance. As it's serverless, it takes away the infrastructure
management overhead and also provides all security features, including encryption at rest.

In a few analytical use cases, DynamoDB is used to store data ingestion or extraction-
related checkpoint information and you can use DynamoDB APIs with Spark to query the
information or define Hive external tables with a DynamoDB connector to query them.

Amazon Redshift
Amazon Redshift is an MPP data warehousing service of AWS using which you can
query and process exabytes of structured or semi-structured data. In the data analytics
world, having a data warehouse or data mart is very common and Redshift can be used
for both.

In the data analytics use cases, it's a common pattern that after your ETL pipeline processing
is done, the aggregated output gets stored in a data warehouse or data mart and that is
where the EMR-to-Redshift connection comes into the picture. Once EMR writes output to
Redshift, you can integrate business intelligence reporting tools on top of it.

Integration with other AWS services 17

AWS Lake Formation
AWS Lake Formation is a service that enables you to integrate granular permission
management on your data lake in AWS. When you define AWS Glue Data Catalog tables
on top of a data lake, you can use AWS Lake Formation to define access permissions on
databases, tables, and columns available in the same or other AWS accounts. This helps in
having centralized data governance, which manages permissions for AWS accounts across
an organization.

In EMR, when you try to pull data from Glue Data Catalog tables and use it as an external
metastore, then your EMR cluster processes such as Spark will go through Lake Formation
permissions to access the data.

AWS Identity and Access Management (IAM)
AWS Identity and Access Management (IAM) enables you to integrate authentication
and authorization for accessing AWS services through the console or AWS APIs. You
can create groups, users, or roles and define policies to give or restrict access to specific
resources or APIs.

While creating an EMR cluster or accessing its API resources, every request goes through
IAM policies to validate the access.

AWS Key Management Service (KMS)
When you think of securing your data while it's being transferred through the network
or being stored in a storage layer, you can think of cryptographic keys and integrating an
encryption and decryption mechanism. To implement this, you need to store your keys
in a secured place that integrates with your application well and AWS Key Management
Service (KMS) makes that simple for you. AWS KMS is a highly secure and resilient
solution that protects your keys with hardware security modules.

Your EMR cluster can interact with AWS KMS to get the keys for encrypting or
decrypting the data while it's being stored or transferred between cluster nodes.

Lake House architecture overview
Lake House is a new architecture pattern that tries to address the shortcomings of data
lakes and combines the best of data lakes and data warehousing. It acknowledges that the
one-size-fits-all strategy to analytics eventually leads to compromises. It is not just about
connecting a data lake to a data warehouse or making data lake access more structured;
it's also about connecting a data lake, a data warehouse, and other purpose-built data
storage to enable unified data management and governance.

18 An Overview of Amazon EMR

In AWS, you can use Amazon S3 as a data lake, Amazon EMR or AWS Glue for ETL
transformations, and Redshift for data warehousing. Then, you can integrate other
relational NoSQL data stores on top of it to solve different big data or machine learning
use cases.

The following diagram is a high-level representation of how you can integrate the Lake
House architecture in AWS:

Figure 1.6 – Lake House architecture reference

As you can see in the preceding diagram, we have the Amazon S3 data lake in the center,
supported by AWS Glue for serverless ETL and AWS Lake Formation for granular
permission management.

EMR release history 19

Around the centralized data lake, we have the following:

• Amazon EMR for batch or streaming big data processing

• Amazon OpenSearch service for log analytics or search use cases

• Amazon Redshift for data warehousing or data mart use cases

• Amazon DynamoDB for key-value NoSQL store

• Amazon Aurora for operational reporting or external metastore

• Amazon SageMaker for machine learning model training and inference

As explained previously, the Lake House architecture represents how you can bring in
the best of multiple services to build an ecosystem that addresses your organization's
analytics needs.

EMR release history
As Amazon EMR is built on top of the open source Hadoop ecosystem, it tries to stay up
to date with the open source stable releases, which includes new features and bug fixes.

Each EMR release comprises different Hadoop ecosystem applications or services that
fit together with specific versions. EMR uses Apache Bigtop, which is an open source
project within the Apache community to package the Hadoop ecosystem applications or
components for an EMR release.

When you launch a cluster, you need to select the EMR cluster version and with advanced
options, you can identify which version of each Hadoop application is integrated into that
EMR release. If you are using AWS SDK or AWS CLI commands to create a cluster, you
can specify the version using the release label. Release labels follow a naming convention
of emr-x.x.x, for example, emr-6.3.0.

The EMR documentation clearly lists each release version and the Hadoop components
integrated into it.

20 An Overview of Amazon EMR

The following is a diagram of the EMR 6.3.0 release, which lists a few components of
Hadoop services that are integrated into it and how it compares to previous releases of
EMR 6.x:

Figure 1.7 – Diagram of EMR release version comparison

Comparing Amazon EMR with AWS Glue and AWS Glue DataBrew 21

If you were using open source Hadoop or any third-party Hadoop clusters and then
migrating to EMR, it is best to go through the release documentation, understand
different versions of Hadoop applications integrated into it, find the different
configurations involved related to security, network access, authentication, authorization,
and so on, and then evaluate it against your current Hadoop cluster to plan for migration.

With this, you have got a good overview of Amazon EMR, its benefits, its release history,
and more. Now, let's compare it with a few other AWS services that are also based on
Spark workloads and understand how they compare with Amazon EMR.

Comparing Amazon EMR with AWS Glue and
AWS Glue DataBrew
When you look at today's big data processing frameworks, Spark is very popular for its
in-memory processing capability. This is because it gives better performance compared to
earlier Hadoop frameworks, such as MapReduce.

Earlier, we talked about different kinds of big data workloads you might have; it could be
batch or streaming or a persistent/transient ETL use case.

Now, when you look for AWS services for your Spark workloads, EMR is not the only
option AWS provides. You can use AWS Glue or AWS Glue DataBrew as an alternate
service too. Customers often get confused between these services, and knowing what
capabilities each of them has and when to use them can be tricky.

So, let's get an overview of these alternate services and then talk about what features they
have and how to choose them by use case.

AWS Glue
AWS Glue is a serverless data integration service that is simple to use and is based on the
Apache Spark engine. It enables you to discover, analyze, and transform the data through
Spark-based in-memory processing. You can use AWS Glue for exploring datasets,
doing ETL transformations, running real-time streaming pipelines, or preparing data for
machine learning.

AWS Glue has the following components that you can benefit from:

• Glue crawlers and Glue Data Catalog: AWS Glue crawlers provide the benefit of
deriving a schema from an S3 object store, where they scan a subset of data and
create a table in Glue Data Catalog, on top of which you can execute SQL queries
through Amazon Athena.

22 An Overview of Amazon EMR

• Glue Studio and jobs: Glue Studio provides a visual interface to design ETL
pipelines, which autogenerates PySpark or Scala scripts, which you can modify to
integrate your complex business logic for data integration.

• Glue workflows: This enables you to build workflow orchestration for your ETL
pipeline that can integrate Glue crawlers or jobs to be executed in sequence
or parallel.

Please note, AWS Glue is a serverless offering, which means you don't have access to the
underlying infrastructure and its pricing is based on Data Processing Units (DPUs). Each
unit of DPU comprises 4 vCPU cores and 16 GB memory.

Example architecture for a batch ETL pipeline
Here is a simple reference architecture that you can follow to build a batch ETL pipeline.
The use case is when data lands into the Amazon S3 landing zone from different sources
and you need to build a centralized data lake on top of which you plan to do data analysis
or reporting:

Figure 1.8 – Example architecture representing an AWS Glue ETL pipeline

Comparing Amazon EMR with AWS Glue and AWS Glue DataBrew 23

As you can see in the diagram, we have the following steps:

• Step 1: Data lands into the Amazon S3 landing zone from different data sources,
which becomes the raw zone for the data.

• Step 2-3: You will be using Glue crawlers and jobs to apply data cleansing,
standardization, and transformation, and then make it available in an S3 data lake
bucket for consumption.

• Step 4-6: Integrates flow to consume the data lake data for data analysis and
business reporting. As you can see, we have integrated Amazon Athena to query
data from Glue Data Catalog and S3 through standard SQL and integrated Amazon
QuickSight for business intelligence reporting.

If you note, Glue crawlers and Glue Data Catalog are represented as a common centralized
component for ETL transformations and data analysis. As your storage layer is Amazon
S3, defining virtual schema on top of it will help you to access data through SQL as you do
in relational databases.

AWS Glue DataBrew
AWS Glue DataBrew is a visual data preparation tool that assists data analysts and data
scientists prepare data for data analysis or machine learning model training and inference.
Often, data scientists spend 80% of their time preparing the data for analysis and 20% of
the time on model development.

AWS Glue DataBrew solves that problem, where data scientists can save the effort of the
steps from custom coding to clean, normalized data by building a transformation rule
on the visual UI in minutes. AWS Glue DataBrew has 250+ prebuilt transformations
(for example, filtering, adding derived columns, filtering anomalies, correcting invalid
values, and joining or merging different datasets) that you can use to clean or transform
your data, and it converts the visual transformation steps into a Spark script under the
hood, which gives you faster performance.

It saves the transformation rules as recipes that you can apply to multiple jobs and can
configure your job output format, partitioning strategy, and execution schedule. It also
provides additional data profiling and lineage capability.

AWS Glue DataBrew is serverless, so you don't need to worry about setting up a cluster or
managing its infrastructure resources. Its pricing is pretty similar to other AWS services,
where you only pay for what you use.

24 An Overview of Amazon EMR

Example architecture for machine learning data preparation
The following is a simple reference architecture that represents a data preparation use case
for machine learning prediction and inference:

Figure 1.9 – An overall architecture representing data preparation with AWS Glue DataBrew

As you can see in the diagram, we have the following steps:

• Steps 1-2: Represents AWS Glue DataBrew reading data from the S3 input bucket
and, after processing, writing the output back to the S3 output bucket

• Steps 3-4: Represents Amazon SageMaker using the processed data of the data
bucket for machine learning training and inference, which also integrates Jupyter
Notebook for model development

Now, let's look at how to decide which service is best for your use case.

Choosing the right service for your use case
Now, after getting an overview of all three AWS services, you can take note of the
following guidelines when choosing the right service for your use case:

• AWS Glue DataBrew: If you are trying to build an ETL job or pipeline with Spark
but you are new to Hadoop/Spark or you are not good at writing scripts for ETL
transformations, then you can go for AWS Glue Data Brew, where you can use the
GUI-based actions to preview your data and apply necessary transformation rules.

Comparing Amazon EMR with AWS Glue and AWS Glue DataBrew 25

This is great when you receive different types of file formats from different systems
and don't want to spend time writing code to prepare the data for analysis:

 � Pros: Does not require you to learn Spark or scripting languages for preparing
your data and also, you can build a data pipeline faster.

 � Cons: Just because you are relying on the UI actions to build your pipeline, you
lose the flexibility of building complex ETL operations that are not available
through the UI. Also, it does not support real-time streaming use cases.

 � Target users: Data scientists or data analysts can take advantage of this service as
they spend time preparing the data or cleansing it for analysis and their objective
is not to apply complex ETL operations.

 � Use cases: Data cleansing and preparation with minimal ETL transformations.

• AWS Glue: If your objective is to build complex Spark-based ETL transformations
by joining different data sources and you are looking for a serverless solution to
avoid infrastructure management hassles, then AWS Glue is great.

On top of the Spark-based ETL job capability, AWS Glues crawlers, Glue Data
Catalog, and workflows are also great benefits:

 � Pros: Great for serverless Spark workloads that support both batch and streaming
pipelines. You can use AWS Glue Studio to generate base code, on top of which
you can edit.

 � Cons: AWS Glue is limited to only Spark workloads and with Spark, you can use
only Scala and Python. Also, if you have persistent cluster requirements, Glue is
not a great choice.

 � Target users: Data engineers looking for Spark-based ETL engines are best suited
to use AWS Glue.

 � Use cases: Batch and streaming ETL transformations and building a unified
data catalog.

• Amazon EMR: As you have understood by now, AWS Glue or AWS Glue DataBrew
are great for Spark-based workloads only and are great if you are looking for
serverless options. But there are a lot of other use cases where organizations go
with a combination of different Hadoop ecosystem services (for example, Hive,
Flink, Presto, HBase, TensorFlow, and MXNet) or would like to have better control
of not only the infrastructure, instance type and so on but also specific versions of
Hadoop/Spark services they would like to use.

26 An Overview of Amazon EMR

Also, sometimes you will have use cases where you might look for persistent
Hadoop clusters that need to be used by multiple teams for different purposes,
such as data analysis/preparation, ETL, real-time streaming, and machine learning
models. EMR is a great fit there:

 � Pros: Gives control to choose cluster capacity, instance types, and Hadoop services
you need with version selection and also provides auto- and managed scaling
features. Also provides flexibility to use spot instances for cost savings and have
better control of the network and security of your cluster.

 � Cons: Not a serverless offering like AWS Glue, but that's the purpose of EMR, to
give you better control to configure your cluster.

 � Target users: EMR can be used by mostly all kinds of users who deal with data on
a daily basis, such as data engineers, data analysts, and data scientists.

 � Use cases: Batch and real-time streaming, machine learning, interactive analytics,
genomics, and so on.

I hope this gave you a good understanding of how you can choose the right AWS service
for your Hadoop or Spark workloads and also how they compare with each other in terms
of features, pros, and cons.

Summary
Over the course of this chapter, we got an overview of the Hadoop ecosystem and EMR
and learned about its benefits and the problem statement it solves.

After covering those topics, we got an overview of other AWS services that integrate
with EMR to build an end-to-end AWS cloud-native architecture. We followed that with
a discussion of the Lake House architecture and EMR releases.

Finally, we covered how EMR compares with other Spark-based AWS services, such as
AWS Glue and AWS Glue DataBrew, and how to choose the right service for your use case.

That concludes this chapter! Hopefully, you have got a good overview of Amazon EMR
and are now ready to dive deep into its architecture and deployment options, which will
be covered in the next chapter.

Test your knowledge 27

Test your knowledge
Before moving on to the next chapter, test your knowledge with the following questions:

1. You have an on-premises persistent Hadoop cluster, where you have a lot of Hive
SQL jobs and very few Spark ETL jobs are available. This cluster serves multiple
teams and also helps in interactive analytics.

You are assigned the job to plan for AWS cloud migration. Which AWS service is
best suited for you?

2. You have received a JSON file from your source system that you would like to flatten
and apply a few standardizations to for your machine learning model prediction.
This process needs to be repeated every day so that the machine learning prediction
can predict the output for the next day. Which AWS service will you use?

3. You have a requirement to build a real-time streaming application, where you need
to integrate a scalable message bus and Spark Streaming consumer application.
You are looking for a managed messaging service that can scale as the number of
streaming events increase or decrease. What will you use?

4. Which AWS services will you choose for the message bus and Spark processing
consumer application?

Further reading
The following are a few resources you can refer to for further reading:

• About EMR releases: https://docs.aws.amazon.com/emr/latest/
ReleaseGuide/emr-release-components.html

• EMR release history: https://docs.aws.amazon.com/emr/latest/
ReleaseGuide/emr-whatsnew-history.html

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-components.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-components.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-whatsnew-history.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-whatsnew-history.html

2
Exploring the

Architecture and
Deployment Options

This chapter will dive deep into the Elastic MapReduce (EMR) architecture. We will also
look at the different deployment options it provides, such as Amazon EMR on Amazon
Elastic Compute Cloud (EC2), Amazon EMR on Amazon Elastic Kubernetes Service
(EKS), and Amazon EMR on AWS Outposts. It will also explain details around different
EMR cluster node types, its life cycle, and ways to submit work to the cluster.

Toward the end of the chapter, you will learn how EMR pricing works with different
deployment options and how you can use AWS Budgets and Cost Explorer for
cost-related monitoring.

As we proceed to further chapters of this book, where we will cover different use cases
and implementation patterns around EMR, an understanding of the architecture and
deployment options will be a prerequisite.

30 Exploring the Architecture and Deployment Options

The following topics will be covered in this chapter:

• EMR architecture deep dive

• Understanding clusters and nodes

• Using S3 versus HDFS for cluster storage

• Understanding the cluster life cycle

• Building Hadoop jobs with dependencies in a specific EMR release version

• EMR deployment options

Important Note
It is assumed that you are familiar with the Hadoop ecosystem architecture and
this chapter will primarily focus on architecture changes with Amazon EMR.

EMR architecture deep dive
The following is a high-level architecture of Amazon EMR, which includes various
components, such as the distributed storage layer, cluster resource management with Yet
Another Resource Negotiator (YARN), batch or stream processing frameworks, and
different Hadoop applications.

Apart from these major components, the following architecture also represents
monitoring with Ganglia, the Hue user interface, Zeppelin notebook, Livy server, and
connectors that enable integration with other AWS services:

Figure 2.1 – EMR high-level architecture representing core components and applications

EMR architecture deep dive 31

Now let's discuss each of these components in detail.

Distributed storage layer
In a typical on-premises Hadoop cluster or Hadoop on EC2 architectures, you will notice
the Hadoop cluster node's disk space contributes to Hadoop Distributed File System
(HDFS) storage space, and the storage and compute are tightly coupled.

But EMR also provides the option to decouple your compute from storage. Now, let's look
at each storage option and understand which use cases they can be a fit for.

HDFS as cluster storage
HDFS is a distributed filesystem of Hadoop with horizontal scaling capabilities,
which means as you add more nodes to the cluster you get additional compute and
storage capacity.

HDFS distributes the data across cluster nodes as blocks, which are on average between
64 MB and 128 MB in size, and also enables you to have multiple copies of data that are
fault-tolerant. The default configuration is to maintain three copies of data distributed into
different nodes, but you can increase or decrease it based on your use case.

HDFS is great as persistent storage when you have higher random read writes or you have
defined Service-Level Agreements (SLAs) around accessing the data. As the data is
stored local to the instance, you get better performance while accessing it.

S3 with EMR File System (EMRFS) as cluster storage
EMR File System (EMRFS) is an extended filesystem of Hadoop created by Amazon to
integrate Amazon Simple Storage Service (S3) as the permanent storage for EMR. This
integration is seamless as you just need to use EMRFS with the s3a:// or s3n:// or
s3:// S3 prefix in the cluster and all your cluster jobs will start pointing to S3.

When you use S3 with EMRFS, HDFS is still being used as intermediate storage during
job execution and the final output is being written to EMRFS.

A node's local filesystem
When you use Amazon EC2 instances, it comes with a preattached disk that is called an
instance store, and then you can attach additional ephemeral disk volume, which is called
Elastic Block Store (EBS). When you talk about HDFS as file storage, it generally refers to
the EBS volumes attached to instances.

32 Exploring the Architecture and Deployment Options

But you can also refer to the instance store volume for your HDFS, but that is generally
not recommended as the data in it is retained only during the life cycle of the instance. As
soon as you terminate or restart the instance, you lose the data in it.

YARN – cluster resource manager
In Hadoop clusters, YARN is one of the major components as it helps to manage the
cluster resources and also coordinates job execution across multiple nodes.

YARN became very popular because of its multi-tenancy feature, which allows execution
of batch, streaming, and graph processing jobs, its optimized resource management, and
its scaling capability.

Some of the major components of YARN are an ApplicationMaster, a NodeManager,
a ResourceManager, and containers. These containers include disk, memory, and CPU
resources of a node and the ResourceManager is used to coordinate all the resources
required for different job execution. The ApplicationMaster works with the NodeManager
for job execution, its monitoring and completion, and it gets required resources from the
ResourceManager.

In Amazon EMR, by default, most of the Hadoop applications or frameworks use YARN,
but there are a few others that don't use YARN to handle their resources. On each
node, EMR runs an agent that manages YARN components and communicates with
Amazon EMR.

If you recollect, we explained in the previous chapter how you can use EC2 spot
instances for EMR task nodes to save more costs and make it more scalable. But with
spot instances, the chances of task failure are high as they get terminated because of
resource unavailability. Now, to make the jobs fault-tolerant, EMR allows running the
ApplicationMaster in core nodes only, so that spot node termination will not terminate
the ApplicationMaster and it can trigger the failed job in another node.

With the 5.19.0 release, EMR introduced a built-in YARN node label feature using which
it labels core nodes with the CORE label and configures yarn-site, and capacity-
schedulers to make use of these labels and make sure the ApplicationMaster runs only
these nodes.

Important Note
Manually overriding or modifying the yarn-site or capacity-
scheduler configuration files of the cluster that have CORE node
labels integrated into it might break the feature, which allows running the
ApplicationMaster only in core nodes.

EMR architecture deep dive 33

Distributed processing frameworks
While designing big data analytics applications, depending on the use case, you might
look for different batch and real-time streaming frameworks, and EMR provides a few
options around it. A few of the frameworks use YARN and a few others use their own
ResourceManager. Depending on the framework you integrate for your data processing,
you will have programming language options as not all frameworks support all languages.

Out of the different frameworks, MapReduce and Spark are very common and these days,
Spark is widely used for most batch and real-time streaming use cases.

MapReduce
Hadoop MapReduce is one of the popular open source frameworks that has map and
reduce as two primary steps. In the map step, it reads input data as per the block size
defined in the Hadoop configuration files and output key values pairs. The reduce step
takes the map step output as input, does the defined aggregations, and then writes the
output as part files to HDFS or S3. The number of reducers defines the number of output
files you will have and with configuration parameters, you can control how many reducers
you need for your job.

Hadoop applications such as Hive and Pig use the MapReduce framework as their
processing engine to do transformations.

Spark
Similar to the Hadoop MapReduce framework, Spark is also another open source
framework that is widely used for big data processing. Spark became more popular
compared to MapReduce because of its directed acyclic graph execution, faster
in-memory processing, support for different programming languages, such as Java, Scala,
Python, and R, and multiple APIs to support batch and real-time streaming and graph
processing kinds of use cases.

When you use Spark in EMR, you have native integration with EMRFS to read from and
write data to S3.

Hadoop applications
Amazon EMR supports many Hadoop ecosystem applications to serve data collection,
processing, analysis, or consumption needs. Each of these applications has its own API
interface and programming language support.

34 Exploring the Architecture and Deployment Options

A few of the popular applications are MapReduce, Tez, and Spark, which are used for big
data processing. Sqoop is used for pulling data from relational databases, TensorFlow and
MXNet are used for machine learning, Spark Streaming and Flink are used for real-time
streaming, Hive and Presto are used as query engines, and HBase is used as a NoSQL
database on HDFS or S3.

We will dive deep into a few of these applications in the upcoming chapters.

With this, you should have a good understanding of EMR's overall architecture and an
understanding of each of its components. To understand more about the EMR cluster,
next we will dive deep into its cluster node types and how they are structured.

Understanding clusters and nodes
The primary construct or component of Amazon EMR is the cluster, and the cluster is a
collection of Amazon EC2 instances, which are called nodes. Each node within the cluster
has a type, depending on the role it plays or the job it does in the cluster. Based on the
node type, respective Hadoop libraries are installed and configured on that instance.

The following are the node types available in EMR:

• Master node: Master nodes are responsible for managing cluster instances,
monitoring health, coordinating job execution, tracking the status of tasks, and
so on. This is a must-have node type when you create a cluster and you can have a
single node cluster with just a master node in it.

• Core node: This node type is responsible for storing data in the HDFS on your
cluster and runs Hadoop application services such as Hive, Pig, HBase, and Hue. If
you have a multi-node cluster, then you should have at least one core node.

• Task node: This node type is responsible for executing tasks with the amount of
CPU or memory it has. Task nodes are optional and are useful when you plan to
increase your cluster capacity for a specific job and scale down after its completion.
These node types do not have HDFS storage.

Understanding clusters and nodes 35

The following diagram represents the master node, core node, and task node of a cluster
with both HDFS and S3 as the storage layer options:

Figure 2.2 – EMR architecture representing cluster nodes

While creating an EMR cluster, you have two configuration options that you can apply
to each of the cluster node types (master/core/task). Either you can select a uniform type
of instance, which is called an instance group, or you can select a mix of different instance
types, which is called an instance fleet. The configuration you select will be applied for
the duration of the cluster and an instance fleet and instance group cannot coexist in
your cluster.

Uniform instance groups
When creating an EMR cluster, you have the flexibility to group different instance types
and assign core or task node roles to them. This way, you are not restricted to selecting
one instance type for your whole cluster.

36 Exploring the Architecture and Deployment Options

In general practice, you can select different EC2 instance types for the master node, core
nodes, and task nodes. This also helps when you plan to integrate autoscaling into your
cluster and you can scale your task nodes, which will be using instances that have higher
compute and memory capacity and less disk capacity as they won't have HDFS. The
following diagram shows EMR cluster nodes with instance groups:

Figure 2.3 – EMR cluster nodes with instance groups

As you can see in the diagram, each node type is grouped as an instance group, and a task
instance group has multiple instance types combined to form subgroups. Core instance
groups have both compute and HDFS storage, whereas task instance groups have only
compute capacity with the option to choose spot instances.

Instance fleet
With instance fleet configuration, you can combine up to five instance types in a single
fleet and assign to them a node type. Using a task instance fleet is optional but it provides
flexibility to create a mix with spot instance types too. Each instance can have a different
EBS volume configuration.

You can define the target capacity for on-demand and spot instances in terms of vCPU
cores, and EMR will select any combination of specified instance types to meet the target
capacity. For master nodes, specify a single instance type so that it is consistent, and it
would be better if you go for the on-demand instance type only.

Using S3 versus HDFS for cluster storage 37

In this section, we have learned about the EMR cluster's node types and how they are
configured using instance groups or instance fleets. Next, we will get an overview of
cluster storage, where you can use HDFS cluster storage or Amazon S3.

Using S3 versus HDFS for cluster storage
As you may have understood by now, EMR has the flexibility to choose HDFS or EMRFS
+ S3 as the cluster's persistent storage. As explained previously, EMR has different types of
nodes: the master node, core nodes, and task nodes.

Now, let's understand how both of these storage layers are different and which problem
statements they solve.

HDFS as cluster-persistent storage
As you can see from the following diagram, there are multiple core nodes pointing to the
master node, and each core node has its own CPU, memory, and HDFS storage:

Figure 2.4 – EMR node structure with HDFS as persistent storage

These are some properties to be aware of when your cluster uses HDFS as
persistent storage:

• You need to maintain by default three copies of data across the core nodes to be
fault-tolerant.

• An EMR cluster is deployed in a single Availability Zone (AZ) of a Region, so
a complete AZ failure might cause data loss.

38 Exploring the Architecture and Deployment Options

• As HDFS is formed with the core nodes' EBS volumes, your storage cost will depend
on the EBS volumes.

• Data is stored locally, which means the cluster needs to be available 24x7 even if no
jobs are running, utilizing the cluster capacity.

Now, let's look at Amazon S3 as a storage layer.

Amazon S3 as a persistent data store
The following architecture diagram represents the integration of Amazon S3 as the
persistent data store instead of HDFS, where all core nodes or task nodes will interact with
the S3 prefix to read or write data:

Figure 2.5 – EMR node structure with Amazon S3 as persistent storage

The following are a few of the benefits you get when you use Amazon S3 as the persistent
storage layer:

• With S3 being a persistent store, you get more reliability because of S3
multi-AZ replication.

• Your cluster is protected against data loss from node failure, cluster failure, or
AZ failure.

• Compared to EBS-based HDFS, S3 is much cheaper, which brings your total
costs down.

Understanding the cluster life cycle 39

• As compute and storage are decoupled, you can terminate clusters when idle or
multiple clusters can point to the same dataset in S3.

In this section, we have explained what cluster storage options you have and what benefits
or tradeoffs they have while integrating it. In the next section, we will dive deep into the
EMR cluster's life cycle and how you can submit jobs to the cluster as steps.

Important Note
Amazon S3 has a limit around the maximum number of write or read requests
you can get per second. It is 3,500 for PUT/COPY/POST/DELETE and 5,500
for GET/HEAD requests per second per prefix in a bucket. To avoid hitting
the maximum limit, you can think of adding more S3 prefixes while writing
output, you can think of reducing the number of write or read requests per
second, or you can also think of increasing the EMRFS retry limit.

Understanding the cluster life cycle
When you launch an EMR cluster through the AWS SDK, command-line interface
(CLI), or console, it follows a series of steps to launch required infrastructure resources,
configure them with required libraries, and then execute any bootstrap actions defined.

The following is the sequence of steps the cluster follows to complete the setup successfully:

1. Provision the EC2 instances for the cluster to represent master, core, and task nodes
using the default AMI or the custom API you have specified. At this phase, the
cluster shows the status as STARTING.

2. Run the bootstrap actions that you have specified to install custom third-party
libraries or do additional configurations on instances, or start any specific services.
At this phase, the cluster shows the status as BOOTSTRAPPING.

3. Install libraries related to the Hadoop services (Hive, Pig, Hue, Spark, HBase, Tez,
and so on) you have selected during the cluster launch. After completion of this
step, the cluster state is WAITING if no jobs are submitted for execution.

After the cluster is ready and in the WAITING state, you can submit jobs to the cluster
through the AWS CLI, SDK, or console, and each job is treated as a step. It can be a Hive,
Pig, or Spark step that reads from HDFS or S3, does the Extract, Transform, and Load
(ETL) operation, and writes the data back to the storage layer. Following the completion
of the step, again the cluster goes back to the WAITING state.

40 Exploring the Architecture and Deployment Options

While creating the cluster, you can set it to auto-terminate once the last step is performed,
which is better suited for transient job-based cluster use cases. When the cluster gets
a termination request, its state goes to TERMINATING, and then after successful
termination, it goes to TERMINATED.

During the launch, if the cluster creation fails because of any error, then Amazon EMR
terminates the cluster, and the state of the cluster is set to TERMINATED_WITH_
ERRORS. Please note, you do have the option to enable Termination Protection, which
means in case of failures, the cluster will not get terminated, and in such scenarios,
you can manually disable termination protection on the cluster, then trigger the
termination action.

The following diagram represents the life cycle of a cluster, which means the sequence of
steps EMR takes to set up the cluster, configure it, and execute jobs, and what the cluster
state is during each stage:

Figure 2.6 – Represents EMR cluster life cycle

Understanding the cluster life cycle 41

Now, as we understand the cluster life cycle and the sequence of steps it takes for setup,
next we will learn how you can submit jobs to the cluster and what the steps a job
execution goes through are.

Options to submit work to the cluster
You have several options to submit work to the EMR cluster. A few of them are listed here:

• When you have a persistent EMR cluster, you can submit jobs through the AWS
console or AWS CLI commands, or submit dynamically from applications using
EMR APIs.

• In the case of a persistent cluster, you can also SSH to the master node or the
respective Hadoop application's core node and use the CLI of the Hadoop
application to submit queries or jobs.

• If you have a transient EMR cluster, then you can include the job triggering steps as
part of the cluster creation script or command, which will create the cluster, submit
the job as a step, then, post-completion, terminate the cluster.

• You can also invoke cluster creation or job submission actions from workflow
orchestration tools such as AWS Step Functions and self-managed or
AWS-managed Apache Airflow clusters. For persistent clusters, orchestration tools
trigger job submission commands, and for transient cluster use cases, you can
trigger cluster creation, followed by job submission, and then termination.

Next, let's understand the steps of job execution.

Submitting jobs to the cluster as EMR steps
When you design an ETL pipeline with multiple transformation jobs, you can submit each
job as a step to the cluster and each job can invoke different Hadoop services.

For example, you can have the following two steps in your cluster, which flattens a nested
JSON file to derive some insights:

• A PySpark job that reads nested JSON from S3 and flattens it out as a fixed schema
file, then writes the output back to S3

• A Hive job that defines an external table on top of the step-1 output S3 path and
does SQL-based aggregations to create summarized output and, finally, writes the
output back to S3

42 Exploring the Architecture and Deployment Options

Ideally, before triggering the EMR steps, you will upload the nested JSON file to the input
S3 bucket, which the PySpark jobs will read, and also create the intermediate and final
output S3 buckets or paths that the Spark and Hive step will use.

This way, we are decoupling the compute and storage by using S3 as the permanent
storage layer.

The following is the sequence EMR takes to run a step:

1. Request submitted to start the processing steps.
2. The state of both the PySpark and Hive steps is set to PENDING.
3. When the first PySpark step goes into execution, its state gets changed to

RUNNING.
4. After the PySpark state completes, its state changes to COMPLETED, and the Hive

step's state changes to RUNNING as that's defined as the next step.
5. When the Hive job execution completes, its state changes to COMPLETED too.
6. This pattern gets repeated for every step until they are all marked as COMPLETED,

and finally, the cluster gets terminated if auto-terminate is set to TRUE.

The following diagram represents the sequence of states each step goes through when it is
getting processed:

Figure 2.7 – Sequence diagram for Amazon EMR showing the different cluster step states

As you can see from the preceding diagram, Step 1 starts processing and then moves
to the COMPLETED state. That triggers the execution of Step 2, which is in the
RUNNING state, and the rest of the states are in the PENDING state, waiting for Step 2
to complete. In ETL pipelines, failures are pretty common and can be because of resource
unavailability, data corruption, or schema mismatch issues. You do have the option to
specify what will happen if a particular step fails, which will be marked as the FAILED
status. You can either choose to ignore the failure and proceed with the next steps or mark
the rest of the remaining steps as CANCELLED and proceed with cluster termination. In
the case of failures, the default behavior is to mark the remaining steps as CANCELLED.

Building Hadoop jobs with dependencies in a specific EMR release version 43

The following diagram represents the step sequence when a particular step
fails processing:

Figure 2.8 – Sequence diagram for Amazon EMR showing failed step

As you can see in this diagram, Step 2 is marked as FAILED and after that, all other steps
are CANCELLED and that marks the end of the processing.

This section described the EMR cluster life cycle flow and how job submission works with
the status of each job or step. Next, you will learn how you should include job-dependent
libraries while building Hadoop jobs in specific EMR releases.

Building Hadoop jobs with dependencies in
a specific EMR release version
When you build different Hadoop, Hive, or Spark jobs and execute them on a specific
version of the EMR cluster, you might often face version conflict issues between your
application code and its dependencies because the specific versions of libraries your
code expects might not be available in the cluster. So, it's necessary that you build your
application code against the libraries available in the cluster.

Starting with the Amazon EMR 5.18.0 release, you can integrate the Amazon EMR artifact
repository, using which you can build your application to avoid version conflicts or
runtime classpath errors when you execute them in the EMR cluster.

You can add the artifact repository to your Maven project or with pom.xml, which has
the following syntax:

https://<s3-endpoint>/<region-ID-emr-artifacts>/<emr-
release-label>/repos/maven/

Now, let's understand each parameter of the preceding https URL, which will help you
form your repository URL:

• s3-endpoint is the Amazon S3 endpoint that follows its Region-specific URL
format, for example, s3.us-east-1.amazonaws.com for us-east-1
Regions. Because there are no differences in artifacts between Regions, you can
choose the one that best suits your environment.

44 Exploring the Architecture and Deployment Options

• Emr-release-label is the Amazon EMR cluster's release label and, as
highlighted in the previous chapter, release labels follow a format of emr-x.x.x,
for example, emr-6.3.0. A specific EMR release series may include multiple
release versions, but you can use the first release version within that series. For
example, use emr-5.30.0 for the EMR cluster EMR5.30.1 version.

As an example, if you are using the EMR release version 5.30.1 in the us-east-1
Region, then your URL will be as follows:

https://s3.us-east-1.amazonaws.com/us-east-1-emr-artifacts/emr-
5.30.0/repos/maven/

Next, we can look at the different deployment options EMR provides and how their
pricing is calculated.

EMR deployment options
As Amazon EMR is built on top of the open source Hadoop ecosystem, it tries to stay up
to date with the open source stable releases, which includes new features and bug fixes.

Amazon EMR on Amazon EC2
Amazon EMR on Amazon EC2 is the first deployment option EMR offered and is very
popular across different use cases. With EC2, you get the broadest range of instance
types, which you can select depending on your workload and use case to get the best
performance and cost benefits.

The following is a sample AWS CLI command that creates an Amazon EMR cluster with
the emr-6.3.0 release label, five m5.xlarge instances, and a Spark application:

$ aws emr create-cluster \

--name "First EMR on EC2 Cluster" \

--release-label emr-6.3.0 \

--applications Name=Spark \

--ec2-attributes KeyName=<myKeyPairName> \

--instance-type m5.xlarge \

--instance-count 5 \

--use-default-roles

Before executing the preceding command, please replace the <myKeyPairName>
variable with your EC2 key pair name.

EMR deployment options 45

We will go deeper into the EMR on EC2 deployment option and its configuration later in
the book.

EC2 instance types to support different workloads
EMR provides flexibility to select a variety of EC2 instance families for different
workloads. A few are listed here:

• General-purpose: For typical batch ETL pipelines, you can select from the M4 and
M5 EC2 instance families, which are geared toward general batch processing.

• Compute-intensive: For compute-intensive workloads, for example, machine
learning jobs, you can use the C4 or C5 instance types.

• Memory-intensive: For high memory usage applications, such as Spark-based
heavy ETL workloads or interactive low-latency query requirements, you can use
the R4 or X1 instance families.

• Dense disk storage needs: For workloads that need higher storage capacity for
HDFS, you can select from the D2 or I3 instance families, which come with higher
EBS storage.

Important Note
The EC2 instance families listed here are based on the availability while
writing this book and they are subject to change as EMR starts supporting new
instance types.

Now let's look at another deployment option.

Amazon EMR on Amazon EKS
EMR on EKS provides great value. It helps if you already have an Amazon EKS cluster that
is running different workloads on other applications and you would like to use the same
cluster for Spark workloads. With EMR on EKS, you can automate the provisioning of
Spark workloads and also use the Amazon EMR optimized runtime for Apache Spark to
accelerate your workloads by up to three times.

With EMR on EKS, you can achieve multiple other benefits:

• You can save time from managing open source Spark on EKS, and can on
developing an application with Spark.

• You can choose any specific EMR + Spark version with EKS, which gives you an
EMR Spark runtime that is three times faster than open source Spark.

46 Exploring the Architecture and Deployment Options

• You can use the same EKS cluster with isolation for different Spark workloads and
can have control over granular access permissions.

Let's now look at the architecture in this case.

The architecture of an EMR on EKS cluster
The following is a high-level diagram that explains how you can submit different data
engineering jobs to the EMR virtual cluster backed by EKS. The EKS cluster can be
configured to run with EC2 instances or AWS Fargate and you can choose different Spark
versions for different applications:

Figure 2.9 – High-level architecture diagram representing the EMR on EKS deployment option

EMR deployment options 47

The following are the high-level components of an EMR on EKS cluster:

• Kubernetes namespace: Amazon EKS uses Kubernetes namespaces to create
isolation between applications or users within the cluster. While deploying an
Amazon EKS cluster, you have the option to select Amazon EC2 or AWS Fargate as
its backend compute layer, which you can specify as a Kubernetes namespace.

• Virtual cluster: The EMR on EKS cluster you create is called a virtual cluster as it
does not create any resources and uses a Kubernetes namespace with which it is
registered. You can have multiple virtual clusters created pointing to the same EKS
cluster with their own namespace.

• Job run: This represents submitting a job to the EMR virtual cluster, which submits
it to the backend EKS cluster. This job can be a Spark job. At the time of writing
this book, EMR on EKS supports Spark only and we can only hope for additional
Hadoop application support in the future.

• Managed endpoints: For interactive analytics, you can use a managed endpoint
that integrates with EMR Studio and submits the job execution to the underlying
EKS cluster.

Next, let's look at an example.

Example AWS CLI commands to manage the cluster and jobs
Assuming you already have an EMR on EKS cluster, you should use the following AWS
CLI commands to interact with the EMR virtual cluster.

The following are three sample AWS CLI commands to create an EMR on EKS cluster,
submit a job, and then terminate the cluster, to represent a transient EMR cluster use case:

1. Create a virtual cluster with the EKS namespace:

$ aws emr-containers create-virtual-cluster \

--name <virtual_cluster_name> \

--container-provider '{

 "id": "<eks_cluster_name>",

 "type": "EKS",

 "info": {

 "eksInfo": {

 "namespace": "<namespace_name>"

 }

48 Exploring the Architecture and Deployment Options

 }

}'

2. Trigger a PySpark job:

$ aws emr-containers start-job-run \

--name <job_name> \

--virtual-cluster-id <cluster_id> \

--execution-role-arn <IAM_role_arn> \

--release-label <emr_release_label> \

--job-driver '{

 "sparkSubmitJobDriver": {

 "entryPoint": <entry_point_location>,

 "entryPointArguments": ["<arguments_list>"],

 "sparkSubmitParameters": <spark_parameters>

 }

 }' \

--configuration-overrides '{

 "monitoringConfiguration": {

 "cloudWatchMonitoringConfiguration": {

 "logGroupName": "<log_group_name>",

 "logStreamNamePrefix": "<log_stream_prefix>"

 }

 }

 }'

3. Delete the EMR virtual cluster:

aws emr-containers delete-virtual-cluster —id <cluster_
id>

After every job run, you can delete the EMR virtual cluster, but it's recommended to
create the cluster once and keep it active for multiple job runs. As the EMR virtual cluster
consumes no resources and does not add to the cost, keeping it active will reduce the
overhead of creating and deleting it multiple times.

EMR deployment options 49

There are a few additional commands you can use to list, monitor, or cancel your job:

• List job run: You can run the following command, which uses the list-job-run
option to list the jobs with their state information:

aws emr-containers list-job-runs --virtual-cluster-id
<cluster-id>

• Describe a job run: You can run the following command, which uses the
describe-job-run option to learn more about the job, which includes the job
state, state details, and job name:

aws emr-containers describe-job-run --virtual-cluster-id
<cluster_id> --id <job-run-id>

• Cancel a job run: You can run the following command, which uses the cancel-
job-run option to cancel the running jobs:

aws emr-containers cancel-job-run –virtual-cluster-id
<cluster_id> --id <job-run-id>

Now, let's take a look at the next deployment option.

Amazon EMR on AWS Outposts
AWS Outposts is a fully managed service that gives you access to the same AWS services,
infrastructure, APIs, and operational models as virtually any data center or on-premises
facility. AWS Outposts is great for workloads that require low-latency access by keeping
infrastructure near to the data center.

AWS services related to compute, storage, or databases run locally on Outposts and
you can access these services available in your AWS Region to build and scale your
on-premises applications using the same AWS tools and services.

There is a range of AWS services, including AWS compute, storage, and databases,
that run locally on AWS Outposts. Amazon EMR is also available in AWS Outposts,
which allows you to deploy, manage, and scale Hadoop and Spark workloads in your
on-premises environments similar to as you would do in the cloud.

Using the same AWS console, SDK, or CLI commands as EMR, you can easily create
a managed EMR cluster in your on-premises environment, and these clusters running in
AWS Outposts will be available in the AWS console the same as other clusters.

50 Exploring the Architecture and Deployment Options

There are a few prerequisites that you need to follow to use Amazon EMR on
AWS Outposts:

• You need to have an AWS account.

• You must have installed and configured AWS Outposts in your on-premises
infrastructure or data center.

• You will need a stable network connectivity between your Outposts environment
and your selected AWS Region.

• You need to have enough capacity of EMR-supported instance types in
your Outposts.

For connectivity, you can extend your AWS account's VPC to span its AZs to associated
Outposts locations. While creating an EMR cluster, you should configure your Outposts
to be associated with a subnet that extends your regional VPC environment to your
on-premises deployment.

The following is an example AWS CLI command to create an EMR cluster in Outposts and
it's pretty much the same as creating a cluster in the AWS cloud with EC2:

aws emr create-cluster \

--name "Outpost cluster" \

--release-label emr-<label> \

--applications Name=<app-names> \

--ec2-attributes KeyName=<key-name> SubnetId=subnet-<id> \

--instance-type <type> --instance-count <count> --use-default-
roles

Please replace the <label>, <app-names>, <key-name>, subnet <id>, instance
<type>, and instance <count> variables with the relevant values before executing it.

With Amazon EMR in AWS Outposts, you will get all the benefits of Amazon EMR with
the following additional benefits:

• Easier integration with on-premises deployments: Workloads running on
Amazon EMR on AWS Outposts can read from and write data to your existing
on-premises Hadoop cluster's HDFS storage. This gives you the flexibility to
implement your data processing needs using Amazon EMR without migrating
any data.

EMR deployment options 51

• Accelerate the data and job migration: If you are in the process of planning to
migrate your on-premises Hadoop cluster data and workloads to Amazon EMR in
the cloud, then as an interim step, you can start using EMR through AWS Outposts.
This will allow integration with your on-premises Hadoop deployment, and then
you can plan to gradually move your cluster data to S3 followed by jobs to be
executed in the cloud. This way, you can get all the benefits of decoupling compute
with storage.

Please check the AWS documentation to look for limitations and current support around
different instance types you can select while creating your cluster. At the time of writing
this book, EC2 spot instances are not available when you deploy EMR on Outposts.

EMR pricing for different deployment options
Similar to other AWS services, Amazon EMR's pricing also follows a pay-as-you-go
model. You can easily estimate your costs based on the deployment option, the Region,
the instance types you are selecting, and how long you plan to keep the cluster running.
The pricing is calculated per-second with a 1-minute minimum billing period.

A cluster with 20 nodes running for 10 hours will cost the same as a 100-node cluster
running for 2 hours. Now, you might consider always running a higher-number node
cluster to finish the job in 1 minute, but that's not the ideal way of execution as Hadoop/
Spark workloads give maximum performance at a certain number of nodes and don't
perform better beyond that point with any additional nodes.

As explained earlier, EMR provides three deployment options: EMR on Amazon EC2,
EMR on Amazon EKS backed by EC2 or AWS Fargate, and EMR on AWS Outposts.
Now, let's look at a few pricing examples for each deployment option, which can help you
estimate the cost of your Hadoop/Spark workloads in EMR.

Important Note
The costs in USD represented in the examples are based on the pricing we had
while writing this book and they are subject to change.

Amazon EMR on Amazon EC2 pricing
The Amazon EMR on Amazon EC2 pricing is very simple and takes pretty much the same
calculation approach as Amazon EC2 instance pricing, where the pricing varies by the
type of EC2 instance you have selected, the number of instances, and the size of the EBS
volume attached to them.

52 Exploring the Architecture and Deployment Options

The same as EC2 pricing, apart from On-Demand instance types, you can choose to go
for Reserved Instances or Savings Plans or choose to use Spot Instances for your task
nodes to get higher savings.

Please refer to the AWS documentation to see the instance types supported by EMR, as
they might change from time to time.

Pricing example for EMR on EC2
To keep the calculation simple, let's take the following assumptions:

• You will be deploying the cluster in us-east-1.

• You will have one master node of C4.2xlarge, two core nodes of m5.2xlarge,
and five task nodes of m5.4xlarge, and all the instances are on-demand instances.

• The cluster is up and running for 2 hours for a Spark job or step.

The following explains the cost breakdown and the total cost you will have:

• Formula to calculate each node type's cost: (number of instances) x (selected
instance type's hourly cost) x (number of hours)

• EMR master node cost: 1 instance x $0.105 per hour x 2 hours = $0.21

• EMR core node cost: 2 instances x $0.096 per hour x 2 hours = $0.384

• EMR task node cost: 5 instances x $0.192 per hour x 2 hours = $1.92

• Total cost = $0.21 (master node cost) + $0.384 (core node cost) + $1.92 (task node
cost) = $2.514

Let's now understand the pricing of another deployment option.

Amazon EMR on Amazon EKS pricing
When you are considering deploying an Amazon EMR cluster on Amazon EKS, you
have the option to select Amazon EKS backed by Amazon EC2 or AWS Fargate. When
the Amazon EKS cluster is built on top of EC2 instances, the pricing calculation is the
same as EMR on EC2 as the cost will be dependent on the type of instance, the number of
instances, and the EBS volumes attached to them.

When you choose to go with EKS on AWS Fargate, pricing is calculated based on the
vCPUs and the amount of memory used from the time you start downloading the
container image until the EKS Pod terminates, and the time is rounded up to the nearest
second as the pricing is per-second billing. With AWS Fargate, pricing is based on the
amount of vCPU cores and memory used by the Pod.

EMR deployment options 53

You can check the EMR pricing page to find out how much is charged per vCPU core and
memory per GB.

Estimating costs for EMR on EKS with AWS Fargate
This is a simple formula you can use to calculate the cost of your workload:

• Total cost for vCPU usage = (number of vCPUs) * (per vCPU-hours rate) * (job
runtime in hours)

• Total cost for memory usage = (amount of memory used) * (per GB-hours rate) *
(job runtime in hours)

• Total cost = total cost for vCPU usage + total cost for memory usage

Please note, apart from the vCPU core and memory usage cost, you pay an additional
$0.10 per hour for each Amazon EKS cluster you have launched. You can use the same
EKS cluster for multiple workloads, where you create separation between workloads
through Kubernetes namespaces and AWS IAM security policies.

The per-vCPU core hourly rate and per-GB memory rate used in the following example
is taken from the EMR on EKS pricing page. You can select the AWS Region you plan to
deploy and get the defined cost at the time of implementation.

Important Note
The pricing calculation formula and the cost specified here are subject to
change and are based on prices at the time of writing this book. Please refer to
the AWS documentation for the latest pricing information.

Pricing example for EMR on EKS with AWS Fargate
Let's assume that the EKS cluster is deployed in the N. Virginia (us-east-1) Region
and you have used the r5.xlarge EC2 instance type, which has 4 vCPU cores and
32 GB memory.

If we create the EKS cluster with 100 nodes or instances, then we have a total of 400 vCPU
cores and 3,200 GB memory capacity.

54 Exploring the Architecture and Deployment Options

Now, let's assume we have a Spark application running in the cluster and that takes 100
vCPU cores and 500 GB memory and the job executed for 1 hour; then, you can apply the
formula we specified previously to arrive at the cost:

• Total cost for vCPU usage = 100 * $0.01012 * 1 = $1.012

• Total cost for memory usage = 500 * $0.00111125 * 1 = $0.5556

• Total cost = $1.012 (total cost for vCPU usage) + $0.5556 (total cost for memory
usage) + $0.10 (EKS per hour cost) = $1.667

Let's understand the pricing for another deployment option.

Amazon EMR on AWS Outposts pricing
Before getting into the pricing for AWS Outposts, let's see what AWS Outposts offers.

AWS Outposts helps you deploy an Amazon EMR cluster near to your on-premises
environment, making it a part of your existing environment but the features, its
usage, and the AWS APIs are all the same as the AWS cloud. Amazon EMR on AWS
Outposts provides a cost-efficient option with the same benefits of automating different
administration tasks of provisioning infrastructure resources, setting up the cluster, and
configuring Hadoop libraries or tuning.

Coming back to the pricing of Amazon EMR on AWS Outposts, it's the same as in the
cloud. Please refer to the AWS Outposts pricing page of the AWS documentation for
more details.

Monitoring and controlling your costs with AWS
Budgets and Cost Explorer
Apart from the pricing considerations, you can also take advantage of AWS Budgets and
Cost Explorer to monitor your cluster costs and also set some alarms to send notifications
to your finance team. Following are a few examples on how to use these applications to
your advantage:

• Use AWS Budgets to configure custom budgets that will help track your cost
and usage.

• When real or anticipated costs and usage exceed your budget level, and actual
Reserved Instances and Savings Plans utilization or coverage falls below the
desired thresholds, you can choose to be notified through email or SNS.

Summary 55

• Use AWS Cost Explorer to view and analyze your cost and usage drivers.

• AWS Budgets integrates with AWS Service Catalog, which enables you to track costs
on AWS services that are approved by your organization.

With this, you have a good overview of the different EMR deployment options and how
the pricing is calculated for each one of them. Please refer to the Further reading section
for additional learning materials related to pricing.

Summary
Over the course of this chapter, we have dived deep into the Amazon EMR architecture,
each of its components, and Hadoop applications. After covering those topics, we then
discussed cluster nodes of EMR with its life cycle and ways to submit jobs.

Finally, we covered what the different EMR deployment options are, what benefits they
have, and what the pricing for each of them is.

That concludes this chapter! Hopefully, you have got a good overview of the Amazon
EMR architecture with its three deployment options and are ready to learn different use
case architecture patterns in the next chapter.

Test your knowledge
Before moving on to the next chapter, test your knowledge with the following questions:

1. You receive a daily incremental file from your source system at midnight and you
are expected to process it and make it available for consumption. After that, during
the day, at 3 P.M., you need to execute a machine learning job that will read this
processed output. Will you use a persistent cluster or transient and how will you
configure it?

2. While creating an EMR cluster, you have a requirement to select multiple instance
types for your node types and would like to take advantage of spot instances too.
How would you configure your cluster?

3. You have a manufacturing unit that expects all the Hadoop/Spark processing to
happen near its on-premises site, but has plans to slowly migrate to the cloud.
Which Amazon EMR deployment option is best suited?

56 Exploring the Architecture and Deployment Options

Further reading
The following are a few resources you can refer to for further reading:

• Setting of an Amazon EMR on EKS cluster: https://docs.aws.amazon.com/
emr/latest/EMR-on-EKS-DevelopmentGuide/setting-up.html

• Amazon EMR on AWS Outposts limitations: https://docs.aws.amazon.
com/emr/latest/ManagementGuide/emr-plan-outposts.html

• Amazon EMR pricing: https://aws.amazon.com/emr/pricing/

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/setting-up.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/setting-up.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-outposts.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-outposts.html
https://aws.amazon.com/emr/pricing/

3
Common Use Cases

and Architecture
Patterns

This chapter provides an overview of common use cases and architecture patterns you
will see with Amazon Elastic MapReduce (EMR) and how EMR integrates with different
AWS services to solve specific use cases. The use cases include batch Extract, Transform,
and Load (ETL), real-time streaming, clickstream analytics, interactive analytics with
machine learning (ML), genomics data analysis, and log analytics.

This should give you a starting point to understand what problem statements you can
solve using Amazon EMR and use it to solve your real-world big data use cases.

We will dive deep into the following topics in this chapter:

• Reference architecture for batch ETL workloads

• Reference architecture for clickstream analytics

• Reference architecture for interactive analytics and ML

58 Common Use Cases and Architecture Patterns

• Reference architecture for real-time streaming analytics

• Reference architecture for genomics data analytics

• Reference architecture for log analytics

Reference architecture for batch ETL
workloads
When data analysts receive data from different data sources, the first thing they do
is transform it into a format that can be used for analysis or reporting. This data
transformation process might involve several steps to bring it to the desired state and, after
it is ready, you need to load it into a data warehousing system or data lake, which can be
consumed by data analysts or data scientists.

To make the data available for consumption, you need to extract it from the source,
transform it with different steps, and then load it into the target storage layer – hence the
term ETL. For a few other use cases, when the raw data is in a structured format, you can
then load it into a relational database or data warehouse and then transform it with SQL,
where it becomes Extract, Load, and Transform (ELT).

What we understand from all this is that transformation is the primary piece that makes
raw data ready for consumption. What needs to be done as part of the transformation
process depends on the type or format of data, any data cleaning that needs to be done,
any business transformations that need to be applied or not, and many more.

In earlier days, when data volumes used to be small (in MB), you had the option to use
typical programming languages and a single server to process them, but with higher
volumes of data (gigabytes to petabytes), you need to look at distributed processing
capability with Hadoop/Spark and execute through Amazon EMR.

Batch ETL use cases are very common in the data analytics world and the job execution
can be through a scheduler or triggered based on a file arrival event. In this section, we
will explain a reference architecture for batch ETL workloads that receives data from
different sources and after multiple transformation steps, the transformed output is ready
for data analysis or business intelligence (BI) reporting.

Reference architecture for batch ETL workloads 59

Use case overview
For this use case, let's assume, as an organization, you receive data from the following
two sources:

• On-premises systems, which includes two data sources. One is a relational database
and the other is a filesystem.

• A vendor filesystem that uses SSH File Transfer Protocol (SFTP) to send files.

You have an objective of curating the data in an Amazon Simple Storage Service (S3)
data lake through different storage layers, such as raw, processed, and consumption, and
then making the data available for consumption, where you should be able to access the
data through SQL for analysis or build reports through a self-service BI reporting tool.

Reference architecture walkthrough
Now, to provide a technical solution to the preceding use case, you can refer to the
following architecture where Amazon S3 is used as a persistent storage layer, Amazon
EMR is being integrated to perform ETL transformations, and Amazon QuickSight is
being used for BI reporting:

Figure 3.1 – Reference architecture for batch ETL workloads

60 Common Use Cases and Architecture Patterns

As part of this architecture, you will notice the following three Amazon S3 storage layers:

• S3 raw layer: This layer is responsible for keeping the raw data from the source
system as it is, which can help you to reprocess the pipeline in case of issues or
if you plan to reuse the same data for other downstream processing. If you do
not keep the raw data persistently, you may have to pull the data from the source
system again when needed and the older data might be missing from the source
system itself. So, it's always better to keep the raw data persistently separate if you
need to handle future needs, such as reprocessing the data to address any earlier
transformation issues or using it for another use case.

• S3 processed layer: After you receive raw data, you may need to apply a few
common data cleansing, data validation, or standardization processes to make
the data ready for consumption. This might include validating the number of
records, the file size, or the schema of each record before making it available for
consumption. Data engineers use this layer to apply business logic transformation
and create a subset of data for different downstream systems.

• S3 consumption layer: This layer is the final storage layer, which is used by data
analysts to analyze data to derive insights or build BI reports or dashboards for
leadership teams. The processed layer data goes through transformations based on
the consumption need and is written to the consumption layer with the required file
format and partitioning strategies.

Here is an explanation of the architecture steps:

• Step 1 represents data ingestion or movement from on-premises to an Amazon S3
raw bucket:

 � Steps 1.1 and 1.2 represent pulling data from a relational database source where
you can integrate AWS Data Migration Service (DMS) to pull data to an Amazon
S3 bucket through a scheduled pull mechanism. AWS DMS is a managed service
using which you can move data from different databases (on-premises or the
cloud) to different AWS databases (Amazon Relational Database Service (RDS)
or Amazon Aurora), Amazon S3, or AWS analytics services such as Amazon
Kinesis Data Streams (KDS), Amazon OpenSearch Service, and Amazon
Redshift. This enables you to pull data from the source as a one-time extract or
pull data on a continuous basis using a Change Data Capture (CDC) mechanism.

 � Step 1.3 represents your on-premises files that can be uploaded to Amazon
S3 directly.

Reference architecture for batch ETL workloads 61

 � Steps 1.4 and 1.5 represent the vendor file being pushed to an SFTP server hosted
on Amazon EC2, from which you can push to Amazon S3 through a scheduled
batch script.

• Step 2 integrates a transient EMR cluster that takes input from the raw S3 bucket,
applies required cleansing or standardization rules, and writes the output back to
the S3 processed bucket. For the ETL transformations, you can use Hive or Spark
steps in EMR.

• Step 3 applies additional business logic to enrich the processed datasets. Here also,
an Amazon EMR transient cluster is integrated that reads input from the processed
S3 bucket and applies business logic transformations through Spark, then writes
enriched output to the consumption S3 bucket.

• Step 4 represents an external Hive Metastore built on top of Amazon RDS, which is
used by all the transient EMR clusters so that each transient cluster can refer to the
existing data catalog instead of creating it from scratch.

• Step 5 represents the consumption layer, where with EMR's Hive or Presto query
engines, you can access the data from the S3 consumption bucket through SQL. You
can also use the Hue web interface for data analysis.

Then, on top of that, you can integrate Amazon QuickSight or any other BI
reporting tool to create aggregated visualizations or report dashboards.

Now let's discuss a few best practices that you can follow while implementing the pipeline.

Best practices to follow during implementation
While there are use case-specific recommendations, the following are some generic
guidelines you can follow while implementing this use case:

• File formats: When you perform ETL operations, at the final stage, you write the
output back to an Amazon S3 data lake and you have different file format options to
select from, for example, Parquet, Avro, ORC, JSON, and CSV.

You might receive raw data as JSON or CSV, but for analytics use cases, columnar
formats such as Parquet are very popular. Columnar formats provide storage savings
and provide great performance when you query specific columns through SQL.

62 Common Use Cases and Architecture Patterns

• Partitioning: This is a data distribution technique where you first identify your
query patterns to understand how you filter your datasets and then use the filter
columns as your partition columns. On the storage layer, it creates subfolders
based on the partition column value. For example, if most of your queries are with
a country column filter, then you can select a country as the partition column and
in S3, you will have a country-based subfolder and each country subfolder will have
records related to that country. So, when you filter by a country, you only scan that
country-specific subfolder, which gives you better performance.

• Transient EMR clusters: As this is a batch ETL workload, your ETL jobs are mostly
scheduled to run once daily or multiple times a day. When the jobs are not being
executed, your cluster becomes idle and you still pay for the cluster usage time as
the infrastructure is still up and running. So, for batch ETL jobs, transient EMR
clusters are better suited as you save infrastructure costs when the EMR cluster
resources are not being utilized.

• External Hive Metastore: When you have transient EMR cluster workloads, it's
always recommended to go with an external Hive Metastore so that you don't lose
catalog data when your cluster is getting terminated and also, you can share the
catalog with multiple EMR clusters. For an external Hive Metastore, you can have
an Amazon RDS database or you can use AWS Glue Data Catalog.

I hope this provides a good overview of batch ETL use cases and you will now be able to
integrate Amazon EMR to build a data analytics pipeline. In the next section, you will
learn how EMR can be integrated for a clickstream analytics use case.

Reference architecture for clickstream
analytics
In consumer-facing applications, such as web applications or mobile applications, business
owners are more interested in identifying metrics from a user's access patterns to derive
insights into which products, services, or features users like more. This enables business
leaders to make more accurate decisions. Often, it becomes a necessity to capture user
actions or clicks in real time to have a real-time dashboard suggesting how successful your
campaign is or how users are responding to your new product launch.

To make business decisions in real time, you need to have the data flow in near real time
too. This means as soon as the user clicks anywhere within the application, you need to
capture an event immediately and push it through your backend system for processing. As
multiple users access your application through different channels, it generates a stream of
events and you need a scalable architecture that can support receiving a massive volume of
concurrent records and can also use a big data processing framework to process them.

Reference architecture for clickstream analytics 63

Use case overview
Here, we will take an example use case to explain how you can integrate a few AWS
services with Amazon EMR to build a real-time streaming clickstream application.

It assumes your organization has a website that has a lot of user traffic on a daily basis. To
track overall usage patterns, you have integrated Google Analytics into your website and
for detailed user session-based analytics, you plan to stream click events in real time too.

Your objective is to aggregate both Google Analytics and real-time clickstream events into
a data lake and also ingest aggregated output to a data warehouse, on top of which you can
build real-time BI reports.

Reference architecture walkthrough
Now, to provide a technical solution for the preceding use case, you can refer to the
following architecture where Amazon S3 is integrated as a data lake, Amazon Redshift
is used for a data warehouse, Amazon EMR is integrated to perform ETL and real-time
streaming, and Amazon QuickSight is integrated for BI reporting:

Figure 3.2 – Reference architecture for clickstream analytics

64 Common Use Cases and Architecture Patterns

Apart from Amazon S3, EMR, and QuickSight, you will notice other AWS services
integrated, which are as follows:

• Amazon AppFlow: Amazon AppFlow is a fully managed integration service that
can help you transfer data between software-as-a-service (SaaS) applications, such
as Salesforce, Google Analytics, and Slack, and AWS services, such as Amazon
S3 and Amazon Redshift, in just a few clicks on the AppFlow interface. You can
schedule these flows to run at regular intervals or integrate them to get triggered
with different business events. It also provides a few configurations in terms of
selecting which attributes you want to transfer, what the target storage format
should be, or what the partitioning structure in Amazon S3 should be.

For this clickstream analytics use case, you can integrate Amazon AppFlow to pull
data from Google Analytics to Amazon S3 in a scheduled pull manner.

• Amazon KDS: Amazon KDS is a scalable and durable message bus that can help
integrate real-time streaming use cases, where you can have multiple producers
pushing data to KDS and there can be multiple consumers who are reading from
the stream in real time. It is a serverless service that can stream gigabytes of data
per second and is a great fit to stream real-time clickstreams, log events, financial
transactions, or social media feed events. You can integrate multiple consumers,
including AWS Lambda, EMR with Spark Streaming, or AWS Glue with Spark
Streaming or Flink, to process the stream events in real time and write to the
target storage.

• Amazon Redshift: Amazon Redshift offers massively parallel processing
capability and is great for high-volume data warehousing platform needs. Its high
performance makes it popular in the analytics world and is commonly integrated as
a backend database for real-time BI reports.

Here is an explanation of the architecture steps:

• Steps 1 and 2 represent data movement from the Google Analytics tool to an
Amazon S3 raw bucket with the help of Amazon AppFlow. You can define a
scheduled pull from Google Analytics and store the output JSON in S3. Please note,
the output you receive is a nested JSON that requires additional transformation to
flatten it for consumption.

Reference architecture for clickstream analytics 65

• Steps 3 and 4 integrate a transient EMR cluster that takes nested JSON input from
the raw S3 bucket, flattens it, applies minimal cleansing or standardization rules,
and writes the output back to the S3 data lake bucket. For the ETL transformations,
you integrate a Spark step in EMR. Step 3 applies additional business logic to
enrich the processed datasets. Here also, an Amazon EMR transient cluster is
integrated that reads input from processed S3 bucket and applies business logic
transformations through Spark, then writes enriched output to the consumption
S3 bucket.

• Step 5 represents the web application that can integrate Amazon KDS's Kinesis
Producer Library (KPL) to ingest data into KDS partitions as soon as a user click
event happens. KPL also provides in-built buffering and retry mechanisms to
handle failures.

• Steps 6 and 7 represent Amazon EMR with Spark Structured Streaming as the
consumer application of the Kinesis stream. It does two operations; one is writing the
raw events to Amazon S3 and the second is aggregating the stream data with Google
Analytics and writing aggregated output to the Amazon Redshift data warehouse.

• Steps 8 and 9 represent the consumption layer, where we have integrated Amazon
Redshift Spectrum to query data from both the data lake and Amazon Redshift
storage layers and then integrate Amazon QuickSight on top of it to build real-time
reports or dashboards. This is the layer where your business users join to see how
your campaigns perform in real time or how your users are reacting to your new
product launch.

Now let's discuss a few best practices that you can follow while implementing the pipeline.

Best practices to follow during implementation
Here are a few generic guidelines that you can follow while implementing this use case; for
sure there will be more use case-specific ones:

• Scalability: You don't need to invest in creating a massive cluster for your KDS or
Amazon EMR cluster from day 1. You can use the scaling features available in both
of them to scale the cluster up and down as the volume of stream events changes
throughout the day. Amazon EMR provides in-built autoscaling and managed
scaling features that you can use to scale your cluster in real time.

66 Common Use Cases and Architecture Patterns

• Fault tolerance: You also need to consider how you recover from failures.
Regarding KDS, you can use the data retention setting, which is by default set to 7
days but can be extended up to 1 year. Then, you can take advantage of EMR with
Spark Streaming's checkpointing feature using which you can checkpoint stream
events to the Amazon S3 location. If your EMR cluster or Spark job gets terminated,
you can restart from the failure point that is checkpointed in Amazon S3.

• Optimizing data lake storage: As discussed in Figure 3.1 – Reference architecture
for batch ETL workloads, you can optimize storage in a data lake by choosing the
appropriate file format and also structuring your data into subfolders or partitions,
which will give better performance when you query the table with the partition
column as a filter.

• Use Redshift for aggregated output: You have the option to write the complete
raw dataset into Redshift too as it's structured data but avoid doing so as Redshift
infrastructure will add a lot to the cost, compared to data lake storage. So, creating a
mix of a data lake and data mart is great for use cases such as this.

With this use case, you have learned how you can implement clickstream analytics using
Amazon EMR and what some of the general recommendations you can follow are. In the
next section, let's understand how you can do interactive analytics with Amazon EMR as a
long-running cluster.

Reference architecture for interactive
analytics and ML
In the previous sections of this chapter, you might have seen the usage of Amazon EMR
as a transient cluster that gets created through file arrival or a scheduled event, processes
the file with Hive or Spark steps, and then gets terminated. Transient clusters are great to
decouple storage and compute and also to save costs by reducing cluster idle time.

But there are few use cases where you might need a persistent EMR cluster that might be
active 24x7 with minimal cluster node capacity and goes through the EMR autoscaling
feature to scale up and down as needed. These persistent clusters generally serve multiple
workloads, including ETL transformations with Hive/Spark, analyzing data through
SQL-based query engines such as Hive and Presto, or interactive ML model development
through notebooks. In a few cases, you can implement a multi-tenant EMR cluster that
serves multiple teams with an access policy and data isolation.

Reference architecture for interactive analytics and ML 67

As the cluster is available 24x7, multiple users use the same cluster compute capacity for
different workloads. Then, you can configure the cluster to define queues that will have
required CPU and memory resources assigned that get used through EMR's capacity and
fair schedulers.

Use case overview
Here, we will see an example to explain how a persistent EMR cluster can serve multiple
workloads and make the data available to data analysts and data scientists for interactively
querying the datasets or ML model development.

It assumes your organization receives data from two different sources that need to be
aggregated into a data lake. Then, the aggregated output should be available to your
data analysts for interactive querying using SQL or your data scientists for exploring the
datasets and doing ML model development, model training, and inference.

To give an overview of ML engineering, it goes through a sequence of steps. Initially,
data scientists put effort into exploring the datasets, cleansing or preparing them, and
identifying the attributes that make the most sense for model development. Then, they
start ML model development using the Python or R scripting languages using different
ML frameworks, such as TensorFlow, MXNet, or PyTorch. After the model development is
ready, they train the model on historical datasets and optimize their model as needed.

The model training process creates trained models that will be used to predict output
against new input datasets. So, in general, model development and training is an intensive
process where data scientists go through a lot of iterations to standardize the data,
optimize ML model code, and do training with a proper mix of datasets.

Now let's understand the two data sources we have, which will be the input to the
data pipeline:

• An external vendor is sending a daily CSV file to your input S3 bucket directly that
includes the financial credit score of your customers, which needs to go through
a validation and cleansing process.

• You have subscribed to another vendor's data feed that exposes data through REST
APIs and you need to pull the data dynamically from their APIs in a periodic
fashion. After extracting data, you need to flatten the results and store them in your
data lake.

Let's take a look at the reference architecture.

68 Common Use Cases and Architecture Patterns

Reference architecture walkthrough
Now, to provide a technical solution for the preceding use case, you can refer to the
following architecture, where we have the following:

• Amazon S3 is integrated for the data lake.

• Amazon EMR is used for both transient and persistent EMR clusters.

• AWS Lambda and Amazon DynamoDB are integrated to automate data extraction
from REST APIs.

• The EMR cluster's Hive, Presto, Zeppelin, or Jupyter notebooks are integrated to
provide an interactive development experience for data scientists.

Figure 3.3 – Reference architecture for interactive analytics and ML

Before going deep into the architecture, let's understand the two new AWS services we
have introduced as part of this architecture:

• AWS Lambda: AWS Lambda is a serverless compute service that lets you run code
without provisioning or managing any infrastructure. It provides flexibility to
scale compute capacity as needed and it also allows you to choose from a variety of
programming languages for implementing your business logic. You can use AWS
Lambda's user interface to write code or package your code as a ZIP file and upload
it to AWS Lambda for execution. You can integrate AWS Lambda to get triggered
through various events or through a scheduler and also, it natively integrates with
other AWS services, such as Amazon API Gateway, Amazon DynamoDB, Amazon
KDS, and AWS Step Functions, to build your application in a decoupled approach.

Reference architecture for interactive analytics and ML 69

For this use case, you can integrate AWS Lambda to get triggered at a regular
interval (for example, every 5 minutes or every 1 hour) to connect to the REST API,
fetch datasets, transform it, and write to a target Amazon S3 data lake.

• Amazon DynamoDB: Amazon DynamoDB is a key-value NoSQL database in AWS
that delivers single-digit millisecond performance at any scale. It is fully managed
and can be deployed as a global database across multiple regions of AWS. It is often
used as the backend of scalable REST APIs or as a key-value metastore.

For this use case, DynamoDB is integrated to keep track of the Lambda execution
and the amount of data being pulled from the REST API. So, if the Lambda
execution fails, it can refer to the DynamoDB table to identify the failure point and
trigger again from that point.

• Notebooks: Amazon EMR integrates both Jupyter and Zeppelin notebooks, which
you can configure to submit jobs and queries to the Amazon EMR cluster's Hadoop/
Spark interfaces.

For this use case, analysts can use a notebook to execute their queries or jobs step by
step during development.

Here is an explanation of the architecture steps:

• Steps 1-3 represent the vendor file ingestion to the data lake. Step 1 represents the
vendor directly pushing the file to your input raw S3 bucket. Then, you can integrate
a transient EMR cluster on top of it, which might have a Hive or Spark job step
to read from the input bucket, apply required transformations, and write the final
output to the S3 data lake bucket.

• Steps 4 and 5 represent ingesting REST API data to the data lake. You can schedule
the AWS Lambda function to be executed every 30 minutes, which might be written
in Python. It will connect to the REST API, get the response as JSON, apply a few
transformations to flatten it, and then finally, write the transformed output to the
data lake. As explained earlier, we need to bring in a mechanism to recover from
failures as the REST APIs will have throttling enabled to restrict frequent access to
the APIs. Step 5.1 represents writing metadata to a DynamoDB table, where every
time the Lambda function pulls data from the REST API, it will checkpoint which
timestamp or record ID it pulled so that the next execution will be from the earlier
checkpointed timestamp.

• Step 6 represents a persistent Amazon EMR cluster that users connect to explore the
data available in the data lake. EMR provides the distributed processing capability
with all Hadoop ecosystem services such as Hive, Spark, Presto, and Jupyter
Notebook for interactive analytics. It also integrates Amazon RDS as its external
Hive Metastore.

70 Common Use Cases and Architecture Patterns

• Step 7.1 integrates Hadoop interfaces, such as Hue, Hive, and Presto, which data
analysts can use to analyze the data in the data lake through SQL. Hue is a web
interface that acts as a client for users, which integrates with the Hive catalog and
can submit queries to query engines such as Hive and Presto.

Hive is a distributed query engine that can be configured to submit queries to
MapReduce or Spark. It will parse the user-submitted queries to MapReduce
or a Spark-equivalent script, which will read input data from the data lake, do
processing, and then serve the result in tabular format.

Similar to Hive, Presto is a low-latency query engine that you can use to execute ad
hoc analytical queries.

• Step 7.2 represents the integration of notebooks on top of the EMR cluster for
interactively developing Python, PySpark, R, and other scripts to analyze data, do
ML model development, or train your model for inference.

EMR provides options to select Jupyter Notebook or Zeppelin notebooks on top of
the EMR cluster, which comes with different scripting language options, and you
can also integrate your own plugins and modules for development.

Now, let's discuss a few best practices that you can follow while implementing the pipeline.

Best practices to follow during implementation
Here are a few generic guidelines that you can follow while implementing this use case; for
sure there will be more use case-specific ones:

• Cluster resource management: As this is a persistent EMR cluster that will be used
for multiple workloads, you need to have a strategy to manage cluster resources
well. You can think of defining different queues to manage high-priority and
low-priority jobs so that when high-priority jobs are getting executed, low-priority
jobs can wait for their completion.

You can configure multiple queues with different amounts of memory and
CPU resources as per your needs and configure the capacity scheduler or fair
scheduler to let the scheduler decide how to respond as multiple workloads get
executed concurrently.

After you have defined queues, you can specify -queue <queue-name> as an
additional parameter for your spark-submit commands to direct YARN to use
the specified queue for this job.

Reference architecture for real-time streaming analytics 71

• Cluster capacity planning and scaling: You can monitor your cluster usage for a
period of time and derive patterns around the minimum cluster capacity you need
on a continuous basis and keep that as your minimum cluster capacity. On top of
that, you can configure EMR's autoscaling or managed scaling features to scale up
or down as new workloads come in.

In addition, you also need to consider the amount of HDFS space you need on the
cluster, depending on your implementation. Even if you have integrated Amazon
S3 as your persistent data store, you may still need to cache some amount of data in
HDFS for better performance.

• Data isolation and security: When you have a persistent cluster being shared by
multiple teams and multiple workloads, you also need to make sure the security
aspects are integrated so that you are able to configure authentication, authorization,
and encryption of data at rest or during transit.

For authenticating users' access to your cluster, you can create a mix of AWS IAM
and your Active Directory integration.

For authorization, you can integrate AWS Lake Formation or Apache Ranger, where
you can define which user can access which catalog databases, tables, or columns.

To make your data secure at rest, you can enable encryption with AWS Key Management
Service (KMS) keys or custom keys, and for making the data secure while it's in transit,
make sure you have SSL/TLS integrated.

Reference architecture for real-time
streaming analytics
At the beginning of the chapter, you learned about clickstream analytics that integrated
Amazon KDS and EMR with Spark Streaming to stream clickstream events in real time.
The use case covered in this section is another use case that explains how you can stream
Internet of Things (IoT) device events in real time to your data lake and data warehouse
for real-time dashboards.

To give an overview of IoT, it's a network of physical objects called things that uses sensors
and related software technologies to connect and exchange information with other devices
or systems over the internet. These devices can be any household or industrial equipment
that has a sensor and required software embedded into it to communicate with other
devices or send messages to a central unit that monitors requests or signals.

72 Common Use Cases and Architecture Patterns

The adoption of IoT around the world is increasing as analytics on device data can provide
a lot of insights to optimize usage or predict patterns.

Use case overview
Let's assume your organization has IoT devices to track electric usage at anybody's home
or office. Your plan is to sell these IoT devices and help set them up at your customers'
homes or offices. This will track all usage of electricity and help stream the data in real
time to a centralized data lake and data warehouse in AWS.

Your organization's data analysts will analyze these real-time datasets, aggregate them
with historical data to derive insights, and then provide analytical reports to their users.

These analytical reports might include usage patterns around which days of the week or
which time of the day they consume more electricity or which electronic devices in their
homes consume more electricity. Your organization also might provide recommendations
around how your customers can save their monthly costs by changing their usage patterns.

As the IoT devices will stream every bit of device usage information in real time, it is
expected that the data volume will be higher, and to handle processing such a bigger
volume of data, you need a big data processing service or tool such as Amazon EMR.

Reference architecture walkthrough
Now, to provide a technical solution for the preceding use case, you can refer to the
following architecture where AWS IoT is integrated to receive IoT events and publish
them to KDS. Then, Amazon EMR helps in further aggregations to make the aggregated
data available in Redshift and an Amazon S3 data lake for analytics:

Figure 3.4 – Reference architecture for real-time streaming analytics

Reference architecture for real-time streaming analytics 73

Before going deep into the architecture, let's understand the three new AWS services we
have introduced as part of this architecture:

• AWS IoT: AWS IoT provides capability using which you can connect one IoT
device with another and connect your IoT devices to the AWS cloud. It provides
device software that will help you integrate your IoT device with AWS IoT-based
solutions. It has several components, such as AWS IoT Core, FreeRTOS, AWS
IoT Greengrass, AWS IoT 1-Click, AWS IoT Analytics, AWS IoT Button, AWS
IoT Device Defender, AWS IoT Device Management, AWS IoT Events, AWS IoT
SiteWise, AWS IoT Things Graph, and AWS Partner Device Catalog.

AWS IoT Core provides support for Message Queuing and Telemetry Transport
(MQTT), MQTT over WSS (WebSockets Secure), Hypertext Transfer Protocol
Secure (HTTPS), and Long Range Wide Area Network (LoRaWAN), which gives
a wide range of flexibility for integration.

AWS IoT natively integrates with other AWS services, which can help you to
implement an end-to-end pipeline faster.

• Kinesis Data Firehose: Amazon Kinesis Data Firehose is a fully managed service
with scalability built in, which provides delivery stream capability that can deliver
streaming data to Amazon S3, the Amazon OpenSearch service, Amazon Redshift,
HTTP endpoints, and a few third-party service providers, such as Splunk, Datadog,
and New Relic.

It provides additional features, such as the buffering of stream messages, applying
transformations through AWS Lambda, and delivering to Amazon S3 with different
file formats or partitioning in place.

Kinesis Data Firehose is popular for delivering KDS messages to its supported
targets with minimal transformations in near real time. For this IoT use case, it
does something similar where it reads IoT events from KDS and writes them back
to Amazon S3.

74 Common Use Cases and Architecture Patterns

• Amazon Athena: Amazon Athena is an interactive query engine that is built on top
of Presto and uses Apache Hive for Data Definition Language (DDL) internally. It
is serverless, which means there is no infrastructure to manage, and this also follows
the pay-as-you-go pricing model. Athena's pricing is based on the amount of data
you are scanning.

Athena is very popular for querying data lakes or Amazon S3, where you define a
virtual table on top of an Amazon S3 path, add required partitions to the table as
needed, and then execute standard SQL queries to get results. It adds a lot of value
when analysts are more familiar with SQL-based analysis compared to complex
ETL programming.

Athena is integrated with AWS Glue Data Catalog out of the box. Also, apart from
querying from Amazon S3, Athena also supports querying from other relational
or third-party data sources through its Federated Query feature, which uses AWS
Lambda internally to fetch data from the source and provide results to Athena in a
tabular format.

The following is an explanation of the architecture steps:

• Steps 1 and 2 represent the IoT devices sending electricity usage metrics to AWS IoT
Core through MQTT in real time.

• Steps 3 and 4 represent AWS IoT Core using IoT rules to send event messages to
KDS, which will facilitate multiple consumer applications to read data from KDS
and write it to multiple targets.

You should be considering what the different types of events you are going to
receive from your IoT devices are and define partition keys in KDS accordingly.

• Steps 5.1 and 6 represent one of the consumers of the KDS events, where Amazon
EMR uses Spark Structured Streaming to read data from KDS in real time and write
to Amazon Redshift. In this case, the EMR cluster will be an always-on persistent
cluster with a minimal number of nodes to stream data on a continuous basis.

• Steps 5.2, 7, and 8 represent another consumer of KDS where Kinesis Data Firehose
is integrated to define a delivery stream with an Amazon S3 data lake as the target
and on top of which Amazon Athena is integrated for querying the data through
standard SQL. The purpose of writing the data to a data lake is to have a persistent
data store for the historical data, whereas Amazon Redshift is being used as a data
mart to store aggregated output for real-time reporting.

Reference architecture for real-time streaming analytics 75

• Steps 9 and 10 represent the integration of Amazon QuickSight on top of an S3 data
lake and Redshift data mart for building BI reports. QuickSight can use Amazon
Athena to query from an S3 data lake or use Redshift Spectrum to read data from
both S3 and Redshift to show a real-time report on aggregated output.

Now let's discuss a few best practices that you can follow while implementing the pipeline.

Best practices to follow during implementation
Here are a few generic guidelines that you can follow while implementing this use case; for
sure there will be more use case-specific ones:

• Buffering and partitioning configuration of Kinesis Data Firehose: Kinesis
Data Firehose has configurations where you can specify whether you would like to
buffer the data before delivering it to Amazon S3, which might help in aggregating
a number of records to a single file in Amazon S3 to avoid too many small files in
S3. Please note, too many small files (files in KBs or less than 64 MB) in an S3 data
lake might create a performance bottleneck when you try to access them through
Amazon Athena, Amazon Redshift, or Redshift Spectrum as it will create a lot of
overhead in tracking so many small files. You can take advantage of the buffering
configuration of Kinesis Data Firehose and also consider partitioning configuration
while writing data back to an S3 target.

• Distribution and sort key of Redshift: As you write data into a Redshift cluster,
it gets distributed across compute nodes so that when you submit queries, it can
execute your query in a distributed fashion. But Redshift provides flexibility to
choose how you would like to distribute your queries across nodes so that your join
or filter queries can perform better. It provides the Key, Even, and All distribution
styles to choose from.

In addition to the distribution key, Redshift also provides flexibility to select a sort
key, which helps to decide in which order data will be sorted internally. When the
data is sorted, it enables the Redshift query optimizer to scan fewer chunks of data,
which in turn will give higher performance. Redshift provides two types of sort
keys: a compound sort key and an interleaved sort key.

Now that we have understood this use case, let's dive into another in the following section.

76 Common Use Cases and Architecture Patterns

Reference architecture for genomics data
analytics
Before going into the technical implementation details of genomics data analytics, let's
understand what genomics means. It is a field of study of biology that focuses on the
evolution, mapping, structure, and functions of genomes. A genome is a complete set of
DNA of a living being, which includes all of its genes.

In recent times, there have been significant investments in genomics and clinical data to
explore more about living beings' genes and their characteristics, which can help diagnose
any disease beforehand or predict new features. Technology continues to play a vital role
in genomics studies: as the data volume grows, you can use big data technologies for
distributed processing.

Genomics datasets are available in complex data formats, such as VCF and gVCF, and to
parse them, there are several popular frameworks available, such as Glow and Hail.

Use case overview
Let's assume your organization is providing products or services that can help in
detecting, diagnosing, or treating different health diseases, and for this, your organization
heavily invests in genomics studies. Your organization has its own research data and gets
data genomics and clinical data from third-party vendors to aggregate it with in-house
data and derive insights out of it.

You are in need of a big data processing solution for the genomics clinical data and also a
centralized data store. For the whole solution, you plan to use AWS cloud-native services.

Reference architecture walkthrough
Now, to provide a technical solution for the preceding use case, you can refer to the
following architecture, where you can use Amazon EMR with Spark and one of the open
source VCF file processing frameworks, such as Glow, for the ETL need. Apart from
EMR's big data processing capability, you can use Amazon S3 for the persistent storage of
historical data, Amazon Redshift as a data warehouse for aggregated data, and Amazon
QuickSight for BI reporting:

Reference architecture for genomics data analytics 77

Figure 3.5 – Reference architecture for genomics data analysis

Before going deep into the architecture, let's understand a bit about the open source Glow
package, which you can integrate into an EMR Spark job.

Glow is an open source utility that helps you work with genomics data and is built on
Apache Spark, which can help in big data processing. It supports processing popular
genomics formats, such as VCF and BGEN, and can scale with Spark's distributed
processing. Because of its native Spark support, you have the flexibility to choose from the
Spark SQL, Python, Scala, or R languages.

The following is an explanation of the architecture steps:

• Steps 1, 2, and 3 represent the data ingestion pipeline for genomics data that you
receive from your external vendor. Step 1 represents your vendor writing genomics
VCF files to your input S3 bucket directly and your objective is to parse them and
convert them to standard Parquet format.

Steps 2 and 3 represent a transient EMR cluster that is scheduled to run a Spark job
every day, which will read input data from the input S3 bucket, parse it through
the Glow package, and write the Parquet to the output bucket with a daily partition
(year/month/day). It moves the input files to a processed folder after successful
transformation, so the next execution picks up the new files.

78 Common Use Cases and Architecture Patterns

• Steps 5, 6, and 7 represent the data ingestion pipeline for the clinical data that you
receive from another vendor. This is a simple pipeline compared to the genomics
data pipeline, which reads input CSV files, converts them to Parquet, and writes
output to an S3 target bucket with day-wise partitions. Here also, you can integrate a
transient EMR cluster that runs a Spark job every day at midnight.

• Steps 4, 8.1, 8.2, and 9 represent another transient EMR cluster, whose responsibility
is to aggregate all data sources, derive aggregate output, and push it to Amazon
Redshift for further analytics or reporting needs. Apart from the vendor's genomics
and clinical data, we also have in-house datasets in another S3 bucket. A scheduled
EMR job reads data from all three input buckets and does transformations and
aggregations using Spark.

• Steps 10 and 11 represent the integration of Amazon QuickSight on top of an
Amazon Redshift data warehouse for building BI reports.

Now let's discuss a few best practices that you can follow while implementing the pipeline.

Best practices to follow during implementation
Here are a few generic guidelines that you can follow while implementing this use case; for
sure there will be more use case-specific ones:

• Bootstrap action in EMR for additional library configuration: As discussed, there
are several frameworks or utilities that support parsing genomics file formats. We
have taken the example of Glow here, but you can integrate others, such as Hail.
When you are in need of configuring external libraries in your EMR cluster, use its
bootstrap actions, which will configure the clusters as needed while launching the
cluster. When you have transient EMR cluster use cases like this, these bootstrap
actions will help a lot as every time a cluster is launched, it will automatically
configure external libraries in the required nodes.

• Distribution and sort key of Redshift: As discussed earlier, choose from the Key,
Even, and All distribution styles for your data in Redshift depending on your query
pattern or join scenarios. Also, see whether you need to use sort keys to let the
Redshift optimizer choose fewer chunks of data while querying.

Now, let's look at the reference architecture for log analytics in detail.

Reference architecture for log analytics 79

Reference architecture for log analytics
Log analytics is a common requirement in most enterprises. As you grow with multiple
applications, jobs, or servers that produce enormous logs every day, it becomes essential to
aggregate them for analysis.

There are several challenges in log analytics as you need to define log collection
mechanisms, process them to apply common cleansing and standardizations, and make
them available for consumption. Each server or application produces its own format for
logs and your job is to bring them to a format that you can use and use technologies to
handle the heavy volume of log streams.

Use case overview
Let's assume your organization is on AWS and you have multiple applications deployed on
AWS EC2 instances. These applications are written in Java and a few other languages and
hosted through Apache or NGINX servers. You have the following three log streams that are
generating logs continuously, which you plan to collect and make available for consumption:

• EC2 server logs: Each of your EC2 servers is generating logs that include CPU,
memory usage, error logs, or access logs.

• Application logs: Each application is generating debug or error logs. For example,
Java applications are generating logs through the Log4j framework.

• Apache or NGINX server logs: When applications are deployed or accessed
through Apache or NGINX servers, they also generate access logs or error logs.

There are different teams in your organization that are interested in accessing these logs
and they have their own preferred tools to access them. The following are the consumers:

• Security team: Your security team is collecting logs from different sources and
is interested in EC2 access logs to make sure there is no unauthorized access and
also that a hacking attack is not happening. They use Splunk as their tool for log
analytics and would like to get these EC2 access logs into Splunk too.

• DevOps team: Your DevOps team is more interested in getting all software
configuration information and also CPU and memory usage of the EC2 instances in
real time to react to additional resource provisioning. Your DevOps team has their
own Redshift cluster, on top of which they do further analysis and reporting. So,
they expect the logs to be pushed to their Redshift cluster.

80 Common Use Cases and Architecture Patterns

• Application team: The application team is more interested in analyzing their
application logs to find common failure patterns. They prefer loading the
application logs into an Amazon OpenSearch Service cluster, where they would
like to do a regular expression or pattern matching search on the last 3 months
of data.

Apart from these three teams, your organization has a requirement to archive all logs in
Amazon S3 to compliance requirements.

Reference architecture walkthrough
Now, to provide a technical solution for the preceding use case, you can refer to the
following architecture where all servers and applications will be publishing logs to KDS
and EMR with a Spark Streaming job that can parse the logs and send them to the
respective target depending on the log type.

Please note, all four targets we have here (Splunk, Redshift, Amazon ES, and S3) are also
supported on Kinesis Data Firehose. The question may arise why we are not integrating
Kinesis Data Firehose to read from KDS and write to the defined target—and, yes, that
can be done—but EMR provides the following benefits over Kinesis Data Firehose:

• EMR with Spark Streaming will provide real-time streaming, compared to the near
real-time streaming of Kinesis Data Firehose.

• You have different types of logs coming in, which might come through different
partition keys of KDS. With EMR, you will get the flexibility to loop data by topic,
apply respective transformation rules, and write to the target. If you use Kinesis
Data Firehose, each delivery stream will receive all the data and you will have to
integrate additional Lambda functions to filter by topic.

• As the number of log types and different targets increases, you will have to define
more delivery streams by type. So, it may not scale in the future.

Reference architecture for log analytics 81

The following diagram shows the reference architecture of log analytics:

Figure 3.6 – Reference architecture for log analytics

Before going deep into the architecture, let's understand a bit about Amazon OpenSearch
and Splunk, which are a couple of new components introduced in this architecture:

• Amazon ES: This is a fully managed service that facilitates the easy setup and
deployment of the open source OpenSearch service at scale. You can do everything
that you do with the open source OpenSearch service with native integration with
other AWS services and cloud security built in. In our use case, it facilitates faster
search with pattern matching. So, when you receive millions of log records every
day, searching through them and finding patterns becomes key and the Amazon
OpenSearch service is great at it.

• Splunk: This is a software platform, commonly used for log analytics or search use
cases, that captures machine-generated data and indexes it for faster search. It also
supports generating alerts, graphs, visualization dashboards, and so on. For this
use case, we have assumed your organization's security team analyzes access logs
using Splunk.

82 Common Use Cases and Architecture Patterns

The following is an explanation of the architecture steps:

• Steps 1.1 and 1.2 represent publishing EC2 server logs to KDS, where you can set up
and configure a Kinesis agent in each of the EC2 servers that will read logs from the
server log file path and push to KDS with any optional buffering configurations.

• Steps 2.1 and 2.2 represent applications using the Kinesis Producer Library (KPL)
to publish logs dynamically to KDS. For a few logging frameworks, you have native
integrations to submit logs instantaneously to KDS using KPL.

• Steps 3.1 and 3.2 represent publishing application server logs using the same Kinesis
agent approach that is being integrated for EC2 server logs.

• Step 4 represents the integration of Amazon EMR with Spark Streaming, which will
read from KDS and write to different targets, depending on the log type or schema.
Please note, as you have different log types with different schemas being ingested to
the same KDS, you need a way to separate them. The best method you can follow
is defining partition keys by log type in KDS and letting EMR loop through each
partition key and define the target by log type.

This way, your EMR Spark Streaming code can decide whether the log type is
an access log, then write to Splunk, and if it is an Apache log, then write to
Amazon OpenSearch.

• Steps 5.1 and 5.2 represent an EMR Spark Streaming job writing to Splunk and
Amazon Redshift.

• Steps 5.3 and 5.4 represent an EMR Spark Streaming job writing to Amazon ES
for faster search, and then the integration of an Amazon OpenSearch Dashboard
visualization on top of it for reporting dashboards.

• Steps 5.5 and 5.6 represent writing all the log types to Amazon S3 and accessing
them through Amazon Athena's standard SQL query. Please note, when you write
to S3, define folders or buckets based on log type and also use partitioning for
better performance.

• Steps 6.1-6.4 represent the consumption layer, where different teams will use their
respective tool's interface to access the data. Teams using Splunk and Redshift
can access their console or APIs to access the data, whereas teams using Amazon
OpenSearch can use Amazon OpenSearch Dashboard to access data or build
visualizations on top of it.

Now let's discuss a few best practices that you can follow while implementing the pipeline.

Summary 83

Best practices to follow during implementation
Here are a few high-level guidelines that you can follow while implementing this use case:

• Configure source log types to partition the key and target: The major challenge
we have here is publishing all types of logs with different schemas to one KDS. The
first thing you need to define is what the different types of logs are that should be
treated separately and map them to different partition keys of KDS so that your
Spark Streaming consumer application can read by partition key and write to
different targets.

The other thing you can do is use AWS Glue Schema Registry, which you can
integrate with KDS to enforce a schema on your data. A schema of a record
represents the format and structure of the data and AWS Glue Schema Registry
helps to enforce the schema and provide a centralized place to manage, control, and
evolve your schema.

• Scaling KDS and EMR clusters: You can use EMR's autoscaling or managed scaling
features to scale your cluster up and down as the log stream data volume changes.

To scale KDS, you can take advantage of CloudWatch metrics, which will provide
the read and write metrics of each shard of the Kinesis stream, and based on that,
you can have your custom application or AWS Lambda function that will add or
remove shards from your KDS cluster.

With this last use case, you have got a good overview of different use cases you can
implement with Amazon EMR that includes transient and persistent EMR clusters.

Summary
Over the course of this chapter, we have dived deep into a few common use cases where
Amazon EMR can be integrated for big data processing. We discussed how you can
integrate Amazon EMR as a persistent or transient cluster and how you can use it for
batch ETL, real-time streaming, interactive analytics, and ML and log analytics use cases.
Each use case explained a reference architecture and a few recommendations around its
implementation.

That concludes this chapter! Hopefully, you have got a good overview of different
architecture patterns around Amazon EMR and are ready to dive deep into different
Hadoop interfaces and EMR Studio in the next chapter.

84 Common Use Cases and Architecture Patterns

Test your knowledge
Before moving on to the next chapter, test your knowledge with the following questions:

1. Assume you are receiving data from multiple data sources and after ETL
transformation storing the historical data in a data lake built on top of Amazon S3
and storing aggregated data in the Redshift data warehouse. You have a requirement
to provide unified query engine access, where your users can join both data lake and
data warehouse data for analytics. How will you design the architecture and which
query engine you will recommend to your analysts?

2. Your organization has multiple teams and departments that have different big data
and ML workloads. They plan to use a common EMR cluster that they can use for
their analytics and ML model development. Your data scientists are new to Amazon
EMR and would like to understand how they can take advantage of this EMR
cluster to do ML model development. What will your guidance be?

3. You have a customer use case where you need to stream IoT device events into
a data lake and data warehouse for further analysis. Because of cost constraints,
your customer team is ready to compromise the real-time streaming requirement
and is happy to wait for 5 minutes to 1 hour for the data to arrive. How will you
design the architecture so that it's cost-efficient and at the same time solves the
business problem?

Further reading
The following are a few resources you can refer to for further reading:

• Different EMR case studies (search for EMR): https://aws.amazon.com/
solutions/case-studies/

• Redshift distribution style: https://docs.aws.amazon.com/redshift/
latest/dg/c_best-practices-best-dist-key.html

• Read more about AWS DMS: https://aws.amazon.com/dms/

• Read more about AWS IoT: https://aws.amazon.com/iot/

https://aws.amazon.com/solutions/case-studies/
https://aws.amazon.com/solutions/case-studies/
https://docs.aws.amazon.com/redshift/latest/dg/c_best-practices-best-dist-key.html
https://docs.aws.amazon.com/redshift/latest/dg/c_best-practices-best-dist-key.html
https://aws.amazon.com/dms/
https://aws.amazon.com/iot/

4
Big Data

Applications and
Notebooks Available

in Amazon EMR
From previous chapters, you got an overview of Amazon EMR (Elastic MapReduce),
its architecture, and reference architecture for a few common use cases. This chapter
will help you learn more about a few of the popular big data applications and distributed
processing components of the Hadoop ecosystem that are available in EMR, such as Hive,
Presto, Spark, HBase, Hue, Ganglia, and so on. Apart from that, it will also provide an
overview of a few machine learning frameworks available in EMR, such as TensorFlow
and MXNet.

At the end of the chapter, you will learn about notebook options available in EMR for
interactive development that include EMR Notebook, JupyterHub, EMR Studio, and
Zeppelin notebooks.

86 Big Data Applications and Notebooks Available in Amazon EMR

The following topics will be covered in this chapter:

• Understanding popular big data applications in EMR

• Understanding machine learning frameworks available in EMR

• Understanding notebook options available in EMR

Technical requirements
In this chapter, we will cover different big data applications available in EMR and how you
can access or configure them. Please make sure you have access to the following resources
before continuing:

• An AWS account

• An IAM user, which has permission to create EMR clusters, EC2 instances, and
dependent IAM roles

Now let's dive deep into each of the big data applications and machine learning
frameworks available in EMR.

Understanding popular big data applications
in EMR
There are several big data applications available in the Hadoop ecosystem and open source
community, and EMR includes a few very popular ones that are very commonly used
in big data use cases. The availability of different big data applications or components in
your cluster depends on the EMR release you choose while launching the cluster. Each
EMR release includes a different version of these applications and makes sure they are
compatible with each other for smooth execution of the cluster and jobs.

EMR does include the most common or popular Hadoop interfaces in its recent releases
and also does continuous updates to include new Hadoop interfaces as they gain
popularity in the open source community. In addition to adding new big data applications
or components, EMR also removes support for a few as they lack attention from the open
source community or customers. For example, till EMR 3.11.x, you had the option to
select Impala as an application, but after 4.x.x, support for Impala was removed.

To explain the different big data components available in EMR, we considered the latest
EMR release available while writing this book, which is 6.3.0.

Understanding popular big data applications in EMR 87

Now let's look at a few of the popular components available in EMR, such as Hive, Presto,
Spark, HBase, Hue, and Ganglia, which are pretty commonly used in big data use cases.
You will also learn about how these open source components are configured in EMR and
how they are integrated with Amazon S3.

Hive
Hive is an open source query engine that runs on top of Hadoop and allows you to query
data from your data lake or cloud object store with a standard SQL-like language called
Hive Query Language (Hive QL).

Compared to typical relational databases, Hive follows schema on read semantics instead
of schema on write. That means you can define a table schema on top of your HDFS or
Amazon S3 file path, which is called as a virtual table, and when you run a Hive query
on top of your metadata table, it will fetch data from your underlying storage, apply the
schema on top of it, and show the output in tabular format.

Hive supports reading from different types of file formats, such as CSV, JSON, Avro,
Parquet, ORC, and so on, with the inclusion of the respective file format's serializer. You
can also bring in your custom serializer and specify that in your Hive table properties to
let Hive know how to parse your file format.

Hive internally uses big data processing frameworks such as MapReduce, Tez, and
Spark to fetch data from HDFS or S3 and process it to serve the output. It converts
user-submitted Hive QL to corresponding MapReduce, Tez, or Spark jobs and you can
configure Hive to use any of these frameworks.

Passing variables to Hive Step in EMR
You can use AWS's EMR Console or AWS CLI to trigger a Hive Step. It also supports
passing variables to a Hive script that you can access using a $ sign and curly braces, for
example, ${variable-name}.

For example, if you would like to pass an S3 path to your Hive script with a variable name
of MyPath, then you can pass it as the following:

-d MyPath=s3://elasticmapreduce/lookup-input/path1

Then you can access it in your Hive script as ${MyPath}.

88 Big Data Applications and Notebooks Available in Amazon EMR

Additional considerations for Hive with Amazon S3 as a persistent
storage layer
When Hive is configured on top of the EMR core node's HDFS, its way of working is the
same as non-EMR environments, but there are slight variations when it is configured on
top of Amazon S3 as its persistent storage layer.

The following are a few of the differences to consider:

• Authorization: EMR supports Hive authorization only for HDFS and not for S3
and EMRFS. Hive Authorization is disabled in an EMR cluster by default.

• File merge behavior: Apache Hive provides two configurations to control if you
need to merge small files at the end of a map-only job. The first configuration is
hive.merge.mapfiles, which needs to be true, and the second configuration is
to trigger the merge if the average output size is less than the value set in the hive.
merge.smallfiles.avgsize parameter. Hive on EMR works with both these
settings if the output is set to HDFS but if the output is set to Amazon S3, then the
merge task is always triggered if hive.merge.mapfiles is set to true, ignoring
the value set for hive.merge.smallfiles.avgsize.

• ACID transactions: Hive ACID (Atomicity, Consistency, Isolation, Durability)
transaction support is available in EMR from EMR 6.1.0 and above.

• Hive Live Long and Process (LLAP): Hive 2.0 included a new feature called Live
Long and Process, which provides a hybrid execution model. It uses long-lived
daemons that replace interaction with HDFS and also provides in-memory caching
that improves performance. This Hive feature is only available after the EMR
6.0.0 release.

These differences or considerations are explained assuming you will be using EMR 6.x.x.
If you plan to go with older EMR releases, there might be other differences that you
should consider.

Integrating an external metastore for Hive
As explained, Hive defines a virtual table or schema on top of file storage to facilitate
SQL-like query support on your data. To store all the table metadata, Hive needs to use
a persistent metastore. By default, Hive uses a MySQL-based relational database to store
metadata, which is deployed on the master node. But this brings a risk of losing the
metastore if your master node's file system gets corrupted or you lose the instance itself.

Understanding popular big data applications in EMR 89

To secure the Hive metastore, you can think of externalizing the metastore, which
means instead of storing it in master node's MySQL instance, look for options to store
it outside the cluster, so that you can persist it to support transient EMR cluster use
cases too.

In AWS, you have the following options for externalizing your Hive metastore.

• An Amazon Aurora or Amazon RDS database

• The AWS Glue Data Catalog (supported by EMR 5.8.0 and later versions only)

Now let's understand how you can configure a Hive metastore with these two options.

Configuring Amazon Aurora or RDS as a Hive metastore
Hive has hive-site.xml, which has configurations to specify which metastore to use. To
use Amazon RDS or Amazon Aurora, you will need to create a database there and override
the default configuration of hive-site.xml to point to this newly created database.

The following steps can guide you with the setup:

1. Create an Amazon Aurora or Amazon RDS database by following the steps given in
the AWS documentation (https://aws.amazon.com/rds/).

2. You need to allow access between your database and the EMR master node. To do
that, please modify your database cluster security group.

3. After your database is available with the required access for connectivity, you need
to modify the hive-site.xml configuration file to specify the JDBC connection
parameters of your database. To avoid modifying the original hive-site.xml
file, you can create a copy of the file and have a new name such as hive-config.
json with the following JSON configuration:

[{

 "Classification": "hive-site",

 "Properties": {

 "javax.jdo.option.ConnectionURL":
"jdbc:mysql://<hostname>:3306/
hive?createDatabaseIfNotExist=true",

 "javax.jdo.option.ConnectionDriverName": "org.
mariadb.jdbc.Driver",

 "javax.jdo.option.ConnectionUserName":
"<username>",

https://aws.amazon.com/rds/

90 Big Data Applications and Notebooks Available in Amazon EMR

 "javax.jdo.option.ConnectionPassword":
"<password>"

 }

}]

In this configuration file, you need to replace <hostname>, which will be your
database server's host, and <username> and <password>, which will be your
database connection credentials. We have specified 3306 as the port number,
assuming you have a MySQL database with the default port, but you can change it
as needed.

4. After your configuration file is ready, the next step is to specify the file path while
creating your EMR cluster. The configuration file path can be a local path or an
S3 path.

The following is an example of an AWS CLI command to launch an EMR cluster:
aws emr create-cluster --release-label emr-6.3.0
--instance-type m5.xlarge --instance-count 2
--applications Name=Hive --configurations file://hive-
config.json --use-default-roles

As you will notice, we have hive-config.json specified as the configuration file for
Hive. We have referred to a local path here, but you can upload this configuration JSON to
S3 and use the S3 path.

Configuring the AWS Glue Data Catalog as a Hive metastore
As explained earlier, AWS Glue is a fully managed ETL service, which is built on top
of Spark and has Glue Crawler, Glue Data Catalog, Glue Jobs, and Glue Workflows as
primary components. The AWS Glue Data Catalog provides a unified metadata repository,
which can be shared across multiple AWS services, such as Amazon EMR, AWS Lake
Formation, Amazon Athena, Amazon Redshift, and so on.

Starting with EMR 5.8.0 and later releases, you can configure the AWS Glue Data Catalog
as a Hive external metastore, which can be shared across multiple EMR clusters, Glue
Spark jobs, or even can be shared with multiple AWS accounts.

When you integrate Glue Data Catalog as EMR's external metastore, you need to consider
the Glue Data Catalog pricing too. The Glue Data Catalog provides storage for up to 1
million objects for free every month and beyond that, for every 100,000 objects, you will
be charged USD 1 each month. An object in Glue Catalog is represented as a database,
table, or partition.

Understanding popular big data applications in EMR 91

Now let's understand how to configure Glue Data Catalog as Hive's external metastore
in EMR:

• Through the AWS Console: If you are creating the EMR cluster through the AWS
console, then create the cluster through Advanced Options, select EMR 5.8.0 or a
later release, choose Hive or the HCatalog service under the release, and then under
AWS Glue Data Catalog settings, choose Use for Hive table metadata. You can
select the rest of the options as needed and proceed with the cluster creation. This
should set you up to use AWS Glue Data Catalog as an external Hive metastore.

• Through the AWS CLI: If you are going to create the cluster through AWS CLI
commands, then you can specify the hive.metastore.client.factory.
class value using the hive-site classification. The following is an example of
the configuration:

[{

 "Classification": "hive-site",

 "Properties": {

 "hive.metastore.client.factory.
class": "com.amazonaws.glue.catalog.metastore.
AWSGlueDataCatalogHiveClientFactory"

 }

}]

• Additional configuration for specific EMR releases: If you are using EMR release
5.28.0, 5.28.1, or 5.29.0, then you need to specify additional configuration in the
hive-site configuration, where you need to set hive.metastore.schema.
verification as false. If this is not set to false, the master instance group
will be suspended.

• Configuring Glue Catalog available in other AWS accounts: If your Glue
Data Catalog is in another AWS account, then you will have to specify an
additional configuration where you need to specify the account ID in the
hive.metastore.glue.catalogid parameter. The following is an example
of the JSON configuration:

[{

 "Classification": "hive-site",

 "Properties": {

 "hive.metastore.client.factory.
class": "com.amazonaws.glue.catalog.metastore.
AWSGlueDataCatalogHiveClientFactory",

92 Big Data Applications and Notebooks Available in Amazon EMR

 "hive.metastore.schema.verification": "false"

 "hive.metastore.glue.catalogid": "<account-id>"

 }

}]

A few additional IAM permission configurations might be needed if
you are not using the default EMR_EC2_DefaultRole role with the
AmazonElasticMapReduceforEC2Role managed policy attached to it, and also
if you have additional encryption or decryption procedures involved. Please refer to the
AWS documentation link specified in the Further reading section of this chapter.

Presto
Similar to Hive, Presto also provides a distributed query engine to query data from
different data sources such as HDFS, Amazon S3, and Kafka and databases such as
MySQL, MongoDB, Cassandra, Teradata, and so on with a SQL-like query language. But
compared to Hive's batch engine, Presto provides a high-performance fast SQL query
engine designed specifically for interactive query use cases.

Presto is available in two separate versions, PrestoDB and PrestoSQL. Presto was
originally created by a few members at Facebook and later it got forked to a separate open
source release with the name PrestoSQL, which was recently renamed as Trino. In EMR,
the Presto name refers to PrestoDB.

While launching your EMR cluster, you need to select either PrestoDB or PrestoSQL as
selecting both is not supported. Please refer to the AWS documentation to understand the
PrestoDB or PrestoSQL version attached to each release of EMR.

Both PrestoDB and PrestoSQL can access the data in Amazon S3 through the EMR File
System (EMRFS). PrestoDB can access EMRFS starting with EMR release 5.12.0 and is
also specified as the default configuration. PrestoSQL also uses EMRFS as the default since
EMR release 6.1.0.

Understanding popular big data applications in EMR 93

Making Presto work with the AWS Glue Data Catalog
As was discussed about Hive in the previous section, you can also configure Presto to use
the AWS Glue Data Catalog as its external metastore. The following steps will guide you
to configure it:

• Through the AWS Console: If you are creating the EMR cluster through the AWS
console, then create the cluster through Advanced Options, select EMR 5.10.0 or
a later release, and choose Presto as the application under the release. Then choose
the Use for Presto table metadata option and select Next to proceed with the rest
of the configuration as needed for your cluster creation.

• Through the AWS CLI: PrestoSQL and PrestoDB have different configurations for
different EMR releases. Coming up are a few of the configuration examples.

For PrestoDB in EMR release 5.16.0 or later, you can use the following JSON
configuration to specify "glue" as the default metastore:

[{

 "Classification": "presto-connector-hive",

 "Properties": {

 "hive.metastore": "glue"

 }

}]

Similar to Hive, you can also specify Glue Catalog in another AWS account with
hive.metastore.glue.catalogid. The following is an example of the JSON
configuration:

[{

 "Classification": "presto-connector-hive",

 "Properties": {

 "hive.metastore": "glue",

 "hive.metastore.glue.catalogid": "acct-id"

 }

}]

94 Big Data Applications and Notebooks Available in Amazon EMR

PrestoSQL started supporting Glue as its default metastore starting with the EMR
6.1.0 release. The following JSON example shows how you can specify "glue" in
the "prestosql-connector-hive" configuration classification:

[{

 "Classification": "prestosql-connector-hive",

 "Properties": {

 "hive.metastore": "glue"

 }

}]

In this section, you have learned how you can integrate Presto in EMR with a few of the
configurations that make it work with the AWS Glue Data Catalog. In the next section,
you will get an overview of Apache Spark and its integration with Amazon EMR.

Spark
Apache Spark is a very popular distributed processing framework that supports a wide
range of big data analytics use cases, such as Batch ETL with Spark Core and Spark SQL,
real-time streaming with Spark structured streaming, machine learning with MLlib, and
graph processing with its GraphX library. Its programming interfaces are available in Java,
Scala, Python, and R, which drives its adoption.

Spark provides an in-memory distributed processing capability on top of the data stored
in HDFS, Amazon S3, databases connected through JDBC, other cloud object stores, and
additional caching solutions such as Alluxio. It has a Directed Acyclic Graph (DAG)
execution engine that is optimized for fast performance.

You can set up or configure Spark on an EMR cluster as you do for other applications
or services. Spark on EMR natively integrates with EMRFS to read from or write data to
Amazon S3. As highlighted earlier, you can configure Hive to submit queries to Spark for
in-memory processing.

The latest EMR 6.3.0 release includes Spark 3.1.1 and you can refer to the AWS
documentation to find which specific version of Spark is included in which EMR release.

Understanding popular big data applications in EMR 95

In the following example AWS CLI command, you will learn how you can create an EMR
cluster with Spark as the selected service. The command is the same as you have seen for
Hive or Presto:

aws emr create-cluster --name "EMR Spark cluster" --release-
label emr-6.3.0 --applications Name=Spark --ec2-attributes
KeyName=<myEC2KeyPair> --instance-type m5.xlarge --instance-
count 3 --use-default-roles

You will have to replace <myEC2KeyPair> with your EC2 key pair name before
executing this command in the AWS CLI.

Making Spark SQL work with the AWS Glue Data Catalog
As discussed for Hive and Presto in previous sections, you can also configure Spark to use
the AWS Glue Data Catalog as its external metastore. The following steps will guide you
on how you can configure it:

• Through the AWS Console: If you are creating the EMR cluster through the AWS
console, then create the cluster through Advanced Options, select EMR 5.8.0 or a
later release, then choose Spark or Zeppelin as the applications under the release.
Then, under AWS Glue Data Catalog settings, select the Use for Spark table
metadata option and proceed with the rest of the configuration as needed for your
cluster creation.

• Through the AWS CLI: If you are creating an EMR cluster with the AWS CLI or
SDK, then you can specify the Glue Data Catalog option in the hive.metastore.
client.factory.class parameter of the spark-hive-site classification.

The following is an example of the JSON configuration:
[{

 "Classification": "spark-hive-site",

 "Properties": {

 "hive.metastore.client.factory.
class": "com.amazonaws.glue.catalog.metastore.
AWSGlueDataCatalogHiveClientFactory"

 }

}]

As explained for Hive and Presto, if you need to specify Glue Data Catalog as available
in another AWS account, then in the configuration JSON, you can specify it through the
"hive.metastore.glue.catalogid": "account-id" additional parameter.

96 Big Data Applications and Notebooks Available in Amazon EMR

Submitting a Spark job to an EMR cluster
Similar to other Hadoop services, you can submit a Spark step while launching an EMR
cluster or after the cluster is created, and you can use the AWS console, the AWS CLI, or
SDKs to submit a step.

Now let's see how to submit a Spark job in EMR.

Submitting a Spark job through the AWS console
Follow these steps to submit a Spark job through the AWS console to an existing
EMR cluster:

1. Navigate to the Amazon EMR service console within the AWS console.
2. From the cluster list, choose the EMR cluster against which you plan to submit a job.
3. Navigate to the Steps section and select the Add Step action button.
4. In the Add Step dialog box, select Spark Application for Step type. Then, give a

name to the step and select Deploy mode as Client or Cluster. Selecting client
mode will launch the driver in the cluster master node, whereas cluster mode will
select any node of the cluster.

Then specify the spark-submit options, application script location, arguments
to the script, and Action on failure, where you can go with the default option to
Continue. Then choose the Add button, which will show the Spark job step in the
steps list with the status as Pending.

5. Then, as the job starts running, it will move the status to Running and
then Completed.

After understanding how you can submit a Spark job step to the EMR cluster using the
EMR console, next let's learn how you can do the same using the AWS CLI.

Submitting a Spark job through the AWS CLI
You can submit a Spark job while launching the cluster or to an existing EMR cluster.

The following is an example of an AWS CLI command that explains how you can add a
SparkPi step while launching an EMR cluster:

aws emr create-cluster --name "EMR Spark Cluster" --release-
label emr-6.3.0 --applications Name=Spark \

--ec2-attributes KeyName=myKeyPairName --instance-type
m5.xlarge --instance-count 3 \

Understanding popular big data applications in EMR 97

--steps Type=Spark,Name="Spark Program",
ActionOnFailure=CONTINUE,Args=[--class,org.apache.spark.
examples.SparkPi,/usr/lib/spark/examples/jars/spark-examples.
jar,10] --use-default-roles

Alternatively you can also add a Spark step to an existing EMR cluster, as shown in the
following example:

aws emr add-steps --cluster-id <cluster-id> --steps Type=Spark,
Name="Spark Pi Step", ActionOnFailure=CONTINUE,Args=[--
class,org.apache.spark.examples.SparkPi,/usr/lib/spark/
examples/jars/spark-examples.jar,10]

Please replace <cluster-id> with your existing EMR cluster's ID.

Improving EMR Spark performance with Amazon S3
Amazon EMR offers features and configurations using which you can improve Spark
performance while reading from or writing data to Amazon S3. S3 Select and the
EMRFS S3-optimized committer are a couple of methods using which you can improve
the performance.

Let's understand both in a bit more detail:

• S3 Select: This is one of the features of S3, where you can fetch a subset of the data
from S3 by applying filters on the data. When you are using Spark with EMR and
trying to fetch data from S3, instead of transferring the complete S3 file to EMR and
then applying a filter through Spark, you can push the filtering part to S3 Select so
that less data is transferred to EMR for processing.

It's useful when you filter out more than 50% of your data from S3, and please note
that you will need a sufficient transfer speed and available bandwidth over the
internet to transfer data between EMR and S3, as the data that gets transferred is
uncompressed and the size might be larger. The following is sample PySpark code if
you need to integrate S3 Select with Spark:

spark

 .read

 .format("s3selectCSV") // "s3selectJson" for Json

 .schema(...) // optional, but recommended

 .options(...) // optional

 .load("s3://path/to/my/datafiles")

98 Big Data Applications and Notebooks Available in Amazon EMR

There are several limitations when you integrate S3 Select. A few of the limitations
are that the S3 Select feature is only supported with CSV and JSON files and
uncompressed or gzip files and is not supported in multiline CSV files. Please refer
to the AWS documentation for a detailed list.

• EMRFS S3-optimizer committer: When you are using Spark with Spark SQL
DataFrames or Datasets to write output to Amazon S3, the EMRFS S3-optimizer
committer improves performance. The committer is available in EMR starting with
the 5.19.0 release and is available by default since the 5.20.0 release.

To enable the committer in the EMR 5.19.0 release, you need to set the spark.
sql.parquet.fs.optimized.committer.optimization-enabled
property value to true and you can do that by adding it to SparkConf or passing it
as an argument to your spark-submit command.

The following example shows how to pass it through a Spark SQL command:
spark-sql --conf spark.sql.parquet.fs.optimized.
committer.optimization-enabled=true -e "INSERT OVERWRITE
TABLE new_table SELECT * FROM old_table;"

Please note this committer takes a small amount of memory for each file written by a task
but that is negligible. But if you are writing a large volume of files, then the total additional
memory consumed might be noticeable and in that case, you may need to tune Spark
executor memory parameters to provide additional memory. In general, the guidance
is if a task is to write around 100,000 files, then it might need an additional 100 MB of
memory for the committer.

HBase
HBase is a popular Hadoop project of the Apache Software Foundation, which acts as a
non-relational or NoSQL database in the Hadoop ecosystem. It is a columnar database,
where you need to define column families and within each column family, a set of
columns. In terms of architecture, HBase has master and region servers where each region
server has multiple regions. In EMR, region servers will be primarily on core nodes as
HDFS is configured only on core nodes.

Understanding popular big data applications in EMR 99

HBase has Zookeeper built into it to provide centralized high-performance coordination
between nodes or region servers. Zookeeper is an open source coordination service for
distributed applications, where you can focus on your application logic and Zookeeper
takes care of coordinating with hosts of the cluster by keeping metadata of all the
configuration parameters.

Every time data is added, modified, or deleted, HBase keeps track of the changes as
change files and then merges them periodically. This process is called compaction. HBase
supports two types of compaction. One is major compaction, which you need to trigger
manually as HBase does not invoke it automatically and you can define your schedule to
trigger it. The other is minor compaction, which HBase does periodically without your
manual intervention.

HBase also integrates with Hive where you need to define an external table on top of
HBase with Hive to HBase column mapping and query the data using Hive QL.

EMR 6.3.0 has the HBase 2.2.6 version included in it. You can refer to the AWS
documentation to find the HBase version included in each EMR release.

From the following example of an AWS CLI command, you can understand how you can
create an EMR cluster with HBase as the selected service. The command is the same as
you have seen for other Hadoop applications:

aws emr create-cluster --name "EMR HBase cluster" --release-
label emr-6.3.0 --applications Name=HBase --use-default-
roles --ec2-attributes KeyName=<myEC2KeyPair> --instance-type
m5.xlarge --instance-count 3

You will have to replace <myEC2KeyPair> in the preceding command with your EC2
key pair.

In EMR, HBase can run on top of local HDFS or Amazon S3 and it can use Amazon S3
as its root directory or use it to store HBase snapshots. HBase integration with Amazon
S3 opens up several other use cases such as cross-cluster data sharing, bringing in more
reliability to data storage, disaster recovery, and so on.

Let's dive deep into a few of these additional integration benefits that you can get from
HBase integration with Amazon S3.

100 Big Data Applications and Notebooks Available in Amazon EMR

Using Amazon S3 as the HBase storage mode
Starting with the EMR 5.2.0 release, you can integrate HBase on top of Amazon S3 where
you can configure HBase to store its root directory, HBase stores files, and table metadata
directly in S3. With Amazon S3 as the persistent data store, you can size your EMR
cluster only for compute needs, instead of considering 3x storage with the default HDFS
replication factor.

This opens up support for transient EMR cluster use cases, where a cluster can be
terminated after its job is completed and again start the cluster by just pointing HBase to
its existing Amazon S3 root directory. You just need to make sure that at any time, only
one cluster is writing to the S3 root directory path, to avoid conflict or data corruption.
But you can have a read replica cluster pointing to the same path for only read operations.

Starting from the EMR 6.2.0 release, HBase uses its hbase:storefile system table to
track the HFile paths that are used for read operations and the table is enabled by default.
Thus, you don't need to perform any additional manual configuration or data migration.

The following diagram explains HBase integration with Amazon S3:

Figure 4.1 – Architecture reference for HBase on Amazon S3

Understanding popular big data applications in EMR 101

Next, let's understand how you can configure HBase on your cluster to work with Amazon
S3 as its persistent store.

Configuring HBase on Amazon S3 using the AWS console and the AWS CLI
You can specify configuration for HBase to work with Amazon S3 while launching the
EMR cluster through the AWS console, the AWS CLI, or the AWS SDK. The following
explains how you can configure it using the EMR console or the AWS CLI.

While creating the cluster through the AWS console, you can follow these steps to specify
configuration for HBase on S3:

1. In the EMR console, click on Advanced options to create the cluster.
2. The first section of Advanced options you will notice is Software Configurations,

where you can choose HBase or any other applications you plan to deploy.
3. Then, under HBase Storage Settings, select HDFS or S3 and you can then select

the rest of the steps as per your requirement.

If you are using an AWS CLI command to create a cluster, then please specify the following
JSON configuration, where hbase.emr.storageMode will have a value of s3 and then
hbase.rootdir of the hbase-site classification will point to your S3 path:

[

 {

 "Classification": "hbase-site",

 "Properties": {

 "hbase.rootdir": "s3://<Bucket-Name>/<HbaseStore-
Path>"

 }

 },

 {

 "Classification": "hbase",

 "Properties": {

 "hbase.emr.storageMode": "s3"

 }

 }

]

This section explained how you can configure HBase to work with Amazon S3. Next, you
will learn what some of the HBase parameters are you can tune to get better performance.

102 Big Data Applications and Notebooks Available in Amazon EMR

Performance tuning parameters for HBase on Amazon S3
The following are some of the HBase configuration parameters, that you can tune to get
better performance when you are using HBase on Amazon S3:

• hbase.bucketcache.size: This parameter represents the amount of EC2
instance store and EBS volume disk space reserved in MB for BucketCache
storage, which is applicable to all the region server EC2 instances. By default, the
value for this parameter is 8192 and a larger size value might improve performance.

• hbase.hregion.memstore.flush.size: This is the parameter that decides
at what size or data limit (in bytes) MemStore will flush the cache data to Amazon
S3. The default value for this is 134217728.

• hbase.hregion.memstore.block.multiplier: This parameter helps
HBase decide if it should block updates and look to do compaction or a MemStore
flush. This parameter value gets multiplied by the hbase.hregion.memstore.
flush.size value to define the upper limit, beyond which it should block
updates. The default value for this parameter is 4.

• hbase.hstore.blockingStoreFiles: This parameter also provides an upper
limit for the maximum number of StoreFiles that can exist before blocking new
updates. The default value for this is 10.

• hbase.hregion.max.filesize: This represents the maximum size (in bytes)
of a region before HBase decides to split the region. The default value for this is
10737418240.

Apart from this, you can also refer to the Apache HBase documentation for other
parameters that can be tuned.

Gracefully shutting down a cluster to avoid data loss
When you are using HBase with Amazon S3, it's important to shut down the cluster
gracefully so that HBase flushes all MemStore cache files to new store files in Amazon S3.
You can do that by executing the following shell script available in EMR:

bash /usr/lib/hbase/bin/disable_all_tables.sh

Alternatively, you can add a step to EMR too by using the following command:

Name="Disable HBase tables",Jar="command-runner.jar",Args=["/
bin/bash","/usr/lib/hbase/bin/disable_all_tables.sh"]

This disables all the tables, which forces each region server to flush MemStore cache
data to S3.

Understanding popular big data applications in EMR 103

Using an HBase read replica cluster
Starting from the EMR 5.7.0 release, HBase started supporting read replica clusters on
Amazon S3. A single writer cluster can write to an S3 root directory and at the same time,
multiple EMR read replica clusters can have read-only workloads running on top of it.

The read replica cluster is set up the same way as the primary cluster, with only one
difference in the JSON configuration, which specifies the hbase.emr.readreplica.
enabled property to be true.

The following is an example of the JSON configuration:

[

 {

 "Classification": "hbase-site",

 "Properties": {

 "hbase.rootdir": "s3://<Bucket-Name>/<HbaseStore-
Path>"

 }

 },

 {

 "Classification": "hbase",

 "Properties": {

 "hbase.emr.storageMode": "s3",

 "hbase.emr.readreplica.enabled":"true"

 }

 }

]

Here, you learned how you can create an EMR HBase read replica cluster pointing to an
existing S3 HBase root directory. Next, we will understand how the data gets synced while
the primary cluster does write operations.

Synchronizing the read replica cluster while data is being written from the
primary cluster
When you write something to HBase, it is first written to an in-memory store called
memstore and once memstore reaches a certain size defined in HBase configurations, it
flushes data to the persistent storage layer, which can be HDFS or an Amazon S3 layer.

104 Big Data Applications and Notebooks Available in Amazon EMR

When you have a read replica cluster reading from the primary cluster's HBase root
directory S3 path, it will not see the latest data till the primary cluster flushes the data to
S3. So to provide the read replica access to the latest data, you need to flush the data from
the primary cluster more frequently, and you can do that manually or by reducing the size
specified in the flush settings.

In addition to that, you will need to run the following commands in the read replica
cluster to make it see the latest data:

• Run the refresh_meta command when the primary cluster does compaction or
region split happens, or any new tables are added or removed.

• Run the refresh_hfile command when new records are added or existing
records are modified through the primary cluster.

Using Amazon S3 to store HBase snapshots
Apart from pointing the HBase root directory to Amazon S3, you do have the option
to use S3 to store a backup of your HBase table data using the HBase built-in snapshot
functionality. Starting with the EMR 4.0 release, you can create HBase snapshots and store
them in Amazon S3, then use the same snapshot to restore cluster data.

You can execute hbase snapshot CLI commands in the cluster master node and then
export it to Amazon S3. You can see how you can do it using the master node's command
prompt or as an EMR step in the following example.

Exporting and restoring HBase snapshots using the master node's
command prompt
You can refer to the following steps to export an HBase snapshot from one cluster and
restore it in another cluster using the HBase command line:

1. Create a snapshot using the following command:

hbase snapshot create -n <snapshot-name> -t <table-name>

2. Then export the snapshot to an Amazon S3 path:

hbase snapshot export -snapshot <snapshot-name> -copy-to
s3://<bucket-name>/<folder> -mappers 2

Understanding popular big data applications in EMR 105

3. If you have the snapshot ready, then import it into your new cluster using the
following command:

sudo -u hbase hbase snapshot export -D hbase.
rootdir=s3://<bucket-name>/<folder> -snapshot <snapshot-
name> -copy-to hdfs://<master-public-dns-name>:8020/user/
hbase -mappers 2

4. After the snapshot is available in your HDFS path, you can execute the following
commands, which involve disabling the table first, restoring the snapshot, and
enabling it again. This is needed to avoid data corruption:

echo 'disable <table-name>; \

restore_snapshot snapshotName; \

enable <table-name>' | hbase shell

5. Please note the preceding command uses echo on the bash shell and it might still
fail even if EMR returns a 0 exit code for it. If you plan to run the shell command as
an EMR step, ensure you check the step logs.

In all the preceding commands, please replace the <snapshot-name>,
<table-name>, <bucket-name>, <folder>, and <master-public-dns-name>
variables with your input.

Exporting and restoring HBase snapshots using EMR steps
You can refer to the following steps to export and restore an HBase snapshot using
EMR steps:

1. Create a snapshot using the following command:

aws emr add-steps --cluster-id <cluster-id> --steps
Name="HBase Shell Step", Jar="command-runner.jar", Args=[
"hbase", "snapshot", "create","-n","<snapshot-name>","-
t","<table-name>"]

2. Then export the snapshot to an Amazon S3 path:

aws emr add-steps --cluster-id <cluster-id> --steps
Name="HBase Shell Step", Jar="command-runner.jar", Args=[
"hbase", "snapshot", "export","-snapshot","<snapshot-
name>","-copy-to","s3://<bucket-name>/<folder>","-
mappers","2","-bandwidth","50"]

106 Big Data Applications and Notebooks Available in Amazon EMR

3. Then import the snapshot to your new cluster using the following command:

aws emr add-steps --cluster-id <cluster-id> --steps
Name="HBase Shell Step", Jar="command-runner.
jar", Args=["sudo","-u","hbase","hbase snapshot
export","-snapshot","<snapshot-name>", "-D","hbase.
rootdir=s3://<bucket-name>/<folder>", "-copy-
to","hdfs://<master-public-dns-name>:8020/user/hbase","-
mappers","2","-chmod","700"]

4. After the snapshot is available in your HDFS path, you need to restore the snapshot
against the table for which you took the snapshot. To restore it using the AWS CLI,
you can create a JSON file, which will have the following configuration, which
includes the same disable and enable table commands:

[{

 "Name": "restore",

 "Args": ["bash", "-c", "echo $'disable
\"<tableName>\"; restore_snapshot \"<snapshot-name>\";
enable \"<table-name>\"' | hbase shell"],

 "Jar": "command-runner.jar",

 "ActionOnFailure": "CONTINUE",

 "Type": "CUSTOM_JAR"

}]

5. Assuming you have saved this JSON file with the name as restore-snapshot.
json, you can add the following step to EMR to trigger the restore snapshot action:

aws emr add-steps --cluster-id <cluster-id> --steps
file://./restore-snapshot.json

In all the preceding commands, please replace the <cluster-id>, <snapshot-
name>, <table-name>, <bucket-name>, <folder>, and <master-public-
dns-name> variables with your input.

Hue
Hadoop User Experience (Hue) is an open source project of the Hadoop ecosystem that
provides a web interface to interact with different Hadoop applications such as HDFS,
Hive, Pig, Oozie, Solr, and so on. You can use your desktop system's browser to access the
Hue web interface, where you can navigate through HDFS, submit queries to Hive, write
Pig scripts, connect to remote databases and run queries against them, or monitor Oozie-
based workflows or coordinators.

Understanding popular big data applications in EMR 107

You can use Hue to act as your frontend application where you can do user management,
define who can access which application, and avoid giving SSH access to your users. Your
users might be data analysts or data scientists who might be interested in querying data
through Hive, and they can write Hive queries, save queries, look at results in tabular
format, or download a query result as CSV. They can also upload and download files
through the HDFS interface or monitor Oozie workflows to track failure and restart jobs.

In EMR, Hue is installed by default when you use the Quick Create option in the AWS
console. You can choose not to install Hue by going to the advanced options in the EMR
console, or not to specify Hue as an application while using the AWS CLI. Apart from
browsing HDFS, Hue in EMR does provide access to browse objects in S3 too.

Important Note
Hue in EMR does not support Hue Dashboard and PostgreSQL connectivity.
Also, to access Hue Notebook for Spark, you must set up Hue with Spark and
Livy.

EMR 6.3.0 includes Hue 4.9.0 and you can refer to the EMR release history in the AWS
documentation to find which version of EMR includes which version of Hue.

Using Amazon RDS as a Hue database
Hue internally uses a local MySQL database hosted in EMR's master node to store its user
information and query history. But you have the option to externalize the database by
integrating Amazon RDS so that you can avoid data loss and can also support transient
EMR cluster use cases.

To use Amazon RDS as a Hue database, you can create a configuration file in Amazon S3
pointing to the Amazon RDS database you created and use that while creating your
EMR cluster.

Follow the steps given in the following section to learn how to integrate an RDS database
with Hue.

Creating an Amazon RDS database using the AWS console
You can follow these steps to first create an Amazon RDS database that will be used as a
Hue database:

1. Navigate to Amazon RDS in the AWS console.
2. Click Databases from the left navigation and then select Create database.
3. Then choose MySQL as the database engine type.

108 Big Data Applications and Notebooks Available in Amazon EMR

4. Then you have the option to select a Multi-AZ deployment if it's a production-
critical database, which you can leave as the default and choose Provisioned IOPS
Storage, then click Next. For non-production environments, you can select a single
AZ as your deployment mode.

5. Then you can leave Instance Specifications at their defaults, specify Settings, and
then click Next.

6. On the Configure Advanced Settings page, you need to specify the database name
and a security group that allows inbound access to port 3306 from your EMR
master node. If you have not created the cluster yet, then you can allow 3306 port
access from all sources and restrict it after the EMR cluster is created.

7. Then click Launch DB Instance.
8. Next, you need to capture or save the database hostname, username, and password

to connect from Hue. You can navigate to RDS Dashboard, select the instance you
have created, and then, if it is available, capture all these connection credentials.

After your RDS database is ready, we can see how you can use its connection credentials
with Hue, while launching your EMR cluster.

Specifying Amazon RDS for Hue while creating an EMR cluster using the
AWS CLI
To specify the Amazon RDS database for Hue, the first step is to create a configuration file
in Amazon S3, which will have connection credentials. Please note, I would recommend
enabling S3 server-side encryption for this configuration file to keep it secure.

The following is an example of the JSON configuration file, where you can specify
connection details for hue-ini classification:

[{

 "Classification": "hue-ini",

 "Properties": {},

 "Configurations": [

 {

 "Classification": "desktop",

 "Properties": {},

Understanding popular big data applications in EMR 109

 "Configurations": [

 {

 "Classification": "database",

 "Properties": {

 "name": "<database-name>",

 "user": "<db-username>",

 "password": "<db-password>",

 "host": "<rds-db-hostname>",

 "port": "3306",

 "engine": "mysql"

 },

 "Configurations": []

 }

]

 }

]

}]

Please replace the <database-name>, <db-username>, <db-password>, and
<rds-db-hostname> variables with your connection credentials.

Let's assume you have saved this configuration file with the name as hue-db-config.
json. Next, you can use the following AWS CLI command to create your EMR cluster
that specifies the configuration file's S3 path:

aws emr create-cluster --name "EMR Hue External DB" --release-
label emr-6.3.0 --applications Name=Hue Name=Spark Name=Hive
--instance-type m5.xlarge --instance-count 3 --configurations
https://s3.amazonaws.com/<bucket-name>/<folder-name>/hue-db-
config.json --use-default-roles

Please replace the <bucket-name> and <folder-name> variables as per your S3 path.

In this section, you have learned about Hue, how you can configure it in EMR, and how
you can externalize its metastore by integrating Amazon RDS. Next, we will learn about
Ganglia, which helps in monitoring your cluster resources.

110 Big Data Applications and Notebooks Available in Amazon EMR

Ganglia
Ganglia is an open source project that is scalable and designed to monitor the usage and
performance of distributed clusters or grids. You can set up and integrate Ganglia on your
cluster to monitor the performance of individual nodes and the whole cluster.

In an EMR cluster, Ganglia is configured to capture and visualize Hadoop and Spark
metrics. It provides a web interface where you can see your cluster performance with
different graphs and charts representing CPU and memory utilization, network traffic,
and the load of the cluster.

Ganglia provides Hadoop and Spark metrics for each EC2 instance. Each metric of
Ganglia is prefixed by category, for example, distributed file systems have dfs.* as the
prefix, Java Virtual Machine (JVM) metrics are prefixed as jvm.*, and MapReduce
metrics are prefixed as mapred.*.

For Spark, it provides metrics related to its DAGScheduler and jobs. For jobs, you can
find both driver and executor metrics with a YARN application ID. As an example, they
are prefixed as application_xxxxxxxxxx_xxxx.driver.*, application_
xxxxxxxxxx_xxxx.executor.* and DAGScheduler.*. Please note, YARN based
metrics are available from EMR 4.5.0 and above.

In EMR 6.3.0, Ganglia 3.7.2 version is included. You can refer to the AWS documentation
to find the Ganglia version included in each EMR release.

The following is an example of the AWS CLI command that shows how you can create an
EMR cluster with Ganglia as the selected service. The command is the same as you have
seen for other Hadoop applications:

aws emr create-cluster --name "EMR cluster with Ganglia"
--release-label emr-6.3.0 \

--applications Name=Spark Name=Ganglia \

--ec2-attributes KeyName=<myEC2KeyPair> --instance-type
m5.xlarge \

--instance-count 3 --use-default-roles

You will have to replace <myEC2KeyPair> in the preceding command with your EC2
key pair.

In this section, you learned about different big data applications and how they are
configured in EMR to work with other AWS services such as Amazon S3, IAM, Glue
Catalog, and more. In the next section, we will provide an overview of a few of the
machine learning frameworks that are available in EMR, such as TensorFlow and MXNet.

Machine learning frameworks available in EMR 111

Machine learning frameworks available in EMR
There are several machine learning libraries or frameworks that you can configure in your
EMR cluster. TensorFlow and MXNet are a couple of popular ones, which are available as
applications that you can choose while creating the cluster.

Even though TensorFlow and MXNet are available as pre-configured machine learning
frameworks in EMR, you do have the option to configure other alternatives such as
PyTorch and Keras as custom libraries.

Now let's get an overview of the TensorFlow and MXNet applications in EMR.

TensorFlow
TensorFlow is an open source platform using which you can develop machine learning
models. It provides tools, libraries, and a community of resources that will help
researchers and data scientists to easily develop and deploy machine learning models.

TensorFlow has been available in EMR since the 5.17.0 release and the recent 6.3.0 release
includes TensorFlow v2.4.1.

If you plan to configure TensorFlow in your EMR cluster, then please note that EMR uses
different builds of the TensorFlow library based on the EC2 instance types you select for
your cluster. For example, M5 and C5 instance types have TensorFlow 1.9.0 built with
Intel MKL optimization and the P2 instance type has Tensorflow 1.9.0 built with CUDA
9.2 and cuDNN 7.1.

Using TensorBoard
TensorBoard provides a suite of visualization tools that you can use for machine learning
model data exploration or experimentation. Using TensorBoard, you can track and
visualize different metrics such as loss or accuracy, draw histograms, or profile your
TensorFlow programs.

If you plan to configure TensorBoard in your EMR cluster, then please note that you need
to start it in the EMR cluster's master node. You can refer to the following command to
start TensorBoard in the master node and specify the log directory path by replacing the
<my/log/dir> variable:

python3 -m tensorboard.main --logdir=</my/log/dir>

112 Big Data Applications and Notebooks Available in Amazon EMR

By default, TensorBoard uses port 6006 on the master node and you can access its web
interface using the master node's public DNS. The following is the output you get in the
command line after you start the service, which includes the web URL you can use.

TensorBoard 1.9.0 at http://<master-public-dns-name>:6006
(Press CTRL+C to quit)

MXNet
Apache MXNet is another popular machine learning framework that is built to ease the
development of neural network and deep learning applications. Its flexible programming
model with multiple languages, such as Python, Java, Scala, and R, and scalability allows
for fast model training deployment.

It helps you to design neural network architectures by automating common workflows
so that you can save effort on low-level computational implementations such as linear
algebra operations.

Recently, MXNet started becoming more popular with its adoption across different
industry use cases such as manufacturing, transportation, healthcare, and many more,
with use cases related to computer vision, NLP and time series, and so on.

EMR started supporting MXNet starting in its 5.10.0 release and its recent 6.3.0 release
includes the MXNet 1.7.0 version.

Notebook options available in EMR
In today's world, usage of web-based notebooks for interactive development is very
common and EMR provides a few options for integrating Jupyter and Zeppelin notebooks.

Jupyter Notebook is a very popular open source web application that allows developers
and analysts to do interactive development by writing live code, executing it line by line
for debugging, building visualizations on top of data, and also providing narratives on
code. You can also share notebooks with others, who can import code into their notebook.

Within an EMR cluster, you have the option to use EMR Notebooks and JupyterHub,
and outside of your EMR cluster, you have EMR Studio, which you can attach to your
EMR cluster.

Now let's dive deep into each of these options.

Notebook options available in EMR 113

EMR Notebooks
EMR Notebooks is available in the EMR console. Notebooks are serverless and can be
attached to any EMR cluster running Hadoop, Spark, and Livy. Using EMR Notebooks,
you can open Jupyter Notebook or JupyterLab interfaces and any queries or code that you
execute are instead run as a client submitting queries to your EMR on an EC2 cluster.

Your EMR Notebooks contents are saved to Amazon S3 for durability and reuse, which
provides you with the option to launch a cluster, attach a notebook to the cluster for
interactive development, and then terminate the cluster. As the notebook acts as a client,
multiple users can have their own notebook using which they can submit queries or
commands to the same EMR cluster kernel. With this feature, you don't need to configure
your notebook for different EMR clusters and you can use them on-demand to save costs.

Important Note
Support for EMR Notebooks started from the EMR 5.18.0 release but it's
recommended to use it with clusters having the latest release of 5.30.0, 5.32.0,
and later or version 6.2.0 and later. There was a change made with these specific
EMR releases that makes the Jupyter kernels run on the attached EMR cluster
instead of the Jupyter instance, which improves performance.

There are a few limitations to consider while using EMR Notebooks:

• For EMR v5.32.0 and later, or v6.2.0 and later releases, your cluster must have the
Jupyter Enterprise Gateway application running.

• EMR Notebooks works with clusters that have the VisibleToAllUsers setting
set to true while creating the cluster and currently supports Spark-only clusters.

• EMR Notebooks does not support clusters that have Kerberos authentication
enabled or clusters that have multiple master nodes.

• Installing custom libraries or kernels is not supported if your EMR cluster has Lake
Formation permissions enabled.

Please check the AWS documentation for detailed configuration considerations
and limitations.

114 Big Data Applications and Notebooks Available in Amazon EMR

Setting up and working with EMR Notebooks
Let's look at the following steps to guide you on how you can create an EMR notebook
using the AWS console:

1. Navigate to the EMR service in the AWS console.
2. Choose Notebooks from the left-side navigation and then select Create notebook.
3. Specify your notebook name and description.
4. If you have already created an EMR cluster, then leave the default Choose an

existing cluster option selected and click Choose. Then select your cluster from
the list and click Choose cluster or select Create cluster and populate all fields as
needed for your cluster.

5. For the final step, choose Create Notebook.

After your cluster is created, it goes through statuses such as Pending, Starting, and
Ready. Once it is in the Ready state, you can choose Open in Jupyter or Open in
JupyterLab, which will open the interface in a new tab of your browser.

Now you can select your preferred programming language, Kernel, from the Kernel menu
and start writing, executing your code in an interactive way.

EMR Notebooks also provides a feature to execute them programmatically through EMR
APIs, which allows you to pass runtime parameters that can be used as input variables in
your notebook code. If you plan to execute the same code with different input variables,
then this feature is very helpful as you can avoid duplicating the notebook.

The following shows a sample AWS CLI command using which you can trigger a
notebook execution with a few runtime parameters:

aws emr --region us-east-1 \

start-notebook-execution \

--editor-id <editor-id> \

--notebook-params '{"parameter-1":"value-1", "parameter-
2":["value-1", "value-2"]}' \

--relative-path <notebook-name>.ipynb \

--notebook-execution-name <execution-name> \

--execution-engine '{"Id" : "<id>"}' \

--service-role EMR_Notebooks_DefaultRole

Notebook options available in EMR 115

As you can see, you can pass parameters using the —notebook-params option. Please
do replace <editor-id>, <notebook-name>, <execution-name>, <id>, and
parameter values before executing it.

JupyterHub
JupyterHub also provides the Jupyter Notebook interface with an additional feature to
host multiple instances of a single user notebook server, which creates a Docker container
on the cluster master node that includes all JupyterHub components with Sparkmagic
within the container.

JupyterHub includes Python 3 and Sparkmagic kernels include PySpark 3, PySpark, and
Spark kernels. Sparkmagic kernels allow Jupyter Notebook to interact with the Spark
service installed in your cluster using Apache Livy, which acts as a REST server for Spark.
If you need to install additional kernels or libraries, you can install them manually within
the container.

If you would like to list the installed libraries using conda, then you can run the following
commands on your cluster master node's command line:

sudo docker exec jupyterhub bash -c "conda list"

Alternatively, you can use the following pip command too to list the installed libraries:

sudo docker exec jupyterhub bash -c "pip freeze"

116 Big Data Applications and Notebooks Available in Amazon EMR

Let's look at the following diagram, which explains the core components of JupyterHub in
EMR with an authentication mechanism for administrators and notebook users.

Figure 4.2 – JupyterHub architecture in EMR

EMR v6.3.0 includes JupyterHub v1.2.0 and you can refer to the AWS documentation to
understand which EMR release includes which version of JupyterHub.

Setting up and configuring JupyterHub
JupyterHub is available as an application that you can choose while creating a cluster
through the AWS console, the AWS CLI, or the EMR API.

While setting up JupyterHub, we need to make sure that the cluster is not created with the
option to auto terminate, and the administrators and notebook users can access the EC2
key pair attached to the cluster.

Notebook options available in EMR 117

The following is an example AWS CLI command, which you can use to create an EMR
cluster with JupyterHub:

aws emr create-cluster --name="JupyterHub EMR Cluster"
--release-label emr-6.3.0 --applications Name=JupyterHub --log-
uri s3://<log-bucket>/<jupyter-cluster-logs> --use-default-
roles --instance-type m5.xlarge --instance-count 2
--ec2-attributes KeyName=<EC2KeyPairName>

Please replace the <log-bucket>, <jupyter-cluster-logs>,
<EC2KeyPairName> variables before executing the command.

Important Note
User-created notebooks and related files are saved on the cluster's master node,
which creates a risk of data loss if the cluster gets terminated. It is recommended
that you have a scheduler script that continuously backs up this data.

If you have done additional custom configuration changes on the container,
then they will get lost if the container gets restarted. So you should have
automation scripts ready that you can run to apply the custom configuration
changes after the container is restarted every time.

You can also provide the following additional JSON configuration while creating your
EMR cluster, which uses jupyter-s3-conf classification to configure JupyterHub to
persist notebooks in Amazon S3:

[

 {

 "Classification": "jupyter-s3-conf",

 "Properties": {

 "s3.persistence.enabled": "true",

 "s3.persistence.bucket": "<jupyter-backup-bucket>"

 }

 }

]

With this configuration, notebooks saved by each EMR user will be saved into the
s3://<jupyter-backup-bucket>/jupyter/<jupyterhub-user-name>
path, where <jupyter-backup-bucket> represents the S3 backup bucket and
<jupyterhub-user-name> represents the username of the logged-in user.

118 Big Data Applications and Notebooks Available in Amazon EMR

EMR Studio
EMR Studio also provides a fully managed Jupyter Notebook like EMR Notebooks but
comes up with a few additional features:

• AWS Single Sign-On integration, which allows directly logging in with your
corporate credentials.

• It does not need EMR console access and you can submit jobs to EMR on the
EKS cluster.

• Integrates with GitHub or Bitbucket for code repository sharing.

• Provides capabilities for simpler application debugging or automating job
submission to production EMR clusters using orchestration tools such as AWS Step
Functions, Apache Airflow, and Amazon Managed Workflows for Apache Airflow.

Often, an organization's data engineers and data scientists do not have access to the AWS
or EMR console and they would like to have their own notebook that has multiple kernels
to do interactive development. For such use cases, EMR Studio is a great fit.

You can point your EMR Studio to existing EMR clusters or new ones and can also submit
jobs to EMR on EKS clusters. EMR Studio adds value when it comes to building data
engineering or data science applications, where you can simplify development, debugging,
and deployment to production pipelines.

While setting up EMR Studio, you need to associate it with a few AWS resources such as
an Amazon VPC and subnets of that VPC with a current limitation of five subnets of that
VPC. As EMR Studio is associated with one VPC, you are allowed to access EMR clusters
or EMR on EKS virtual clusters within that VPC and defined subnets.

EMR Studio controls its access with IAM user and permission management. Each EMR
Studio instance uses a defined IAM service role and security group to provide access to an
EMR cluster. It uses the IAM user role with IAM session policies to control access of an
EMR Studio user.

EMR Studio is available in EMR v5.32.0 and 6.2.0 and later releases. You don't pay
anything for creating or using EMR Studio and the cost is calculated based on the amount
of resources you use on your EMR cluster or Amazon S3.

Notebook options available in EMR 119

Workspaces in EMR Studio
A workspace is the primary building block or component of EMR Studio. The first thing
you do in EMR Studio is to create a workspace, which has a similar user interface as
JupyterLab and it provides additional features such as creating and attaching a workspace
to EMR clusters, exploring sample notebooks, linking with GitHub or Bitbucket
repositories, and executing jobs.

After a workspace is created, you can assign one of the subnets of EMR Studio to the
workspace and then attach it to EMR on EC2 or EMR on an EKS cluster.

EMR Studio is associated with an Amazon S3 location and your workspace periodically
autosaves the notebook cell and content to the associated Amazon S3 location between
sessions. Apart from autosave, you can also manually save your notebook content with the
Ctrl + S keys or the Save option under the File menu. Alternatively, you can also link your
workspace with its repository to save it remotely and share it with your peers.

When you delete a single notebook from your workspace, its respective backup version
automatically gets deleted from S3. But if you delete the workspace completely without
deleting individual notebook files, then the notebook backup files does not get deleted
from S3, which might add to storage costs.

Installing kernels and libraries
EMR Studio comes with pre-defined libraries and kernels but it also provides the option
to install custom libraries.

The following are a couple of ways using which you can customize your EMR Studio
environment when it's attached to EMR on an EC2 cluster:

• Install Python libraries and Notebook kernels in an EMR cluster's master node:
With this option, the installed libraries will be available to all workspaces attached
to the cluster. You can install libraries or kernels from the notebook itself or can
SSH to your cluster's master node and install them through it.

• Notebook-scoped libraries: With this option, you can install libraries through your
notebook cell and these notebook-scoped libraries are available to that notebook
only. This option is good when some libraries are workload-specific and need not be
shared across the cluster.

Please note, EMR Studio attached to EMR on an EKS virtual cluster currently does not
support installing additional custom libraries or kernels.

120 Big Data Applications and Notebooks Available in Amazon EMR

Zeppelin
Apart from Jupyter Notebook, Apache Zeppelin also provides a web-based interactive
development environment that is integrated with several interpreters, including
Spark, Python, SQL, JDBC, Shell, and so on. Similar to Jupyter notebooks, you can
also use Zeppelin notebooks for data ingestion, exploration, analysis, visualization,
and collaboration.

Zeppelin notebooks are integrated into EMR starting with the v5.0.0 release and a few
previous releases included it as a sandbox application. EMR v6.3.0 includes Zeppelin
v0.9.0 and you can refer to the AWS documentation to find which version of Zeppelin is
included in other releases of EMR. Starting with EMR 5.8.0, Zeppelin supports integrating
AWS Glue Data Catalog as the metastore for Spark SQL. This integration is useful when
you plan to persist your metadata outside of an EMR cluster or you plan to share the
metastore with other EMR clusters. Please note, Zeppelin in EMR does not support
SparkR Interpreter.

Summary
Over the course of this chapter, we have dived deep into a few popular big data
applications available in EMR, how they are set up in EMR, and what additional
configuration options or features you get when you integrate with Amazon S3. Then we
provided an overview of the TensorFlow and MXNet applications, which are the machine
learning and deep learning libraries available in EMR. These applications are the primary
building blocks when you implement a data analytics pipeline using EMR.

Finally, we covered the different notebook options you have and how you can configure
and use them for your interactive development.

That concludes this chapter! Hopefully, you have got a good overview of these distributed
applications and are ready to dive deep into EMR cluster creation and configuration in the
next chapter.

Test your knowledge 121

Test your knowledge
Before moving on to the next chapter, test your knowledge with the following questions:

1. You have terabyte-scale data available in Amazon S3 and your data analysts are
looking for a query engine using which they can interactively query the data using
SQL. You already have a persistent EMR cluster, which is being used for multiple
ETL workloads, and to save costs you are looking for an application within EMR
that can provide the interactive query engine needed. Which big data application in
EMR best fits your need?

2. Your team is using EMR with Spark for multiple ETL workloads and it uses Amazon
S3 as the persistent data store. For one of the use cases, you receive data that does
not have a fixed schema and you are looking for a NoSQL solution that can provide
data update capabilities and also can provide fast lookup. Which EMR big data
application can support this technical requirement?

3. Your data scientists are looking for a web-based notebook that they can use for
their interactive data analysis and machine learning model development. Your
organization has strict security policies that do not allow AWS console access, and
also, to support centralized user management, you are looking for a notebook in
EMR that can easily support signing in with corporate credentials. Which notebook
option in EMR best suits your needs?

Further reading
Here are a few resources you can refer to for further reading:

• EMR release documentation, which includes EMR releases with big data
applications it supports: https://docs.aws.amazon.com/emr/latest/
ReleaseGuide/emr-release-components.html

• Detailed steps for setting up EMR Studio: https://docs.aws.amazon.com/
emr/latest/ManagementGuide/emr-studio-set-up.html

• IAM permissions and limits while using the AWS Glue Data Catalog as a Hive
external Metastore: https://docs.aws.amazon.com/emr/latest/
ReleaseGuide/emr-hive-metastore-glue.html

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-components.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-components.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-studio-set-up.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-studio-set-up.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive-metastore-glue.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive-metastore-glue.html

This part of the book will go deep into the advanced configuration of EMR applications,
hardware, networking, security, troubleshooting, logging, and the different SDKs/API
required to launch and manage EMR clusters. This section will also provide the details of
different scaling options and explain the security aspects of EMR such as data protection,
authentication, and granular permission management with AWS Lake Formation and
Apache Ranger.

This section comprises the following chapters:

• Chapter 5, Setting Up and Configuring EMR Clusters

• Chapter 6, Monitoring, Scaling, and High Availability

• Chapter 7, Understanding Security in Amazon EMR

• Chapter 8, Understanding Data Governance in Amazon EMR

Section 2:
Configuration, Scaling,

Data Security, and
Governance

5
Setting Up and

Configuring
EMR Clusters

In previous chapters, while explaining Amazon EMR architecture or different big data
applications within it, we have given sample AWS CLI commands and a few high-level
steps to create an EMR cluster. In this chapter, we will dive deep into setting up an EMR
cluster with quick options and also advanced configurations, using which you can control
different hardware, software, networking, and security settings.

This chapter will also explain troubleshooting, logging, and tagging features of the EMR
cluster and how you can leverage AWS SDKs and APIs to launch or manage clusters.

The following are the topics that we will cover in this chapter:

• Setting up and configuring clusters with the EMR console's quick create option

• Advanced configuration for cluster hardware and software

• Working with AMIs and controlling cluster termination

• Troubleshooting, logging, and tagging a cluster

• SDKs and APIs to launch and manage EMR clusters

126 Setting Up and Configuring EMR Clusters

Understanding these concepts will help you to have advanced control of your cluster
configurations, using which you can reduce maintenance overhead, optimize resources,
and also troubleshoot cluster or job failures.

Technical requirements
In this chapter, we will dive deep into an EMR cluster's advanced configuration, logging,
and debugging. To test out the configurations, you will need the following resources
before you get started:

• An AWS account

• An IAM user that has permission to create EMR clusters, EC2 instances and
dependent IAM roles, VPCs, and security groups and can access CloudWatch and
CloudTrail logs

Now let's dive deep into an EMR cluster's advanced options and how you can configure
them using the EMR console and the AWS CLI.

Setting up and configuring clusters with the
EMR console's quick create option
The EMR console's quick create option helps you to create an EMR cluster quickly with
default configurations specified for software, hardware, and security sections. Each
section has default values selected that you can change or override and there are some
configurations that are not exposed for selection during the cluster creation process.

For example, you do not get the option to select a Virtual Private Cloud (VPC) or subnet
for your cluster. EMR configures the cluster in your region's default VPC and public subnet.

Now, to get started, you can follow these steps to create a cluster:

1. After signing in to the AWS console, navigate to the Amazon EMR console at
https://console.aws.amazon.com/elasticmapreduce/.

2. Choose the Clusters option and then select or click Create cluster, which will open
the Quick create page.

3. On the Create Cluster - Quick Options page, you will have default values
populated that you can change as needed. We will cover the options in detail in a
later part of the chapter.

4. Then select Create cluster, which will launch the cluster.

https://console.aws.amazon.com/elasticmapreduce/

Setting up and configuring clusters with the EMR console's quick create option 127

5. Then, on the cluster status page, you can find the cluster status, which should
change from Starting to Running and then Waiting.

6. When the status reaches the Waiting stage, that means it's ready to accept jobs as
steps, and also you can SSH to the master node.

Now let's deep dive into the default configuration the quick create page shows, which you
might have seen in step 3.

It divides the cluster configuration into four sections: General Configuration, Software
configuration, Hardware configuration, and Security and access. The following
screenshot shows options you get in General Configuration and Software configuration:

Figure 5.1 – General Configuration and Software configuration of the EMR quick creation option

Now let's explore each of the settings you see in General Configuration and Software
configuration:

• General Configuration: This section of the configuration allows you to specify a
name for your cluster, enable logging for your cluster, and then define the launch
mode, which can be either Cluster or Step execution.

 � Logging requires an Amazon S3 path to which EMR will be writing logs. Please note
logging can be enabled while creating the cluster only and cannot be changed later.
With the quick options, EMR populates a default S3 path that you can override.

128 Setting Up and Configuring EMR Clusters

 � For Launch mode, Cluster is selected as the default value that you can change.
Cluster mode represents a long-running cluster that does not auto-terminate
the cluster when the job executions are completed. If you are creating a transient
cluster that needs to execute a few steps and then auto-terminate, then you can
select Step execution for Launch mode.

• Software configuration: Amazon EMR has different release versions and it
auto-selects the latest version that you can use to create your cluster. Each release
includes big data applications and their respective versions included in that release.
As a quick option, EMR specifies a set of applications to choose from. For example,
Core Hadoop includes Hadoop, Hive, Hue, Mahout, Pig, and Tez, and similarly,
HBase, Spark, and Presto are also a few other application packages listed that
you could choose from. If you need a custom set of applications, then you can use
advanced EMR options.

In addition to selecting an EMR release and big data applications, you will also see
the Use AWS Glue Data Catalog for table metadata option, which is unchecked
by default. This option will enable you to use the AWS Glue Data Catalog as a Hive
external metastore.

Now let's understand the configuration settings you get for Hardware configuration and
Security and access.

Figure 5.2 – Hardware configuration and Security and access configuration of the EMR quick
create option

Advanced configuration for cluster hardware and software 129

• Hardware configuration: This facilitates choosing the EC2 instance type for your
cluster, the number of instances you need, and whether you plan to enable scaling
on your cluster.

By default, EMR specifies 3 as the total instance count for the cluster, which includes
1 master and 2 core nodes. If you would like to change the configuration or would like
to configure multiple master nodes, then you can switch to advanced configuration.

The scaling option is disabled or unchecked by default, but if you plan to enable it,
then it requests that you provide the minimum and maximum instance counts for
core nodes. By default, it has 2 as the minimum nodes and 10 as the maximum,
which you can change as per your requirements. EMR offers two cluster scaling
mechanisms, auto scaling and managed scaling, which we will deep dive into in
future chapters. With quick option configuration, EMR will use managed scaling to
scale the cluster up and down.

• Security and access: This section allows you to configure IAM roles, permissions,
and an EC2 key pair for your cluster. By default, EMR creates EMR_DefaultRole
and EMR_EC2_DefaultRole with the required permissions, but you can override
them with custom roles or permissions you would like to apply.

EC2 key pair is an optional parameter. You can assign an EC2 key pair if you plan
to link to the cluster node using Secure Shell (SSH) and submit steps or execute
commands via the CLI. Please note, you need to create an EC2 key pair first before
creating the EMR cluster and it's recommended to assign an EC2 key pair as
without it, you won't be able to connect to the cluster master node using SSH.

As we have got an overview of the quick cluster creation option, now let's dive deep
into the advanced configurations EMR provides to control cluster hardware, software,
networking, and security controls.

Advanced configuration for cluster hardware
and software
In the previous section, you saw the default configurations the quick option provides,
and now, we will see how you can customize each of those default configurations as per
your requirements.

130 Setting Up and Configuring EMR Clusters

Understanding the Software Configuration section
Using the Software Configuration section, you can choose the EMR release, the
applications you plan to set up, master node and metastore configurations, and any custom
configurations you plan to add that may override default configurations of the cluster.

The following explains each of these configurations.

• Release: In this section, you can select the EMR release you plan to use. After
selecting the release, you will see the list of applications that release includes
with their software version. For each release, EMR automatically marks a few
applications as selected, which you are free to change if needed.

• Multiple master nodes: EMR supports enabling multiple master nodes, which
brings high availability to your cluster. You can select either one or three master
nodes. However, launching three master nodes is only supported starting with the
EMR 5.23.0 release.

Higher availability is achieved by using an EMR cluster with three master nodes. If
one of the master nodes goes down, then it automatically fails over to another master
node without any interruption. Meanwhile, EMR also replaces the failed master node
with required configurations and bootstrap actions, so that the cluster maintains
three master nodes for high availability. EMR also extends the high availability
feature to a few big data applications, such as HDFS, YARN, Hive, Hue, Oozie, and
Flink, benefitting from the multiple master feature. For Hive, Hue, and Oozie you
need to make sure that the metastore databases are externalized outside of the master
node so that the failover to other master node does not affect the operation.

• AWS Glue Data Catalog settings: As we have explained in previous chapters,
you can externalize your metastore databases outside of your cluster. For that, you
can leverage either Amazon RDS, Amazon Aurora databases, or AWS Glue Data
Catalog. This setting allows you to specify whether you would like to leverage AWS
Glue Data Catalog for Hive and Spark applications. By default, these applications
are not selected and you can enable them as needed.

Advanced configuration for cluster hardware and software 131

• Edit software settings: This section enables you to provide additional custom
configuration parameters, which are intended to override the default configurations
of the cluster. Configuration objects include a big data application's classification,
such as the Hadoop core site, its properties, and other optional nested
configurations. You can provide custom configuration as a JSON string or you
can save your JSON configuration into Amazon S3 and specify the S3 path while
creating the cluster.

For example, the following sample JSON specifies configurations for core-site
and mapred-site classifications and includes Hadoop and MapReduce properties
with values that you plan to override in the cluster. In the previous chapter, while
covering different big data application configurations, we covered several other
examples similar to this.

[

 {

 "Classification": "core-site",

 "Properties": {

 "hadoop.security.groups.cache.secs": "500"

 }

 },

 {

 "Classification": "mapred-site",

 "Properties": {

 "mapred.tasktracker.map.tasks.maximum": "10",

 "mapreduce.map.sort.spill.percent": "0.80",

 "mapreduce.tasktracker.reduce.tasks.maximum": "20"

 }

 }

]

132 Setting Up and Configuring EMR Clusters

The following diagram is a screenshot of the AWS console that shows software
configurations within the advanced cluster creation options.

Figure 5.3 – Software Configuration of EMR's advanced cluster create option

After understanding what options you have under Software Configuration, let's next
understand what options you get while configuring steps in your EMR cluster.

Understanding Steps
After specifying software configurations, you can specify steps for your cluster, which may
run sequentially or in parallel.

The following are the settings available when you specify optional steps for your cluster:

• Concurrency: This setting is disabled or unchecked by default, which means all the
steps you add to the cluster will get executed in sequence. By enabling this setting,
you can specify a maximum for how many steps or jobs can run in parallel to utilize
the cluster resources better.

• After last step completes: This setting gives you control to specify whether you
would like to terminate your cluster when all defined steps complete execution or
you would like to keep the cluster active in the waiting state so that other jobs can
be submitted later.

Advanced configuration for cluster hardware and software 133

• Step type: This setting allows you to add a step to the cluster and the steps can be a
Hive, Pig, Spark, or custom JAR file job. Choosing any type opens up an additional
configuration screen where you can specify parameters for the step or job.

The following screenshot of the EMR console shows the parameters for steps:

Figure 5.4 – Steps configuration of EMR's advanced cluster create option

In this section, you have learned how you can configure steps in your cluster to get
executed in sequence or in parallel. Next, you will learn what hardware configuration
options are available.

Understanding the Hardware Configuration section
This section provides configurations using which you can control your cluster hardware,
networking, and scaling configurations.

The following explains each of these configurations.

• Cluster Composition: This is an important configuration for the cluster hardware
where you can specify your cluster nodes to be part of an instance group or instance
fleet. An instance group represents a uniform node type for your cluster, whereas
an instance fleet represents a mix of different EC2 instance types for core or task
nodes. Based on the cluster composition you select, you get additional configuration
parameters in cluster node types and cluster scaling configuration.

• Networking: This section allows you to launch your cluster in your region's default
VPC or other public or private VPC. Apart from configuring a VPC, you can
specify one or more subnets for your cluster within which instance nodes will be
launched. The subnets can be public, private, or shared, or can be associated with
AWS Local Zones or AWS Outposts.

134 Setting Up and Configuring EMR Clusters

Please make sure you have created the VPC and subnets before so that you can
select them while creating your EMR cluster configuration.

The following screenshot shows an EMR console screen that includes
Cluster Composition:

Figure 5.5 – Cluster Composition configuration of your EMR cluster
And here's a screenshot of Networking information in the EMR console:

Figure 5.6 – Networking configuration of your EMR cluster

• Cluster Nodes and Instances: This section of the configuration provides the control
to choose Instance type, Instance count, and Purchasing option options for the
Master, Core, and Task node types. The following EMR console screenshot shows
where you can select cluster nodes and instances.

Advanced configuration for cluster hardware and software 135

Figure 5.7 – EMR Cluster Nodes and Instances type configuration
Please note, Task node types are optional so you can delete them if needed. Also, if
you plan to leverage Task node types, then you have the flexibility to add multiple
task instance groups where you can specify a different instance type and instance
count for each task instance group.

• Cluster scaling: You can enable scaling capability on your cluster by selecting the
Enable Cluster Scaling option. It provides the flexibility to choose between EMR
managed scaling and a custom scaling policy. With EMR managed scaling you
need to provide your minimum and maximum nodes and the maximum number of
on-demand and core nodes for scaling.

With a custom auto scaling policy, you can define custom scale-out and scale-in
rules with any cluster or application parameters. We will deep dive into this topic in
the next chapter.

Please note, when you select Instance fleets as the cluster instance group
composition, for the scaling feature you only get the EMR managed scaling option
as custom auto scaling is not available for instance fleets.

136 Setting Up and Configuring EMR Clusters

• EBS Root Volume: Each instance type you choose will have an EBS root volume
attached to it and you can control the size of the volume you need for it. Please note,
you can increase the default 10 GB size to a maximum of 100 GB and the same size
will be applicable to all instances of the cluster.

The following is a screenshot of the EMR console showing Cluster scaling and EBS Root
Volume size settings:

Figure 5.8 – EMR Cluster scaling and EBS Root Volume size configuration

In this section, you have learned about configurations related to EC2 instances of
the cluster, EBS volumes attached to the EC2 instances, scaling the resources, and
also specifying a VPS and security groups. Next, you will learn about a few general
configurations that you can apply to your cluster.

Understanding general configurations
This section allows you to configure logging, debugging, tagging, and bootstrap actions on
your cluster. This section also provides the option to choose EMR File System (EMRFS)
consistent view and a custom Amazon Machine Image (AMI) for your cluster.

Now let's get an overview of each of these settings:

• General Options: In this section, you can specify your cluster name and specify the
configuration for logging, log encryption, debugging, and termination protection.
Please note, you can specify these options while launching the cluster only. We will
dive deep into each of these sections in future sections of this chapter.

Advanced configuration for cluster hardware and software 137

The following screenshot shows the options you get under General Options:

Figure 5.9 – General Options for your EMR cluster

• Tags: With tagging, you can group your resources and identify usage and cost by the
environment, project, AWS services, and more. It consists of a key and value pair
and you can add more than one tag for your cluster. For example, you can add tags
to your EMR cluster such as the name of the environment, the project name, project
type, the owner, and so on.

Tags assigned to an EMR cluster are also propagated to its underlying EC2 instances
and you can add or remove tags after the cluster is created too. You might also use
tags to define IAM permissions.

The following is a screenshot of the EMR console that represents assigning multiple
tags to your cluster:

Figure 5.10 – Adding tags for your EMR cluster

138 Setting Up and Configuring EMR Clusters

• Additional Options: This section allows you to specify a custom AMI ID that you
plan to use for your cluster nodes and any bootstrap actions you would like to add.
By default, your EMR cluster uses Amazon Linux AMI for Amazon EMR but starting
from the EMR 5.7.0 release, you can override it by providing your custom AMI.

If you would like to install custom libraries and software on your cluster nodes, then
you have two options to do it. Either you can specify bootstrap actions with the
command you would like to execute or create a custom AMI with all the required
software and use that to launch your cluster. Please note a custom AMI performs
better compared to bootstrap actions as bootstrap actions are executed after the
cluster is created.

Figure 5.11 – Additional Options for your EMR cluster

Important Note
EMR provides the EMRFS consistent view option to solve the eventual
consistency issue of Amazon S3. But recently Amazon S3 started supporting
strong read-after-write consistency, which means you won't face the eventual
consistency issue.

You don't need to enable the EMRFS consistent view option for any of the
EMR release versions.

In this section, you have learned about general configurations using which you can specify
logging, debugging, and tagging options for your cluster and also can specify custom
AMIs with bootstrap actions. In the next section, you will get an overview of the options
EMR has related to the security of the cluster.

Advanced configuration for cluster hardware and software 139

Understanding Security Options
The Security Options section gives you configurations to specify EC2 key pairs, IAM
roles, security groups, and more, using which you can control who can access your cluster
resources and what privileges they have. By default, EMR creates roles and access policies as
needed by the cluster, but you can override them with your custom roles and access policies.

Now let's get an overview of each of these settings:

• EC2 key pair: As explained regarding the quick create option, EC2 key pairs are
used to link to the master node using SSH and it is recommended to assign an EC2
key pair while creating the cluster as you cannot assign one later.

• Permissions: By default, EMR creates three roles – EMR_DefaultRole as the
EMR role, EMR_EC2_DefaultRole as the EC2 instance profile, and EMR_
AutoScaling_DefaultRole as the Auto Scaling role. But you can create your
own custom roles and assign them to the cluster.

To understand each of these roles better, EMR role calls or interacts with other
AWS services, such as EC2, while creating the cluster. The EC2 instance profile
role provides access to cluster EC2 instances to access other AWS services such as
Amazon DynamoDB, Amazon S3, and more. The Auto Scaling role provides access
to add or remove EC2 instances from the cluster when scaling up or down happens
through managed scaling or auto scaling policies.

• Security Configuration: This allows you to specify encryption and authentication
options for your cluster. You need to create the configuration before creating the
EMR cluster.

• EC2 security groups: EC2 security groups provide firewall security for your AWS
services' inbound and outbound access. You can control which ports are allowed to
access which source IP or security group or whether it is open to all.

EMR establishes two security groups by default: one for the master node and
another for the core and task nodes. You can choose EMR managed security
groups, which EMR automatically updates as needed or you can create your custom
security groups to control access to your cluster.

140 Setting Up and Configuring EMR Clusters

The following is a screenshot of the EMR console that includes the security options you
get when you create an EMR cluster with advanced options.

Figure 5.12 – Security options for your EMR cluster

After selecting options on the final security screen, click Create cluster, which will launch
the cluster and start executing steps if defined or will go into the waiting state.

In this section, you have learned how you can use the EMR console's advanced options
to create your EMR cluster. In the next section, let's dive deep into working with custom
AMIs and how you can control cluster termination.

Working with AMIs and controlling cluster
termination
In the previous section, we explained how EMR by default uses the Amazon Linux AMI for
EMR and you have the option to create a custom AMI and use it while creating a cluster.

Now, in this section, we will dive deep into the default Amazon Linux AMI for EMR,
custom AMI implementations, and how cluster termination works that you can configure
as per your use case.

Working with AMIs and controlling cluster termination 141

Working with AMIs
An AMI includes all the resources required to launch an EC2 instance. While launching
an instance, you can specify the AMI it should be using. You can use the same AMI to
launch multiple EC2 instances. If your EC2 instances need different configurations, then
you can create instance-specific AMIs.

An AMI has the following components:

• One or more Elastic Block Store (EBS) snapshots, or if the AMI is backed by an
instance store, a template for the EC2 instance's root volume. This might include an
operating system, applications, and application servers.

• Permissions that defines which AWS account can use this AMI to launch
EC2 instances.

• A block device mapping, which defines the volumes to be attached when an
instance is launched.

Next, we will learn how EMR uses the default AMIs available and what configurations are
available to specify your custom AMIs.

Using the default Amazon Linux AMI for EMR
For each EMR release version, there is a predefined and pre-configured AMI available
that is integrated with the big data applications in that release. This means even if a new
Amazon Linux AMI is available for that release, it won't be used in EMR. This is the
reason it is recommended to use the latest release of EMR unless you have a specific need
to use earlier releases of EMR.

The following explains how software updates are handled in the default AMI:

• When the EMR cluster's EC2 instance boots for the first time, it uses the default
Amazon Linux AMI for Amazon EMR, identifies the package repository enabled
for the AMI, and checks for software updates that apply to the AMI version. Similar
to other EC2 instances, important security updates are applied automatically from
these repositories.

Please note your networking and firewall settings should allow egress traffic to the
Amazon Linux repository in S3.

• By default, software packages or kernel updates that require instance reboot are not
automatically downloaded while launching the instance.

142 Setting Up and Configuring EMR Clusters

• The cluster completes the launch irrespective of whether the package installation
is successful or not. If for any reason there is a network issue or the repository is
not reachable and the software packages cannot be installed, that does not stop the
cluster launch. So provide additional monitoring to keep a check on the cluster.

Important Note
It is recommended not to run sudo yum update on cluster EC2 instances
either through the SSH command line or using bootstrap actions. This might
create incompatibilities between nodes and big data applications.

The following are a few considerations or best practices that you can follow while using
the default AMI:

• If you are using an earlier release of EMR, before updating software packages,
consider testing the migration with the latest release.

• If you plan to migrate to the latest release, then test the implementation in a
non-production environment. To do this, you can leverage the cloning feature for
the EMR cluster.

• Look at Amazon Linux Security Center for any updates.

• Avoid installing custom packages by directly doing SSH to individual cluster nodes
as it might create inconsistencies across nodes. Instead, use bootstrap actions for
additional custom installations, which will install required software packages across
the cluster. This requires terminating the cluster and relaunching it.

Using a custom AMI with your EMR cluster
In EMR, custom AMIs are supported starting with the EMR 5.7.0 release. It's useful to use
a custom AMI when you need to do the following:

• Perform software customizations or pre-install applications before using the cluster.
As explained earlier, you can do customizations using bootstrap actions too but
pre-installed or pre-configured AMIs help in reducing the time required to launch an
EMR cluster as the customizations are already a part of the cluster and no additional
step is needed. This way, custom AMIs can improve your cluster start time.

• Implement more automated, sophisticated node and cluster configurations than
bootstrap action steps allow.

Working with AMIs and controlling cluster termination 143

Earlier than the EMR 5.24.0 release, you could use encrypted EBS root volumes only if you
are using custom AMIs. But after EMR 5.24.0, you have the option to specify encryption
using EMR security configurations. Having gotten an overview of default and custom AMIs,
next we will learn the difference between cluster-level and instance-level AMIs.

Cluster-level versus instance-level custom AMIs
While assigning custom AMIs, you have the option to assign a single custom AMI to the
whole cluster or an instance-level custom AMI, which will have a different custom AMI
for each instance of your cluster.

Important Note
Please note, you cannot have both instance-level and cluster-level AMIs
assigned at the same time.

Starting from EMR release 5.7.0 and later, you have the option to specify a different
instance-level custom AMI for each instance type in an instance group or instance fleet.
For example, you can configure arm64 architecture that is available with m6g.xlarge
instance types and x86_64 architecture that is available in m5.xlarge instance types in
the same instance fleet or group. Each instance type will use a custom AMI that matches
its application architecture.

The following are some differences you will find when comparing cluster-level custom
AMIs with instance-level AMIs:

• Instance-level custom AMIs can use both Graviton based ARM and x86 architectures
in the same cluster, which you cannot do with single cluster-level AMIs.

• You can assign a custom AMI when adding an instance fleet or instance group to an
already running cluster only with instance-level AMIs.

• Be it cluster-level or instance-level custom AMIs, you cannot run a custom AMI
and an EMR AMI in the same cluster.

The following are a few best considerations or best practices that you can follow when
creating your EMR cluster with custom AMIs:

• EMR 5.30.0 and later and the Amazon EMR 6.x series clusters are based on Amazon
Linux 2, so for them, you need to use custom AMIs based on Amazon Linux 2. For
EMR releases earlier than 5.30.0, you should use a 64-bit Amazon Linux AMI.

• Use the most recent EBS-backed Amazon Linux AMI as the base for
your customizations.

144 Setting Up and Configuring EMR Clusters

• Avoid copying a snapshot of an existing cluster EC2 instance to create a custom
AMI as that causes errors.

• Make sure you choose only the HVM virtualization type and instances that are
compatible with Amazon EMR. Please check the AWS documentation to find the
supported instance types.

• Your cluster service role should have launch permissions on the AMI or your AMI
should be public to grant access, or you might be the owner of the AMI or the
owner of the AMI shared it with you.

• Avoid using application names such as "Hadoop," "Hive," or "Spark" as user names
for the AMI, as they might conflict with cluster service names and cause errors.

• If your AMI has contents in the /var, /tmp, and /emr folders, then they are
moved to the respective /mnt/ path of the cluster (for example, /mnt/var, /
mnt/tmp, and /mnt/emr). Please note, these file contents are reserved so if you
have a large amount of data in these paths, then that might affect your cluster
startup time.

For more detailed considerations and limitations, please refer to the AWS documentation,
which might include more updates with new EMR releases.

Important Note
Please note, while using a custom AMI for your EMR cluster, use the Update
all installed packages on reboot option, which is recommended.

In this section, you got an overview of default and custom AMIs in EMR and how you can
configure them at the instance or cluster level. In the next section, we will dive deep into
the EMR cluster termination process and how you can control it.

Controlling the EMR cluster termination process
As explained in the previous section, while creating an EMR cluster you can configure it
to be long-running or you can configure it to auto-terminate after the defined steps have
completed successful execution. When a cluster gets terminated, all its associated Amazon
EC2 instances are terminated and you lose access to data in the EBS volume or instance
store. The content of the EBS volume or instance store is not recoverable, which means
you should have a good strategy in place for terminating your cluster.

Working with AMIs and controlling cluster termination 145

Auto-terminating the cluster in transient cluster use cases optimizes your costs as the
cluster does not spend time in the waiting state and you pay for actual usage hours. In
long-running clusters that require interactive analytics, you can enable termination
protection to prevent accidental termination of the cluster.

There are a few important points that you should consider:

• EMR clusters created through the AWS console or the AWS CLI do not have auto-
termination enabled by default, whereas clusters created through the EMR API have
auto-termination enabled by default.

• EMR enables auto-termination for clusters that have multiple masters and it
overrides any settings you provide for auto-termination.

• To terminate a cluster with multiple masters, you need to disable the auto-
termination settings first and only then will it allow you to terminate the cluster.

Now let's get more insights into how you can leverage auto-termination and termination
protection features of EMR.

Configuring an EMR cluster to auto terminate
If you plan to auto terminate your cluster after your steps are done, then you can look at
the following options to configure auto-termination:

• Using the quick creation option of the AWS console: When you create a cluster
using the quick create option of the AWS console, auto-termination is only enabled
if you follow the Step execution launch mode.

• Using the advanced option of the AWS console: When you create a cluster using
the advanced option, under the Steps (optional) configuration, select Cluster
auto-terminates for the After last step completes setting.

• Using the AWS CLI: When creating a cluster with AWS CLI commands, you can
enable auto-termination for your cluster using the --auto-terminate option.
The following is a sample AWS CLI command that includes auto-termination
configuration:

aws emr create-cluster --name "EMR Cluster"
--release-label emr-6.3.0 --applications Name=Hive
Name=Spark --use-default-roles --ec2-attributes
KeyName=myKey --steps Type=HIVE,Name="Hive Program",
ActionOnFailure=CONTINUE, Args=[-f,s3://<mybucket>/
scripts/query.hql,-p,INPUT=s3://<mybucket>/
inputdata/,-p,OUTPUT=s3://<mybucket>/
outputdata/,$INPUT=s3://<mybucket>/

146 Setting Up and Configuring EMR Clusters

inputdata/,$OUTPUT=s3://<mybucket>/outputdata/]
--instance-type m5.xlarge --instance-count 4 --auto-
terminate

This section explained how you can configure the auto-termination of your cluster when
you have transient EMR cluster use cases. Now let's look at long-running cluster use cases,
where you can enable termination protection to prevent accidental termination.

Using termination protection for your long-running cluster
When you have enabled termination protection on your long-running cluster, you can still
terminate it but with an additional step where you have explicitly disabled the termination
protection first and then terminate your cluster. This feature helps you prevent
terminating the cluster because of any error.

When termination protection is enabled on your cluster, the TerminateJobFlows
action of the EMR API fails so you cannot terminate the cluster using the API or AWS
CLI. The AWS CLI exits the command execution with a non-zero return code and
the EMR API returns an error but if you are using the EMR console, then you will be
prompted if you need to turn off the termination protection.

Important Note
Please note that termination protection prohibits you from terminating the
cluster but does not provide any guarantee against data loss or rebooting the
EC2 instances that might be caused because of human error. You can still trigger
an EC2 instance reboot when you are connected to any instance through SSH or
you have an automated script that triggered a reboot of the instance.

With termination protection, there are chances your HDFS data will still be
lost. Leverage Amazon S3 as your persistent data store to prevent data loss
because of EC2 instance failures.

Also note that termination protection does not affect your cluster when you
resize your cluster with auto scaling policies or when you add or remove
instances from your cluster's instance group or instance fleet.

Next, we will learn how EMR termination protection works when your cluster uses EC2
Spot instances.

Working with AMIs and controlling cluster termination 147

Termination protection with EC2 and Spot instances
When you enable termination protection for your EMR cluster, it has the
DisableAPITermination attribute set for all the Amazon EC2 instances of the
cluster. Please note, you do have separate termination protection configuration available
for your EC2 instances and when you trigger a termination request for your EMR cluster
and the settings for EMR and EC2 instances conflict, then EMR overrides the EC2
instance settings.

Let's assume you have used the EC2 console to enable termination protection for your
EC2 instances but your EMR cluster has termination protection disabled. In that state, if
you terminate your EMR cluster, then it will set DisableApiTermination to false on
the associated EC2 instances and then terminate the instance and the cluster.

Important Note
Please note that the termination protection setting of your EMR cluster does
not apply to EC2 Spot instances. If you are using EC2 Spot instances for your
cluster's core or task nodes and the Spot price rises beyond the maximum Spot
price you have defined, then Spot instances will get terminated irrespective of
the termination protection setting on the cluster. With Use on-demand as max
price, you can avoid Spot instance termination.

Having learned how termination protection works with EC2 and Spot instances, next we
will learn how termination protection works when we have unhealthy YARN nodes.

Termination protection behavior with unhealthy YARN nodes
As we explained in Chapter 2, Exploring the Architecture and Deployment Options, EMR
periodically checks the status of YARN applications running on instances and also the
instance's health by checking the status of NodeManager's health checker service. If any
specific node is reported as UNHEALTHY, then the EMR instance controller does not
allocate any new containers to it and blacklists the node until it becomes healthy again.

There can be multiple reasons for an EC2 instance becoming unhealthy, but a common
reason is the instance disk utilization goes beyond 90%. If a node continues to be
UNHEALTHY for more than 45 minutes, then Amazon EMR takes the following actions,
depending on whether the cluster has termination protection enabled or not:

• If termination protection is enabled, the unhealthy EC2 core instances continue to
remain in the blacklisted state and will be counted towards your cluster capacity
or cost. As the EC2 instances are not terminated, you can connect to your EC2
instance, make configuration changes, or perform data recovery and can resize your
cluster to add additional node capacity.

148 Setting Up and Configuring EMR Clusters

However, unhealthy task nodes are not protected from termination and get
terminated if they continue to stay unhealthy for more than 45 minutes.

• If termination protection is disabled on your cluster, then EMR terminates the EC2
instances irrespective of task or core nodes, but to maintain the minimum capacity
specified in the instance group or instance fleet, it provisions new instances.

If all of the core nodes of the cluster are reported as UNHEALTHY for more than 45
minutes, the complete EMR cluster will be get terminated with the NO_SLAVES_LEFT
status.

When the instances get terminated, the HDFS data will get lost and you will not have
a way to recover them. So it is recommended to enable termination protection on your
cluster and also use Amazon S3 as a persistent data store instead of instance EBS volumes
as an HDFS store.

Termination protection, auto-termination, and step execution
When you have enabled both termination protection and auto-terminate settings with
step execution, then auto-termination takes precedence, which terminates the cluster after
finishing all step execution.

When you define steps on your cluster, you do have the option to configure what action
should be taken when a step fails. You can set the ActionOnFailure property value to
define the action on step failure, which has values of CONTINUE, CANCEL_AND_WAIT,
and TERMINATE_CLUSTER.

If auto-termination is enabled and ActionOnFailure is set to CANCEL_AND_WAIT,
then the cluster gets terminated without executing any other subsequent steps.

If ActionOnFailure is set to TERMINATE_CLUSTER, then the cluster terminates in all
cases except when auto-termination is disabled and termination protection is enabled.

Configuring termination protection while launching your cluster
You can enable termination protection while creating your cluster using the AWS console,
the AWS CLI, or using the EMR API. Termination protection is disabled by default in all the
approaches except when you create a cluster using the AWS console's advanced options.

Working with AMIs and controlling cluster termination 149

Now let's learn how you can configure termination protection for your cluster while
creating it through the AWS CLI or AWS console:

• Using the AWS Console: When you create a cluster using advanced options, go
to General Cluster Settings under General Options and select the Termination
protection option to enable it or uncheck it to disable it. The following screenshot
represents the option in the AWS console.

Figure 5.13 – Termination protection configuration with EMR advanced cluster create options

• Using the AWS CLI: When creating a cluster with the AWS CLI commands, you
can enable termination protection on your cluster using the --termination-
protected parameter. The following is a sample AWS CLI command that includes
termination-protected configuration:

aws emr create-cluster --name "EMR Cluster"
--release-label emr-6.3.0 --applications Name=Hive
Name=Spark --use-default-roles --ec2-attributes
KeyName=myKey --steps Type=HIVE,Name="Hive Program",
ActionOnFailure=CONTINUE, Args=[-f,s3://<mybucket>/
scripts/query.hql,-p,INPUT=s3://<mybucket>/
inputdata/,-p,OUTPUT=s3://<mybucket>/
outputdata/,$INPUT=s3://<mybucket>/
inputdata/,$OUTPUT=s3://<mybucket>/outputdata/]
--instance-type m5.xlarge --instance-count 4
--termination-protected

Now let's learn about termination protection.

150 Setting Up and Configuring EMR Clusters

Configuring termination protection for a running cluster
In the previous section, you learned how you can configure termination protection while
launching or creating a cluster, but you also have the option to change the settings for an
already running cluster.

You can change the setting through both the AWS console and the AWS CLI:

• Using the AWS console: To change the termination protection configuration
for a running cluster, you can navigate to the EMR console, select the cluster for
which you plan to change the configuration, and then on the Summary tab, for
Termination protection, choose Change, which will provide the following options:

Figure 5.14 – Change the Termination protection configuration
Select On or Off and select the green check mark to confirm it.

• Using the AWS CLI: To change the termination protection configuration
for a running cluster using the AWS CLI, leverage the modify-cluster-
attributes EMR CLI command with the —termination-protected or —
no-termination-protected parameters. The following is a sample AWS CLI
command to enable termination protection for a running cluster:

aws emr modify-cluster-attributes --cluster-id
<cluster-id> --termination-protected

The following is a sample AWS CLI command to disable termination protection for
a cluster if it is already enabled:

aws emr modify-cluster-attributes --cluster-id
<cluster-id> --no-termination-protected

Before executing the preceding commands, please replace <cluster-id> with your
EMR cluster ID.

In this section, you have learned about an EMR cluster's default AMI and how you can
configure a custom AMI. You have also learned about the cluster termination process.

In the next section, you will get an overview of how you can troubleshoot your cluster
failures and what logging options you have that can help troubleshoot your cluster.

Troubleshooting and logging in your EMR cluster 151

Troubleshooting and logging in your EMR
cluster
An Amazon EMR cluster has several components, such as open source software, custom
application code, and AWS integrations, which can contribute to cluster failures or can
take longer than expected to complete defined jobs. In this section, you will learn how you
can troubleshoot these failures and what fixes can be applied.

When you are starting to implement big data applications in an EMR cluster, it's
recommended to enable debugging on the cluster and also take a step-by-step approach to
test your application with a smaller subset of data, which might help in debugging failures.

Let's dive deep into a few troubleshooting aspects that can help.

Tools available to debug your EMR cluster
We can divide the set of tools available for troubleshooting into the following
three categories:

• Tools that display cluster details

• Tools to view cluster or application logs

• Tools that can be used to monitor cluster performance

Now let's dive deep into each of these sections.

Tools that display cluster details
You can leverage the AWS EMR console, AWS CLI commands, or EMR APIs to get cluster
details or any specific job details:

• Using the AWS console: On the EMR console, you can see a list of active or
terminated clusters that you have launched in the past 2 months. You can select
the cluster name for which you would like to get more details and the cluster detail
screen provides information with a multiple-tab structure that includes a summary,
application user interfaces, monitoring, hardware, and more.

The Application user interface tab of the console provides more details about
YARN or other applications' status, such as Spark, where you can drill down to
find different metrics, job stages, and executors assigned to them. This interface is
available for EMR clusters with a release version of 5.8.0 or more.

152 Setting Up and Configuring EMR Clusters

• Using the AWS CLI: You can get cluster details using the AWS CLI command by
passing the —describe parameter.

• Using the EMR API: You can leverage DescribeJobFlows of the EMR API to
get details about a specific cluster.

Having learned how you can find cluster details; next we will look at what tools we have to
view log files.

Tools to view log files
Both Amazon EMR and big data applications on the cluster generated different log files
and you can access these log files which depends on the configuration that you specified
while creating the cluster.

The following are some of the ways you can access logs:

• Log files on the cluster master node: Every cluster publishes its logs to the
/mnt/var/log/ path of the master node, which is accessible till the time the
cluster is active.

• Log files archived in Amazon S3: While launching the cluster, if you have specified
an Amazon S3 path, then EMR copies the master node logs available in /mnt/
var/log/ to S3 every 5 minutes. This helps you persist the log files, which you can
access after the cluster is terminated too. As the log files are copied every 5 minutes,
a few last-minute logs might not be available when the cluster is being terminated.

Having understood how you can access the log files of your cluster, in the next section,
you will learn how you can monitor your cluster's performance.

Introducing tools to monitor cluster performance
To monitor your cluster usage and performance, you have primarily two options. One
is Hadoop application web interfaces that you can access to monitor respective big data
applications and the other is Amazon CloudWatch, which can be used for centralized
logging too:

• Hadoop application web interfaces: Depending on the big data applications you
have configured on your cluster; you can access web interfaces available for them
using an SSH tunnel through the cluster master node. You can learn about this a bit
more in the next chapter.

• Amazon CloudWatch metrics: EMR clusters publish various metrics to
CloudWatch, which you can use for monitoring or defining alarms with
CloudWatch rules.

Troubleshooting and logging in your EMR cluster 153

In this section, you have learned about different tools available in your EMR cluster for
viewing cluster details, accessing logs, and monitoring applications. In the next section,
you will learn how you can view and restart different EMR applications.

Viewing and restarting cluster application processes
While troubleshooting or monitoring your cluster, you might be interested to list the
application processes running in your cluster and for any configuration changes, you
might need to restart them.

There are two types of processes that run on a cluster. One is EMR processes, which
can be instance-controller or LogPusher, and the other is related to your Hadoop
application-related processes, for example, Hadoop-yarn-resourcemanager or
Hadoop-hdfs-namenode.

Now let's get an overview of how you can view or restart these application processes.

Viewing running processes of your cluster
To view the list of Amazon EMR processes, you can execute the following command on
your cluster master node's Linux prompt:

ls /etc/init.d/

This command will provide output as follows:

acpid cloud-init-local instance-controller ntpd

To view the list of processes related to the application released, you can execute the
following command on your master node's Linux prompt:

ls /etc/init/

This command will provide output as follows:

control-alt-delete.conf hadoop-yarn-resourcemanager.conf
hive-metastore.conf

In this section, you have learned about identifying running processes and in the next
section, you will learn how you can restart them.

154 Setting Up and Configuring EMR Clusters

Restarting processes
After you identify the processes running, you might need to stop, start, or restart them.
Depending on whether it's an Amazon EMR process or Hadoop application process, you
will have a different command to restart the processes.

To stop, start, or restart Amazon EMR processes, you can execute the following commands:

sudo /sbin/stop <process-name>

sudo /sbin/start <process-name>

To restart the processes related to EMR application releases, you can execute the
following commands:

sudo /etc/init.d/<process-name> stop

sudo /etc/init.d/<process-name> start

Please replace <process-name> in the preceding commands with the actual process
you plan to stop and start.

Troubleshooting a failed cluster
This section will explain how you can troubleshoot a cluster that has failed, which means
it is terminated with an error code. It will cover the following steps:

• Step 1: Collecting data about the issue

• Step 2: Checking the environment

• Step 3: Checking the last state change

• Step 4: Looking at the log files

• Step 5: Testing the cluster step by step

Now let's dive deep into each of these steps.

Troubleshooting and logging in your EMR cluster 155

Step 1: Collecting data about the issue
As a first step, you need to gather information about your cluster that includes collecting
details on the issue, cluster configuration, and status.

• Define the problem: When you start investigating the issue, you can collect details
by asking a few high-level questions such as What was expected to happen and
what really happened? When was the first occurrence of the issue? How frequently
or how many times has the issue occurred? Did we change anything in the cluster
configuration that was not planned for? And so on. The answers to these questions
will provide a great starting point to troubleshoot the issue.

• Collect cluster details: Collect your cluster details, which include the cluster
identifier, the AWS region, availability zones, the number of masters, core and task
nodes, types of EC2 instances, and whether you configured an instance group or
instance fleet, which might help in identifying whether there are limitations around
the maximum number of instances you can provision.

After you have collected these basic details, next you can check the environment.

Step 2: Checking the environment
As the next step, you can check for any service outages or usage limits that caused
the failure, or the issue could be specific to your EMR release version or related to
networking configurations:

• Check for service outage: When you create a cluster, under the hood, EMR uses
several AWS services, including Amazon EC2 instances for cluster nodes, Amazon
S3 to store logs or cluster data, CloudWatch for log monitoring, and many more. The
failure could be related to any of these services, so checking the status of the services
will help, which is accessible through https://status.aws.amazon.com/.

• Check usage limits: Every AWS service has a default quota limit set, which can be
increased upon request. When you are creating a cluster, it might hit any specific
service limits, which could be the number of Amazon EC2 instances launched in
your region or it could be the number of S3 buckets you can create. You can check
for the error message; for example, if you are hitting the EC2 quota limit for your
account, then you might get an EC2 QUOTA EXCEEDED error.

https://status.aws.amazon.com/

156 Setting Up and Configuring EMR Clusters

• Check the EMR release version: Check the EMR release you selected while
launching the cluster. As the cluster includes several pieces of open source software,
the issue you are facing might have been fixed in the latest EMR releases. In those
cases, you can re-launch your cluster with the latest EMR release.

• Check the cluster VPC and subnet configuration: Please check if you have
configured your VPC or subnet settings as described in the AWS documentation and
also make sure that your subnet has enough IP addresses to assign to cluster nodes.

As the next step, we can look at the latest state change of your cluster.

Step 3: Checking the last state change
Look at your cluster's last state change, which might provide information about what
happened when it changed status to FAILED. For example, when you launch a cluster
with a Spark Streaming step and your output S3 path already exists, then you get the error
Streaming output directory already exists.

You can get the last state change with the AWS CLI describe-cluster and list-
steps commands, or with the EMR API's DescribeCluster and ListSteps actions.

As the next step, we can look at the log files for further debugging.

Step 4: Looking at the log files
The next step is to examine the logs being generated by your cluster, which can be instance
syslogs or different Hadoop application logs. If the initial task attempt does not
complete on time, EMR might terminate it and create a duplicate task attempt, which is
called a speculative task. This activity will generate a significant amount of logs, which get
logged into stderr or syslog of the instances.

For your debugging, you can start checking bootstrap action logs for any unexpected
configuration changes or for any errors. Then you can look at each step log to identify
whether there were any errors in any step that caused the failure. You can also look into
Hadoop job logs to discover failed task attempts.

Now let's get an overview of each of these log types:

• Check bootstrap action logs: Bootstrap actions are intended to run startup scripts
on your cluster as it is launched. Their primary purpose is to install additional
software libraries or customize default configurations. There is a chance that
these bootstrap scripts created the failure or affected the cluster's performance, so
checking its logs will provide additional insights.

Troubleshooting and logging in your EMR cluster 157

• Check your cluster step logs: There are four types of logs generated from each step
of the cluster: controller, stderr, stdout, and syslogs.

controller logs contain errors generated by Amazon EMR while trying to
execute your step. Errors generated from accessing your application steps or loading
are often included here. syslog primarily includes non-Amazon software logs,
which might point to open source Apache Hadoop or Spark streaming errors.

stdout logs include the status of mapper and reducer task executables. Often,
application loading errors are included here and sometimes contain application
error messages too. stderr includes error messages that are generated while
processing your defined steps. This log sometimes may contain stack traces or
application loading errors.

For any obvious errors, stderr logs are very helpful. They could provide a list of
errors if the step got terminated quickly by throwing errors that might be related to
mapper or reducer applications running on the cluster.

You can also check the last few lines of your controller or syslog as that might
include notices of failures or errors related to failed tasks, if it says Job Failed.

• Check task attempt logs: If you notice one or more failed tasks from your previous
analysis, then analyzing the task attempt logs might provide more insights too.

After analyzing all the logs, you should plan for step-by-step testing of your cluster, which
might help debug the issue.

Step 5: Testing the cluster step by step
Restarting your cluster without any steps and adding steps one by one to debug is a great
technique that might help too. This way, you can see the failures of any step and you can
try to fix and rerun to validate.

The following is an approach you can follow for your step-by-step execution:

1. Launch a new cluster with the previous configuration and two additional
configurations (if not enabled earlier), that is, to keep the termination protection
and keep alive enabled. This will help follow a step-by-step approach and prevent
creating a new cluster every time.

2. Once your cluster is in the WAITING state, you can submit your steps one by one.
3. When your step completes processing, look for errors in that specific step's log files.

You can connect to the master node with SSH to view the logs. Please note, step log
files takes some time to appear.

158 Setting Up and Configuring EMR Clusters

4. If the step succeeded without any errors, then you can run the next step. If not, then
analyze the logs to find the error. If it is an application code error, then apply the
necessary fix and rerun this step.

5. Once your debugging steps are done, you can disable the termination protection
and then terminate the cluster.

In this section, we have provided a few steps using which you can troubleshoot a failed
cluster. Next, we'll see how you can troubleshoot a cluster that is running slowly.

Troubleshooting a slow cluster
This section will explain how you can troubleshoot a cluster that is in the running state
but takes longer than expected to return results. Most of the time, it might be caused by
resource constraints for your job and might get resolved by assigning more resources,
either by moving to high instance types or by increasing the number of instances.

Apart from resource constraints, there might be other reasons that are making your jobs
run slowly and the following steps might help in identifying them:

• Step 1: Collecting data about the issue

• Step 2: Checking the environment

• Step 3: Looking at the log files

• Step 4: Checking your cluster and instance health

• Step 5: Looking for suspended instance groups

• Step 6: Reviewing cluster configuration settings

• Step 7: Validating your input data

Now let's dive deep into each of these steps.

Step 1: Collecting data about the issue
Similar to the failed cluster scenario, step 1 should be asking high-level questions about
expectation versus reality, configuration changes, and the frequency of errors, and then
collecting cluster details including availability zones, region, VPC, subnets, EC2 instance
type configurations, and more.

Troubleshooting and logging in your EMR cluster 159

Step 2: Checking the environment
Checking the environment step is also the same as in the failed cluster scenario, where
you check for any service outages, usage limits, and networking configurations that might
affect the cluster's expected behavior.

Sometimes environment issues might be transient and restarting the cluster might help in
improving the performance.

Step 3: Looking at the log files
As explained for the failed cluster scenario, looking at bootstrap action logs, step logs,
and task attempt logs provides a great level of detail about the failure of a step or
slow-running jobs.

In addition, checking the Hadoop daemon logs also helps us, which are available in
var/log/Hadoop of each node. You can also look for failed task nodes or instances
from the JobTracker logs and then connect to that instance to find any instance-specific
issues related to CPU or memory usage.

Step 4: Checking your cluster and instance health
As you learned earlier, your EMR cluster consists of three types of nodes that include
master nodes, core nodes, and task nodes. Each of these node types might contribute to
slow-running jobs as they go through resource constraints such as CPU and memory or
experience network connectivity issues.

When you are looking at your cluster health, you should look at both cluster- and
individual instance-level health. There are several tools that you can use for monitoring
health and the following are some of the commonly used methods:

• Check for service outage: EMR clusters push different metrics to Amazon
CloudWatch, including the performance of the cluster, HDFS utilization, total load,
running or remaining tasks, and more. You can leverage these metrics to get an
overall picture of your cluster and jobs and also can define alarms to get notified if
any metrics go beyond a threshold.

• Check job status and HDFS health: On the EMR console, on the Application user
interfaces tab, you can look at YARN application details and can drill down to logs
for checking the status of jobs.

160 Setting Up and Configuring EMR Clusters

A few Hadoop or big data applications have web user interfaces for monitoring tasks
such as JobTracker, HDFS NameNode, TaskTracker, or Spark HistoryServer that
you can leverage to identify the amount of resources being consumed by each task
or Spark executor, which node they are running, and whether there are resource
constraints that you should be working to resolve.

• Check EC2 instance health: You should also look at individual EC2 instance
health in the EC2 console and can also define CloudWatch alarms for monitoring
and notifications.

After looking at these, next, you should look at your instance groups if they are in the
suspended state.

Step 5: Looking for suspended instance groups
As discussed earlier, you can define instance groups while configuring your cluster and
there is a chance the instance group itself might go into the SUSPENDED state if it
continues to fail new nodes or check in with existing nodes.

The launch of a new instance or node might fail if Hadoop or related services are broken
in some way and do not accept new nodes, or there is a bootstrap script configured for
new nodes that fails to complete, or the node itself is not working as expected and is not
able to check in with Hadoop. If the issue persists for some time, instead of provisioning
new nodes, the instance group goes into the SUSPENDED state.

If the instance group goes into the SUSPENDED state and the cluster is in the WAITING
state, then you can add a cluster step to reset the required number of core or task nodes,
which might resume the instance group back to the RUNNING state.

Step 6: Reviewing cluster configuration settings
When you launch a cluster, Amazon EMR uses default Hadoop configurations, which you
can override using bootstrap actions. These configuration parameters are used to execute
your jobs and the job log data is stored in a file called job_<job-id>_conf.xml,
which is stored in the /mnt/var/log/hadoop/history/ directory of the cluster's
master node.

You can review jobs and override the default configuration parameters as needed to
improve your job's performance.

Troubleshooting and logging in your EMR cluster 161

Step 7: Validating your input data
One other thing you can check is your input data quality and distribution across nodes or
executors. There is a chance that your data is not evenly distributed, which means a single
node or Spark executor might be overloaded with a big chunk of your data. This uneven
distribution of data is represented as data skewness, which results in one node or Spark
executor getting stuck for a long period of time as it needs to process most of the data.

You can also look at data quality as corrupted data might be making your jobs fail if your
application logic does not handle it well.

In this section, you have learned how you can debug or troubleshoot a slow-running
cluster and in the next section, you will learn about logging in your EMR cluster that
includes the different default log files available and how you can archive or aggregate them
in Amazon S3.

Logging in your EMR cluster
In the previous section, we explained how you can leverage log files available in your
cluster to debug a cluster failure or slow-running jobs. In this section, we will dive a bit
more deeply into logging to explain what different log files are available in each path of the
cluster and how you can integrate log archiving with Amazon S3.

Default log files available in EMR
By default, EMR clusters are configured to write log files to the /mnt/var/log directory
of the master node, and to access them you can SSH to the master node. These log files are
available till the time the master node is in the running state and if it terminates for any
reason, then you lose access to these log files, so it's always a great idea to archive log files
to Amazon S3 for persistence.

The following are the different types of log files generated by your cluster:

• Step logs: These logs include the result of each step and are stored in the /mnt/
var/log/hadoop/steps/ directory of the master node. Each step's log files are
separated by a subdirectory that has a 13-character step identifier and includes an
incremental number at the end to represent each step. For example, for step 1, the
subdirectory path will be /mnt/var/log/hadoop/steps/s-<stepId>1/
and stepId will be unique for the cluster.

162 Setting Up and Configuring EMR Clusters

• Hadoop and YARN component logs: These logs include different Hadoop and
YARN component logs, which are available as subdirectories under /mnt/var/
log. A few subdirectory examples include hadoop-mapreduce, hadoop-yarn,
hadoop-hdfs, and hadoop-httpfs. There is an additional hadoop-state-
pusher subdirectory, which stores the output of the Hadoop state pusher process.

• Bootstrap action logs: If you have configured bootstrap actions for your cluster,
then its logs are stored under the /mnt/var/log/bootstrap-actions/
directory of the master node. Each bootstrap action stores its log output in a
separate subdirectory, which is an incremental number. For example, the first
bootstrap action will have the path /mnt/var/log/bootstrap-actions/1/.

• Instance state logs: These logs provide EC2 instance-specific information that
includes CPU, memory, and garbage collector threads of the cluster node and are
stored in the /mnt/var/log/instance-state/ directory of the master node.

As you have learned, all these logs are configured to store output in the cluster's master
node by default. In the next section, let's understand how you can configure these logs to
be archived to Amazon S3 for persistence.

Archiving log files to Amazon S3
While launching your cluster, you can define configuration to archive your master node
logs to Amazon S3. By default, clusters launched using the EMR console have this setting
enabled but clusters launched using the AWS CLI or the EMR API need to have it enabled.
These logs are pushed to Amazon S3 every 5 minutes and there is a chance the last 5
minutes of log data will not be pushed to Amazon S3 when the cluster gets terminated.

Let's look at a few options to configure Amazon S3 log archival or aggregation.

• Archive logs to Amazon S3 using the AWS Console: When you launch a cluster
with the EMR console, logging is enabled by default for both quick create and
advanced options with a default Amazon S3 log path that you can change. But for
the advanced options, you get an additional configuration to enable encryption
for your log files, where you can specify the ARN of your AWS KMS key. This
encryption option is available for clusters using EMR 5.30.0.

Troubleshooting and logging in your EMR cluster 163

• Archive logs to Amazon S3 using the AWS CLI: To archive logs to Amazon S3,
you can specify the --log-uri parameter while launching the cluster using the
AWS CLI. The following is a sample command using the AWS CLI that specifies the
Amazon S3 path through the --log-uri parameter:

aws emr create-cluster --name "Archive cluster log"
--release-label emr-6.3.0 --log-uri s3://<mybucket>/
logs/ --applications Name=Hadoop Name=Hive
Name=Spark --use-default-roles --ec2-attributes
KeyName=<myEC2KeyPair> --instance-type m5.2xlarge
--instance-count 3

This helps to archive logs into Amazon S3, but if you plan to aggregate a single application
log to a single file, then you can look at the following configuration to aggregate logs.

Aggregating logs in Amazon S3 using the AWS CLI
When an application runs on the cluster, it gets executed as distributed tasks running
in different cluster nodes where each node container generates its own log for that
application. If you plan to aggregate these container logs to a single file, then while
launching the cluster, you can specify additional configuration through bootstrap actions.
This feature is available in EMR starting from EMR 4.3.0.

Let's assume we have saved this JSON configuration file as s3-log-aggregation-
config.json:

[

 {

 "Classification": "yarn-site",

 "Properties": {

 "yarn.log-aggregation-enable": "true",

 "yarn.log-aggregation.retain-seconds": "-1",

 "yarn.nodemanager.remote-app-log-dir": "s3:\/\/<my-log-
bucket>\/logs"

 }

 }

]

164 Setting Up and Configuring EMR Clusters

Please replace <my-log-bucket> with your bucket name and then pass this
configuration file while creating the cluster using the AWS CLI:

aws emr create-cluster --name "EMR Log Aggregation cluster"
--release-label emr-6.3.0 --applications Name=Hadoop
--use-default-roles --ec2-attributes KeyName=<myEC2KeyPairName>
--instance-type m5.xlarge --instance-count 3 --configurations
file://./s3-log-aggregation-config.json

Please replace <myEC2KeyPairName> with your EC2 key pair name.

Enabling the debugging tool
This additional debugging tool allows you to browse log files more easily from the
EMR console. Enabling this option is available both from the EMR console's advanced
cluster create option or through the AWS CLI. You need to enable logging to use this
debugging tool.

When you enable debugging on your cluster, EMR archives the log files to S3 and indexes
those files for easier access.

In the EMR console, when you choose the advanced cluster create option, you can find
this option in the General cluster settings section's General Options configuration
parameters. If you are using the AWS CLI to create the cluster, you should specify
--enable-debugging with the --log-uri parameter.

Summary
Over the course of this chapter, we have got an overview of how you can create an EMR
cluster using both the AWS console's quick and advanced creation options with different
configuration options. We have also provided an overview of how you can integrate
custom AMIs for your cluster and how termination protection can help for transient
cluster use cases.

Finally, we covered the different logging and troubleshooting options you have to debug
your cluster or job failures.

That concludes this chapter! Hopefully, you have got a good overview of setting up an
EMR cluster with its different configurations and in the next chapter, we can dive deep
into different monitoring, scaling, and high availability concepts.

Test your knowledge 165

Test your knowledge
Before moving on to the next chapter, test your knowledge with the following questions:

1. Assume on top of default EMR configurations, you need to install a few additional
libraries and, post-installation, execute a few scripts. This process will be repeated
every time a new instance is added to the cluster. How will you implement this
while launching your cluster?

2. You have a running EMR cluster, where you have one Hive and one Spark job
configured to be executed in a sequence as EMR steps. You have noticed that step
2, which is a Spark job, is failing. With further analysis, you have identified that all
tasks of that Spark job are completed but one task is running for a long period of
time, which makes the whole process slow. How will you resolve this problem?

3. Your organization has compliance policies that say all the application logs need
to be persistent at least for a year. You are going to integrate EMR for one of your
transient cluster use cases that will do batch ETL operations. To be compliant with
your organization's policy, how should you configure your EMR cluster?

Further reading
Here are a few resources you can refer to for further reading:

• Learn more about tagging a cluster: https://docs.aws.amazon.com/emr/
latest/ManagementGuide/emr-plan-tags.html

• Learn more about the networking of a cluster: https://docs.aws.amazon.
com/emr/latest/ManagementGuide/emr-plan-vpc-subnet.html

• Common errors in EMR: https://docs.aws.amazon.com/emr/latest/
ManagementGuide/emr-troubleshoot-errors.html

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-tags.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-tags.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-vpc-subnet.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-vpc-subnet.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-troubleshoot-errors.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-troubleshoot-errors.html

6
Monitoring, Scaling,

and High Availability
In the previous chapter, you learned how to set up your EMR cluster and configure it with
advanced settings related to hardware, software, and security and how to troubleshoot
failures or slow-running clusters. In this chapter, we will dive deeper into cluster
monitoring, scaling, and high-availability features.

Scaling cluster resources is an important aspect as you don't need to manually resize
the cluster and also size the cluster based on specific workloads. In this chapter, you will
learn about the autoscaling and managed scaling capabilities of EMR and how Amazon
CloudWatch monitoring plays a role in it.

The following are the high-level topics that we will cover in this chapter:

• Monitoring your EMR cluster

• Scaling cluster resources

• Comparing managed scaling with autoscaling

• Cluster cloning and high availability with multiple master nodes

168 Monitoring, Scaling, and High Availability

Technical requirements
In this chapter, we will dive deep into EMR cluster monitoring, scaling, and
high-availability aspects. To test out the features and configurations, you will need
the following resources before you get started:

• An AWS account

• An IAM user that has permission to create an EMR cluster, EC2 instances, and
dependent IAM roles and has access to CloudWatch, CloudTrail logs, and more

Now, let's dive deep into the EMR cluster's monitoring aspects, which includes web
interfaces available for your cluster's big data applications and Amazon CloudWatch
and CloudTrail logs.

Monitoring your EMR cluster
When you think about monitoring your Amazon EMR cluster, you can consider the
following options:

• Using the EMR console to get the overall cluster status, the health of nodes, and the
high-level status of YARN or Hadoop Spark applications

• Analyzing logs generated by EMR and your big data applications, which might be
stored in the master node or core task nodes

• Accessing web interfaces of different Hadoop applications to analyze the job status
or task execution or Ganglia to monitor the overall performance of your cluster

• Using Amazon CloudWatch for logging, monitoring, and integrating
rule-based notifications

• Using Amazon CloudTrail to audit the access logs for your EMR cluster APIs

We covered the first two options in the previous chapter, where we explained how you can
use the EMR console to monitor cluster status and how you can access logs available in the
master node with the log archive to Amazon S3.

Now, let's dive deep into the remaining options that you can use for monitoring your
cluster and jobs.

Monitoring your EMR cluster 169

Monitoring clusters and applications with
web user interfaces
As highlighted earlier, the EMR cluster provides access to a big data application's web
interfaces, using which you can monitor the cluster. If you have configured Ganglia on
your cluster, then you can use the Ganglia web interface to monitor your cluster's overall
performance, the usage of memory, and the CPU. If you have configured Spark on your
cluster, then you can use the Spark history server to monitor the execution of your jobs
with the amount of resources or the time each task took to complete.

Before diving deep into these application user interfaces, let's understand what
configuration steps you need to follow to access them.

Accessing a big data application's web interfaces hosted on
EMR clusters
EMR clusters are configured with security measures so that all access goes through a
defined authentication and authorization mechanism. When you configure Hadoop
or other big data applications on your EMR cluster, for security reasons, it makes the
respective application's web interface available on the cluster master node's local web
server. So, if you wish to access them, then you need to connect to the master node using
SSH and let the browser web request go through the authentication proxy to get access.

There are a few Hadoop applications that are also hosted as websites in core and task
nodes and they are also available on the local web servers of those nodes.

EMR makes the web interfaces available through a specific port and you can access the
web interfaces using the master node's public DNS or the core node's public DNS. The
following list includes URLs for all the web interfaces that you can access in EMR:

• Ganglia: http://master-public-dns-name/ganglia/

• Hadoop HDFS NameNode: http://master-public-dns-name:50070/

• Hadoop HDFS NameNode (EMR version pre-6.x): https://master-
public-dns-name:50470/

• Hadoop HDFS NameNode (EMR version 6.x): https://master-public-
dns-name:9871/

http://master-public-dns-name/ganglia/
http://master-public-dns-name:50070/
https://master-public-dns-name:50470/
https://master-public-dns-name:50470/
https://master-public-dns-name:9871/
https://master-public-dns-name:9871/

170 Monitoring, Scaling, and High Availability

• Hadoop HDFS DataNode: http://coretask-public-dns-name:50075/

• Hadoop HDFS DataNode (EMR version pre-6.x): https://coretask-
public-dns-name:50475/

• Hadoop HDFS DataNode (EMR version 6.x): https://coretask-public-
dns-name:9865/

• HBase: http://master-public-dns-name:16010/

• Spark history server: http://master-public-dns-name:18080/

• Tez: http://master-public-dns-name:8080/tez-ui

• Flink history server (EMR version 5.33 and later): http://master-public-
dns-name:8082/

• Hue: http://master-public-dns-name:8888/

• JupyterHub: https://master-public-dns-name:9443/

• Zeppelin: http://master-public-dns-name:8890/

• Livy: http://master-public-dns-name:8998/

• YARN NodeManager: http://coretask-public-dns-name:8042/

• YARN ResourceManager: http://master-public-dns-name:8088/

Please replace <master-public-dns> and <coretask-public-dns> with the
relevant values in the preceding URIs. You can get your master node's public DNS from
the EMR console's Summary tab.

The following are a few options using which you can access the preceding web interfaces:

• Using the Lynx text-based browser: You can SSH to your master node using the
master node IP or public DNS, which you can get from the EMR console, and the
EC2 key pair you configured while creating the cluster. Lynx is a text-based browser
that cannot show graphics and you have limited options with it. As an example, you
can use the following command to access the Hadoop ResourceManager URI from
the Linux prompt of the master node but cannot view the graphical user interface:

lynx http://ip-###-##-##-###.us-east-1.compute.
internal:8088/

• SSH tunneling with local port forwarding: You can SSH to the master node and
then configure SSH tunneling with local port forwarding, which will allow you to
access the web interface using any web-based browser.

http://coretask-public-dns-name:50075/
https://coretask-public-dns-name:50475/
https://coretask-public-dns-name:50475/
https://coretask-public-dns-name:9865/
https://coretask-public-dns-name:9865/
http://master-public-dns-name:16010/
http://master-public-dns-name:18080/
http://master-public-dns-name:8080/tez-ui
http://master-public-dns-name:8082/
http://master-public-dns-name:8082/
http://master-public-dns-name:8888/
https://master-public-dns-name:9443/
http://master-public-dns-name:8890/
http://master-public-dns-name:8998/
http://coretask-public-dns-name:8042/
http://master-public-dns-name:8088/

Monitoring your EMR cluster 171

• SSH tunneling with dynamic port forwarding: This method is good for new users
who are not very familiar with security configurations. Similar to other options, you
can SSH to the master node and then configure SSH tunneling with dynamic port
forwarding, which will require you to configure a browser-based plugin to access
the web interfaces with specific ports. For example, for the Google Chrome browser,
you can configure SOCKS proxy settings, and for the Firefox browser, you can
configure the FoxyProxy add-on.

Out of the preceding three options, the last two SSH tunneling approaches are more
popular as normal internet-based web browsers can support complete graphics-based
web interfaces.

Before we dive deep into how you can do SSH tunneling, let's understand how you can
configure your EMR cluster's security group to allow inbound SSH access, which is a
prerequisite before doing SSH.

Before you connect – allowing inbound SSH traffic in an EMR cluster
security group
Before connecting to the master node from your local system using SSH, you need to
make sure that you have allowed inbound SSH access in your EMR cluster's security
group. The following steps can guide you to configure this:

1. Navigate to the Amazon EMR console at https://console.aws.amazon.
com/elasticmapreduce/.

2. From the Clusters list, select the name of the cluster that you plan to do SSH on.
3. In the Summary tab of the cluster, select the security groups for Master under the

Security and access section.
4. Click on the ElasticMapReduce-master security group, which will take the EC2

service's security group list with the filter applied to your security group.
5. Select the Inbound Rules tab and then click Edit inbound rules.
6. Check for an inbound rule that has Type as SSH, Port as 22, and Source as

0.0.0.0/0. If the rule exists, choose Delete to remove it. Please note, before
December 2020 the default ElasticMapReduce-master security group had a
preconfigured rule that allowed inbound from all sources on port 22. The rule was
added to simplify SSH access to the master node, but it is strongly recommended
to remove it and add more restricted access that opens access to specific IPs or
security groups.

https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/elasticmapreduce/

172 Monitoring, Scaling, and High Availability

To provide an overview of Classless Inter-Domain Routing (CIDR), it improves
the IP address allocation process by replacing the old A, B, C-based process. CIDR
is a combination of two components: one is a typical IPv4 address and the second
part is a suffix that represents how many bits there are in the entire address. CIDR
0.0.0.0/0 represents all the IP addresses, which means allowing permissions to
all the source systems.

7. Then, scroll to the bottom of the rule list and select Add Rule.
8. Specify Type as SSH, which will auto populate Protocol as TCP and Port as 22. For

Source, select My IP from the list to restrict access to only your system. You can
add additional rules if you would like to provide access to other IP ranges, but avoid
choosing Anywhere-IPv4 or Anywhere-IPv6, which will make it publicly accessible.

9. Then, click Save.
10. As an optional step, you can repeat the same process for the ElasticMapReduce-slave

security group, if you would like to SSH to core or task nodes.

After allowing SSH access to your IP, we can see how to configure SSH tunneling to the
EMR cluster's master node. To explain the detailed setup steps, I have taken an example of
OpenSSH client software, which can guide you to look for options in other equivalent SSH
client software, such as PuTTY for Windows users.

Setting up an SSH tunnel to the master node using local port
forwarding
For this setup, you need to get your cluster master node's public DNS and EC2 key pair
name that you will be using to do SSH tunneling to the master node. Then, to configure
local port forwarding, you need to specify any unused local system port that will be used
to forward the request traffic to a specific port of the target master node's local web server.

The following steps can guide you to configure the SSH tunneling:

1. Open a terminal window in OpenSSH. If you are using a Linux OS, it is available in
Applications | Accessories | Terminal, and for macOS, it should be available under
Applications | Utilities | Terminal.

Monitoring your EMR cluster 173

2. As a next step, you need to execute the following ssh command, which uses the
master node's public DNS and EC2 key pair for connection and also defines the
target port you would like to connect to:

ssh -i ~/<EC2KeyPair>.pem -N -L 8999:ec2-###-##-##-###.
compute-1.amazonaws.com:8088 hadoop@ec2-###-##-##-###.
compute-1.amazonaws.com

3. In the preceding command, we have used 8999 as the local system's unused port,
which you can replace, and it will forward this local port to the master node's 8088
port, which is used to access the ResourceManager web interface. Please replace the
<EC2KeyPair> and ec2 hostnames before executing the command.

The terminal remains open after you issue this command, and no answer is received.
4. Now, to access the ResourceManager web interface in your system browser, type

http://localhost:8999/ in your browser address bar, which will forward the
request to port 8088 of the master node.

5. To close the session, you can close the terminal window.

You can repeat these steps to access any other web interface available in the master node
or any other core and task nodes. For example, to access the JupyterHub web interface,
you can configure any other local unused port to forward the request to port 9443 of the
master node.

Next, you will learn how to configure SSH tunneling with dynamic port forwarding.

Setting up an SSH tunnel to the master node using dynamic
port forwarding
This method is similar to SSH tunneling with local forwarding with additional configuration
to make the port forwarding dynamic so that you can get the benefit of the FoxyProxy or
SwitchyOmega add-ons to manage your dynamic SOCKS proxy configurations.

SOCKS proxy management tools provide features to configure the automatic filtering of
URLs based on text patterns, where you can specify the master node's URL pattern for
matching. These SOCKS proxy-based browser plugins can automatically turn on or off
when you switch between the master node URL and other website URLs.

174 Monitoring, Scaling, and High Availability

After you have allowed SSH inbound access to your cluster security group and collected
the master node DNS and EC2 key pair, you can take the following steps for the setup:

1. Open a terminal window in OpenSSH.
2. Next, execute the following ssh command, which uses the master node's public

DNS and EC2 key pair for connection and also defines the local unused port, which
will be used to forward requests to all the ports of the target master node's local
web server:

ssh -i ~/<EC2KeyPairName>.pem -N -D 8999 hadoop@ec2-###-
##-##-###.compute-1.amazonaws.com

3. As you can see from the preceding command, it uses the -D option, which
represents dynamic port forwarding, which enables a local SOCKS proxy listening
on the local unused port you have specified in the command.

4. Next, you can configure the SOCKS proxy on your browser to access the web
interfaces using the master or core node's public DNS and the respective web
interface's port number. For example, you can access Spark HistoryServer using
http://master-public-dns-name:18080/.

5. When you are done accessing the server, you can close the terminal window.

The preceding steps summarize how you can configure SSH tunneling to the master node
using dynamic port forwarding. Next, we will understand how to configure the SOCKS
proxy plugin on your browser.

Configuring the SOCKS proxy on your browser
While configuring the SOCKS proxy as a plugin or add-on, make sure to include the
following configurations:

• Use localhost as the host address and the same local unused port you specified while
setting up port forwarding in the terminal window.

• Specify SOCKS v5 as the protocol that will optionally allow you to set
user authorization.

• Specify the following URL wildcard patterns as allowed:

 � To match a US Region-specific public DNS, use the *ec2*.amazonaws.com*
and *10*.amazonaws.com* patterns.

 � To match all other Regions' public DNS, use the *ec2*.compute* and *10*.
compute* patterns.

 � To access JobTracker log files, use the 10.* pattern.

http://master-public-dns-name:18080/

Monitoring your EMR cluster 175

 � To match the private or internal DNS names of a cluster in the us-east-1
Region, use the *.ec2.internal* pattern, and for all other Regions, use the
.compute.internal pattern.

Based on the browser and add-on you are using, the steps for configuring the preceding
URLs might vary. The following is an example if you need to configure it with the Google
Chrome browser and SwitchOmega add-on:

1. Navigate to Google Chrome's extensions page, which is typically accessible through
https://chrome.google.com/webstore/category/extensions, and
then search for Proxy SwitchyOmega. Once found, click Add to Chrome.

2. On the plugin page, select New profile and specify emr-socks-proxy as the
profile name.

3. Select PAC profile and then click Create. The Proxy Auto-Configuration (PAC)
files allow you to configure a list of browser requests as an allow list, which should
be forwarded to a proxy server.

4. Within the PAC Script field, replace the contents with the following, which uses
port 8999 for forwarding requests to your proxy server. Please replace 8999 with
the local unused port you have configured while setting up the SSL tunnel:

function FindProxyForURL(url, host) {

 if (shExpMatch(url, "*ec2*.amazonaws.com*")) return
'SOCKS5 localhost:8999';

 if (shExpMatch(url, "*ec2*.compute*")) return 'SOCKS5
localhost:8999';

 if (shExpMatch(url, ""http://10.*")) return 'SOCKS5
localhost:8999';

 if (shExpMatch(url, "*10*.compute*")) return 'SOCKS5
localhost:8999';

 if (shExpMatch(url, "*10*.amazonaws.com*")) return
'SOCKS5 localhost:8999';

 if (shExpMatch(url, "*.compute.internal*")) return
'SOCKS5 localhost:8999';

 if (shExpMatch(url, "*ec2.internal*")) return 'SOCKS5
localhost:8999';

 return 'DIRECT';

}

5. Under the Actions left-panel navigation, select Apply changes to save your
proxy settings.

https://chrome.google.com/webstore/category/extensions

176 Monitoring, Scaling, and High Availability

6. As a final step, on your Google Chrome toolbar, select the SwitchyOmega plugin
and the emr-socks-proxy profile that you configured.

7. Validate your configuration by accessing http://master-public-dns-
name:18080/.

In this section, we saw in detail how to configure an SSH tunnel to the master node and
how to access web interfaces of Hadoop applications available in your EMR cluster. Next,
we will look at a couple of Hadoop interfaces that you can use to monitor your cluster.

Viewing cluster performance metrics with Ganglia
Ganglia is an open source project that is scalable and designed to monitor usage and
performance metrics of distributed clusters or grids. You can set up and integrate Ganglia
on your cluster to monitor the performance of individual nodes and the cluster as a whole.
Ganglia is available in EMR starting from the 4.2 release.

In an EMR cluster, Ganglia is configured to capture and visualize Hadoop and Spark
metrics. It provides a web interface where you can see your cluster performance with
different graphs and charts representing CPU and memory utilization, network traffic,
and loading of the cluster. As explained in the previous section, you can access the web
interface through http://master-public-dns-name/ganglia/ by configuring
SSH tunneling to the master node.

Monitoring cluster metrics with CloudWatch
monitoring
Amazon EMR publishes different cluster- and job-level metrics to Amazon CloudWatch,
which can be used to configure rules for event-based notifications and dashboards for
monitoring. For example, you can configure rules to react when a cluster status changes
from WAITING to RUNNING or your cluster master node's CPU usage goes beyond a
certain threshold.

In the following sub-section, you will learn how to monitor CloudWatch events
and metrics.

Monitoring CloudWatch events
Amazon EMR automatically tracks and publishes events as JSON objects to an event
stream of CloudWatch. These events include changes in cluster states, instance groups,
autoscaling policies, and changes in steps. Each event includes information such as details
about the event, the date and time of the event, the EMR cluster, or the instance group
affected by the event.

http://master-public-dns-name:18080/
http://master-public-dns-name:18080/
http://master-public-dns-name/ganglia/

Monitoring your EMR cluster 177

Every time EMR publishes an event, it also includes the severity of the event and the
event message. For example, the following table lists cluster events with the state, severity,
and message:

Table 6.1 – A table showing event state, severity, and message for an EMR cluster

Similar to each step change event, instance fleet or instance group events and autoscaling
events also get pushed to CloudWatch, which you can use for monitoring.

Now let's learn how you can view these events in your EMR console.

Viewing events using the EMR console
For each cluster, you can see a simple list of events being published on the EMR console in
descending order.

You have an option to view events of all the clusters available in a Region in descending
order. You can navigate to the EMR console and select the Events sub-menu navigation to
see the events of all clusters.

178 Monitoring, Scaling, and High Availability

If you want to restrict access where you don't want a user to view all cluster events
for any Region, then you can add the "Effect": "Deny" statement for the
elasticmapreduce:ViewEventsFromAllClustersInConsole action to a
policy and then attach it to the IAM user.

The following steps explain how you can view events for a single cluster:

1. Navigate to the EMR console.
2. Select Clusters under EMR on EC2.
3. From the cluster list, select the cluster for which you want to see the events.
4. Then, select the Events tab, which will list events, as shown in the following

screenshot:

Figure 6.1 – List of events of a specific cluster in the EMR console

Now, let's learn how to create CloudWatch event rules.

Creating CloudWatch event rules for EMR events
As described earlier, EMR sends each event as an event stream JSON object to
CloudWatch and you can configure rules in CloudWatch for any of the JSON attributes.
The CloudWatch rule might have a pattern matching rule defined for the source event
and will have the target configured. CloudWatch supports integration with several AWS
services, so you can configure the target action as sending an SNS notification or trigger
an AWS Glue or AWS Lambda job.

The following is a sample event of an EMR cluster when the status changes to
TERMINATED:

{

 "version": "0",

Monitoring your EMR cluster 179

 "id": "1234abb0-f87e-1234-b7b6-000000123456",

 "detail-type": "EMR Cluster State Change",

 "source": "aws.emr",

 "account": "<AWS-account>",

 "time": "2021-12-16T21:00:23Z",

 "region": "us-east-1",

 "resources": [],

 "detail": {

 "severity": "INFO",

 "stateChangeReason": "{\"code\":\"USER_
REQUEST\",\"message\":\"Terminated by user request\"}",

 "name": "Dev Cluster",

 "clusterId": "j-123456789ABCD",

 "state": "TERMINATED",

 "message": "Amazon EMR Cluster jj-123456789ABCD (Dev
Cluster) has terminated at 2021-12-16 21:00 UTC with a reason
of USER_REQUEST."

 }

}

Next, let's learn about monitoring metrics.

Monitoring CloudWatch metrics
You can view the metrics Amazon EMR publishes to CloudWatch using the CloudWatch
or Amazon EMR console. If you have your own custom logging and monitoring
solutions or are looking to build automation around these metrics, then you can retrieve
these metrics' data using the mon-get-stats CloudWatch CLI command or the
GetMetricStatistics CloudWatch API.

The following steps will explain how you can view the metrics in your EMR console:

1. Navigate to the Amazon EMR console at https://console.aws.amazon.
com/elasticmapreduce/.

2. From the Clusters list, select the cluster for which you plan to view the metrics.
3. Select the Monitoring tab, which will have subtabs of Cluster Status, Node Status,

and IO. Select any of the tabs to view metrics reports for your cluster or nodes.
4. After selecting any of the subtabs, you can select the graph size and start and end

fields to filter the metrics data by a specific time frame.

https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/elasticmapreduce/

180 Monitoring, Scaling, and High Availability

5. Once you have metrics data available in CloudWatch, you can define alarms based
on specific parameter thresholds. For example, if HDFS utilization goes beyond
90%, then send an email to your cloud administrator team.

Let's take a look at some of the metrics that are reported by Amazon EMR.

Metrics reported by EMR to CloudWatch
Amazon EMR automatically sends metrics data to CloudWatch every 5 minutes, which
is archived for 2 weeks and then discarded. EMR pulls metrics from the cluster, so if the
cluster is not reachable, no metrics are reported till the cluster is available.

EMR publishes several metrics to CloudWatch. The following list provides an example of a
few metrics:

• Amazon EMR metrics (AWS/ElasticMapReduce namespace): If your cluster
runs Hadoop 2.x, then a few of the example metrics it publishes are IsIdle,
ContainerAllocated, ContainerReserved, ContainerPending,
AppsRunning, and CoreNodesRunning.

• Cluster capacity metrics: When you have managed scaling enabled, EMR
publishes various metrics that represent your cluster's current and target capacity.
TotalUnitsRequested, TotalUnitsRunning, CoreUnitsRequested,
and CoreUnitsRunning are a few examples of the metrics reported for it.

You can filter Amazon EMR metrics by either JobFlowId or JobId. Now, JobFlowId
is the same as your cluster ID, which has a format of j-XXXXXXXXXXXXX, and JobId
represents a specific job's ID that is in the format job_XXXXXXXXXXXX_XXXX. After
learning how you can use Amazon CloudWatch for monitoring your cluster-, node-, and
job-level metrics, let's look at Amazon CloudTrail, which can help in auditing user actions
in AWS.

EMR API audit logging with AWS CloudTrail
AWS CloudTrail is a popular service that enables the continuous logging of AWS API
activities and can help in operational or risk auditing, maintaining governance, and
compliance. Every action you take on your EMR cluster, using the AWS console, AWS
CLI, or EMR API, is logged to Amazon CloudTrail as an activity event. You can create a
trail in CloudTrail, which will allow you to enable the continuous delivery of CloudTrail
log events to Amazon S3. Even if you don't configure a trail, you can still see the most
recent activity in Event History of the CloudTrail console.

Monitoring your EMR cluster 181

AWS CloudTrail is enabled by default when you create an AWS account and its activity
logs facilitate implementing security alarms by detecting unusual activity in your AWS
account. Amazon EMR also integrates with AWS CloudTrail where each EMR console
activity, AWS CLI command, or API invocation is logged to CloudTrail.

EMR information in AWS CloudTrail
When an activity occurs in Amazon EMR, it gets recorded in CloudTrail Event History.
You have the option to view, download, or search recent events in your AWS account. It is
always recommended to create a trail in CloudTrail, because of the following benefits:

• You can enable ongoing delivery of CloudTrail events as log files to Amazon S3. This
helps you plan to persist your logs beyond 90 days.

• Optionally, you can configure alarms by pushing log events to Amazon
CloudWatch.

• Also, you can query the event log data with SQL using Amazon Athena's query
engine.

Every log entry or event contains the following information:

• What is the request (AWS Region, AWS service, and its API)?

• Who made the request?

• What is the source IP?

• When was it made?

• Other additional entries

To identify who made the request, CloudTrail provides the following information as part
of the userIdentity property:

• Whether the request was made with an AWS IAM user

• Whether the request was made by a federated user with temporary
security credentials

• Whether it's another AWS service that submitted the request; you can identify that
from the principalId key in the JSON file

182 Monitoring, Scaling, and High Availability

The following is an example JSON CloudTrail event that was logged for the terminate
cluster action from the EMR console:

{

 "eventVersion": "1.08",

 "userIdentity": {

 "type": "AssumedRole",

 "principalId": "<ID>",

 "arn": "<ARN>",

 "accountId": "<AWS-Account-ID>",

 "accessKeyId": "<Access-Key>",

 "sessionContext": {

 "sessionIssuer": {

 "type": "Role",

 "principalId": "<Principal-ID>",

 "arn": "<ARN>",

 "accountId": "<AWS-Account-ID>",

 "userName": "developer"

 },

 "webIdFederationData": {},

 "attributes": {

 "creationDate": "2021-09-02T21:30:40Z",

 "mfaAuthenticated": "false"

 }

 }

 },

 "eventTime": "2021-09-02T21:32:31Z",

 "eventSource": "elasticmapreduce.amazonaws.com",

 "eventName": "TerminateJobFlows",

 "awsRegion": "us-east-1",

 "sourceIPAddress": "52.95.4.21",

 "userAgent": "AWS ElasticMapReduce Console",

 "requestParameters": {

 "jobFlowIds": [

 "j-<id>"

]

 },

Scaling cluster resources 183

 "responseElements": null,

 "requestID": "1e9e53be-31ec-4ed2-9c04-68714dac7e6a",

 "eventID": "403b5ef1-bf9b-436e-8d34-58e4d632fbf9",

 "readOnly": false,

 "eventType": "AwsApiCall",

 "managementEvent": true,

 "recipientAccountId": "<AWS-Account-ID>",

 "eventCategory": "Management"

}

In this section, we covered monitoring aspects of your cluster, jobs using Hadoop web
interfaces, Amazon CloudWatch, and AWS CloudTrail. Next, we will look at the options
EMR provides to scale cluster resources.

Scaling cluster resources
When you launch an Amazon EMR cluster for big data processing, most of the time, the
computing capacity you need for your jobs is different. The number of resources you need
for your cluster depends on the data volume of the file size, the kind of processing logic
you have, and whether your cluster resources are being shared by any other jobs.

There are a few cases where you have defined a data volume and you are able to do
capacity planning to launch a fixed node cluster that does not need any scaling capacity.
But in most cases, you will have a variable workload or a shared cluster for multiple
workloads that needs to react to on-demand capacity needs, where you will need to scale
your cluster capacity dynamically.

Amazon EMR provides flexibility to configure the scaling of cluster resources as it
provides two scaling features, that is, EMR-managed scaling and autoscaling with a
custom scaling policy. When considering automatic scaling of your cluster, please take
note of the following considerations:

• Your EMR cluster can have one or three master nodes, which you configure when
you launch your cluster. You cannot apply scaling to master nodes and change the
number of master nodes after the cluster is launched.

• You can change the configuration of your instance group after the cluster is
launched, but you cannot apply scaling or resize your instance group when any
reconfiguration is initiated. Also, you cannot change configurations when any resize
is triggered through scaling.

184 Monitoring, Scaling, and High Availability

Now, let's dive deep into both the scaling features and understand how they are different
from each other.

Managed scaling in EMR
You can enable EMR-managed scaling starting from the EMR 5.30.0 release, except
for EMR 6.0.0. EMR-managed scaling automates the cluster resource scaling without
expecting you to configure any scaling rules. It evaluates cluster metrics continuously to
make scaling decisions, which will help you to optimize cluster resource usage based on
the need and can provide you with cost savings or better performance.

While enabling managed scaling, you need to set the following parameters, which
provides a minimum and maximum range for the core and task node instances:

• Minimum (MinimumCapacityUnits): This is the minimum EC2 capacity
that needs to be maintained in the cluster. It is measured through vCPUs; for
instance fleets, it is measured through units, and for instance groups, it is measured
through instances.

• Maximum (MaximumCapacityUnits): This is the maximum EC2 capacity
that needs to be maintained in the cluster. Similar to minimum capacity units, it is
measured through vCPUs; for instance fleets, it is measured through units, and for
instance groups, it is measured through instances.

• On-demand limit (MaximumOnDemandCapacityUnits – optional): This is
an optional parameter that specifies the maximum on-demand type EC2 capacity
that can be added to the cluster. If not specified, it takes the default value of
MaximumCapacityUnits.

This parameter helps in deciding how many on-demand and spot instances will be
included in the cluster capacity. For example, if you specify the minimum parameter
as 10 instances, the maximum parameter as 50 instances, and on-demand
maximum instances as 20, then EMR-managed scaling will scale on-demand
instances up to 20, and the remaining 30 will be fulfilled with spot instances.

• Maximum core nodes (MaximumCoreCapacityUnits – optional): This
is another optional parameter that represents the maximum allowed core
node type capacity in the cluster. If not specified, it takes the default value of
MaximumCapacityUnits.

Scaling cluster resources 185

Important Note
EMR-managed scaling is integrated to only work with YARN applications such
as Hadoop, Spark, Flink, and Hive. At the time of writing this book, it does not
support non-YARN-based applications, such as Presto.

Configuring managed scaling for your EMR cluster
You can configure managed scaling on your EMR cluster using the Amazon EMR console,
AWS CLI commands, or AWS SDKs. Let's understand how you can enable managed
scaling for your cluster using the console and CLI commands.

Enabling managed scaling using the AWS console
When you launch your Amazon EMR cluster using the EMR console, you can enable
managed scaling with both quick create and advanced options.

With the quick create option, under Hardware configuration, you have the Cluster
scaling option, which you can check to enable. It allows you to configure minimum
(MinimumCapacityUnits) and maximum (MaximumCapacityUnits) core
task nodes.

Figure 6.2 – EMR console's quick cluster creation screen that shows cluster scaling configuration

As you can see in the preceding screenshot, the EMR cluster's quick create option does not
include on-demand limit and maximum core node options, which are only available for
the advanced cluster create option.

186 Monitoring, Scaling, and High Availability

When you create a cluster using advanced options, on the Step 2: Hardware page,
Cluster scaling is a separate section that allows you to configure EMR-managed scaling
or a custom autoscaling policy. The following is a screenshot of the EMR console that
represents the scaling options:

Figure 6.3 – EMR console's advanced cluster creation screen that shows managed scaling configuration

As you can see in the preceding screenshot, you have the On-demand
limit (MaximumOnDemandCapacityUnits) and Maximum Core Node
(MaximumCoreCapacityUnits) configuration parameters available, which were
missing in the quick create option.

Changing scaling configuration for an existing running cluster
You can modify the scaling configurations for an already running cluster. The following
steps will guide you on how to do it:

1. Navigate to the Amazon EMR console at https://console.aws.amazon.
com/elasticmapreduce/.

2. From the Clusters list, select the cluster for which you plan to change the
configuration.

3. Select the Hardware tab.
4. Click Edit under the Cluster scaling section.
5. Modify the maximum or minimum values as needed.

In this section, you learned how to configure managed scaling while creating a cluster or
change the configuration for an already running cluster using the AWS console. In the
next section, you will learn how to enable managed scaling using the AWS CLI.

https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/elasticmapreduce/

Scaling cluster resources 187

Enabling managed scaling using the AWS CLI
When you launch your Amazon EMR cluster using the EMR console, you can enable
managed scaling with both Quick create and Advanced options. Let's take a look at
the command:

aws emr create-cluster \

service-role EMR_DefaultRole \

 --release-label emr-6.3.0 \

 --name EMR_Managed_Scaling_Cluster \

 --applications Name=Spark Name=Hbase \

 --ec2-attributes KeyName=<EC2KeyPairName>,InstanceProfile=EMR_
EC2_DefaultRole \

 --instance-groups InstanceType=m4.
xlarge,InstanceGroupType=MASTER,InstanceCount=1
InstanceType=m4.xlarge,InstanceGroupType=CORE,InstanceCount=2 \

 --region us-east-1 \

 --managed-scaling-policy
ComputeLimits='{MinimumCapacityUnits=2,
MaximumCapacityUnits=4,UnitType=Instances}''

Please replace <EC2KeyPairName> with the appropriate value before executing the
preceding command. As you can see, there is an additional managed-scaling-
policy added to the end of the command that specifies the configurations for scaling.

You can also enable managed scaling for an already running cluster using the AWS CLI.
The following shows an example of this, where the emr put-managed-scaling-
policy command enables the configuration:

aws emr put-managed-scaling-policy

--cluster-id <ClusterID>

--managed-scaling-policy
ComputeLimits='{MinimumCapacityUnits=1,

MaximumCapacityUnits=10, MaximumOnDemandCapacityUnits=10,
UnitType=Instances}'

Alternatively, if you would like to disable managed scaling from a cluster, you can refer to
the following command:

aws emr remove-managed-scaling-policy --cluster-id <ClusterID>

Please replace <ClusterID> with your existing cluster ID.

188 Monitoring, Scaling, and High Availability

Understanding the node allocation strategy of managed scaling
EMR-managed scaling follows a scale-up and scale-down strategy to scale cluster
resources automatically. In the following subsections, we will see what node allocation
strategy EMR follows while scaling up or down.

Scale-up node allocation strategy
When you have configured all four parameters (maximum, minimum, maximum core
nodes, and on-demand limit), EMR-managed scaling follows an order of assigning
instances when it scales up. The following points explain how EMR-managed scaling
allocates new instances:

• It first adds instances or capacity to core nodes as they have HDFS and Hadoop-
related services set up, and then it adds the rest of the capacity to task nodes till the
desired capacity is met.

• If you have set the MaximumCoreCapacityUnits parameter, then EMR scaling
adds capacity to core nodes up to the maximum capacity allowed for core nodes,
and then the rest is added to task nodes.

• If you have set the MaximumOnDemandCapacityUnits parameter, then while
adding nodes, EMR scaling adds on-demand EC2 instance types till the maximum
number is met, and then the rest of the capacity is fulfilled with spot instances.

• If both the MaximumCoreCapacityUnits and MaximumOnDemandCapacity
Units parameters are set, then it considers both for node allocation.

As an example, if MaximumCoreCapacityUnits is less than
MaximumOnDemandCapacityUnits, then EMR will first scale core nodes up to the
maximum core capacity limit. Then, for the rest of the capacity, it will use on-demand
EC2 instances to scale the task nodes, up to the maximum limit defined for on-demand
instances, and then the remaining task nodes are added using spot instances.

After understanding how EMR-managed scaling allocates nodes for scaling up, let's
understand how it works for scaling-down scenarios.

Scale-down strategy
When your submitted jobs are completed, your cluster does not need to maintain the
higher capacity and can work to scale down the resources so that your cost is low.
EMR-managed scaling takes the following strategy to scale down:

• Opposite to the scaling-up approach, while scaling down, EMR first removes task
nodes and then removes core nodes up to the minimum core node capacity limit of
your AWS account, as it needs to maintain the minimum capacity.

Scaling cluster resources 189

• For both core and task node types, EMR first removes spot instances and then the
on-demand instances.

While scaling down, if EMR receives a heavy load that needs resources, then it cancels the
scale-down operation and adds capacity to scale up.

Next, we will learn about different CloudWatch metrics that help in making managed
scaling decisions.

Understanding managed scaling CloudWatch metrics
When you have managed scaling enabled on your cluster, Amazon EMR publishes high-
resolution metrics every 1 minute. You can view these metrics in both the EMR console
and the Amazon CloudWatch console, which shows events for every scale-up or scale-
down resize operation.

There are several metrics published by Amazon EMR and the following shows a few
examples of them:

• Current or target capacity-related metrics: EMR publishes metrics that
represent the current capacity and the target capacity. A few of the metrics are
TotalNodesRequested, TotalNodesRunning, CoreNodesRequested,
CoreNodesRunning, TaskNodesRequested, and TaskNodesRunning.

• Usage status of cluster and jobs: EMR publishes metrics at every
1-minute granularity, so you can relate these cluster and job status-related
metrics with cluster capacity-related metrics to understand how scaling
decisions are made with EMR-managed scaling. A few of the metrics
published are AppsPending, AppsRunning, ContainerAllocated,
ContainerPending, ContainerPendingRatio, MemoryAvailableMB,
YARNMemoryAvailablePercentage, HDFSUtilizatioin, and IsIdle.

Using the CloudWatch console, you can create a graph that shows how the scale-up and
scale-down operations are happening on your cluster. To create a graph, you can refer to
the following steps:

1. Navigate to the Amazon CloudWatch console and click Metrics under All metrics.
2. From the AWS namespaces service list, select EMR, and then click Job Flow Metrics.

190 Monitoring, Scaling, and High Availability

Then, apply a filter on JobFlowId, which is the EMR cluster ID, and Metric Name. You
can select the checkbox next to each metric to show one or more metrics on the graph.
The following is a screenshot of CloudWatch that shows how the number of nodes and
container pending parameters changed when EMR-managed scaling requested additional
nodes to handle a higher volume of data processing:

Figure 6.4 – CloudWatch metrics graph, showing EMR nodes scaling up by managed scaling

After understanding how EMR-managed scaling works, let's understand how you can
define custom autoscaling policies if needed.

Autoscaling in EMR with a custom policy for
instance groups
You can integrate cluster autoscaling with a custom policy starting with the EMR 4.0
release. This was the first scaling mechanism available in EMR, where you can define your
own scale-up, scale-down criteria. EMR-managed scaling was introduced later, where
intelligence was built to handle the scaling automatically. But the custom scaling policy
option is still available, which provides more flexibility if you want to define your own
rules for scaling up or down. You can configure scaling rules based on CloudWatch and
other metrics published by EMR.

Scaling cluster resources 191

Important Note
Please note, scaling with a custom policy is only available to instance groups of
EMR and is not available for instance fleets.

You can specify a custom scaling policy on an instance group while you are creating the
cluster or after the cluster is launched. Each instance group (except the master) can have
its own custom scale-up, scale-down rules.

You can define the rules using the AWS console, AWS CLI, and EMR API. While using
the AWS CLI or EMR API, you need to provide the policy configuration using a JSON
file. Also, while using the AWS CLI or EMR API, you can define a policy using a custom
CloudWatch metric, which is not available in the AWS console.

When you initially launch a cluster with custom scaling policies, a default policy is
preconfigured to get started that is suitable for many applications. But you do have the
flexibility to modify or delete the default rules.

Prerequisites for configuring autoscaling with a custom policy
Before you configure a custom scaling policy on your cluster, please consider the following
prerequisite steps:

• When you launch your EMR cluster, you must set the VisibleToAllUsers
parameter to true for the autoscaling to work.

• When you create an EMR cluster using the AWS console, it automatically
creates the EMR_AutoScaling_DefaultRole IAM role with the
AmazonElasticMapReduceforAutoScalingRole policy attached to it. This
role provides permission to add or terminate instances during a scaling operation.
But if you are using the AWS CLI or EMR API, then you create either the default
EMR_AutoScaling_DefaultRole by executing the create-default-role
command or your custom role. After that, you can specify the role name to your —
auto-scaling-role parameter.

After you have met the prerequisites and launched the cluster with autoscaling, we can
learn how you can define configurations for scaling.

192 Monitoring, Scaling, and High Availability

Configuring autoscaling rules
You can configure a custom autoscaling policy using both the EMR console and AWS CLI
commands. When a scaling operation is triggered and the EC2 instance gets added to the
cluster, they can be used by Hadoop services such as Hive, Spark, and Presto as soon as
the instances reach the InService state.

For scaling in, between EMR releases 5.1.0 and 5.9.1, you have the option to specify how
the instance gets terminated: either it is at task completion or it's at the EC2 instance-hour
boundary for billing. But after EMR release 5.10.0, you don't have this option available
and the default scale-in behavior is at task completion.

You cannot apply scaling rules to master nodes, so let's learn how you can specify the
scale-out and scale-in rules for core and task nodes.

Configuring a custom scaling policy using the EMR console
When you launch your cluster using the EMR console's advanced options, under the
Hardware configuration page, you have the Cluster scaling section, which can help you
configure autoscaling with custom policies. The following screenshot shows how you can
enable autoscaling with custom policies for the advanced cluster creation option:

Figure 6.5 – EMR console's advanced cluster creation screen that shows a custom automatic scaling policy

As you can see from the preceding screenshot, you can only configure rules for core and
task nodes, where you can specify the minimum and maximum nodes for that specific
instance type. The following screenshot shows how you can configure the scale-out and
scale-in rule for them:

Scaling cluster resources 193

Figure 6.6 – EMR console screen that allows adding scale-out, scale-in rules

As you can see from the screenshot, you can configure multiple scale-out and scale-in rules
to control the scaling behavior. Each rule is configured with the following parameters:

Figure 6.7 – EMR autoscaling rule parameters

194 Monitoring, Scaling, and High Availability

Important Note
It is highly recommended to configure both scale-up and scale-down policies
when you configure autoscaling with a custom policy, which will optimize your
cluster's resource utilization, which can provide better performance and cost
savings. Defining either scale out or scale in without the other one will require
you to take manual action.

Configuring a custom scaling policy using the AWS CLI
When you launch a cluster using an AWS CLI command that needs to have autoscaling
configured, you have the option to pass the JSON configuration directly in the command
or save it in a JSON file and specify the file path in the command.

The following AWS CLI command shows how you can pass the JSON configuration
within the CLI command, where you need to use the --auto-scaling-role
parameter to specify an IAM role that has permissions to add and terminate instances and
the AutoScalingPolicy option in the --instance-groups parameter to specify
custom scaling rules:

aws emr create-cluster --release-label emr-6.3.0
--service-role EMR_DefaultRole --ec2-attributes
InstanceProfile=EMR_EC2_DefaultRole --auto-scaling-
role EMR_AutoScaling_DefaultRole --instance-groups
Name=<MyMasterIG>,InstanceGroupType=MASTER,InstanceType=m5.
2xlarge,InstanceCount=1
'Name=<MyCoreIG>,InstanceGroupType=CORE,InstanceType=m5.
2xlarge,InstanceCount=2,AutoScalingPolicy={Constr
aints={MinCapacity=3,MaxCapacity=5},Rules=[{Name=
Default-scale-out,Description=Integrate scale-out
rule,Action={SimpleScalingPolicyConfiguration={AdjustmentType=
CHANGE_IN_CAPACITY,ScalingAdjustment=1,CoolDown=300}},Trigger=
{CloudWatchAlarmDefinition={ComparisonOperator=LESS_
THAN,EvaluationPeriods=1,MetricName=
YARNMemoryAvailablePercentage,Namespace=AWS/
ElasticMapReduce,Period=300,Statistic=AVERAGE,Threshold=15,
Unit=PERCENT,Dimensions=[{Key=JobFlowId,Value="${emr.
clusterId}"}]}}}]}'

Scaling cluster resources 195

Please replace <MyMasterIG> and <MyCoreIG> with the appropriate values before
executing the command.

If you need to pass the configuration using a JSON file path, then you can refer to
the following AWS CLI command, which assumes the configuration filename is
MyInstanceGroupConfig.json:

aws emr create-cluster --release-label emr-6.3.0 --service-
role EMR_DefaultRole --ec2-attributes InstanceProfile=EMR_
EC2_DefaultRole --instance-groups --auto-scaling-role EMR_
AutoScaling_DefaultRole

Please replace the <path> variable with your path before executing the command.

If you need to remove the autoscaling policy from an existing cluster, then you can execute
the following command:

aws emr remove-auto-scaling-policy --cluster-id <Cluster-ID>
--instance-group-id <InstanceGroup-ID>

Please replace the <Cluster-ID> and <InstanceGroup-ID> variables with the
appropriate values before executing the command.

In this section, we have dived deep into both EMR-managed scaling and autoscaling. Now
let's understand how you can manually resize your cluster.

Manually resizing your EMR cluster
You have learned how you can integrate autoscaling into your cluster, but apart from
autoscaling, you do also have the option to manually review your workloads and trigger
manual resize action. You can trigger resize requests using the EMR console, the AWS
CLI, and the EMR API.

Resizing a cluster using the AWS console
Refer to the following steps if you would like to resize your cluster instances using the
EMR console:

1. After signing in to the AWS console, navigate to the Amazon EMR console at
https://console.aws.amazon.com/elasticmapreduce/.

2. Choose the Clusters option and then select the active cluster that you would like
to resize.

https://console.aws.amazon.com/elasticmapreduce/

196 Monitoring, Scaling, and High Availability

3. On the cluster detail page, navigate to the Hardware tab.
4. If you have configured instance groups for your cluster, then select Resize against

the respective instance group, specify the new count, and finally, confirm by
selecting the green checkmark.

Alternatively, instead of an instance group, if you have configured an instance fleet
for your cluster, then select Resize for the Provisioned capacity column. Specify
new values for the on-demand units and spot units and click Resize to confirm.

When you resize the nodes, the instance group status changes and after completion, it
goes into the Running state again:

Figure 6.8 – Screenshot of the EMR console showing the Resize option for an instance group

Now let's learn how to resize a cluster using the AWS CLI.

Resizing a cluster using the AWS CLI
You can resize a running cluster using AWS CLI commands, where you can increase core
nodes and increase or decrease task nodes.

Scaling cluster resources 197

Assume your task instance group has five nodes and you need to increase it to seven; then,
you can execute the following command, which uses the modify-instance-group
option:

aws emr modify-instance-groups --instance-groups
InstanceGroupId=<instance-group-id>,InstanceCount=7

You can get the <instance-group-id> value by executing the following describe-
cluster command. Please replace <Cluster-ID> with your EMR cluster ID:

aws emr describe-cluster --cluster-id <Cluster-ID>

If you need to terminate a specific instance of an instance group, you can execute the
following command, which needs the specific instance ID, which you can get by executing
the aws emr list-instances --cluster-id <Cluster-ID> command:

aws emr modify-instance-groups --instance-groups
InstanceGroupId=<ig-id>,EC2InstanceIdsToTerminate=<instance-id>

In this section, we have dived deep into different scaling aspects of EMR, specifically the
autoscaling features such as managed scaling and autoscaling. Now let's understand how
they compare to each other.

Comparing managed scaling with autoscaling
After learning about both EMR-managed scaling and autoscaling with a custom policy,
let's compare both side by side to understand their differences and for which use case you
can choose which one.

The following table draws a comparison between both of them:

198 Monitoring, Scaling, and High Availability

Table 6.2 – A table showing a comparison between EMR-managed scaling and
autoscaling with a custom policy

As you can see, EMR-managed scaling automates most of the scaling decisions and is
great for YARN-based applications, whereas autoscaling with a custom policy is great
when you want to have tighter control over the scaling rules.

Cluster cloning and high availability with
multiple master nodes
You have learned about different cluster configurations, such as cluster scaling, debugging,
and monitoring. Next, we will look at how to configure your EMR cluster to be highly
available with multiple master nodes and how to clone an existing cluster that might be
active or terminated.

High availability with multiple master nodes
Starting from EMR 5.23.0, you can launch an EMR cluster with multiple master nodes,
which provides high availability for cluster applications such as YARN, HDFS NameNode,
Spark, Hive, and Ganglia. You can use the EMR console or the AWS CLI to launch a
cluster that has either one or three master nodes. If your cluster's primary master node
fails or your NameNode or ResourceManager crashes, then EMR will automatically
failover to stand by the master node, which makes the cluster fault-tolerant.

Cluster cloning and high availability with multiple master nodes 199

EMR automatically replaces the failed node with a new master node that has the same
configuration and bootstrap actions as the failed master node.

To improve cluster availability, EMR can also take advantage of the EC2 placement groups
to make sure master nodes are deployed on distinct underlying hardware. But the cluster
and its nodes can only be placed in a single Availability Zone or subnet.

Important Note
As a prerequisite, please attach the
AmazonElasticMapReducePlacementGroupPolicy AWS-
managed policy to the EMR service role that you plan to use for launching your
cluster.

Also note that EMR automatically enables termination protection for clusters
with multiple masters and you cannot enable auto-termination after a cluster
is launched. If you need to terminate the cluster, then you need to disable
termination protection first and then trigger a termination request.

Now, let's get an overview of the big data applications configured for high availability with
a multi-master node cluster and how they work.

Applications supported with a multi-master node cluster
Not all the applications of the EMR cluster support high availability with multiple master
nodes; the following are the ones supported at the time of writing this book, where each
application's behavior varies depending on how it is integrated into EMR:

• HDFS: Out of the three master nodes, NameNode runs only on two master nodes
where one acts as active and the other is on standby. When the primary master node
or active NameNode fails, EMR automatically fails over to the standby master node
and the standby NameNode becomes active to take over all operations of the cluster.
After EMR replaces the failed master node, then it joins as the standby node.

You can SSH to any of the master nodes and execute the following command to find
which the active NameNode is:

hdfs haadmin -getAllServiceState

200 Monitoring, Scaling, and High Availability

• YARN ResourceManager: This runs in all three master nodes with one as active
and the other two on standby. In the case of primary master node failure, the
standby master node's ResourceManager becomes active and takes control of all
the operations.

You can access the http://<master-public-dns-name>:8088/
cluster URL by replacing <master-public-dns-name> with any of the
master nodes' public DNS names and it will automatically direct you to the active
ResourceManager. If you need to identify the active ResourceManager using
SSH, then execute the following command in any of the master node's shell prompts:

yarn rmadmin -getAllServiceState

• HBase: This automatically fails over to stand by the master node and if you are
connecting to HBase using REST or the Thrift server, then you must switch back to
the new master node.

• HCatalog: Availability not affected as it's built on Hive Metastore, which exists
outside of the cluster.

• Spark: Spark applications get executed in YARN containers and can also react to
master node failover.

• Sqoop: You can configure Sqoop to store its metadata information in an external
database to be highly available.

• Tez: This also runs in YARN, so is highly available.

• Phoenix: This runs in all three master nodes and its QueryServer runs in one of the
master nodes. You can use the /etc/phoenix/conf/phoenix-env.sh file to
find the private IP address of Phoenix's QueryServer.

• JupyterHub: Highly available as it is available in all three master nodes. But it's
recommended to configure notebook persistence with Amazon S3 to prevent loss.

• Zeppelin: This is installed in all three master nodes and it stores its interpreter
configuration and notes in HDFS by default to avoid data loss. Interpreter sessions
are stored in master nodes, so they get lost in case of failures.

• ZooKeeper: This is highly available as it is the foundation for HDFS
automatic failover.

• Livy: This is highly available as it is installed on all three master nodes and you can
create a new session with the new master node.

• Flink: Its availability is not affected as its JobManagers run as YARN
ApplicationMaster in core nodes.

Cluster cloning and high availability with multiple master nodes 201

• Ganglia: This is available in all master nodes, so its availability is not affected by the
failure of an active master node.

• Mahout, MXNet, TensorFlow, and Pig: Their availability is not affected as they
don't have any daemons.

Important Note
To configure Hive, Hue, PrestoDB, PrestoSQL, and Oozie as highly available
with multiple master nodes, you should externalize their Metastore database so
that their availability is not affected by master node failure.

Launching and terminating an EMR cluster with multiple
master nodes
In the EMR console's advanced cluster creation option, you can enable multiple masters
under the Multiple master nodes (optional) section of the Software and steps screen.
Now let's understand how you can configure multiple masters while creating a cluster
using the AWS CLI.

The following example AWS CLI command represents creating a cluster with multiple
masters with a default AMI:

aws emr create-cluster --name "multi-master-
cluster" --release-label emr-6.3.0 --instance-groups
InstanceGroupType=MASTER,InstanceCount=3,InstanceType=m5.xlarge
InstanceGroupType=CORE,InstanceCount=5,InstanceType=m5.xlarge
--ec2-attributes KeyName=ec2_key_pair_name,InstanceProfile=EMR_
EC2_DefaultRole,SubnetId=<subnet-id> --service-role EMR_
DefaultRole --applications Name=Hadoop Name=Spark

Please replace <subnet-id> with your subnet ID. You can launch your cluster in both
public and private subnets.

To terminate a cluster that has multiple masters, you need to disable termination
protection first and then terminate the cluster. The following is an example of AWS CLI
commands to terminate the cluster:

aws emr modify-cluster-attributes --cluster-id <Cluster-ID>
--no-termination-protected

aws emr terminate-clusters --cluster-id <Cluster-ID>

Please replace <Cluster-ID> with your cluster ID.

202 Monitoring, Scaling, and High Availability

Considerations and limitations of a multi-master node cluster
The following are some of the considerations you should take note of when you are
configuring your cluster with multiple master nodes:

• If you have connected to the active master node using SSH, then the connection will
break in case of node failure. You can connect to the node again after EMR replaces
it and note that the new node's public IP address will be different but its private IP
address will be the same as the previously failed node.

• The Hive Metastore daemon runs in all master nodes, so in the case of primary
master node failure, your application's Java Database Connectivity (JDBC) or
Open Database Connectivity (ODBC), connectivity will get terminated and you
can connect to other active master nodes.

• Take a note of the following considerations for EMR steps:

 � In the case of master node failure, all the steps running on the master node will be
marked as FAILED and its local data will be lost, but you should check the output
of the step to reflect the real state of the step.

 � If a step has started as a YARN application and is running when the master
node fails, then because of automatic failover of the master node, it will continue
and succeed.

 � To let the cluster continue and allow failover of the master node, it's recommended
that you set the ActionOnFailure parameter to CONTINUE or CANCEL_AND_
WAIT instead of TERMINATE_JOB_FLOW or TERMINATE_CLUSTER.

• To use Kerberos authentication in your EMR cluster, you have to configure an
external Key Distribution Center (KDC).

• If your cluster's subnet is oversubscribed or fully utilized, then in case of failure,
EMR cannot replace your failed master node. To avoid such a scenario, it's
recommended that you assign an entire subnet to your EMR cluster and make sure
it has enough private IP addresses.

Apart from these considerations, the following are a few of the limitations that you should
also take note of:

• As a limitation, instance fleets, EMR notebooks, persistent application user
interfaces, and one-click access to persistent Spark history server features are not
available in EMR clusters with multiple master nodes.

Cluster cloning and high availability with multiple master nodes 203

• If two master nodes fail at the same point in time or the whole Availability Zone
goes down, then your EMR cluster cannot recover.

For a detailed list of limitations, please refer to the AWS documentation.

Cloning an existing EMR cluster
In the EMR console, you have the option to clone an existing cluster irrespective of its
current state and optionally, the cloned cluster can include an existing cluster's steps too.

The following steps explain how you can clone a cluster:

1. Navigate to the Amazon EMR console.
2. Select Clusters, which lists all clusters, including clusters that are in a

terminated state.
3. Select the cluster that you want to clone and click Clone.
4. There will be a popup that will ask Would you like to include steps?. Select Yes if

you need to and then click Clone.
5. This will open up EMR's advanced cluster creation screens with all configurations

populated that match the existing cluster, which you planned to clone. Review the
configurations and click Create cluster.

This should create the new EMR cluster, which will have the existing cluster's
configuration and steps. If you are using AMI release 3.1.1 (Hadoop 2.x), AMI release
2.4.8 (Hadoop 1.x), or anything later than that, then you can clone up to 1,000 steps, but if
you are using earlier releases of AMI, then you can clone a maximum of 256 steps.

Important Note
It is highly recommended to configure both scale-up and scale-down policies
when you configure autoscaling with a custom policy, which will optimize
your cluster's resource utilization and can provide better performance and cost
savings. Defining either scale out or scale in without the other one will require
you to take manual action.

204 Monitoring, Scaling, and High Availability

Summary
Over the course of this chapter, we got an overview of how to monitor cluster and job
activities using a cluster's application interfaces, cluster metrics, and the CloudWatch
console. We also saw how to enable auditing on cluster API activities using AWS CloudTrail.

Then, we dived deep into EMR cluster scaling capabilities, which includes EMR-managed
scaling and autoscaling with custom policies. We also learned how they compare to
each other.

Finally, we covered how to make our cluster highly scalable with multiple master nodes
and what the supported applications are. We also learned how we can clone an existing
cluster to replicate its configurations and steps.

That concludes this chapter! Hopefully, you got a good overview of monitoring, scaling,
and high-availability aspects of the cluster, and in the next chapter, we can dive deep into
security aspects of EMR.

Test your knowledge
Before moving on to the next chapter, test your knowledge with the following questions:

1. Assume you have a long-running EMR cluster that is being used by multiple teams
for ETL jobs and data analysis. Because of its multi-tenant nature, your organization
asks that you provide a report of who is accessing the cluster and for which
activities. How would you prepare such a report and from where will you collect
this information?

2. Assume you have a long-running EMR cluster that integrates instance fleets into its
configurations. Your cluster has one master and three core nodes to start with and
you are planning to benefit from EMR scaling capabilities so that when you have
more workload, your cluster will scale up, and when the jobs are finished, it will
scale down. Out of EMR-managed scaling and autoscaling with custom policies,
which one will you choose?

3. You have a long-running EMR cluster that is being used by multiple teams of your
organization. You have configured Hive, Hue, and Spark applications on your
cluster and are using Amazon S3 as the cluster persistent storage layer. Your users
are using the Hue interface to execute Hive queries. You are expected to make this
setup fault-tolerant so that your Hue users don't lose access to the cluster or don't
have downtime to execute Hive queries. How would you set up your cluster?

Further reading 205

Further reading
The following are a few resources you can refer to for further reading:

• Learn how to configure the FoxyProxy or SwitchOmega plugins for the
SOCKS proxy: https://docs.aws.amazon.com/emr/latest/
ManagementGuide/emr-connect-master-node-proxy.html.

• EMR cluster step events with Amazon CloudWatch: https://docs.
aws.amazon.com/emr/latest/ManagementGuide/emr-manage-
cloudwatch-events.html.

• Configuring CloudWatch event rules: https://docs.aws.amazon.com/
AmazonCloudWatch/latest/events/Create-CloudWatch-Events-
Rule.html.

• EMR integration with EC2 placement groups: https://docs.aws.amazon.
com/emr/latest/ManagementGuide/emr-plan-ha-placementgroup.
html.

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-connect-master-node-proxy.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-connect-master-node-proxy.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-manage-cloudwatch-events.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-manage-cloudwatch-events.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-manage-cloudwatch-events.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/Create-CloudWatch-Events-Rule.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/Create-CloudWatch-Events-Rule.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/Create-CloudWatch-Events-Rule.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-ha-placementgroup.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-ha-placementgroup.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-ha-placementgroup.html

7
Understanding

Security in
Amazon EMR

In the previous chapter, you learned about EMR cluster monitoring, scaling, high
availability, and cloning capabilities.

When you implement solutions in AWS, security is the most important thing that you
should be focusing on. These security aspects include infrastructure security, network
security, and data-level security. AWS provides several services and features by means of
which you can implement security around your solution.

In this chapter, we will explain how you can control authentication and authorization in
relation to your cluster, how you can secure data with encryption at rest and in transit, and
finally, how AWS IAM, VPC, subnets, and cluster security groups play a role in making
the cluster secure.

208 Understanding Security in Amazon EMR

Now, let's dive deep into the following topics and understand how they help in
implementing security in Amazon EMR:

• Understanding the basics of security

• AWS IAM integration with Amazon EMR

• Understanding data protection in EMR

• Role of security groups and interface VPC endpoints

Technical requirements
In this chapter, we will dive deep into the different security aspects of EMR, including
IAM access permissions, data encryption, and controlling network traffic to the EMR
cluster. Before getting started, please make sure you have access to the following resources.

• An AWS account

• An IAM user who has permission to create and manage an EMR cluster with related
resources, including Amazon EC2 instances, required IAM roles, and security groups

• IAM access privileges to create VPC endpoints as well as create and manage
encryption keys using AWS KMS

• Access to EMR security documentation that is available through https://docs.
aws.amazon.com/emr/latest/ManagementGuide/emr-security.html

Now, let's understand what it means when we talk about security in EMR and how the
shared responsibility model works.

Understanding the basics of security
AWS has always given top priority to security and highlighted security as the most
important aspect to consider when getting started. When we talk about security, you
need to understand that it's a shared responsibility between AWS and its customers. AWS
provides the infrastructure and security features by means of which you can implement
security, and it is your responsibility to implement security as per your requirements.

The following diagram represents what is included within the sphere of responsibility of
both AWS and the customer:

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-security.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-security.html

Understanding the basics of security 209

Figure 7.1 – Diagram representing a shared responsibility model for AWS

At a high level, you can divide security-shared responsibility into the following categories:

• AWS responsibility for security of the cloud: AWS provides infrastructure
and related services by means of which customers can build and deploy their
applications to the AWS public cloud. AWS infrastructure comprises the hardware,
networking, software, and data centers or facilities that run AWS Cloud services.
AWS is responsible for protecting or securing these infrastructure components,
which run all the services offered by AWS.

• Customer responsibility for security in the cloud: You, as a customer, are
responsible for integrating security features when you start using any AWS services.
Depending on the AWS services you choose for your implementation, you will have
different configurations as part of your scope to implement security; for example,
Amazon EC2 categorized as Infrastructure as a Service (IaaS), which requires you
or your customers to perform operating system updates, apply security patches,
configure SSH or public or private IP-based access, placing them under VPC, subnet
and security groups, and managing and owning the software application installed
on them. For serverless services, however, such as AWS Lambda or DynamoDB,
AWS owns the infrastructure and you are responsible for your data and controlling
access to it.

When we dive deep into EMR security, we can understand what is within your or your
customers' scope as part of the shared responsibility model.

210 Understanding Security in Amazon EMR

Amazon EMR provides security configurations as a feature through which you can
define authentication, authorization, encryption, and other configuration once and then
attach them to multiple clusters. Starting with the EMR 4.8.0 release, you can define
data encryption settings using security configurations. However, security configuration
for Kerberos authentication and Amazon S3 authorization for EMRFS is only available
starting with the EMR 5.10.0 release.

Next, let's learn how you can create a security configuration and how you can specify it for
your EMR cluster.

Creating security configurations
You can use the EMR console, AWS CLI, AWS SDKs, or AWS CloudFormation template
to create a security configuration. We will explain how you can leverage just the EMR
console and the AWS CLI for the configuration settings and that should provide you with
a starting point for building more dynamic applications using AWS SDK or for building
DevOps automation using AWS CloudFormation templates.

Creating a security configuration using the EMR console
To create a security configuration using the EMR console, you can refer to the
following steps:

1. Navigate to the EMR console at https://console.aws.amazon.com/
elasticmapreduce/.

2. In the navigation pane, under EMR on EC2, choose Security Configurations
and then click the Create button, which will open up a new screen where you can
define configurations.

3. Specify a name for the security configuration.
4. Choose the Encryption, Authentication, Authorization, and EC2 Instance

Metadata Service options and then click Create.

This will create a security configuration that you can apply to an EMR on the EC2 cluster.

Creating a security configuration using the AWS CLI
To create a security configuration, you can SSH to any of the master nodes and execute the
following command, which employs the create-security-configuration option:

aws emr create-security-configuration --name "<SecConfigName>"
--security-configuration <MySecConfig-FilePath>

https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/elasticmapreduce/

Understanding the basics of security 211

Please replace <SecConfigName> with your security configuration name. Then,
store the configuration options in a JSON file and replace <MySecConfig-
FilePath> with the JSON configuration file path. The path might look like this –
file://<MySecConfig>.json.

Specifying a security configuration for your cluster
After you have created the security configurations, as a next step, you can assign that
security configuration to one or more EMR clusters using the EMR console or AWS CLI.
Let's understand how you can specify the configuration for your cluster.

Specifying a security configuration using the EMR console
As explained in Chapter 5, Setting Up and Configuring EMR Clusters, when using the AWS
console to create an EMR on an EC2 cluster, you can specify the security configuration
during Step 4: Security of the advanced cluster create option. The following is a
screenshot of the EMR console that represents the same:

Figure 7.2 – EMR console for specifying security configurations

You need to choose the security configuration from the drop-down option. This will list
all the security configurations you have already created.

212 Understanding Security in Amazon EMR

Specifying a security configuration using the AWS CLI
Before applying a security configuration using the AWS CLI, you need to make sure
you have selected EMR release 4.8.0 or later. As represented in the following AWS
CLI command sample, you can specify the security configuration name using the
--security-configuration parameter:

aws emr create-cluster --instance-type m5.2xlarge --release-
label emr-6.4.0 --security-configuration <mySecurityConfigName>

Before executing the command, please replace the <mySecurityConfigName>
variable with the name of your security configuration.

This section provided you with an overview of how you can create a security
configuration and how you can assign it to your cluster. Next, let's dive deep into each
of the security topics.

AWS IAM integration with Amazon EMR
The AWS Identity and Access Management (IAM) service assists in integrating
authentication and authorization mechanisms on top of AWS services or APIs. You can
use IAM users, groups, or roles to define permission policies.

In Amazon EMR, using IAM identity-based policies, you can define which IAM user,
group, or role can access which specific resources and, on a specific resource, which
actions are allowed or denied. You can also specify conditions on which basis a specific
action on a resource is allowed, or not. Please note that Amazon EMR does not support
resource-based policies.

The following are the three primary components of an IAM policy:

• Actions: Policy actions specify which action on your EMR cluster is allowed or
denied and uses the elasticmapreduce: prefix before the action. For example,
a described cluster action will have elasticmapreduce:Describe as an
action. Your policy statements define either an Action or NotAction parameter.
A NotAction parameter means to allow all actions except a specific one.

The following example shows how you can specify multiple actions with
comma-separated values:

"Action": [

 "elasticmapreduce:Describe",

 "elasticmapreduce:RunJobFlow"

AWS IAM integration with Amazon EMR 213

You can also specify multiple actions with wildcard (*) syntax, for example,
elasticmapreduce:Describe*.

• Resources: The Resource element of the policy defines the object or EMR cluster
to which the action is applicable. The value of the resource is either your EMR
cluster's ARN or it can be a wildcard (*) to specify all clusters.

• Condition Keys: This is an optional element of the policy that allows you to specify
conditions to match the policy to be in effect. The matching conditions can be a
string match with a value or with less than or greater than operators.

Important Note
For multiple conditional statements, AWS IAM evaluates them with the logical
AND operator, whereas if multiple values are specified for a single condition,
then IAM evaluates them with the logical OR operator.

After understanding the components of an IAM policy, let's learn how you can configure
service roles for your EMR cluster.

Configuring an IAM service role for your EMR cluster
An EMR cluster needs different service roles for different operations. Service roles are the
ones that provide permissions to EMR applications such as Hadoop, Hive, and Spark to
access other AWS services and perform different actions for their execution. Each EMR
cluster must have a service role for Amazon EMR to help perform service-level operations
and a service role for an EMR cluster's EC2 instances to interact with other AWS services.
Apart from this, an EMR cluster also needs a service role to scale cluster resources if you
have configured autoscaling on your cluster and a service role for your EMR notebook, if
you have set up an EMR notebook.

As highlighted earlier, EMR provides default IAM roles for your cluster which will
have default managed policies integrated into it. Managed IAM policies are managed by
AWS and are updated automatically, as required by the service. Even if EMR provides
default roles, you can create your own IAM roles and assign them to your cluster while
creating them.

214 Understanding Security in Amazon EMR

Service roles used by EMR
The following are the service roles used by EMR for which EMR creates default roles with
AWS managed policies, but it lets you create and assign any custom roles you have created
for them:

• Service role for Amazon EMR (EMR role)

• Service role for EMR cluster EC2 instances (EC2 instance profile)

• Service role for automatic scaling in EMR (Autoscaling role)

• Service role for EMR notebooks

• Service-linked role

Now, let's dive deep into each of these roles to understand their functions better and ways
to implement custom roles for them.

EMR role
An EMR service role includes permissions or IAM policies that allow EMR to provision
cluster resources such as provisioning EC2 instances while creating a cluster, and performing
service-level tasks, such as EMR applications interacting with other AWS services.

By default, EMR creates EMR_DefaultRole, which includes
AmazonEMRServicePolicy_v2 managed policy. Since managed policies are created
and maintained by AWS, they are subject to change as required by the service role. Please
note that in order to use this managed policy, you will need to pass for-use-with-
amazon-emr-managed-policies = true in the policy condition, as shown in
the following:

"Condition": {

 "StringEquals": {

 "aws:ResourceTag/for-use-with-amazon-emr-managed-
policies": "true"

 }

 }

The preceding code snippet is an example that shows the condition section of the
managed policy.

AWS IAM integration with Amazon EMR 215

The EC2 instance profile service role is assigned or attached to each of the EC2 instances
launched as part of the EMR cluster. Application processes that run on top of Hadoop
in these EC2 instances or nodes assume that this EC2 instance profile role interacts with
other AWS services.

The default role created by EMR for this is EMR_EC2_DefaultRole, which uses the
AmazonElasticMapReduceforEC2Role policy.

Important Note
The AmazonElasticMapReduceforEC2Role managed policy will
be deprecated and the EMR service will not replace it with any other default
policy. It is recommended that instead of using the default managed policy,
you should apply resource-based policies to Amazon S3 buckets and other
resources or create your own custom policy and role to use as an instance
profile role.

Your EC2 instance profile role will require the following additional permissions:

• Reading and writing to Amazon S3 using EMRFS: Amazon EMR uses the service
role for the cluster EC2 instances to interact with the Amazon S3 path. So, to
provide access, you need to provide specific bucket and folder permissions to your
EC2 instance profile role.

• If you have enabled the archiving of log files to Amazon S3, then you must specify
the s3:PutObject action permission on your log directory S3 resource path.

• If you have enabled debugging on your cluster, then you need to provide access
to the sqs:GetQueueUrl and sqs:SendMessage actions on your specific
SQS queue.

• If you are going to use AWS Glue Catalog integration for your EMR cluster, then
you should be specifying glue: prefix actions so that EMR service applications can
interact with AWS Glue Catalog databases and tables.

Please refer to the AWS documentation for a detailed policy document that you should be
attaching to your role.

Autoscaling role
This role is required by Amazon EMR to scale your cluster up and down, where it looks
at CloudWatch and cluster metrics then takes scaling decisions to add or terminate
EC2 instances.

216 Understanding Security in Amazon EMR

The following shows the permissions included in the managed policy that might change in
the future as EMR service requirements change:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Action": [

 "cloudwatch:DescribeAlarms",

 "elasticmapreduce:ListInstanceGroups",

 "elasticmapreduce:ModifyInstanceGroups"

],

 "Effect": "Allow",

 "Resource": "*"

 }

]

}

The default role that EMR creates is EMR_AutoScaling_DefaultRole, which
includes an AmazonElasticMapReduceforAutoScalingRole managed policy.

EMR notebook role
When you create an EMR notebook, it needs privileges to interact with
other EMR applications and other AWS services. The default role that EMR
creates for this is EMR_Notebooks_DefaultRole, which includes
AmazonElasticMapReduceEditorsRole and S3FullAccessPolicy managed
policies by default.

If you are creating your custom role for your notebook, make sure you provide at least the
following S3 privileges to access your S3 resources:

"s3:PutObject",

"s3:GetObject",

"s3:GetEncryptionConfiguration",

"s3:ListBucket",

"s3:DeleteObject"

AWS IAM integration with Amazon EMR 217

In addition, if your Amazon S3 buckets are encrypted, then you need to provide the
following additional privileges:

"kms:Decrypt",

"kms:GenerateDataKey",

"kms:ReEncrypt",

"kms:DescribeKey"

If you are going to link GitHub repositories to your EMR notebook and are planning to
enable encryption, then you must provide the secretsmanager:GetSecretValue
privilege to your EMR notebook service role.

Service-linked role
This service role is used by EMR to clean up EC2 resources when they are no longer in
use. This role works along with your cluster's EC2 instance profile role and EMR role to
trigger EC2 actions.

The default role that EMR created for this is AWSServiceRoleForEMRCleanup and
it has the trust policy defined for the EMR service, which is elasticmapreduce.
amazonaws.com.

Unless defined otherwise, this role can only be assumed by EMR. This role is
automatically created by EMR when you launch an EMR cluster if it does not exist. You
can plan to delete this role once you have deleted all the EMR clusters in your account.

To delete this role, you can refer to the following steps in the EMR console and make sure
you have terminated all your EMR clusters before doing this:

1. Navigate to the AWS IAM console at https://console.aws.amazon.com/
iam/.

2. Click Roles from the navigation pane and then click the
AWSServiceRoleForEMRCleanup role name.

3. On the role's summary screen, click the Access Advisor tab and review recent
activity to confirm whether the role is being used by any EMR cluster. If it is being
used, then deletion will fail.

4. Next, you can navigate back to the role list and select the checkbox beside the
AWSServiceRoleForEMRCleanup role.

5. Then, click Delete and confirm the action from the confirmation dialog.

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

218 Understanding Security in Amazon EMR

The deletion process is asynchronous, so it might succeed or fail. If it fails, click View
details or View resources from the IAM notifications to learn about the reason for failure
and take the necessary action.

Configuring IAM roles for EMRFS
As described previously, EMR assumes the EC2 instance profile role if it needs to access
Amazon S3 resources using EMRFS. The same service role is used to access S3 resources,
regardless of which Amazon S3 path or user or group is requesting access.

In case you have an EMR cluster that has multiple IAM users that requires a different
level of access, then you can set up configurations with the IAM role for EMRFS. EMRFS
has the flexibility to assume different service roles based on the Amazon S3 path or the
user or group requesting the access. You can configure each IAM role for EMRFS to have
different permissions to access Amazon S3 data. The IAM role for EMRFS supports the
EMR 5.10.0 release.

To configure IAM roles for EMRFS, you need to set up role mappings that specify IAM
roles corresponding to identifiers who can be users, groups, or Amazon S3 prefixes.
These identifiers in the mapping decide access to S3 using EMRFS. Once you do this,
the following processes take place:

• When EMRFS makes a request to access S3 data, it matches the access request with
the security configuration mapping defined in top-down order.

• If the request matches, then EMRFS assumes the respective IAM role to access S3
data instead of assuming the EC2 instance profile role.

• In case the request does not match any of the mappings, then by default, it assumes
the EC2 instance profile role.

Please note that IAM roles for EMRFS do not provide any host-level isolation and are
limited to application-level isolation that represents controlling which user can access
which application.

Setting up security configurations with IAM roles for EMRFS
To set up the security configurations with IAM roles for EMRFS, you can use the EMR
console or AWS CLI. As explained previously in the Understanding the basics of security
section, it's a two-step process where first you create a security configuration and then
assign it to your cluster.

AWS IAM integration with Amazon EMR 219

The following is a screenshot of IAM roles for EMRFS configuration, available in the EMR
console's create security configuration screen, where you specify IAM roles for EMRFS:

Figure 7.3 – EMR console security configuration to specify IAM roles for EMRFS

After you have created the security configuration, you can assign it to your cluster while
creating it through the EMR console or AWS CLI.

Integrating IAM roles in applications that invoke AWS
services directly
Applications that run on your cluster EC2 instances can use the EC2 instance profile
to get temporary security credentials while calling other AWS services. Starting with
the EMR 2.3.0 release, Hadoop applications available in your EMR cluster are already
updated to leverage IAM roles.

If your application uses Hadoop architecture for its execution and does not directly
invoke any AWS services, then it should work with IAM roles as they are updated to
work without any modifications.

However, if your application calls AWS services directly, then you will have to update
your application's way of working so that it does not get account credentials from the
/etc/hadoop/conf/core-site.xml configuration file of the EC2 instance. Rather,
it follows either of the following approaches to get temporary credentials:

• Your application uses AWS SDK, which uses IAM roles to get temporary credentials
to access AWS services

220 Understanding Security in Amazon EMR

• Alternatively, you can call the EC2 instance metadata URL from the EC2 instance
to get the temporary security credentials. The following is an example command
that shows how you can call the EC2 instance metadata URL and it uses the default
EC2 instance profile, EMR_EC2_DefaultRole:

GET http://169.254.169.254/latest/meta-data/iam/
security-credentials/EMR_EC2_DefaultRole

This command returns the AccessKeyId, SecretAccessKey,
SessionToken, and Expiration attributes.

Please refer to the AWS documentation to refer to the programming language SDKs by
means of which you can get the temporary credentials.

Allowing users and groups to create and modify roles
To create and/or modify EMR clusters or to create custom roles that will be attached to
the EMR cluster that overrides the default roles, the IAM users or groups must have the
following IAM action permissions:

• iam:CreateRole

• iam:PutRolePolicy

• iam:CreateInstanceProfile

• iam:AddRoleToInstanceProfile

• iam:ListRoles

• iam:GetPolicy

• iam:GetInstanceProfile

• iam:GetPolicyVersion

• iam:AttachRolePolicy

• iam:PassRole

Out of all these IAM actions, iam:PassRole is needed to create a cluster, while the
remainder are all required to create or modify IAM roles.

Identity-based policies and best practices
By default, none of the IAM users or roles are permitted to create or modify Amazon EMR
resources using the EMR console, AWS CLI, or AWS APIs. It is the IAM administrator
who needs to create IAM policies and assign them to specific users, groups, or roles to
perform specific API operations or actions.

AWS IAM integration with Amazon EMR 221

An IAM policy that is attached to an IAM identity is called identity-based policy. It
includes AWS-managed policies, custom policies, or inline policies that you embed in
a specific user, group, or role.

As a best practice, it is recommended to use custom-managed policies instead of inline
policies as inline policies cannot be reused. While configuring identity-based policies,
you should consider the following general best practices:

• Getting started with AWS managed policies: To get started with EMR, you should
go with default roles or managed policies already available in AWS IAM. This way,
you can avoid the custom policy creation and can validate your setup quickly.

• Granting least privileges: This is a general security best practice across AWS
services, where you create your custom role with the least privileges and add
additional permissions as required. This will provide you with better granular
security control.

• Enabling Multi Factor Authentication (MFA): For additional security, you should
consider enabling MFA for sensitive API operations.

• Using policy conditions for additional granular security: This allows you to
specify conditions on which basis your defined action will be allowed. As an
example, you can specify a set of IP addresses from which the request will be
allowed.

Apart from IAM-based permissions, you should also tighten your security group
access to make sure only allowed source addresses can access your EMR cluster nodes
or user interfaces.

Understanding authentication to cluster nodes
As explained in Chapter 6, Monitoring, Scaling, and High Availability, you can SSH to
cluster nodes using the EC2 key pair that you have specified during cluster setup. You can
also configure SSH tunneling to the cluster master node with proxy setup to access the
EMR application's web interfaces.

Starting with the EMR 5.10.0 release, you can also configure Kerberos to authenticate user
access using your corporate credentials.

After understanding how IAM roles are integrated and configured in the EMR cluster, in
the next section, we will learn how you can protect data at rest or in transit.

222 Understanding Security in Amazon EMR

Understanding data protection in EMR
As you have learned in relation to the shared responsibility model in the Understanding
the basics of security section of this chapter, you are responsible for maintaining the
security of your applications and data by integrating security configurations and controls
provided by AWS. As part of the security implementation, you can make your data secure,
both in transit and at rest.

The following are some of the high-level security guidelines that you can follow to make
your data secure:

• Follow data governance practices to define your user personas and the access
privileges they will have.

• Define IAM users, groups, and roles as per the user personas and application
requirements and observe the guidelines regarding least privilege.

• Use MFA for additional security on sensitive accounts or data access.

• Leverage the TLS protocol to communicate with AWS services or resources.

• Leverage AWS CloudTrail logs for auditing user actions on different APIs.

• Integrate data encryption solutions for data at rest.

• Take advantage of AWS services such as Amazon Macie to detect Personally
Identifiable Information (PII) data in Amazon S3 and take action if you need to
mask them before exposing them to data consumers.

• Avoid storing sensitive information in free form text fields.

While discussing the different security guidelines, encryption plays an important role in
making your data secure at rest or in transit. Starting with the EMR 4.8.0 release, you can
specify data encryptions for your EMR cluster using security configuration settings. Using
security configurations, you can enable encryption for data in transit and for data at rest
when it is stored in Amazon EBS volumes or Amazon S3 using EMRFS.

Let's dive deep into the encryption options you have and how you can configure them.

Encrypting data at rest for EMRFS on Amazon S3 data
When you enable encryption for EMRFS with Amazon S3, then the encryption works
while reading from and writing to Amazon S3. You can specify Amazon S3 Server-Side
Encryption (SSE) or Client-Side Encryption (CSE) as your default encryption mode
for encryption at rest, but you can also override the encryption method for any specific
bucket or Amazon S3 paths.

Understanding data protection in EMR 223

Apart from encryption at rest, Transport Layer Security (TLS) is enabled for encrypting
the data in transit between your EMR cluster and Amazon S3.

You can leverage AWS Key Management Service (KMS) to get custom encryption keys
for integration, but it might add additional storage and AWS KMS usage costs.

Amazon S3 SSE
When you have enabled encryption for Amazon S3, the data is encrypted at the object
level when it writes data to underlying storage and is decrypted when the data is accessed.

The following are two different encryption key management systems where Amazon S3
with EMR is supported:

• SSE-S3: SSE is the mechanism where Amazon S3 manages the key.

• SSE-KMS: You can use AWS KMS with the customer master key, which is set up
with policies required by Amazon EMR.

Please note that Amazon S3 SSE with customer-provided keys (SSE-C) is not supported
with Amazon EMR at the time of writing this book.

Amazon S3 CSE
When you integrate client-side encryption on your Amazon S3 datasets, the encryption
and decryption happen on the client layer, which means in the EMRFS client of your EMR
cluster. Objects are encrypted within your EMR cluster before getting written to the S3
prefix and get decrypted in EMR after they are downloaded from S3.

The encryption key is provided by you, which can be key managed by AWS KMS
(CSE-KMS) or your custom Java class that generates the client-side master key (CSE-C).
Depending on which method you use to generate the encryption key and the metadata of
the object being encrypted, the specifics of the encryptions differ.

Important Note
Amazon S3 CSE only applies to EMRFS with S3 and not the cluster disk level
datasets. Also note that, at the time of writing this book, Hue does not make
use of EMRFS, so any object that we write to Amazon S3 using the Hue web
interface is not encrypted.

224 Understanding Security in Amazon EMR

EMR cluster local disc encryption
As explained in Chapter 2, Exploring the Architecture and Deployment Options, the EMR
cluster's local data can reside either in the cluster's HDFS storage or in each individual
node's EBS or instance store volumes. When you think of encrypting cluster local data,
then you need to consider all these three storage layers. Now, let's get an overview of the
encryption mechanism applied to each one of them:

• HDFS encryption: During distributed processing, Hadoop applications exchange
data between cluster instances using HDFS, which involves instance store and
EBS volumes. During distributed processing, data is exchanged between cluster
instances by HDFS. When you enable local disk encryption, you can consider the
following open source Hadoop encryption options:

 � Secure Hadoop RPC is set to Privacy and uses the Simple Authentication
and Security Layer (SASL).

 � Data encryption on HDFS block data transfer that is dfs.encrypt.data.
transfer is set to true and is configured to use Advanced Encryption
Standard (AES) 256 encryption.

• Instance store encryption: Regardless of EMR settings, Amazon EC2 instance types
that use Non-Volatile Memory Express (NVMe)-based SSDs as their instance store
volumes use NVMe encryption. If your EC2 instance does not use NVMe-based
SSDs, then EMR uses Linux Unified Key Setup (LUKS) to encrypt the instance
store volumes when you enable local disk encryption, irrespective of the EBS
volume encryption methodology.

• EBS volume encryption: If you have created your EMR cluster in an AWS region
that has enabled EBS volume encryption by default, then its contents are encrypted
irrespective of the EMR cluster encryption settings. However, if you have local disk
encryption enabled using EMR security configurations, then that takes precedence
over your EC2 instance default encryption settings. The following options are
available when you enable encryption using security configuration settings:

 � EBS encryption: Starting with the EMR 5.24.0 release, you have the option to
enable EBS encryption that encrypts your EBS root volume as well as any attached
storage volumes. Please note that it is only available when AWS KMS is integrated
as the key provider and is a recommended option too.

 � LUKS encryption: If you select this setting for cluster EBS volumes, then it is
only applicable to attached storage volumes and not the root volume. Similar to
S3 CSE, you can leverage either AWS KMS or a custom Java class to be your key
provider service.

Understanding data protection in EMR 225

It is recommended to use the DescribeVolumes API to confirm the status of EBS
encryption (should be enabled) on your cluster, since running lsblk on the cluster
will only provide the status of LUKS encryption. lsblk is a Linux command that reads
system files to provide information about all the block devices attached to the system.

Encrypting data in transit for EMRFS on Amazon S3
data
For in-transit encryption, several options are available, and these are EMR
application-specific. You can enable application-specific encryption features using
EMR security configurations and the following are the features that you can activate:

• Hadoop: Hadoop MapReduce shuffle uses TLS for encryption. Secure Hadoop
RPC is set to Privacy and uses the SASL when you have enabled encryption at
rest. Also, when HDFS blocks get transferred, they use the Advanced Encryption
Standard (AES) 256 protocol for encryption and it is also activated when
you enable encryption at rest on your cluster.

• Spark: Starting with EMR release 5.9.0, Spark also uses the AES 256 cipher for
encrypting internal RPC communication, such as a block transfer between Spark
components or shuffling between nodes. For earlier EMR releases, Spark used SASL
with DIGEST-MD5 for its internal communication.

• Presto: Starting with EMR release 5.6.0, Presto uses SSL/TLS for internal
communication between Presto nodes.

• Tez: Tez shuffle handler uses TLS (tez.runtime.ssl.enable).

• HBase: When you have enabled Kerberos authentication on your cluster,
HBase sets the hbase.rpc.protection property to privacy for its
encrypted communication.

When you plan to implement encryption for data in transit, then you can specify the
encryption artifacts either by uploading zipped certificate files to Amazon S3 or by
referencing your custom Java class.

226 Understanding Security in Amazon EMR

Role of security groups and interface VPC
endpoints
In previous sections of the chapter, you have learned how you can control access to your
cluster using IAM permissions and how you can make your data secure at rest or in
transit. In this section, you will learn about controlling access to your cluster using cluster
security groups and how you can use VPC interface endpoints.

Controlling cluster network traffic with security groups
Security groups in AWS act as firewalls for your cluster EC2 instances, where you can
control both inbound and outbound traffic. For example, you can define inbound rules to
allow only your IP address to be the source of the SSH connection to your cluster nodes
and you can add multiple rules for different access requirements.

You have two types of security groups; one is managed security groups that is created and
managed by EMR, and the other is custom-managed security groups that you can create
and assign to your EMR cluster. The custom security groups are optional, which you can
assign to your cluster, in addition to the managed security groups. They contain the rules
you specify and are not modified by EMR.

The EMR managed security group has rules that allow the EMR cluster to interact with
other AWS services. You can modify the managed security group rules but you need to be
very careful doing that as any miss can block access to your cluster.

As a best practice when it comes to providing least privileges for your cluster, it is
recommended to avoid providing public access to your cluster by allowing inbound traffic
from sources as IPv4 0.0.0.0/0 or IPv6 ::/0.

Working with EMR managed security groups
When you launch a cluster, you can attach different managed security groups with both
Master and Core & Task node types of the cluster. If you are launching a cluster within a
private subnet of the VPC, then you will have to specify an additional managed security
group for service access.

EMR automatically creates managed security groups if they don't exist and are then
assigned to your cluster. You need to make sure to either integrate default managed
security groups available in EMR or integrate custom security groups for your cluster
because a combination of both is not supported.

Role of security groups and interface VPC endpoints 227

The following are the default managed security groups that EMR creates:

• ElasticMapReduce-master: If you have selected a public subnet for your cluster,
then EMR specifies ElasticMapReduce-master as the default managed
security group for the master node.

• ElasticMapReduce-slave: For the EMR cluster in a public subnet, the default
managed security group for Core & Task instances is ElasticMapReduce-slave.

• ElasticMapReduce-Master-Private: If you have selected a private subnet for your
cluster, then EMR uses ElasticMapReduce-Master-Private as the default
security group name for the master node.

• ElasticMapReduce-Slave-Private: For clusters in a private subnet, EMR uses
ElasticMapReduce-Slave-Private as the default managed security group
for Core & Task nodes for clusters in a private subnet.

• ElasticMapReduce-ServiceAccess: For service access in private subnets, EMR uses
the default security group name as ElasticMapReduce-ServiceAccess. It
has inbound and outbound rules integrated that allow traffic over HTTPS using
port 8443 and port 9443 to the other managed security groups in the private
subnets. It also enables the cluster manager to communicate with the master, core,
and task nodes.

If you are creating custom security groups for your cluster, then you can refer to the
preceding default security group's inbound and outbound rules to make sure you are not
missing any default rules that are needed in order for your cluster to function as expected.

If you would like to allow SSH access to your master node from specific trusted sources,
then you can edit the inbound rules of the default ElasticMapReduce-master
security group and add SSH access over port 22 for a specific source IP or can select My
IP as the source that will autopopulate your IP address.

Working with additional custom-managed security groups
You have learned in the previous section that in the case of EMR managed security
group settings, you have the option to select either default-managed security groups or
custom security groups. But apart from that, optionally, you can also attach an additional
security group that has your custom rules that could be controlling access from your client
applications or allowing communication between different EMR clusters.

228 Understanding Security in Amazon EMR

For example, you have multiple EMR clusters that are launched in the same VPC and
subnet. You need to allow SSH inbound access to the master node for just a specific subnet
of the cluster. To implement this, on top of the default managed security groups, you can
add an additional security group that allows SSH inbound access over port 22 from the
master node security group to all the clusters in the same subnet.

As explained earlier, you can apply a maximum of up to four additional security groups
for each of the node types, such as Master and Core & Task, and four in a private subnet
for service access. Also note that the maximum number of security groups you can add is
also dependent on any AWS account level limits you might have.

Specifying EMR-managed security groups and additional custom
security groups for a cluster
If you do not specify security groups, EMR creates default security groups for you, and
you can modify them or add additional custom security groups. You can specify security
groups on your cluster using the EMR console, AWS CLI, or EMR API.

Let's understand how you can specify the security groups on your cluster.

Specifying a security group using the EMR console
You can refer to the following steps for assigning the security groups when you create
a new cluster using advanced options:

1. Navigate to the EMR console at https://console.aws.amazon.com/
elasticmapreduce/.

2. Choose Create cluster and go to Advanced options.
3. Select the required options for your cluster until you reach Step 4: Security section.
4. Expand the EC2 Security Groups section on the page, which will show managed

security groups and additional security groups for Master and Core & Task node
types. By default, EMR managed security groups are selected and additional security
groups are empty.

5. For EMR-managed security groups, if you would like to use your custom-managed
security groups, then select them from the EMR managed security groups
drop-down list.

If you have selected a custom-managed security group, you will receive a message
that requests you to choose a custom security group for other instances as you are
not allowed to use a mix of managed and custom security groups for a cluster.

https://console.aws.amazon.com/elasticmapreduce/
https://console.aws.amazon.com/elasticmapreduce/

Role of security groups and interface VPC endpoints 229

6. Optionally, under the Additional security groups section, select the pencil icon
that will allow you to select up to a maximum of four security groups and then
select Assign security groups. You need to repeat this for each Master and Core
& Task node type.

7. After selecting other security configurations, select Create Cluster.

Now that you have understood how you can specify a security group using the EMR
console, let's understand how you can do it with the AWS CLI command.

Specifying a security group using the AWS CLI
The following AWS CLI command provides an example that includes both EMR managed
security groups and additional custom security groups for a cluster that will be launched
in a private subnet of the VPC.

Refer to the --ec2-attributes parameter, which includes different security groups:

aws emr create-cluster --name "ClusterSecurityGroup" \

--release-label emr-emr-6.3.0 --applications Name=Hue Name=Hive
\

Name=Spark --use-default-roles --ec2-attributes \

SubnetIds=<subnet-xxxxxxxxxxxx>,KeyName=<myEC2KeyPair>,\

ServiceAccessSecurityGroup=<sg-xxxxxxxxxxxx>,\

EmrManagedMasterSecurityGroup=<sg-xxxxxxxxxxxx>,\

EmrManagedSlaveSecurityGroup=<sg-xxxxxxxxxxx>,\

AdditionalMasterSecurityGroups=['<sg-xxxxxxxxxxx>',\

'<sg-xxxxxxxxxxx>','<sg-xxxxxxxxxx>'],\

AdditionalSlaveSecurityGroups=<sg-xxxxxxxxxxx> \

--instance-type m5.2xlarge

Please replace the <subnet-xxxxxxxxxxxx>, <myEC2KeyPair>, and
<sg-xxxxxxxxxxxx> variables before executing the command. Please note that \ is
used to include newline characters in the command.

Specifying security groups for EMR notebooks
When you use or create an EMR notebook, EMR uses two security groups to control
network traffic between your EMR notebook and cluster. The default security group that
EMR uses has minimal rules to only allow communication between your notebook and
the clusters to which it's attached.

230 Understanding Security in Amazon EMR

EMR notebooks use Apache Livy to interact with the EMR cluster through a proxy
that uses the 18888 TCP port. If you require access to be restricted to a subset of
notebooks, then you can create your custom security group that has rules as regards
imposing the restriction.

The following are the two security groups that EMR Notebooks uses to communicate with
the EMR cluster:

• ElasticMapReduceEditors-Livy: In addition to the default security group attached
to the master node of the cluster, this additional security group gets attached, which
allows inbound traffic on TCP 18888 port.

• ElasticMapReduceEditors-Editor: This is the default security group attached
to the EMR notebook, which allows outbound traffic from the notebook to the
EMR cluster.

Apart from these two security groups, you might need to add an additional security
group or rule if you plan to integrate the GitHub repository with your notebook.
To access the GitHub repository from the notebook, you need to allow outbound
traffic to the GitHub repository. It is recommended that you create a new custom
security group for it and attach it to your notebook. If you plan to update the default
ElasticMapReduceEditors-Editor security group, then all other notebooks that
are attached to the default security group will also have the same access that you may not
wish to give.

Connecting to Amazon EMR on an EC2 cluster using an
interface VPC endpoint
You can connect to your VPC privately with other supported AWS services in the same
or other AWS accounts, supported AWS Marketplace services, or VPC endpoint services
with the help of AWS PrivateLink. PrivateLink is readily available and highly scalable.

With VPC endpoints, you can connect to your VPC-based EMR on an EC2 cluster using
an AWS network and can avoid the internet route for connectivity, which provides better
performance and security. You also don't need a NAT device, internet gateway, AWS
Direct Connect or VPN connection for connectivity, and the EC2 instances in your VPC
do not need any public IP addresses for connectivity, and the EC2 instances in your VPC
do not need any public IP addresses to interact with the EMR API.

Each VPC endpoint represents one or more elastic network interfaces (ENIs) that have
private IP addresses in VPC subnets. For connecting to your EMR cluster, you can use the
AWS CLI or AWS console to create an interface VPC endpoint.

Role of security groups and interface VPC endpoints 231

After you have created an interface VPC endpoint, one of the following happens:

• If you have enabled private DNS hostnames for your endpoint, then the
default Amazon EMR endpoint resolves to your VPC endpoint. The default
service name endpoint for EMR has the elasticmapreduce.Region.
amazonaws.com format.

• If you have not enabled private DNS hostnames, then Amazon VPC provides a DNS
endpoint name with the VPC_Endpoint_ID.elasticmapreduce.Region.
vpce.amazonaws.com format.

For granular permission management for IAM users or groups, you can attach VPC
endpoint-related IAM policies to your VPC endpoint. You can also attach security groups
to your VPC endpoint to control inbound and outbound network traffic.

The following is an example of an IAM policy that allows VPC endpoint access to a
specific IAM user in a particular AWS account, while access is denied to all remaining
IAM users:

{

 "Statement": [

 {

 "Action": "*",

 "Effect": "Allow",

 "Resource": "*",

 "Principal": {

 "AWS": [

 "arn:aws:iam::<AWS-Account-ID>:user/<IAM-
User-ID>"

]

 }

 }]

}

Please replace the <AWS-Account-ID> and <IAM-User-ID> variables with your AWS
account and username, respectively.

232 Understanding Security in Amazon EMR

Connecting to Amazon EMR on an EKS cluster using an
interface VPC endpoint
Similar to EMR on the EC2 cluster, you can use VPC endpoints to connect to your EMR
on an EKS cluster using the Amazon network and thereby avoid going through the public
internet. If you create an EC2 instance in your VPC public subnet, then it can connect to
EMR on the EKS API without the need for a public IP address.

As highlighted in the previous section, you can create an interface VPC endpoint using
the EMR console or AWS CLI.

After you have created an interface VPC endpoint:

• If you have enabled private DNS hostnames for your endpoint, then the default
Amazon EMR on the EKS endpoint resolves to your VPC endpoint. The default
format for EMR on the EKS service name endpoint is emr-containers.
Region.amazonaws.com.

• If you have not enabled private DNS hostnames, then Amazon VPC provides a DNS
endpoint name with the VPC_Endpoint_ID.emr-containers.Region.
vpce.amazonaws.com format.

The following is an example of a VPC endpoint IAM policy that allows a specific AWS
account to perform read-only operations on your EMR on the EKS cluster:

{

 "Statement": [

 {

 "Action": [

 "emr-containers:DescribeJobRun",

 "emr-containers:DescribeVirtualCluster",

 "emr-containers:ListJobRuns",

 "emr-containers:ListTagsForResource",

 "emr-containers:ListVirtualClusters"

],

 "Effect": "Allow",

 "Resource": "*",

 "Principal": {

 "AWS": [

 "<AWS-Account-ID>"

]

Summary 233

 }

 }

]

}

Please replace the <AWS-Account-ID> variable with your AWS account before
integrating it with your user or role.

In this section, you have learned about how you can control network traffic to your
cluster using security groups and how you can connect to your EMR cluster using
interface VPC endpoints.

Summary
Over the course of this chapter, you got an overview of the basics of security, which
included creating a security configuration and assigning it to multiple EMR clusters. Then
you learned how you can enable authentication and authorization for EMR APIs using
AWS IAM users, groups, policies, and roles.

Then we dived deep into data protection, which included encrypting your data at rest
in a cluster's local disk, Amazon S3, and also securing your data while in transit during
distributed processing.

Finally, we covered how you can configure managed and custom security groups for your
cluster nodes and how configuring interface VPC endpoints can provide better security
and performance.

That concludes this chapter! In the next chapter, we will dive deep into data-level security
where you will learn how you can enable granular permission management on your
cluster data using AWS Lake Formation and Apache Ranger.

Test your knowledge
Before moving on to the next chapter, test your knowledge with the following questions:

1. Assume that as part of your EMR cluster, you have some custom applications
running that will be interacting with AWS services directly instead of executing
Hadoop or Spark jobs. Your custom application needs to authenticate itself with
AWS IAM to interact with the AWS services and should also have required
privileges. How would you enable your application to authenticate itself with AWS
IAM to get temporary credentials for access?

234 Understanding Security in Amazon EMR

2. Assume that you are using Amazon S3 as your persistent data store in EMR and
your organization has strict security rules to encrypt all the data you store. You have
your own custom encryption keys that need to be used to encrypt your data. How
would you ensure that EMR uses your custom key to encrypt data at rest?

3. Assume that you have an EMR notebook that needs to push or pull code from the
GitHub repository and you have required IAM privileges to modify the default
security groups for your notebook. How would you configure security group rules
to allow access to your public GitHub repository?

Further reading
The following are a few resources you can refer to for further reading:

• Learn how to configure a Kerberos configuration in EMR: https://docs.aws.
amazon.com/emr/latest/ManagementGuide/emr-kerberos.html

• Creating keys and certificates for encryption: https://docs.aws.amazon.
com/emr/latest/ManagementGuide/emr-encryption-enable.html

• Setting up cross-account access for EMR on an EKS cluster: https://docs.
aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/
security-cross-account.html

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-encryption-enable.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-encryption-enable.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/security-cross-account.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/security-cross-account.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/security-cross-account.html

8
Understanding

Data Governance in
Amazon EMR

In previous chapters, you learned about EMR cluster security with IAM policies and data
encryption and how you can configure security groups to control network traffic from or
to your cluster.

As well as EMR cluster-level security, you can also enable data-level security where
you can build a centralized data catalog on your datasets and then define fine-grained
permissions to control which user can access which database, table, or column of
your data catalog. Security of data is as important as maintaining security on your
infrastructure. When you put security controls on your data, you also need to think about
whether the data available for consumption is available in a useful format with proper data
quality checks in place.

236 Understanding Data Governance in Amazon EMR

That brings us to the focus of this chapter, where we will dive deep into the following
topics, which will help you implement data governance and granular permission
management on your data catalog:

• Understanding data catalog and access management options

• Understanding Amazon EMR integration with AWS Lake Formation

• Understanding Amazon EMR integration with Apache Ranger

This will help your organization to build a data governance strategy, where they can put
controls around the data catalog and security around its access.

Technical requirements
In this chapter, we will dive deep into the EMR cluster's integration with AWS Glue Data
Catalog and the AWS Lake Formation service. So, to test the integration, you will need the
following resources before you get started:

• An AWS account

• An Identity and Access Management (IAM) user that has permission to create and
manage an EMR cluster with related resources, such as Amazon Elastic Compute
Cloud (EC2) instances, required IAM roles, and security groups

• IAM access privileges to integrate AWS Glue Data Catalog, AWS Lake Formation,
Amazon Simple Storage Service (S3), CloudWatch, and CloudTrail

Now let's understand how you can build a centralized data catalog in EMR and what
options you have for this integration.

Understanding data catalog and access
management options
When you think of data lake use cases, where the storage layer is a filesystem such as
HDFS or an object store such as Amazon S3, by default, the data is not represented as
databases or tables. In a data lake, you may receive datasets as structured, semi-structured,
or unstructured datasets or files.

If it is unstructured data, such as media files (images, videos), then often machine learning
or artificial intelligence tools are integrated to extract data and metadata about the media
files and save the output to a data lake for further analytics.

Understanding data catalog and access management options 237

If it is semi-structured, then often it goes through Extract, Transform, and Load (ETL)
transformations to flatten it so that it is available to data analysts or data scientists
for consumption.

Structured data, which is available as files or objects in a data lake, is not accessible to
business users or data analysts in a form that they can query data using standard SQL. To
make the data available as databases or tables for business users, you can think of creating
a virtual table that imposes the schema while reading the datasets.

In an ideal database world, data that gets written to databases would follow a schema-on-
write approach whereas in a data lake it's primarily schema-on-read, which means when
you submit a query to read the data, the schema is applied on top of the filesystem to show
the output in a tabular format. Whereas for schema-on-write semantics, before the data
gets written to the database storage, its schema is validated against the table schema, and
upon validation, it gets written to the storage.

When you integrate Amazon EMR for your data analytics use cases, you can store the
data in either an EMR cluster's HDFS or Amazon S3 using EMRFS. Amazon S3 is the
recommended storage as it provides high availability and scalability. On top of the data
store, if you need to create virtual tables, then you have the following options:

• Hive Metastore: You can integrate Apache Hive while creating your EMR cluster,
which uses a relational database running on the cluster master node as its metastore,
or you can integrate Amazon RDS as its external metastore for better reliability or
cross-cluster metadata sharing. Then, you can create databases and virtual tables on
top of the cluster HDFS path or Amazon S3 path and run standard SQL queries to
fetch data.

• AWS Glue Data Catalog: This is a serverless managed service that is designed to
act as the centralized data catalog on top of the S3 data lake as well as other AWS
services, such as Amazon Redshift, Amazon DynamoDB, and relational databases
connected through JDBC.

If you have configured Amazon S3 as your cluster's persistent data store, then AWS Glue
Data Catalog is the recommended option as that provides the opportunity for additional
integrations. As an example, you can integrate AWS Glue ETL jobs on top of an S3 data
lake using Glue Data Catalog tables, integrate AWS Lake Formation granular permission
management, or enable cross-account data sharing for centralized data management.

Now, let's dive deep into AWS Glue Catalog and understand how you can integrate that
with your EMR cluster as an external metastore.

238 Understanding Data Governance in Amazon EMR

Using AWS Glue Data Catalog
AWS Glue Data Catalog is a persistent metastore that allows you to build a centralized
data catalog that can be shared across multiple AWS analytics services and can also be
shared between multiple AWS accounts. It is integrated with AWS IAM, using which you
can control which user is allowed to invoke Glue Data Catalog APIs, such as creating
databases or creating tables.

In a data lake use case, AWS Glue crawlers play an important role of crawling subset data
from a specified Amazon S3 path to autodetect the schema and create metadata tables in
Glue Data Catalog. Glue Data Catalog also has audit and data governance capabilities that
keep track of schema changes and create a new version with each update.

The following are the AWS services that are integrated with AWS Glue Data Catalog:

• AWS Glue jobs: AWS Glue ETL jobs read from the catalog for ETL processing and
also update the output to Glue Data Catalog.

• Amazon Athena: Glue Data Catalog is one of the primary data sources for Athena,
where Glue Data Catalog databases and tables are listed for you to query using
standard SQL.

• Amazon Redshift Spectrum: Similar to Amazon Athena, Redshift Spectrum
can fetch data from a data lake and other sources by querying through Glue Data
Catalog databases and tables.

• Amazon EMR: As described earlier, similar to Hive Metastore, EMR can use Glue
Data Catalog as its external metastore.

• AWS Lake Formation: Using AWS Lake Formation, you can define granular
permission management on top of your Glue Data Catalog databases, tables,
columns, or rows. Once you enable Lake Formation on your AWS account and
integrate permission management, other AWS services, such as Athena, Glue jobs,
Redshift Spectrum, and EMR, follow the access policies defined in Lake Formation.

After understanding what the role of Glue Data Catalog is, let's learn how you can
integrate Glue Data Catalog in Amazon EMR.

Integrating AWS Glue Data Catalog with Amazon EMR
As explained in Chapter 5, Setting Up and Configuring Clusters, when you create your
EMR cluster using advanced options, on the Step 1: Software and Steps screen, you
have optional AWS Glue Data Catalog settings, which allow you to configure Glue Data
Catalog for Hive, Presto, and Spark SQL.

Understanding data catalog and access management options 239

The following screenshot shows the settings in the EMR console:

Figure 8.1 – EMR console to configure Glue Data Catalog

You can enable the same settings with the AWS Command Line Interface (CLI) and the
following is an example of it:

aws emr create-cluster --name 'EMR with Glue Catalog'
--applications Name=Hadoop Name=Hive Name=Presto
Name=Spark --release-label emr-6.3.0 --configurations
'[{"Classification":"hive-site","Properties":{"hive.
Metastore.client.factory.class":"com.amazonaws.glue.catalog.
Metastore.AWSGlueDataCatalogHiveClientFactory"}},{"Class
ification":"presto-connector-hive","Properties":{"hive.
Metastore.glue.datacatalog.enabled":"true"}},{"Classific
ation":"spark-hive-site","Properties":{"hive.Metastore.
client.factory.class":"com.amazonaws.glue.catalog.Metastore.
AWSGlueDataCatalogHiveClientFactory"}}]' --use-default-roles
--region us-east-1

As you can see, the --configurations parameter in this command has the
configurations that specify Glue Data Catalog for Hive, Spark, and Presto. We have
explained the Glue Data Catalog integration with Hive, Presto, and Spark SQL in detail in
Chapter 4, Big Data Applications and Notebooks Available in Amazon EMR.

240 Understanding Data Governance in Amazon EMR

Permission management on top of a data catalog
After customers start using EMR with HDFS or EMRFS with S3 as their distributed
storage layer for big data processing, the next thing they look for is data governance and
granular permission management on their data lake. This will enable them to provide
database-, column-, or row-level permissions on top of Hive Metastore or Glue Catalog.

To implement permission management in EMR, you have the following options:

• AWS Lake Formation

• Apache Ranger

Now, let's dive into each of these options and understand how you can integrate them
with EMR.

Understanding Amazon EMR integration with
AWS Lake Formation
AWS Lake Formation is a managed service using which you can control which user
can access which databases, tables, columns, or rows of your table. Lake Formation
also supports integration with Active Directory Federation Services (AD FS) and
SAML-based single sign-on (SSO), which allows users to authenticate themselves
using their organization's login credentials.

AWS Lake Formation has several features; the following are a few of the popular features:

• Blueprints: Lake Formation blueprints provide you with a few templates using
which you can ingest data from relational databases or AWS load balancer logs
to an S3 data lake. It invokes AWS Glue workflows and jobs to do the data ingestion.

• Granular permission management: With Lake Formation permissions
management, you can define database, table, column, or row-level permissions that
validate every user request. You can also define Lake Formation tags and define
tag-based permissions, instead of defining access for every database or table.

• Lake Formation governed tables: With Lake Formation governed tables, you can
do row-level transaction updates on your Glue Data Catalog tables, which will
enable updates or merges on your S3 data lake objects. This is great for GDPR
compliance requirements, which require data to be updated or deleted. Lake
Formation governed tables also have features such as query acceleration with
predicate pushdown, storage optimization with auto compression of small S3 files,
and time travel, using which you can access snapshots of your data at a specific time
in the past.

Understanding Amazon EMR integration with AWS Lake Formation 241

Out of all the preceding features, we will primarily focus on Lake Formation fine-grained
permission management and understand how you can integrate it with Amazon EMR.

We assume Lake Formation is enabled on your account and you have defined granular
permissions on your Glue Data Catalog tables. Now, when you run queries on top of
these Glue Data Catalog tables using any of the AWS analytics services, such as Amazon
Athena, Amazon Redshift, AWS Glue jobs, Amazon QuickSight, or Amazon EMR, Lake
Formation permissions come into play to allow or deny the request.

The following diagram explains how Lake Formation works when a user submits a query
using these AWS services:

Figure 8.2 – AWS Lake Formation – user request processing

As you can see in this diagram, the user submits a query to Amazon EMR, Redshift
Spectrum, AWS Glue, or Amazon Athena to fetch data from the data lake. AWS Lake
Formation validates this request and if allowed, it generates a short-term credential
that the AWS analytics service can use to retrieve data from the data lake and return
it to the user.

Now let's understand how Lake Formation integration works with Amazon EMR.

Integrating Lake Formation with Amazon EMR
Starting from EMR release 5.31.0, you can launch a cluster with AWS Lake Formation
integration, which provides the following two key benefits:

• Granular permission on Glue Data Catalog databases and tables

• SAML-based federated SSO to your EMR notebooks or Apache Zeppelin notebook
using your corporate credentials

Now let's understand how you can launch an EMR cluster with Lake Formation.

242 Understanding Data Governance in Amazon EMR

IAM role needed for Lake Formation setup
The following are the three key IAM roles you need to set up for EMR to work with
Lake Formation:

• Custom EC2 instance profile role: To make EMR work with Lake Formation,
please make sure you create a custom EC2 instance profile so that you can edit or
add policies for Lake Formation integration.

• Additional IAM role for Lake Formation: This IAM role for Lake Formation
defines which identity providers (IdPs) can assume this role and what privileges
a user will have when they log in through an IdP.

• IAM role for non-Lake Formation AWS services: This role will be used by EMR
to interact with AWS services that are not integrated with Lake Formation, such
as DynamoDB and Kinesis Data Streams. This role should not include any AWS
Glue or Lake Formation API operations, any AWS Security Token Service (STS)
AssumeRole operations, or any Amazon S3 bucket or prefix that is controlled by
AWS Lake Formation. For S3 paths registered with Lake Formation, EMR will use
the IAM role that is integrated with Lake Formation.

We suggest you read through the AWS documentation (link in the Further reading
section) to understand the Lake Formation setup steps you will need to configure before
you begin integrating Lake Formation as part of your EMR cluster.

Next, let's learn about a few EMR components that help with Lake Formation fine-grained
access control.

EMR components that help with Lake Formation integration
Amazon EMR uses the following key components to facilitate integration with
Lake Formation:

• Proxy agent: This is an Apache knox-based agent that runs on the EMR master
node as the knox system user. This agent helps generate temporary credentials
when it receives SAML-authenticated requests from users. While running, it writes
logs to the /var/log/knox directory of the master node.

• Secret agent: This agent runs on every node of the cluster and uses Glue APIs to
retrieve Glue Data Catalog metadata information and Lake Formation APIs to get
temporary credentials to provide access. This agent securely stores secrets such as
user temporary credentials or encryption keys of Kerberos tickets and distributes
them to other EMR applications for authentication or authorization. This runs as
the emrsecretagent user on cluster nodes and writes its logs to the /emr/
secretagent/log directory

Understanding Amazon EMR integration with AWS Lake Formation 243

Please note, this agent process is dependent on a set of iptable rules, so make
sure that iptable is not disabled and you have not altered the rules if you
customized it.

• Record server: Similar to the secret agent, this process also runs in every node of
the cluster and is named as the emr_record_server user. It uses the temporary
credentials distributed by the secret agent to authorize requests and then reads
data from the S3 data lake as per the row or column-level access defined in Lake
Formation. This writes logs to the /var/log/emr-record-server directory of
the nodes.

The following is an architecture reference diagram that explains how these three
components work to provide SSO capability with SAML authentication and how Lake
Formation is integrated to provide fine-grained access control with Amazon S3:

Figure 8.3 – Architecture reference for SAML-based authentication in EMR

From a user standpoint, the SAML-based authentication and Lake Formation based
authorization work seamlessly such that users need not provide their credentials and it
automatically signs in when they are accessing EMR notebooks or Zeppelin notebooks.

After getting an overview of the Lake Formation way of working with EMR, now let's
understand how you can launch an EMR cluster with Lake Formation.

Launching an EMR cluster with Lake Formation
Please make sure you have followed the setup steps and prerequisites specified in
the AWS documentation (https://docs.aws.amazon.com/emr/latest/
ManagementGuide/emr-lf-prerequisites.html).

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-lf-prerequisites.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-lf-prerequisites.html

244 Understanding Data Governance in Amazon EMR

Apart from creating a custom EC2 instance profile role, please make sure you have created
a security configuration that enables Lake Formation configuration.

The following screenshot shows how you can enable it using the EMR console:

Figure 8.4 – EMR security configurations with Lake Formation

After your security configuration is ready, you can launch an EMR cluster using the
following AWS CLI command, which includes a custom EC2 instance profile role, the
security configuration name that you created, and the --kerberos-attributes
parameter if your cluster has Kerberos configuration enabled.

This cluster enables Zeppelin integration with Lake Formation:

aws emr create-cluster --region us-east-1
--name emr-lakeformation --release-label
emr-6.3.0 --use-default-roles --instance-groups
InstanceGroupType=MASTER,InstanceCount=1,InstanceType=m4.
2xlarge
InstanceGroupType=CORE,InstanceCount=1,InstanceType=m4.2xlarge
--applications Name=Zeppelin Name=Livy --kerberos-attributes
Realm=EC2.INTERNAL,KdcAdminPassword=<MyClusterKDCAdminPassword>
--ec2-attributes KeyName=<MyEC2KeyPair>,SubnetId=<subnet-00xxxx
xxxxxxxxx11>,InstanceProfile=<MyCustomEC2InstanceProfile>
--security-configuration <security-configuration-name>

Understanding Amazon EMR integration with AWS Lake Formation 245

Please replace the <MyClusterKDCAdminPassword>, <MyEC2KeyPair>,
<subnet-00xxxxxxxxxxxxx11>, <MyCustomEC2InstanceProfile>, and
<security-configuration-name> variables before executing the command.

If you have configured Active Directory authentication with SSO, then as a next step, you
should update the SSO URL for your IdP, as we will see in the following section.

Updating the SSO URL with your IdP
Please refer to the following steps to update the callback or SSO URL so that your users
can be redirected to the EMR cluster's master node DNS URL:

If you are using Active Directory Federation Services (AD FS) as your IdP, then do
the following:

1. From the AD FS management console, navigate to Relying Party Trusts.
2. Right-click on the display name of your replying party trust and select Properties.
3. From the Properties window, select the Endpoints tab.
4. Select Edit for the temporary URL you provided earlier.
5. In the Edit endpoint window, replace the trusted URL with your EMR cluster's

master node DNS.
6. In the Add an endpoint window, enter your EMR cluster's master node public DNS

in the Trusted URL field, which might look like https://ec2-11-111-11-
111.compute-1.amazonaws.com:8442/gateway/knoxsso/api/v1/
websso?pac4jCallback=true&client_name=SAML2Client.

7. Then, click OK.

This is just an example for AD FS. For any other IdPs, such as Okta or Azure Active
Directory, you can follow the steps given by the respective IdP.

Setting up EMR notebooks to work with
Lake Formation
After your cluster is launched with Lake Formation integration, you can use an EMR
notebook or Zeppelin for interactive development. Before accessing these notebook
interfaces, make sure your cluster's network access control list (NACL) and cluster
security group have allowed access to port 8442 from your local system IP.

246 Understanding Data Governance in Amazon EMR

Important Note
By default, the EMR cluster's proxy agent uses a self-signed TLS certificate,
so while accessing the notebook URLs, your browser will have the warning
to accept the certificate to continue accessing the URL. But you can apply a
custom certificate to your proxy agent.

Now let's understand how you can access both of these notebooks.

Accessing Apache Zeppelin
After your cluster is launched, you can get the cluster's master node public DNS
from the EMR console. Then, you can access Zeppelin by using the
https://<MasterNodePublicDNS>:8442/gateway/default/zeppelin/
URL.

As described, your browser will prompt you to accept the self-signed certificate. If you
have integrated IdP, then after you accept the certificate, it will redirect you to your IdP,
where you can authenticate yourself and then get automatically redirected to Zeppelin.

In the Zeppelin interface, you can create a new notebook and then use Spark SQL to
access Lake Formation databases or tables.

Accessing EMR notebooks
You can create an EMR notebook using the EMR console and integrate the notebook with
an existing EMR cluster that has enabled Lake Formation.

In the EMR console, you can navigate to Notebooks | Create Notebook and then attach
the notebook to an EMR cluster. Similar to Zeppelin, after accepting the self-signed
certificate, you will be redirected to your IdP. Once authenticated, it will automatically
redirect to your EMR notebook.

This concludes the Lake Formation integration with Amazon EMR. Next, we can see how
Apache Ranger is integrated with EMR to provide fine-grained access control.

Understanding Amazon EMR integration with
Apache Ranger
Apache Ranger is an open source framework that provides comprehensive security
across the Hadoop ecosystem, using which you can define and manage security policies to
control access on Hadoop components.

https://<MasterNodePublicDNS>:8442/gateway/default/zeppelin/

Understanding Amazon EMR integration with Apache Ranger 247

Starting from the EMR 5.32.0 release, your EMR cluster has default native integration with
Apache Ranger. That means EMR installs and manages the Ranger plugin on your behalf.

Similar to AWS Lake Formation, Apache Ranger also provides fine-grained access control
on top of Hive Metastore or Amazon S3 prefixes. Using Ranger, you can define access
permissions on top of Hive databases, tables, or columns while using Hive queries or
Spark jobs. Data masking and row-level filtering are only supported with Hive.

Ranger has the following two primary components:

• Apache Ranger policy admin server: With this server, you can define authorization
policies for Hive Metastore, Apache Spark, and EMRFS with S3. To integrate with
EMR, you can use your existing Ranger policy admin server or set up a new one.

• Apache Ranger plugin: This component helps in validating user access against the
policies defined in the Ranger policy admin server.

The following diagram explains the Apache Ranger architecture diagram in EMR:

Figure 8.5 – Architecture reference diagram for EMR with Apache Ranger

248 Understanding Data Governance in Amazon EMR

As you can see in this architecture diagram, EMR uses the following two components to
work with Apache Ranger:

• EMR secret agent: As explained when discussing AWS Lake Formation integration
with EMR, this agent stores and distributes secrets, including user credentials,
Kerberos tickets, or encryption keys. The secret agent validates user requests and
generates temporary credentials for access.

• EMR record server: As explained in the Integrating Lake Formation with Amazon
EMR section, this runs in every node of the cluster and uses the temporary
credentials to authorize the request, and then retrieves authorized data from S3.

By default, Amazon EMR supports Ranger integration with Spark, Hive, and EMRFS + S3.
Starting from the EMR 5.32.0 release, you can enable Ranger for other EMR components,
such as Apache Hadoop, Apache Livy, Apache Zeppelin, Apache Hue, Tez, Ganglia,
ZooKeeper, MXNet, Mahout, HCatalog, and TensorFlow with additional configuration.

Now let's learn how you can set up Ranger in an EMR cluster.

Setting up Apache Ranger in EMR
To set up Apache Ranger in EMR, the following are some of the steps you should consider.

Setting up the Ranger admin server
The Apache Ranger plugin in EMR uses SSL/TLS to interact with the admin server. To
enable SSL/TLS, you need to configure the following attribute in the ranger-admin-
site.xml file on the admin server:

<property>

 <name>ranger.service.https.attrib.ssl.enabled</name>

 <value>true</value>

</property>

Apart from the preceding SSL configuration, you also need to configure the following
additional configurations:

<property>

 <name>ranger.https.attrib.keystore.file</name>

 <value>_<PATH_TO_KEYSTORE>_</value>

</property>

<property>

Understanding Amazon EMR integration with Apache Ranger 249

 <name>ranger.service.https.attrib.keystore.file</name>

 <value>_<PATH_TO_KEYSTORE>_</value>

</property>

<property>

 <name>ranger.service.https.attrib.keystore.pass</name>

 <value>_<KEYSTORE_PASSWORD>_</value>

</property>

<property>

 <name>ranger.service.https.attrib.keystore.keyalias</name>

 <value><PRIVATE_CERTIFICATE_KEY_ALIAS></value>

</property>

<property>

 <name>ranger.service.https.attrib.clientAuth</name>

 <value>want</value>

</property>

<property>

 <name>ranger.service.https.port</name>

 <value>6182</value>

</property>

With these configuration parameters, you can provide details about your certificate,
including the certificate alias, path, password, and ranger service port.

IAM roles for native integration to set up the Ranger admin server
Before launching your cluster, you need to create the following roles that Apache
Ranger uses:

• Custom EC2 instance profile role: Instead of using the default EMR_EC2_
DefaultRole role that we explained in Chapter 5, Setting Up and Configuring
Clusters, and Chapter 7, Understanding Security in Amazon EMR, you need to create
a custom role that should have permission to tag sessions and access TLS certificates
available in AWS Secrets Manager.

250 Understanding Data Governance in Amazon EMR

• IAM role for Apache Ranger: This role provides temporary credentials using which
the EMR record server and Hive can access S3 data. Please make sure to include
access to Key Management Service (KMS) keys, if you have enabled encryption
on your S3 bucket using S3-SSE. In addition, you also need to create a trust policy
between the EC2 instance profile and this role so that your instance can assume this
role. You can refer to the AWS IAM documentation to learn how you can configure
the trust policy.

• IAM role for other services: If needed, this role is used to interact with other
AWS services. Similar to the IAM role for Apache Ranger, please add a trust policy
between this role and the EC2 instance profile so that the EC2 instance can assume
this role to interact with other AWS services, such as Amazon Kinesis Data Streams
and Amazon DynamoDB.

For a complete list of IAM policies that will be embedded into any of the preceding roles,
please refer to the AWS documentation.

Storing TLS certificates in AWS Secrets Manager
As explained in the previous section, the Ranger admin server communicates with
EMR over TLS to make sure the communication is secure and cannot be intercepted if
read by unauthorized processes. It is mandatory that Ranger plugins for Hive, Spark, or
S3 authenticate to EMR using two-way TLS authentication, which requires two public
and two private certificates. You must use AWS Secrets Manager to configure these TLS
certificates and then integrate them into EMR security configurations.

Important Note
It is recommended that you generate a separate set of TLS certificates for each
Ranger plugin so that if one of the plugin keys is compromised, you are not
risking all plugins.

Also, you should rotate your certificates before expiry to continue having access.

EMR security configurations for Apache Ranger
After you have created the required roles and trust policies, you can create EMR security
configurations that enable Apache Ranger fine-grained access control.

Understanding Amazon EMR integration with Apache Ranger 251

The following screenshot shows how you can enable it using the EMR console:

Figure 8.6 – EMR security configurations to enable Apache Ranger

After you have created the security configuration, you can attach it to your EMR cluster
while launching it using the EMR console or AWS CLI.

Understanding Apache Ranger plugins
Starting from the EMR 5.32 release, EMR includes the following Ranger plugins, which
integrate with Ranger 2.0 to provide fine-grained access control and audit capabilities.
These plugins validate access against the policies defined in the Ranger policy admin server.

Now, let's get an overview of each of these plugins.

Ranger plugin for Hive
In EMR, the Ranger plugin for Hive supports all the functionality available in the open
source version, which includes database-, table-, column-, and row-level permissions with
the data masking feature.

The Hive plugin is, by default, compatible and integrated with the existing Hive service
definition. In the Ranger console, if you do not find an instance of the Hive service
under Hadoop SQL, then please click the + icon next to it and add the service name
as amazonemrhive. You will need this service name while creating the EMR
security configurations.

252 Understanding Data Governance in Amazon EMR

Additionally, you need to configure connection properties for the Ranger admin server
to connect with HiveServer2, and the properties include Username, Password, jdbc.
driverClassName, jdbc.url, and Common Name for Certificate.

The following is a screenshot of the Ranger Service Manager console that shows the
amazonemrhive configuration under HADOOP SQL:

Figure 8.7 – Ranger console that shows amazonemrhive under Hadoop SQL

In this section, you have learned about the Ranger plugin for Hive and how you configure
it. Next, you will learn how you can configure the Ranger plugin for the Spark engine.

Ranger plugin for Spark
In EMR, the Ranger plugin for Spark supports fine-grained access control on Spark SQL
queries that query data from Hive Metastore. You can define access control on databases,
tables, or the column level.

When a Spark executor runs a SparkSQL query, it goes through the record server to
validate access defined in the Ranger policy admin server. In your Ranger policies,
you can include grant or deny policies for users or groups and also log audit events to
Amazon CloudWatch.

Please refer to the AWS documentation for the complete setup steps.

Summary 253

Ranger plugin for EMRFS S3
EMR uses EMRFS to interact with Amazon S3. When you try to access data from S3, it
goes through the following steps:

1. EMRFS sends a request to the secret agent to get temporary credentials.
2. This request gets authorized against the Ranger plugin.
3. If the request is authorized, then the secret agent assumes the IAM role for Ranger

that has restricted access to generate temporary credentials. These credentials will
have access only to the resources defined in the Ranger policy for which the access
was authorized.

4. Finally, these credentials are passed back to EMRFS to access data from S3.

You can create policies that allow or deny access to specific users or groups and the policy
can point to a specific S3 bucket or prefix.

For complete setup steps, refer to the AWS documentation.

This section provided an overview of Apache Ranger integration with EMR that included
setting it up in EMR and understanding the Ranger plugin.

Summary
Over the course of this chapter, you got an overview of integrating a centralized data
catalog on top of your distributed persistent storage layer using AWS Glue Data Catalog
or Hive Metastore.

Then, you learned about how you can integrate fine-grained access control using AWS
Lake Formation and Apache Ranger. This chapter provided an overview of the integration,
its different components, and what some of the steps you should be taking to configure it
are. The links provided in the Further reading section will guide you through the detailed
configuration steps.

That concludes this chapter! Hopefully, this gives you a good starting point to integrate a
centralized data catalog and data governance on top of your distributed data lake. In the
next chapter, we will explain how you can implement a batch ETL use case using EMR.

254 Understanding Data Governance in Amazon EMR

Test your knowledge
Before moving on to the next chapter, test your knowledge with the following questions:

1. Assume you have multiple batch and streaming ETL workloads that use different
transient EMR clusters for distributed processing. Your organization is looking for
a persistent centralized data catalog that can help the data governance team get a
unified view. Between AWS Glue Data Catalog and Hive Metastore, which one is
better suited?

2. Assume you have an on-premises Hadoop cluster that uses Apache Ranger for
fine-grained access control. You are planning to migrate your on-premises Hadoop
cluster to Amazon EMR in AWS to take benefit of cloud security, reliability, and
scaling capabilities. For your Ranger server, you have configured custom TLS
certificates that you plan to integrate into EMR. How should you integrate the TLS
certificates into EMR?

3. Assume you are part of a bigger enterprise that has multiple departments and
each department has its own AWS account that owns its data. Your organization
is looking for options using which they can build a centralized data catalog and
permission management system that will be controlled by the data governance
team. The central data governance team should be able to define permissions on all
the data available in various AWS accounts and also be able to share catalog tables
between accounts. Which architecture should you follow for centralized permission
management and cross-account data sharing?

Further reading
The following are a few resources you can refer to for further reading:

• Considerations and limitations for AWS Glue Data Catalog with Amazon EMR:
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/
emr-hive-Metastore-glue.html

• Setting up AWS Lake Formation: https://docs.aws.amazon.com/lake-
formation/latest/dg/getting-started-setup.html

• Detailed steps for Lake Formation integration with Amazon EMR: https://
docs.aws.amazon.com/emr/latest/ManagementGuide/emr-lake-
formation.html

• Detail steps to configure Apache Ranger in EMR: https://docs.aws.amazon.
com/emr/latest/ManagementGuide/emr-ranger.html

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive-Metastore-glue.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive-Metastore-glue.html
https://docs.aws.amazon.com/lake-formation/latest/dg/getting-started-setup.html
https://docs.aws.amazon.com/lake-formation/latest/dg/getting-started-setup.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-lake-formation.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-lake-formation.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-lake-formation.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-ranger.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-ranger.html

This part of the book will explain how to implement the most common use cases of
Amazon EMR, including batch ETL with Spark, real-time streaming with Spark Streaming,
and handling UPSERT operations in S3 data lakes with Apache Hudi. Then it will explain how
you can orchestrate your EMR jobs and how you can strategize on-premises Hadoop cluster
migration to EMR, and finally, it will cover some of the best practices and cost optimization
techniques you can follow while implementing your data analytics pipeline in EMR.

This section comprises the following chapters:

• Chapter 9, Implementing Batch ETL Pipeline with Amazon EMR and Apache Spark

• Chapter 10, Implementing Real-Time Streaming with Amazon EMR and
Spark Streaming

• Chapter 11, Implementing UPSERT on S3 Data Lake with Apache Spark and
Apache Hudi

• Chapter 12, Orchestrating Amazon EMR Jobs with AWS Step Functions and
Apache Airflow/MWAA

• Chapter 13, Migrating On-Premises Hadoop Workloads to Amazon EMR

• Chapter 14, Best Practices and Cost Optimization Techniques

Section 3:
Implementing

Common Use Cases
and Best Practices

9
Implementing Batch

ETL Pipeline with
Amazon EMR and

Apache Spark
In Chapter 2, Exploring the Architecture and Deployment Options, you learned about
different EMR use cases such as batch Extract, Transform, and Load (ETL), real-time
streaming with EMR and Spark streaming, data preparation for machine learning (ML)
models, interactive analytics, and more.

In this chapter, we will dive deep into a use case – Batch ETL with Amazon EMR and
Apache Spark, where we will look at the implementation steps that you can follow to
replicate the setup in your AWS account.

258 Implementing Batch ETL Pipeline with Amazon EMR and Apache Spark

We will cover the following topics, which will help you understand the use case, its
application architecture, and how a transient EMR cluster with Spark can be integrated for
distributed processing:

• Use case and architecture overview

• Implementation steps

• Validating output through Athena

• Spark ETL and Lambda function code walk-through

Batch ETL is a common use case across many organizations and this use case
implementation learning will provide you with a starting point, using which you can build
more complex data pipelines in AWS using Amazon EMR.

Technical requirements
In this chapter, we will implement a batch ETL pipeline using AWS services, so before
getting started, make sure you have the following requirements:

• An AWS account with access to create Amazon S3, AWS Lambda, Amazon EMR,
Amazon Athena, and AWS Glue Data Catalog resources

• An IAM user that has access to create IAM roles, which will be used to trigger or
execute jobs

• Access to the GitHub repository:

https://github.com/PacktPublishing/Simplify-Big-Data-
Analytics-with-Amazon-EMR-/tree/main/chapter_09

Now let's dive deep into the use case and hands-on implementation steps.

Check out the following video to see the Code in Action at https://bit.ly/3LtLZGX

Use case and architecture overview
For this use case, let's assume you have a vendor who provides incremental sales data at
the end of every day. The file arrives in S3 as CSV and it needs to be processed and made
available to your data analysts for querying.

https://github.com/PacktPublishing/Simplify-Big-Data-Analytics-with-Amazon-EMR-/tree/main/chapter_09
https://github.com/PacktPublishing/Simplify-Big-Data-Analytics-with-Amazon-EMR-/tree/main/chapter_09
https://bit.ly/3LtLZGX

Use case and architecture overview 259

Your assignment is to build a data pipeline that automatically picks up the new sales
file from the S3 input bucket, processes it with required transformations, and makes
it available in the target S3 bucket, which will be used for querying. To implement
this pipeline, you have planned to integrate a transient EMR cluster with Spark as the
distributed processing engine. This EMR cluster is not active and gets created just before
executing the job and gets terminated after completing the job.

Architecture overview
The following is the high-level architecture diagram of the data pipeline:

Figure 9.1 – Reference architecture diagram for a batch ETL pipeline

Here are the steps as shown in the previous diagram:

• Step #1 represents the vendor pushing the sales CSV file to an Amazon S3 raw bucket.

• Step #2 represents the triggering of an AWS Lambda function based on the CSV
file's S3 PUT event.

• Step #3 represents that the AWS Lambda function invokes the Amazon EMR API to
launch a cluster with a Spark step.

260 Implementing Batch ETL Pipeline with Amazon EMR and Apache Spark

• Steps #4 and #5 represent the EMR cluster with the Spark job, which reads input
sales data from the raw S3 bucket, does processing, and then writes the output to
the S3 data lake bucket. The PySpark job renames the column names by replacing
empty spaces with an underscore and writes output in Parquet format with the
/<year>/<month>/ partition columns.

• Step #6 represents Glue Data Catalog tables defined on top of the data lake bucket,
which will be used by Amazon Athena for querying.

• Steps #7, #8, and #9 represent data analysts using Amazon Athena for querying
data using standard SQL. Amazon Athena queries table metadata from Glue Data
Catalog and then queries data from Amazon S3 to show the output in structured
tabular format to the end user.

Having gotten an overview of the use case and architecture, let's get started on the
implementation steps. Please make sure you meet all the prerequisites defined in the
Technical requirements section of this chapter.

Implementation steps
In this section, we will guide you through the implementation steps for the use case and
architecture we explained in the previous section.

Important Note
Please note, while explaining the implementation steps, we have used us-east-1
as the AWS region. You can use the same or an alternate region as per your
choice. Please check any resource or service limits that might apply to your
AWS region before proceeding with the implementation.

Creating Amazon S3 buckets
Let's first create the Amazon S3 buckets and folders that will be used for both input and
output. Please refer to the following steps to create them:

1. Navigate to the Amazon S3 console at https://s3.console.aws.amazon.
com/s3/home?region=us-east-1#.

https://s3.console.aws.amazon.com/s3/home?region=us-east-1#
https://s3.console.aws.amazon.com/s3/home?region=us-east-1#

Implementation steps 261

2. From the buckets list, choose Create Bucket, which will open up a form on the web
interface to provide your bucket name and related configurations.

We have specified the input bucket name as raw-input and kept everything else
as the default.

3. Then click the Create bucket button to create the bucket.

The following screenshot shows the AWS console, using which we have created the bucket:

Figure 9.2 – Amazon S3 showing the creation of a bucket

After creating the raw-input bucket, we can create a subfolder that will be used to
capture sales data.

262 Implementing Batch ETL Pipeline with Amazon EMR and Apache Spark

The following screenshot shows the creation of the sales folder inside the
raw-input bucket.

Figure 9.3 – Amazon S3 showing the creation of the sales folder

After the raw-input bucket folder structure is created, you can repeat the same step
to create a processed output bucket with the sales subfolder, which should have the S3
path as s3://curated-ouput/sales/.

Important Note
Please note, Amazon S3 bucket names are globally unique. So, while
implementing the solution, you may get an error saying the bucket name
already exists. Please provide a unique name and use the same name while
implementing the rest of the implementation steps. Forming the bucket name as
<Bucket-Name>-${AWS_ACCOUNT_ID}-${AWS_REGION_CODE}
might help you to get a unique name.

Implementation steps 263

Creating the AWS Lambda function
As explained in the Architecture overview section, the objective of the AWS Lambda function
is to create an EMR cluster and submit a Spark step that will process the input file.

You can refer to the following steps to create the Lambda function. We have used Python
as the language in the Lambda function, but you can integrate your preferred language's
equivalent code:

1. Navigate to the AWS Lambda console at https://console.aws.amazon.
com/lambda/home?region=us-east-1.

2. From the functions list, choose Create function, which will open up the form on the
web interface, where you can specify Function name, Runtime, and the IAM role.

3. Then click the Create function button to create the function.

The following screenshot shows the Create function screen of the AWS console:

Figure 9.4 – AWS Lambda function creation

https://console.aws.amazon.com/lambda/home?region=us-east-1
https://console.aws.amazon.com/lambda/home?region=us-east-1

264 Implementing Batch ETL Pipeline with Amazon EMR and Apache Spark

After the function is created, you can change its configuration to increase the function
timeout, as shown in the following screenshot:

Figure 9.5 – AWS Lambda function – Edit basic settings

After that, you can configure the following three environment variables in the
Configurations tab and on the Environment variables screen:

• REGION: This is the AWS region, where the EMR cluster will be created. For our
implementation, we have used us-east-1.

• PYSPARK_SCRIPT_PATH: This will have the Amazon S3 path where you have
saved your PySpark script that EMR will execute.

• S3_OUTPUT_PREFIX: This is the Amazon S3 path to which the PySpark script
will write the output.

Please note, we have not configured the S3 raw input bucket path as that will be passed to
the AWS Lambda function dynamically through the S3 PUT event when the input CSV
file is uploaded into it.

The following screenshot shows the three environment variables configured on the
Lambda function:

Implementation steps 265

Figure 9.6 – AWS Lambda function – Environment variables

Important Note
Please make sure the role attached to your Lambda function has permission to
invoke EMR APIs and also has permission to write to a CloudWatch log group
so that you can debug logs in the event of failures.

As the next step, let's start integrating the Lambda function Python code that invokes the
EMR cluster creation API and then adds a Spark execution step. You can get the script
from the GitHub repository, specified in the Technical requirements section.

Before integrating this Lambda function, make sure you have changed the following
variables in the Lambda script as per your environment. In Chapter 5, Setting Up and
Configuring Clusters, we explained cluster creation with advanced options, where we
covered the usage of the following cluster parameters:

• LogUri

• Ec2KeyName

• Ec2SubnetId

• EmrManagedMasterSecurityGroup

• EmrManagedSlaveSecurityGroup

266 Implementing Batch ETL Pipeline with Amazon EMR and Apache Spark

Now that we have integrated the Lambda function, next we can configure it to be triggered
with S3 file arrival.

Configuring an S3 file arrival event to trigger the
Lambda function
To trigger the Lambda function based on the sales CSV file arrival event, you can refer to
the following steps:

1. Navigate to your raw-input bucket in Amazon S3.
2. Under the Properties tab, navigate to the Event notifications section and click

Create event notification, which will open an event notification form where you
can configure the event source, type, and destination.

3. Configure the event source as the sales/ folder and restrict the event to .csv files
only, so that if by mistake any other file is uploaded, it does not trigger the event.

The following screenshot of the AWS console shows how you can create an event for a
specific folder and file suffix:

Figure 9.7 – S3 event notification – General configuration

4. Configure the event type as All object create events, as shown in the
following screenshot:

Implementation steps 267

Figure 9.8 – S3 Event notification – Event types

5. Configure the event destination as the Lambda function that we have already created.

Figure 9.9 – S3 Event notification – Destination

6. Finally, click Save to save the configuration.

268 Implementing Batch ETL Pipeline with Amazon EMR and Apache Spark

After saving, you can confirm the integration by navigating to the AWS Lambda function,
which should show the S3 event as a trigger. The following screenshot shows how it should
look:

Figure 9.10 – AWS Lambda function – trigger configuration

As the next step, we will add the sales CSV file to the raw-input S3 bucket's sales
folder and see how the Lambda function gets invoked that launches an EMR cluster with
the Spark step.

Triggering the EMR job
We have configured an S3 event on the raw-input bucket, which will trigger
the Lambda function based on the sales CSV file's PUT event. To trigger the EMR
ETL job, let's add the sample CSV file available at https://github.com/
PacktPublishing/Simplify-Big-Data-Analytics-with-Amazon-EMR-/
blob/main/chapter_09/input-data/SalesPipeline_QuickSightSample.
csv, which is a public dataset made available by AWS.

https://github.com/PacktPublishing/Simplify-Big-Data-Analytics-with-Amazon-EMR-/blob/main/chapter_09/input-data/SalesPipeline_QuickSightSample.csv
https://github.com/PacktPublishing/Simplify-Big-Data-Analytics-with-Amazon-EMR-/blob/main/chapter_09/input-data/SalesPipeline_QuickSightSample.csv
https://github.com/PacktPublishing/Simplify-Big-Data-Analytics-with-Amazon-EMR-/blob/main/chapter_09/input-data/SalesPipeline_QuickSightSample.csv
https://github.com/PacktPublishing/Simplify-Big-Data-Analytics-with-Amazon-EMR-/blob/main/chapter_09/input-data/SalesPipeline_QuickSightSample.csv

Implementation steps 269

The following screenshot shows that we have uploaded the CSV file to the Amazon S3
bucket using the AWS console:

Figure 9.11 – Amazon S3 shows the CSV file uploaded

After you have uploaded the CSV file, the S3 event should trigger the Lambda function
and the Lambda function should launch an EMR cluster with the Spark ETL step.

The following screenshot shows the EMR cluster launch is triggered by Lambda and it's in
the Starting stage while the Spark ETL job's status is Pending.

Figure 9.12 – EMR cluster list view that shows EMR cluster resources being launched

270 Implementing Batch ETL Pipeline with Amazon EMR and Apache Spark

After a few minutes, you will notice the cluster resources are provisioned and you can see
the Spark job is getting executed. Then, after a few minutes, you will see the Spark job
status changes to Completed and the cluster gets terminated after job completion. The
following screenshot shows the cluster is terminated after job completion:

Figure 9.13 – EMR cluster detail view that shows the job as completed and the cluster as terminated

Next, you can navigate to the Amazon S3 curated-output bucket to validate the Spark
job has created output in Parquet format and it also created the <year>/<month>/
partition structure. The following screenshot shows the output written by the Spark job:

Figure 9.14 – S3 output bucket lists Parquet files with a date partition structure

Validating the output using Amazon Athena 271

This marks the completion of our ETL process and we can now navigate to Amazon
Athena and query the data using SQL.

Validating the output using Amazon Athena
The Parquet format data is already available in Amazon S3 with year and month partition,
but to make it more consumable for data analysts or data scientists, it would be great if we
could enable querying the data through SQL by making it available as a database table.

To make that integration, we can follow a two-step approach:

1. We can run the Glue crawler to create a Glue Data Catalog table on top of the
S3 data.

2. We can run a query in Athena to validate the output.

Let's see how you can integrate that.

Defining a virtual Glue Data Catalog table on top of
Amazon S3 data
You can follow these steps to create and run the Glue crawler, which will create a Glue
Data Catalog table:

1. Navigate to the AWS Glue crawler at https://console.aws.amazon.com/
glue/home?region=us-east-1#catalog:tab=crawlers.

2. Then click Add crawler, which will open up the form to configure the crawler.
3. Configure the crawler, where the data source should point to the curated-output

S3 bucket.
4. Specify the IAM role that has permission to crawl the S3 bucket.
5. You can keep the rest of the configurations as the defaults and then, on the final

screen, review the configurations that can look like Figure 9.15 and click Save.
6. Select the crawler you created using the previous steps from the crawler list and

select the Run crawler button, which will create a table in Glue Data Catalog with
the name curated_output.

272 Implementing Batch ETL Pipeline with Amazon EMR and Apache Spark

The following screenshot shows the Glue crawler's review page, which shows the
configurations we have specified for it:

Figure 9.15 – Glue crawler configuration

Now that we have the Glue Data Catalog table created, we can navigate to Amazon Athena
to query the data using SQL.

Querying output data using Amazon Athena
standard SQL
In Athena, you can keep Data Source as the default AwsDataCatalog and select default
for Database. Then execute the following SQL query to validate the output:

SELECT * FROM "default"."curated_output" LIMIT 10;

Validating the output using Amazon Athena 273

The following screenshot shows the Athena query execution output.

Figure 9.16 – Athena Query editor with the query result

Please note, if you are going to use Amazon Athena for the first time, then AWS expects
you to set up a query result location in Amazon S3. You can click on View Settings and
then click on Manage to provide the S3 path.

The following screenshot shows where you can configure it:

Figure 9.17 – Athena Query editor settings to specify the S3 path for query results

274 Implementing Batch ETL Pipeline with Amazon EMR and Apache Spark

This concludes our use case implementation and validation steps. Next, we will walk
through the AWS Lambda and PySpark script so that you can modify them as per
your need.

Spark ETL and Lambda function code
walk-through
You can download the complete code from our GitHub repository specified in the
Technical requirements section of the chapter. In this section, we will highlight a few
sections of the code to explain its purpose and usage.

Understanding the AWS Lambda function code
The Lambda function's primary objective is to invoke EMR cluster launch and then
submit a Spark step.

The following part of the code creates a boto3 client for the EMR service and invokes the
run_job_flow method of it such that it takes all the required inputs for the cluster:

conn = boto3.client("emr", region_name=AWS_REGION)

cluster_id = conn.run_job_flow(…)

The following parameters are passed to the run_job_flow method that specifies the
EMR cluster configurations:

Instances={

 "Ec2KeyName": "<key-name>",

 "Ec2SubnetId": "subnet-<id>",

 "EmrManagedMasterSecurityGroup": "sg-<id>",

 "EmrManagedSlaveSecurityGroup": "sg-<id>",

 "HadoopVersion": "Amazon 3.2.1",

 'InstanceGroups': [

 {

 'Name': 'Master nodes',

 'Market': 'ON_DEMAND',

 'InstanceRole': 'MASTER',

Spark ETL and Lambda function code walk-through 275

 'InstanceType': 'm5.xlarge',

 'InstanceCount': 1,

 },

 {

 'Name': 'Slave nodes',

 'Market': 'ON_DEMAND',

 'InstanceRole': 'CORE',

 'InstanceType': 'm5.xlarge',

 'InstanceCount': 1,

 }

],

 'KeepJobFlowAliveWhenNoSteps': False,

 'TerminationProtected': False

}

The following part of the script specifies the Spark step with the parameters required for
the spark-submit command:

Steps=[

 {

 'Name': 'Spark ETL',

 'ActionOnFailure': 'TERMINATE_CLUSTER',

 'HadoopJarStep': {

 'Jar': 'command-runner.jar',

 'Args': [

 "spark-submit", "--deploy-mode", "cluster",

 "--master", "yarn",

 PYSPARK_SCRIPT_PATH, S3_INPUT_PATH, S3_OUTPUT_
PREFIX+currentYear+"/"+currentMonth+"/"

]

 }

}]

Now, let's understand how the PySpark ETL code is integrated.

276 Implementing Batch ETL Pipeline with Amazon EMR and Apache Spark

Understanding the PySpark script integrated into the
EMR step
You can download the complete PySpark script from our GitHub repository specified
in the Technical requirements section, but the following part of the script is the core of
the script. This code block shows how you can read the input file with the spark.read
method, which returns a Spark DataFrame, apply transformations to replace column
names, and then write processed data to the output path with the <dataframe>.
write.parquet method:

df = spark.read.format("csv").option("header", "true").
load(sys.argv[1])

replacements = {c:c.replace(' ','_') for c in df.columns if ' '
in c}

df1 = df.select([col(c).alias(replacements.get(c, c)) for c in
df.columns])

df1.write.parquet(sys.argv[2])

Here, argv[1] will provide the S3 input path and argv[2] will provide the S3 output
path. This script should work without any modification, but you can customize it as per
your ETL transformation logic.

Summary
Over the course of this chapter, we have dived deep into a batch ETL use case, where we
integrated the data pipeline with Amazon S3, AWS Lambda, Amazon EMR, AWS Glue,
and Amazon Athena.

We have covered detailed implementation steps, which you can follow to replicate the
steps or customize them as per your use case.

At the end of the chapter, we provided an overview of a few important parts of the AWS
Lambda function and EMR PySpark script, which can provide you with a starting point
for your projects.

That concludes this chapter! Hopefully, this helped you get an idea of how batch ETL
pipelines can be integrated, and in the next chapter, we will integrate another use case,
which is real-time streaming with Amazon EMR.

Test your knowledge 277

Test your knowledge
Before moving on to the next chapter, test your knowledge with the following questions:

1. Assume you have integrated the complete ETL pipeline but when your input file
gets pushed to the input S3 bucket, the Lambda function does not launch the EMR
cluster. When you plan to debug the Lambda function execution, you don't find
any logs for the Lambda function in CloudWatch log groups. What might be the
problem that stops the Lambda function from writing logs in CloudWatch and how
would you resolve it?

2. Assume you have multiple data sources that are sending input files for processing.
Instead of triggering an EMR cluster launch on an S3 file arrival event, you would
like to schedule a PySpark job to run at a particular time of the day, so that it picks
up all the input files available at that point of time for processing. How would you
schedule the cluster creation and job execution?

3. You have integrated Amazon EMR for your batch analytics workload that is
scheduled to run every day at midnight. But occasionally you notice that the job
completion takes more time than expected and on a few occasions, the jobs fail too.
How would you build a retry mechanism for the job failures and also a notification
feature that notifies administrators of job failures?

Further reading
Following are a few resources you can refer to for further reading:

• Lambda function for transient EMR cluster use cases: https://docs.aws.
amazon.com/prescriptive-guidance/latest/patterns/launch-
a-spark-job-in-a-transient-emr-cluster-using-a-lambda-
function.html

• More on AWS Glue crawler definition and execution: https://docs.aws.
amazon.com/glue/latest/dg/add-crawler.html

• Optimize Spark performance in EMR: https://docs.aws.amazon.com/
emr/latest/ReleaseGuide/emr-spark-performance.html

https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/launch-a-spark-job-in-a-transient-emr-cluster-using-a-lambda-function.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/launch-a-spark-job-in-a-transient-emr-cluster-using-a-lambda-function.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/launch-a-spark-job-in-a-transient-emr-cluster-using-a-lambda-function.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/launch-a-spark-job-in-a-transient-emr-cluster-using-a-lambda-function.html
https://docs.aws.amazon.com/glue/latest/dg/add-crawler.html
https://docs.aws.amazon.com/glue/latest/dg/add-crawler.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-performance.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-performance.html

10
Implementing

Real-Time Streaming
with Amazon EMR

and Spark Streaming
In Chapter 3, Common Use Cases and Architecture Patterns, we discussed different use
cases and architecture patterns that you can follow using Amazon EMR, while in Chapter 9,
Implementing Batch ETL Pipeline with Amazon EMR and Apache Spark, you learned how
you can implement a batch Extract, Transform, and Load (ETL) pipeline using Amazon
EMR and PySpark script.

In this chapter, we will dive deep into another use case – real-time streaming with
Amazon EMR and Spark Streaming, where we will look at the implementation steps that
you can follow to replicate the setup in your AWS account.

Real-time streaming use cases are becoming more popular as distributed processing
engines such as Spark can stream, transform in real time, and help drive business
decisions through real-time business intelligence (BI) reporting. This sample use case
implementation learning will provide you with a starting point from where you can build
a more complex, real-time data pipeline in AWS using Amazon EMR.

280 Implementing Real-Time Streaming with Amazon EMR and Spark Streaming

We will cover the following topics, which will help you understand the use case, its
application architecture, and how a transient EMR cluster with Spark can be integrated for
distributed processing:

• Use case and architecture overview

• Implementation steps

• Validating output using Amazon Athena

• Spark streaming code walk-through

Technical requirements
In this chapter, we will implement a real-time streaming pipeline using AWS analytics
services. So, before getting started, you need to make sure that you have the following
requirements ready:

• An AWS account with access to create Amazon S3, Amazon EMR, Amazon Athena,
Amazon Cognito, and AWS Glue Catalog resources.

• An IAM user who has access to create IAM roles, which will be used to trigger AWS
CloudFormation stack or execute jobs.

Refer to the following link for access to the book's GitHub repository: https://
github.com/PacktPublishing/Simplify-Big-Data-Analytics-with-
Amazon-EMR-/tree/main/chapter_10.

Now, let's dive deep into the use case and the hands-on implementation steps.

Check out the following video to see the Code in Action at https://bit.ly/3oIz89Q

Use case and architecture overview
For this use case, let's assume you have a consumer-facing website where users are
interacting with your web pages by clicking different buttons or links, which are specific
to different page navigations, signing up, signing in, or buying products. You have started
a promotional sale on your website for a limited duration and you would like to track how
users are reacting to it in real time.

https://github.com/PacktPublishing/Simplify-Big-Data-Analytics-with-Amazon-EMR-/tree/main/chapter_10
https://github.com/PacktPublishing/Simplify-Big-Data-Analytics-with-Amazon-EMR-/tree/main/chapter_10
https://github.com/PacktPublishing/Simplify-Big-Data-Analytics-with-Amazon-EMR-/tree/main/chapter_10
https://bit.ly/3oIz89Q

Use case and architecture overview 281

To track user activity, your frontend application has integrated click events, which will
publish a JSON event string with every mouse click to a message bus such as Amazon
Kinesis Data Streams or Kafka. From the message bus, a Spark Streaming-based
consumer application will read JSON messages as a micro-batch and write to Amazon S3
data lake for real-time analysis.

To replicate the streaming of click events, we will integrate the Kinesis Data Generator
web UI tool, where you can configure a sample JSON event and schedule it to publish a
fixed number of records to the Kinesis Data Streams message bus. Then, we will leverage
Amazon EMR with Spark Streaming as the stream consumer application. This EMR
cluster will be a persistent EMR cluster that is always active with a minimal number of
nodes and with autoscaling built in to scale resources as the data volume grows.

Now, let's get an overview of the architecture.

Architecture overview
The following is the high-level architecture diagram of the streaming pipeline:

Figure 10.1 – Reference architecture diagram for a real-time streaming pipeline

Let's take a closer look at this diagram:

• Step #1 represents the source application publishing JSON click events to Kinesis
Data Streams. In our implementation, we will leverage Kinesis Data Generator to
simulate the streaming data ingestion.

• Step #2 represents an Amazon EMR cluster with a Spark Streaming job reading
messages from Kinesis Data Streams, and step #3 represents the Spark job writing
Parquet format output to the Amazon S3 data lake with /<year>/<month>/
partition columns.

282 Implementing Real-Time Streaming with Amazon EMR and Spark Streaming

• Step #4 represents Glue Catalog tables defined on top of the data lake bucket, which
will be used by Amazon Athena for querying.

• Step #5, #6, and #7 represent data analysts using Amazon Athena for querying data
using standard SQL. Amazon Athena queries table metadata from the Glue Catalog
and then queries data from Amazon S3 to show the output in a structured tabular
format to the end user.

After getting an overview of the use case and architecture, let's get started on the
implementation steps. Please make sure that you meet all the prerequisites defined in the
Technical requirements section of this chapter.

Implementation steps
In this section, we will guide you through the implementation steps for the use case and
architecture we explained in the previous section.

Important Note
While explaining the implementation steps, we have used us-east-1 as the AWS
region. You can use the same or an alternate region as per your choice. Please
check any resource or service limits that might apply to your AWS region
before proceeding with the implementation.

Creating Amazon S3 buckets
Let's first create the Amazon S3 buckets, which will be used by the EMR Spark job to write
the streaming data. Please refer to the following steps to create them:

1. Navigate to the Amazon S3 console at https://s3.console.aws.amazon.
com/s3/home?region=us-east-1#.

2. From the buckets list, choose the Create bucket option, which will open a form
on the web interface to provide your bucket name and related configurations.

We have specified the bucket name as clickstream-events and kept
everything else at their default settings.

3. Then, click the Create bucket button to create the bucket.

https://s3.console.aws.amazon.com/s3/home?region=us-east-1#
https://s3.console.aws.amazon.com/s3/home?region=us-east-1#

Implementation steps 283

The following screenshot shows the AWS console, through which we have created
the bucket:

Figure 10.2 – Creation of a bucket in Amazon S3

As explained in the previous chapter, you may not be able to use the same bucket name
as the S3 buckets are globally unique. Please make sure to provide a valid S3 bucket name
that is unique and use the same name for the remainder of the implementation.

After creating the S3 bucket, next, we will create the Kinesis data stream and the
EMR cluster.

Creating the Amazon Kinesis data stream
As explained in the architecture overview section, the objective of integrating an Amazon
Kinesis data stream is to create an aggregator layer that can receive stream events from
multiple producer applications and can have multiple consumer applications reading
from the stream. In our use case, we just have one producer, which is the Kinesis Data
Generator tool, and one consumer, which is the EMR Spark application.

284 Implementing Real-Time Streaming with Amazon EMR and Spark Streaming

You can refer to the following steps to create the Kinesis data stream:

1. Navigate to the Amazon Kinesis Data Streams console at https://console.
aws.amazon.com/kinesis/home?region=us-east-1#/home.

2. You will notice that Kinesis Data Streams is selected by default, and you can click
Create data stream, which will open the Create data stream form.

3. You can specify the stream name and leave everything else as their default settings
and then click Create data stream to create the stream. For this implementation,
we have taken a very small cluster with just one shard. A shard in a Kinesis data
stream is the basis of the throughput unit. Depending on the amount of data you
are writing or reading from the stream, you can size your cluster with the required
number of shards.

The following screenshot shows the Create data stream screen of the AWS console:

Figure 10.3 – Amazon Kinesis Data Streams – Create data stream

Implementation steps 285

After the Kinesis data stream cluster is created, next we can set up the Kinesis Data
Generator tool and configure it to publish sample JSON events to Kinesis Data Streams.

Creating and configuring the Kinesis Data Generator
tool
The Kinesis Data Generator tool is an open source tool available in GitHub that provides
a web interface through which you can publish sample events to Kinesis Data Streams
or Kinesis Data Firehose. While configuring the tool to publish events, you can create a
reusable template and use that to publish thousands of events per second.

The tool also needs an Amazon Cognito user pool to be created, which you will
use to log in to the Kinesis Data Generator tool. To do the complete setup, there is a
CloudFormation template that helps to create the required resources for the tool.

Amazon Cognito is a serverless scalable service that lets you manage your user's sign-up
and sign in methods and can be easily integrated with your web and mobile applications.
It also provides a sign-in mechanism with different social identity providers such as
Facebook and Google.

AWS CloudFormation provides you with the capability to build automated DevOps
pipelines, where you can create and orchestrate infrastructure resources using code. The
Kinesis Data Generator tool is set up using a CloudFormation template where it is written
to create all the required resources, including the Amazon Cognito user who will be used
for logging in.

286 Implementing Real-Time Streaming with Amazon EMR and Spark Streaming

To set up the tool, please refer to the following steps:

1. Navigate to the Kinesis Data Generator tool help page at https://awslabs.
github.io/amazon-kinesis-data-generator/web/help.html.

2. Click the Create a Cognito User with CloudFormation button, which will take you
to the AWS Cloud Formation's Create stack screen with Template source already
populated with the template S3 path. You need to make sure you are still in the
us-east-1 region, otherwise, you can change the region to us-east-1. The following
represents a screenshot of the CloudFormation screen:

Figure 10.4 – CloudFormation Create stack screen

https://awslabs.github.io/amazon-kinesis-data-generator/web/help.html
https://awslabs.github.io/amazon-kinesis-data-generator/web/help.html

Implementation steps 287

3. Then, click Next.

On the next screen, you can populate the Stack name, Username, and Password
fields for the Cognito user who will be newly created by the CloudFormation stack.
The following screenshot shows the next screen view:

Figure 10.5 – CloudFormation screen that shows the stack parameters

4. On the final screen, click Create stack, which will create all the required resources.

288 Implementing Real-Time Streaming with Amazon EMR and Spark Streaming

5. After the stack status changes to CREATE_COMPLETE, you can navigate to the
Outputs tab and click the URL specified for the KinesisDataGeneratorUrl key.

Figure 10.6 – CloudFormation Outputs tab

6. This will take you to the Kinesis Data Generator UI, where you can specify your
Cognito user credentials to log in. The following screenshot shows the login screen:

Figure 10.7 – Kinesis Data Generator tool's login

This completes the Kinesis Data Generator tool setup. As a next step, we can configure the
sample JSON click events that we plan to publish to Kinesis Data Streams.

Configuring Kinesis Data Generator to publish JSON events to
Kinesis Data Streams
As a next step, we need to configure the tool to publish JSON events to the Kinesis data
stream that we have created.

Implementation steps 289

Here is the sample JSON event that we plan to publish:

{"browser": "{{random.arrayElement(["Chrome","Safari","IE",
"Edge"])}}", "device": "{{random.
arrayElement(["Mobile","Desktop"])}}", "platform": "{{random.
arrayElement(["Win10","iOS","macOS"])}}", "referer": "{{random.
arrayElement(["www.google.com","www.yahoo.com","www.aol.
com","www.amazon.com"])}}", "request_time": "{{date.now}}",
"user_address": "{{internet.ip}}"}

This will generate random values for the browser, device, platform, and referer
attributes from a pre-defined set of string values and will generate dynamic values for the
request_time and user_address attributes.

To configure the tool to publish these events as a continuous stream, please refer to the
following steps:

1. After navigating to the Kinesis Data Generator tool in the previous section, you
will see a form where you need to specify the AWS region, select the Kinesis data
stream name, and also specify the input JSON that you plan to publish to Kinesis
Data Streams.

After populating the values, it should look like the following screen:

Figure 10.8 – Kinesis Data Generator tool screen with the JSON event

290 Implementing Real-Time Streaming with Amazon EMR and Spark Streaming

2. Then, click Send data, which will publish JSON events to your stream at a default
rate of 100 records per second iteratively. This can be changed in the Records
per second form field before submitting. The publishing of events is shown on
an overlay popup with the Stop Sending Data to Kinesis button, as shown in the
following screenshot:

Figure 10.9 – Kinesis Data Generator tool screen to stop sending JSON events

Don't click the Stop Sending Data to Kinesis button yet as we plan to integrate the Spark
Streaming application to read from the stream in real time. Next, you can validate whether
Kinesis Data Streams is receiving the events.

Validating the input data in Kinesis Data Streams
To validate the data ingestion in Kinesis Data Streams, please refer to the following steps:

1. Navigate to the Amazon Kinesis Data Streams console at https://console.
aws.amazon.com/kinesis/home?region=us-east-1#/home.

2. Click Data streams from the left navigation, which will list all the Kinesis data
streams you have created.

3. Click the clickstream-events stream that we created in the previous step and
navigate to the Monitoring tab. The following charts on the monitoring tab will
show the data ingested so far into the stream.

Implementation steps 291

Figure 10.10 – Kinesis Data Streams console – Stream monitoring tab

As you can see from the charts, it confirms the data being ingested through the Kinesis
Data Generator UI tool. Next, let's try to set up the Amazon EMR cluster and integrate a
Spark Streaming application.

Creating an Amazon EMR cluster and configuring a
Spark Streaming job
To create an EMR cluster, refer to the following steps. These steps are the same as we
discussed in Chapter 5, Setting Up and Configuring EMR Clusters:

1. Navigate to Amazon EMR's Create cluster screen at https://console.aws.
amazon.com/elasticmapreduce/home?region=us-east-1#quick-
create.

https://console.aws.amazon.com/elasticmapreduce/home?region=us-east-1#quick-create
https://console.aws.amazon.com/elasticmapreduce/home?region=us-east-1#quick-create
https://console.aws.amazon.com/elasticmapreduce/home?region=us-east-1#quick-create

292 Implementing Real-Time Streaming with Amazon EMR and Spark Streaming

2. Specify Cluster name and select one of the latest stable Release versions. We have
selected the emr-6.4.0 release as that was the latest stable release at the time of
writing this chapter. From the Applications list, select the Spark application stack as
we plan to integrate a Spark Streaming job.

The following is a screenshot of the values we have selected, which can guide you:

Figure 10.11 – Amazon EMR Create cluster screen – General and Software configurations

3. Next, under Hardware configuration, enable Cluster scaling with default values
for EMR-managed scaling. Then, under Security and access, select your EC2 key
pair with IAM roles pointing to the default roles. The following screenshot shows
the values we have selected:

Implementation steps 293

Figure 10.12 – Amazon EMR Create cluster screen – Hardware and Security and access configurations

4. Then, select Create cluster, which will take you to the EMR cluster detail screen
with a status of Starting.

After a few minutes, you will notice that the cluster status changes to Running when the
initial Setup hadoop debugging default job runs, and then, following the completion of
the job, it changes to Waiting, which means all the resources are provisioned and we are
good to submit jobs to the cluster.

Now, let's see how we can trigger the Spark Streaming job.

294 Implementing Real-Time Streaming with Amazon EMR and Spark Streaming

Triggering the Spark Streaming job on the EMR cluster
As a next step, we need to trigger the Spark Streaming job by adding it as a step in the
EMR cluster. To add the step, click the Steps tab of the cluster detail page and click the
Add Step button, which will open the following screen to add the step:

Figure 10.13 – Amazon EMR – Add step

You can select Custom JAR in the Step type field and specify the following spark-
submit command, which triggers the kinesis-stream-consumer.py Spark script
available in an S3 bucket:

spark-submit --deploy-mode cluster --packages org.apache.
spark:spark-streaming-kinesis-asl_2.12:3.1.2 s3://<script-
bucket-name>/kinesis-stream-consumer.py us-east-1 clickstream-
events https://kinesis.us-east-1.amazonaws.com clickstream-
events

The following is the format of the command:

spark-submit --deploy-mode cluster --packages org.apache.
spark:spark-streaming-kinesis-asl_2.12:3.1.2 s3://<script-
bucket-name>/<script-name>.py <aws-region> <kinesis-data-
stream-name> <kinesis-endpoint-url> <s3-output-bucket-name>

Implementation steps 295

Please replace the <script-bucket-name>, <script-name>, <aws-region>,
<kinesis-data-stream-name>, <kinesis-endpoint-url>, and
<s3-output-bucket-name> variables before adding the EMR step. You can find the
Kinesis endpoint URL for your AWS region in the AWS documentation.

Important Note
Please note that the spark-submit command has an additional
--packages parameter, which specifies the spark-streaming-
kinesis-asl Maven JAR path. The 3.1.2 version of the JAR is integrated,
based on the Spark version available in EMR 6.4.0, so please change the version if
you are executing the command on a different EMR cluster release version.

After you have added the step, you will notice that the step status changes to Running
and, after a few minutes, you will start seeing records in your target S3 bucket, as follows:

Figure 10.14 – Amazon S3 screen representing Parquet output

As you can see, the Parquet files are being written to the ingest_year, ingest_
month, ingest_day, and ingest_hour partition columns.

296 Implementing Real-Time Streaming with Amazon EMR and Spark Streaming

You can increase the number of records in the Kinesis Data Generator UI tool and can
validate how the EMR manages scaling and increases the number of core nodes in the
EMR cluster to handle the load. The following screenshot shows the node status while
additional nodes are being provisioned.

Figure 10.15 – Amazon EMR cluster detail screen showing core node resizing

This concludes our implementation steps. Next, we can validate the data by querying it
using Amazon Athena.

Validating output using Amazon Athena
The Parquet format data is already available in Amazon S3 partition columns, but to make
it more consumable for data analysts or data scientists, it would be great if we can enable
querying the data through SQL by making it available as a database table.

To make that integration, we will follow a two-step approach:

1. First, we will run Glue Crawler to create a Glue Catalog table on top of the S3 data.
2. Then, we will run a query in Athena to validate the output.

Let's see how you can integrate that.

Validating output using Amazon Athena 297

Defining a virtual Glue Catalog table on top of Amazon
S3 data
You can follow these steps to create and run Glue Crawler, which will create a Glue Data
Catalog table:

1. Navigate to AWS Glue Crawler at https://console.aws.amazon.com/
glue/home?region=us-east-1#catalog:tab=crawlers.

2. Then, click Add crawler, which will open a form to configure the crawler.
3. Configure the crawler, where the data source should point to the clickstream-

events S3 bucket.
4. Specify the IAM role that has permission to crawl the S3 bucket.
5. You can keep the rest of the configurations at their default settings and then, on

the final screen, review the configurations that might look like the Figure 10.16 and
click Save.

6. Select the crawler you created using the preceding steps from the crawler list and
then select the Run crawler button, which will create a table in the Glue Catalog
with a name of clickstream_events.

After we have the Glue Catalog table created, we can now navigate to Amazon Athena to
query the data using SQL.

Querying output data using a standard SQL query in
Amazon Athena
To validate the output, navigate to Amazon Athena at https://console.aws.
amazon.com/athena/home?region=us-east-1.

As explained in Chapter 9, Implementing Batch ETL Pipeline with Amazon EMR and
Apache Spark, if you are accessing Amazon Athena for the first time, configure the Athena
query result location by pointing it to an Amazon S3 path.

In the Athena query editor, you can keep the Data Source field as the default
AwsDataCatalog and select default for the database. Then, execute a SQL query such as
the following to validate the output:

SELECT * FROM "default"."clickstream_events" limit 10;

https://console.aws.amazon.com/athena/home?region=us-east-1
https://console.aws.amazon.com/athena/home?region=us-east-1

298 Implementing Real-Time Streaming with Amazon EMR and Spark Streaming

The following screenshot shows Amazon Athena output for the SQL query:

Figure 10.16 – Athena query editor with a query result

This concludes our use case implementation and validation steps. Next, we will look at a
walk-through of the PySpark script so that you can modify it as per your requirements.

Important Note
After validating the data using Amazon Athena, please navigate to the Kinesis
Generator UI tool and make sure you stop sending records to avoid incurring
costs.

Now, let's learn about Spark Streaming code in the following section.

Spark Streaming code walk-through
You can download the complete PySpark script from our GitHub repository. The
following is a walk-through of the primary functions of the script.

The following getSparkSessionInstance() function is a user-defined function that
gets an existing SparkSession, instead of creating a duplicate instance within custom, user-
defined functions:

Get existing SparkSession

def getSparkSessionInstance(sparkConf):

Spark Streaming code walk-through 299

 if ("sparkSessionSingletonInstance" not in globals()):

 globals()["sparkSessionSingletonInstance"] = SparkSession.
builder.config(conf=sparkConf).getOrCreate()

 return globals()["sparkSessionSingletonInstance"]

The following processRecords() function is a user-defined function, which is being
invoked by each RDD of the Kinesis stream to parse the records of the RDD and write to
Amazon S3 in Parquet format with year, month, date, and hour partition columns:

Process each RDD and write to S3

def processRecords(rdd):

 if not rdd.isEmpty():

 spark = getSparkSessionInstance(rdd.context.getConf())

 df = spark.read.json(rdd)

 now = datetime.datetime.now()

 year = now.strftime("%Y")

 month = now.strftime("%m")

 day = now.strftime("%d")

 hour = now.strftime("%H")

 TargetPath = "s3://"+s3OutputPath+"/ingest_year="+ year
+ "/ingest_month=" + month + "/ingest_day=" + day + "/ingest_
hour=" + hour + "/"

 df.write.mode('append').parquet(TargetPath)

The following is the primary code, which initiates StreamingContext, reads from the
Kinesis data stream, and invokes the preceding processRecords() function for each
RDD function:

Read Runtime arguments

scriptName, regionName, streamName, endpointUrl, s3OutputPath =
sys.argv

Initialize SparkSession and StreamingContext

appName = "ClickStreamEventConsumer"

sparkSession = SparkSession.builder.appName(appName).
getOrCreate()

sparkContext = sparkSession.sparkContext

streamingContext = StreamingContext(sparkContext, 1)

300 Implementing Real-Time Streaming with Amazon EMR and Spark Streaming

Start reading from Kinesis Stream

records = KinesisUtils.createStream(streamingContext, appName,
streamName, endpointUrl, regionName, InitialPositionInStream.
LATEST, 5, StorageLevel.MEMORY_AND_DISK_2)

Process each batch

records.foreachRDD(lambda rdd: processRecords(rdd))

Start StreamingContext

streamingContext.start()

streamingContext.awaitTermination()

Here, argv will provide the runtime arguments of the spark-submit command, which
includes regionName, streamName, endpointUrl, and s3OutputPath.

Important Note
When you integrate a real-time streaming pipeline with Spark, you can
integrate either Spark Streaming or the Spark Structured Streaming API. We
have integrated Spark Streaming for our use case as our data source is Kinesis
Data Streams and, while writing this book, Spark Structured Streaming does
not natively support Kinesis Data Streams as its source.

However, there are some open source libraries that you can integrate to take
advantage of Spark Structured Streaming integration with Kinesis, or, if your
data source is Kafka, then Spark Structured Streaming supports it natively.

This script should work without any modification, but you can customize it as per your
ETL transformation logic.

Summary
Over the course of this chapter, we have dived deep into a real-time streaming use case,
where we have integrated the data pipeline with Amazon S3, Amazon EMR, AWS Glue,
and Amazon Athena.

We have covered detailed implementation steps, which you can follow to replicate the
same or customize as per your use case. For our implementation, we have leveraged the
Kinesis Data Generator UI tool to replicate clickstream data generation and push to
Kinesis Data Streams. During your production implementation, your web application
should push data to Kinesis Data Streams in real time.

Test your knowledge 301

At the end, we provided an overview of a few important parts of the EMR PySpark script,
which can provide you with a starting point.

That concludes this chapter! Hopefully, this helped you get an idea of how you can integrate
real-time streaming pipelines, and, in the next chapter, we will integrate another use case
that implements UPSERT or MERGE in a data lake using the Apache Hudi framework.

Test your knowledge
Before moving on to the next chapter, test your knowledge with the following questions:

1. Assume that the volume of data you receive in every micro batch of the stream is
very small (in KB) and, in your data lake, you plan to maintain a minimum 64-128
MB file size for better read performance. How should you design the pipeline and
what trade-offs should you consider?

2. Assume, owing to infrastructure failures, that your EMR cluster got terminated but
your source application is still continuously sending events to Kinesis Data Streams.
When you restart your EMR cluster to resume the flow, how would you make sure
that you do not lose any messages while processing the data using Spark?

Further reading
The following are a few resources you can refer to for further reading:

• An alternative means of leveraging a Streaming application step: https://
docs.aws.amazon.com/emr/latest/ReleaseGuide/CLI_
CreateStreaming.html.

• Monitoring a Spark Streaming application: https://aws.amazon.com/
blogs/big-data/monitor-spark-streaming-applications-on-
amazon-emr/.

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/CLI_CreateStreaming.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/CLI_CreateStreaming.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/CLI_CreateStreaming.html
https://aws.amazon.com/blogs/big-data/monitor-spark-streaming-applications-on-amazon-emr/
https://aws.amazon.com/blogs/big-data/monitor-spark-streaming-applications-on-amazon-emr/
https://aws.amazon.com/blogs/big-data/monitor-spark-streaming-applications-on-amazon-emr/

11
Implementing
UPSERT on S3

Data Lake with
Apache Spark and

Apache Hudi
In the previous two chapters, we learned how to implement a batch ETL pipeline with
Amazon EMR and real-time streaming with Spark Streaming. In this chapter, we will learn
how to implement UPSERT or merge on your Amazon S3 data lake using the Apache
Hudi framework integrated with Apache Spark.

Amazon S3 is immutable by default, which means you cannot update the content of
an object or file in S3. Instead, you have to read its content, then modify it and write a
new object. Currently, as data lake and lake house architectures are becoming popular,
organizations look for update capability on Amazon S3 or other object stores. Frameworks
such as Apache Hudi, Apache Iceberg, and AWS Lake Formation Governed Tables have
started offering ACID transactions and UPSERT capabilities on data lakes.

304 Implementing UPSERT on S3 Data Lake with Apache Spark and Apache Hudi

Apache Hudi is a popular open source framework that is integrated into Amazon EMR
and AWS Glue and is also very popular within the open source community.

In this chapter, we will learn how you can integrate the Apache Hudi framework with
Apache Spark to update and delete data from your data lake. To showcase this capability,
we will use an EMR notebook so that you can learn how you can do interactive
development on a long-running EMR cluster. The following are the topics that we will
cover in this chapter:

• Apache Hudi overview

• Creating an EMR cluster and an EMR notebook

• Interactive development with Apache Spark and Apache Hudi

Getting an overview of Apache Hudi and its integration with Spark and Amazon EMR
will give you a starting point to learn how to integrate the UPSERT feature in a data lake,
which might help you with General Data Protection Regulation (GDPR) compliance or
other regulatory requirements that compel you to update or delete data based on certain
filter criteria.

Technical requirements
In this chapter, we will showcase interactive development using an EMR notebook and
the Apache Spark and Apache Hudi frameworks. So, before getting started, make sure you
have the following:

• An AWS Account with the ability to create Amazon S3, Amazon EMR, Amazon
Athena, and AWS Glue Catalog resources

• An IAM user that can create IAM roles, which will be used to trigger or execute jobs

• Access to the Jupyter notebook that is available in our GitHub repository here:
https://github.com/PacktPublishing/Simplify-Big-Data-
Analytics-with-Amazon-EMR-/tree/main/chapter_11

Now, let's dive deep into the use case and hands-on implementation steps starting with the
overview of Apache Hudi.

Check out the following video to see the Code in Action at https://bit.ly/3svY3i9

https://github.com/PacktPublishing/Simplify-Big-Data-Analytics-with-Amazon-EMR-/tree/main/chapter_11
https://github.com/PacktPublishing/Simplify-Big-Data-Analytics-with-Amazon-EMR-/tree/main/chapter_11
https://bit.ly/3svY3i9

Apache Hudi overview 305

Apache Hudi overview
Apache Hudi is an open source framework, which is popular for providing record-level
transaction support on top of data lakes. The Hudi framework supports integration with
open file formats such as Parquet and stores additional metadata for its operations.

Apache Hudi provides several capabilities and the following are the most popular ones:

• UPSERT on top of data lakes

• Support for transactions and rollbacks

• Integration with popular distributed processing engines such as Spark, Hive, Presto,
and Trino

• Automatic file compaction in data lakes

• The option to query recent update views or past transaction snapshots

Hudi supports both read and write-heavy workloads. When you write data to an Amazon
S3 data lake using Hudi APIs, you have the option to specify either of the following
storage types:

• Copy on Write (CoW): This is the default storage type, which creates a new version
of the file and stores the output in Parquet format. This is useful when you want
to have the UPSERT version ready as soon as the new data is written. This is great
for read-heavy workloads as you can create a new version of the file as soon as it's
written, and all read workloads get the latest view.

• Merge on Read (MoR): This storage type is helpful for write-heavy workloads,
where the merging does not happen during the write process but instead happens
on demand when a read request comes in. This stores data in a combination
of Parquet and row-based Avro formats. Each new update creates a row-based
incremental delta file and is compacted when needed to create a new version
of the file in Parquet format.

After writing the data with the appropriate storage type, you can query it using any of the
following logical views that Hudi offers:

• Read optimized view: This includes the latest compacted data from MoR tables and
the latest committed data from CoW tables. This view does not include the
delta files that are not committed or compacted yet.

306 Implementing UPSERT on S3 Data Lake with Apache Spark and Apache Hudi

• Incremental view: This is helpful for downstream ETL jobs as it provides an
incremental change view from CoW tables.

• Real-time view: This view is helpful when you plan to access the latest copy of data,
which merges the columnar Parquet files and the row-based Avro delta files.

The following diagram shows how CoW works for different insert and update transactions:

Figure 11.1 – Apache Hudi CoW commit flow
(source: https://cwiki.apache.org/confluence/display/HUDI/Design+And+Architecture)

Let's explain the preceding diagram:

• The first transaction inserts new records called A, B, C, D, and E that get split into
three files and are marked as Commit time=0. At that point, both the snapshot
and incremental views show the same set of records as output.

• The second transaction is an update for D and A, which creates Commit time=1. This
will show A, B, C, D, and E in the snapshot and only A and D as incremental output.

• The third transaction will have an update for A and E and an insert for F, which
creates Commit time=2. This will show all values, A, B, C, D, E, and F, in the
snapshot and only A, E, F in the incremental output.

As you can see, the snapshot shows all the records as the merging happens instantly
during writing action itself.

Now, let's learn how the MoR table type handles the same transactions. The following
diagram represents the flow:

Apache Hudi overview 307

Figure 11.2 – Amazon Hudi MoR commit flow
(Source: https://cwiki.apache.org/confluence/display/HUDI/Design+And+Architecture)

As explained earlier, CoW does the delta data merging instantly, whereas MoR does the
merging while reading. As you can see in the preceding diagram, there is a new view
called the Read Optimized view that shows all latest data by getting it from the MoR table
and the latest committed data from CoW tables.

Now that we understand how Hudi works, let's look at some of the popular use cases for
which the Hudi framework is most appropriate.

Popular use cases
The following are some of the popular use cases for which the Hudi framework is
widely adopted:

• Updating and deleting data from a data lake to meet compliance requirements: Often
for privacy regulations such as the California Consumer Privacy Act (CCPA) or
the General Data Protection Regulation (GDPR), organizations are required to
delete records of specific users or delete data after a specific time, which requires
record-level transactions in data lakes. Hudi maintains additional metadata to keep
track of the records and updates or deletes them with simple API invocations.

• Incremental data processing: When you are trying to set up a data lake that receives
incremental Change Data Capture (CDC) data from a source system, you can use
Hudi to apply the incremental changes to the data lake so that your end users can
see the latest view of the data.

308 Implementing UPSERT on S3 Data Lake with Apache Spark and Apache Hudi

• Near-real-time event streaming: When you integrate a real-time streaming pipeline
in which you might receive data for IoT systems or from a message bus such as
Kinesis Data Stream, you can use Hudi with Spark Structured Streaming to update
data in a data lake.

• Having a unified data store for analytics: When data scientists or data analysts use
data for analytics, for some use cases they look for recent real-time views and for
other use cases they look for incremental update views. Hudi provides the option
to query different views of the data, making it a unified data store for analytics.

From the 5.28.0 release, Amazon EMR supports integration with Hudi, which means it
installs Hudi-related libraries when you create an EMR cluster with Hive, Spark, or Presto.

Registering Hudi data with your Hive or Glue Data
Catalog metastore
Like other Hive metastore tables, if you register your Hudi dataset with a Hive metastore
then you can query your Hudi table using the Hive, Spark SQL, or Presto query engines.
In addition, you can also integrate Hudi tables with your AWS Glue catalog.

As explained at the beginning of this chapter, Hudi provides two options when you write
to a dataset: one is CoW and the other is MoR. When you register a table as MoR, then in
your metastore, you will see two separate tables. One table has the original name that you
specified, and another additional table will have a suffix of _rt to provide a real-time view
of the data.

If you are using Spark to register a table with Hudi, then you should set the HIVE_SYNC_
ENABLED_OPT_KEY option to true. Alternatively, you can also use the hive_sync_
tool CLI utility to register your Hudi data as a metastore table in Hive or as a Glue
catalog metastore.

Creating an EMR cluster and an EMR notebook
Before getting started with our use case, we need to create an EMR cluster and then create
an EMR notebook that points to the EMR cluster we have created. Let's assume this EMR
cluster is a long-running cluster that is active to support your development workloads as
you plan to do interactive development with EMR notebooks.

Now let's learn how to create the EMR cluster and notebook.

Creating an EMR cluster and an EMR notebook 309

Creating an EMR cluster
As explained in Chapter 5, Setting Up and Configuring EMR Clusters, to create an EMR
cluster, follow these steps:

1. Navigate to Amazon EMR's Create cluster screen at https://console.aws.
amazon.com/elasticmapreduce/home?region=us-east-1#quick-
create.

2. Select Go to advanced options and, from the advanced options screen, select the
latest stable release. We have selected the emr-6.4.0 release because that was the
latest stable release while writing this chapter. From the Applications list, make sure
you select the JupyterHub and JupyterEnterpriseGateway applications with Spark
as they will be needed for the EMR notebook.

The following is a screenshot of the EMR release and applications we have selected:

Figure 11.3 – Amazon EMR Create cluster Software Configuration screen

3. Next, under Hardware configurations, enable Cluster scaling with the default
values for EMR-managed scaling. Then, under Auto-termination, disable the
Enable auto-termination checkbox.

https://console.aws.amazon.com/elasticmapreduce/home?region=us-east-1#quick-create
https://console.aws.amazon.com/elasticmapreduce/home?region=us-east-1#quick-create
https://console.aws.amazon.com/elasticmapreduce/home?region=us-east-1#quick-create

310 Implementing UPSERT on S3 Data Lake with Apache Spark and Apache Hudi

4. In General Cluster Settings, keep everything as the default values and then, on
the Security and access screen, select EC2 key pair, with which you can SSH to
the EMR cluster's master node. The following screenshot shows the values we
have selected:

Figure 11.4 – Amazon EMR Create cluster screen – Hardware and security configuration

5. Then select Create cluster, which will take you to the EMR cluster detail screen and
have a status of Starting.

After a few minutes, you will notice the cluster status changes to Running when the initial
Setup hadoop debugging default job runs, and after the job is complete, it changes to
Waiting, which means all the resources are provisioned and we are ready to submit jobs
to the cluster.

Let's see how to create an EMR notebook that points to our EMR cluster.

Creating an EMR cluster and an EMR notebook 311

Creating an EMR notebook
To create an EMR notebook, follow these steps:

1. Navigate to the EMR notebook list in the EMR console at https://console.
aws.amazon.com/elasticmapreduce/home?region=us-east-
1#notebooks-list.

2. Click Create notebook, which will open a form on the web interface to configure
your notebook.

3. On the Create notebook form, add a notebook name and then, in the Clusters
field, select the Choose an existing cluster option and then click Choose, which
will open a pop-up overlay with a list of the EMR clusters you have.

4. Select the EMR cluster you created in the previous step and click Choose cluster.
5. Keep the rest of the field values as the defaults and then click Create notebook.

The following screenshot shows the Create notebook form in the EMR console:

Figure 11.5 – The Create notebook form

312 Implementing UPSERT on S3 Data Lake with Apache Spark and Apache Hudi

Clicking on the Create notebook button will take you to the EMR Notebook's detail page,
with a status of Starting. In a few minutes, the status will change to Ready.

Now you can click the Open in Jupyter button on the notebook detail page, as shown in
the following screenshot:

Figure 11.6 –EMR notebook detail page

This will take you to Jupyter Notebook, where you can create interactive notebooks for
development. Jupyter Notebook provides options to create a notebook in languages such
as PySpark, SparkR, Python 3, or the Linux command-line Terminal.

As a next step, before moving onto the Spark and Hudi implementation, let's first create
an Amazon S3 bucket, which we can use to store Hudi datasets.

Creating an Amazon S3 bucket
Please refer to the following steps to create the S3 bucket, which we have followed in
previous chapters too:

1. Navigate to Amazon S3 console at https://s3.console.aws.amazon.com/
s3/home?region=us-east-1#.

https://s3.console.aws.amazon.com/s3/home?region=us-east-1#
https://s3.console.aws.amazon.com/s3/home?region=us-east-1#

Creating an EMR cluster and an EMR notebook 313

2. From the buckets list, choose Create Bucket. This will open a form on the web
interface to provide your bucket name and related configurations.

We have called our bucket hudi-data-repository and kept everything else as
the default values.

3. Then, click the Create bucket button to create the bucket.

The following screenshot shows the AWS console, using which we have created the bucket:

Figure 11.7 – Amazon S3 Create bucket page

As we have now created all the resources, next we will dive deep into our use case
implementation with Spark and Hudi.

314 Implementing UPSERT on S3 Data Lake with Apache Spark and Apache Hudi

Interactive development with Spark and Hudi
Our EMR cluster and notebook are now ready for use. Let's learn how to do interactive
development using an EMR notebook.

For interactive development, we are considering a use case where we will integrate
the Hudi framework with Spark to do UPSERT (update/merge) operations on top of
an S3 data lake.

Let's navigate to our EMR notebook to get started.

Creating a PySpark notebook for development
To get started, in Jupyter Notebook, choose New and then PySpark, as shown in the
following screenshot:

Figure 11.8 – The Jupyter Notebook landing page

This will create a new PySpark notebook. In every cell, you can write scripts and execute
them line by line for easy development or debugging.

Next, we will learn how to integrate Hudi libraries with the notebook.

Interactive development with Spark and Hudi 315

Integrating Hudi with our PySpark notebook
By default, Hudi libraries are not available in our EMR notebook. To make them available,
you need to copy the Hudi Java ARchive (JAR) files from the EMR cluster's master node
to HDFS so that the EMR notebook can refer to them. Follow these steps to do so:

1. Navigate to your EMR cluster list at https://console.aws.amazon.com/
elasticmapreduce/home?region=us-east-1#cluster-list.

2. Choose the cluster you have created, which will be in the Waiting state. This will
take you to the cluster detail page.

3. Copy the cluster's Master public DNS URL and SSH to the master node using
PuTTY or an equivalent tool. You can also click the Connect to the Master Node
Using SSH link below the DNS URL to learn how you can SSH to the master node
using Windows, macOS, and Linux systems.

The following screenshot shows the cluster details page, from where you can copy the
master node's public DNS URL:

Figure 11.9 – EMR cluster details page

https://console.aws.amazon.com/elasticmapreduce/home?region=us-east-1#cluster-list
https://console.aws.amazon.com/elasticmapreduce/home?region=us-east-1#cluster-list

316 Implementing UPSERT on S3 Data Lake with Apache Spark and Apache Hudi

For our implementation, we used PuTTY to SSH to the EMR master node, and to do
that, we specified the master public DNS URL in the Session | Host Name field and then
specified the EC2 key pair private key (.ppk) under Connection | SSH | Auth, as shown
in the following screenshot:

Figure 11.10 – Specifying the PPK file for authentication to the EC2 instance

When you click Open and try to connect for the first time, PuTTY will ask you to confirm
whether you trust the connection. Click Yes, as shown in the following screenshot:

Interactive development with Spark and Hudi 317

Figure 11.11 – PuTTY Security Alert

After you click Yes, you will be prompted to enter the login user name, for which you
should type hadoop. That will connect successfully, as shown in the following screenshot:

Figure 11.12 – PuTTY SSH login

318 Implementing UPSERT on S3 Data Lake with Apache Spark and Apache Hudi

Once you are successfully logged in, you can execute the following commands to copy the
Hudi JAR files from the master node's local filesystem to HDFS.

First, create a new directory path in HDFS. We have used the /applications/hudi/
lib path in HDFS, but you can use your own path. You need to keep a note of this path
so that you can use it in your EMR notebook:

hdfs dfs -mkdir -p /applications/hudi/lib

Then execute the following command to copy the hudi-spark-bundle.jar file
to HDFS:

hdfs dfs -copyFromLocal /usr/lib/hudi/hudi-spark-bundle.jar /
applications/hudi/lib/hudi-spark-bundle.jar

Finally, execute the following command to copy the spark-avro.jar file to HDFS:

hdfs dfs -copyFromLocal /usr/lib/spark/external/lib/spark-avro.
jar /applications/hudi/lib/spark-avro.jar

Once these two files are copied to HDFS, you can refer to them in your EMR notebook.

Configuring your EMR notebook to use Hudi JARs
After you have the Hudi JARs available in HDFS, you can navigate back to your EMR
PySpark notebook and execute the following command:

%%configure -f

{

 "conf": {

 "spark.jars":"hdfs:///applications/hudi/lib/hudi-
spark-bundle.jar,hdfs:///applications/hudi/lib/spark-avro.jar",

 "spark.sql.hive.convertMetastoreParquet":"false",

 "spark.serializer":"org.apache.spark.serializer.
KryoSerializer"

 }

}

Interactive development with Spark and Hudi 319

This makes the Hudi JARs available to SparkContext so that the Spark code can use its
libraries. The following screenshot shows the output you should see in your notebook:

Figure 11.13 – Additional configuration settings

After our setup is complete, let's look at a few Hudi APIs and example scripts using which
you can create CoW or MoR tables and can do transactions on top of the tables.

Executing Spark and Hudi scripts in your notebook
Now that our notebook is ready, with all the required JARs, let's dive into Hudi APIs that
enable ACID transactions on top of our data lake. We will use PySpark scripts to interact
with Hudi functions.

For our use case, we have created an example product inventory dataset, which has
product_id, category, product_name, quantity_available, and last_
update_time fields. We will write the input data to our S3 data lake in Hudi format, then
will update and delete some records and then query to validate the transactional updates.

Let's now work throughout this step by step.

Inserting new product inventory data into our S3 data lake
The first step for us is to ingest new product inventory data in our data lake. product_id
is the unique key to identify a product and the category field is used to partition the
data in S3.

320 Implementing UPSERT on S3 Data Lake with Apache Spark and Apache Hudi

With the following code, we create a Spark DataFrame using some product records:

Create a DataFrame that represents Product Inventory

inputDF = spark.createDataFrame(

 [

 ("100", "Furniture", "Product 1", "25",
"2021-12-01T09:51:39.340396Z"),

 ("101", "Cosmetic", "Product 2", "20",
"2021-12-01T10:14:58.597216Z"),

 ("102", "Furniture", "Product 3", "30",
"2021-12-01T11:51:40.417052Z"),

 ("103", "Electronics", "Product 4", "10",
"2021-12-01T11:51:40.519832Z"),

 ("104", "Electronics", "Product 5", "50",
"2021-12-01T11:58:00.512679Z")

],

 ["product_id", "category", "product_name", "quantity_
available", "last_update_time"]

)

Next, we create the hudiOptions configuration variable, which specifies the Hudi
parameters that represent the table name, record key, partition key, and more:

Specify common DataSourceWriteOptions in the single
hudiOptions variable

hudiOptions = {

'hoodie.table.name': 'product_inventory',

'hoodie.datasource.write.recordkey.field': 'product_id',

'hoodie.datasource.write.partitionpath.field': 'category',

'hoodie.datasource.write.precombine.field': 'last_update_time',

'hoodie.datasource.hive_sync.enable': 'true',

'hoodie.datasource.hive_sync.table': 'product_inventory',

'hoodie.datasource.hive_sync.partition_fields': 'category',

'hoodie.datasource.hive_sync.partition_extractor_class': 'org.
apache.hudi.hive.MultiPartKeysValueExtractor'

}

Interactive development with Spark and Hudi 321

Next, we can write the product records to Amazon S3 using the hudiOptions
configuration variable:

Write the product Inventory DataFrame as a Hudi dataset to S3

inputDF.write.format('org.apache.hudi') \

.option('hoodie.datasource.write.operation', 'insert') \

.options(**hudiOptions) \

.mode('overwrite') \

.save('s3://hudi-data-repository/product-inventory/')

As you can see, the hoodie.datasource.write.operation parameter has a value
of insert to represent its new insert. The following screenshot shows the output of
the execution:

Figure 11.14 – Data ingestion output

322 Implementing UPSERT on S3 Data Lake with Apache Spark and Apache Hudi

After the successful execution of the preceding code, you can navigate to your S3 bucket
to validate the data being written in Hudi format with partition folders for the category
field. The following screenshot shows the output:

Figure 11.15 – S3 output with partitioning folders

After the initial data is written, we can try to update and delete a few records.

Updating and deleting records from our S3 data lake using Hudi
and Spark
Before updating records, let's first query the data and validate how it looks. The following
code block reads data from s3://hudi-data-repository/product-inventory
with /*/* so that it reads all partitions:

Read the Hudi dataset from S3 and validate your field output

HudiProductDF = spark.read.format('org.apache.hudi').
load('s3://hudi-data-repository/product-inventory' + '/*/*')

HudiProductDF.select("product_id", "category", "product_name",
"quantity_available", "last_update_time").show()

Interactive development with Spark and Hudi 323

After executing this code, you should see the following output, which shows the data of all
the five products you have ingested:

Figure 11.16 – Data ingestion output

Next, let's assume you have sold one unit of product ID 102 and would like to update its
quantity to 29. The following code shows how to do this. As you can see, the hoodie.
datasource.write.operation parameter value is set to upsert:

Update quanity of product_id 102

from pyspark.sql.functions import col,lit

newDF = inputDF.filter(inputDF.product_id==102).
withColumn('quantity_available',lit('29'))

newDF.write \

.format('org.apache.hudi') \

.option('hoodie.datasource.write.operation', 'upsert') \

.options(**hudiOptions) \

.mode('append') \

.save('s3://hudi-data-repository/product-inventory/')

Next, let's assume you have stopped selling product ID 101 and would like to delete it
from your inventory table. The following code block shows how to delete a product using
Hudi. As you can see, we have passed an additional parameter, hoodie.datasource.
write.payload.class, with a value of org.apache.hudi.common.model.
EmptyHoodieRecordPayload to represent deleting the record:

Delete product record with ID 101

deleteDF = inputDF.filter(inputDF.product_id==101)

deleteDF.write \

324 Implementing UPSERT on S3 Data Lake with Apache Spark and Apache Hudi

.format('org.apache.hudi') \

.option('hoodie.datasource.write.operation', 'upsert') \

.option('hoodie.datasource.write.payload.class', 'org.apache.
hudi.common.model.EmptyHoodieRecordPayload') \

.options(**hudiOptions) \

.mode('append') \

.save('s3://hudi-data-repository/product-inventory/')

After the executing both the update and delete transactions, we can validate the output by
executing the following PySpark script, which reads the updated data from S3:

Read from S3 to validate the update and delete record

HudiProductNewDF = spark.read.format('org.apache.hudi').
load('s3://hudi-data-repository/product-inventory' + '/*/*')

HudiProductNewDF.select("product_id", "category", "product_
name", "quantity_available", "last_update_time") \

.orderBy("product_id").show()

The following screenshot shows the output of the execution. The record with product_
id 101 is missing and the record with product_id 102 has a quantity value of 29:

Figure 11.17 – Output after update and delete

Interactive development with Spark and Hudi 325

So far, we have learned how to create Hudi tables, ingest new data, and update and delete
datasets using Spark and Hudi. Next, let's learn how to query incremental data and some
of the additional metadata attributes Hudi provides.

Querying incremental data using Hudi
In our previous execution, when we tried to query data, we defined specific columns
to validate our data. Now let's try to print the complete dataset and make a note of the
additional attributes Hudi appends:

List all columns on the dataframe to showcase additional
metadata fields Hudi appends

HudiProductNewDF.show()

The following screenshot highlights the additional attributes Hudi appends, and all of
them are prefixed with _:

Figure 11.18 – Hudi attributes

As you can see in this output, all the records have a hoodie commit time of
20211205222848, except product_id 102, which has a hoodie commit time of
20211205225705 because we updated that record after our initial data ingestion.

326 Implementing UPSERT on S3 Data Lake with Apache Spark and Apache Hudi

Next, let's try to query the incremental data by listing all the records changed after a
certain timestamp, such as 20211205222848. The following code block shows how to
query incremental data using Hudi:

Incremental query output, that fetches change data beyond
certain time

incrementalQueryOptions = {

 'hoodie.datasource.query.type': 'incremental',

 'hoodie.datasource.read.begin.instanttime': "20211205222848",

}

incQueryDF = spark.read.format('org.apache.hudi').
options(**incrementalQueryOptions) \

.load('s3://hudi-data-repository/product-inventory')

incQueryDF.show()

The following screenshot highlights the output we get after executing the incremental
query and, as you can see, there is one record, that is, product_id 102:

Figure 11.19 – Hudi incremental query output

In this section, we have walked you through the Spark and Hudi code using which you
can insert, update, delete, and query Hudi datasets. Having the UPSERT capability
on top of our S3 data lake provides a lot of flexibility in terms of meeting compliance
requirements or having a golden copy for querying. This should give you a starting point
for your Hudi implementation, and you can refer to the Hudi documentation
for additional information.

Summary 327

Note
During this chapter, we have executed Hudi scripts using an EMR notebook,
but you can automate the execution by saving the script into a Python file and
submitting it as an EMR step job, as explained in Chapter 9, Implementing
Batch ETL Pipeline with Amazon EMR and Apache Spark.

Summary
Over the course of this chapter, we have dived deep into Apache Hudi and looked at its
features, use cases, and how it is integrated with AWS and Amazon EMR.

We have covered how to create an EMR notebook that points to a long-running EMR
cluster and how to use the notebook for interactive development. To showcase interactive
development, we explained a small use case using Spark and Hudi, which can enable you
to do UPSERT transactions on top of a data lake.

That concludes this chapter! Hopefully, this has helped you get an idea of how to use EMR
notebooks for interactive development. In the next chapter, we will explain how to build
a workflow to build a data pipeline using Amazon EMR.

Test your knowledge
Before moving on to the next chapter, test your knowledge with the following questions:

1. Assume your data science team is using EMR notebooks for their interactive
development and they are primarily using Python 3 for machine learning model
development. When they started executing the Python code, they found some of
their scripts are not getting executed; they get an error stating that the Python
module does not exist. How would you make the additional Python modules
available in the EMR notebook so that your data science team can continue
executing their scripts for machine learning model development?

2. Assume you have an S3 data lake on top of which you have created Hudi tables for
ACID transactions and UPSERT. You are updating records as they change, which
creates multiple versions of the records in the Hudi table. You have received a
business requirement to find the value of a specific column at a specific time.
How would you fulfill that requirement using Hudi libraries?

328 Implementing UPSERT on S3 Data Lake with Apache Spark and Apache Hudi

Further reading
Here are a few resources you can refer to for further reading:

• Apache Hudi documentation: https://hudi.apache.org/

• EMR and Hudi integration: https://docs.aws.amazon.com/emr/latest/
ReleaseGuide/emr-hudi.html

• Considerations and limitations while using Hudi with Amazon EMR: https://
docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hudi-
considerations.html

• Learn more about EMR Notebooks: https://docs.aws.amazon.com/emr/
latest/ManagementGuide/emr-managed-notebooks.html

https://hudi.apache.org/
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hudi.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hudi.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hudi-considerations.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hudi-considerations.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hudi-considerations.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-managed-notebooks.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-managed-notebooks.html

12
Orchestrating
Amazon EMR

Jobs with AWS
Step Functions

and Apache
Airflow/MWAA

In the previous few chapters, we explained how you can leverage the EMR cluster for
on-demand ETL jobs or long-running clusters that either execute a real-time streaming
application or serve as a backend for interactive development using notebooks. But when
we build a data pipeline to automate data ingestion, cleansing, or transformations, we
look for orchestration tools with which we can build workflows that either get kicked off
through a schedule or through an event.

330 Orchestrating Amazon EMR Jobs with AWS Step Functions and Apache Airflow/MWAA

There are two primary orchestration tools – AWS Step Functions and Apache Airflow,
which are very popular in building data pipelines with Amazon EMR. AWS also provides
a managed offering of Airflow, called Amazon Managed Workflows for Apache
Airflow (MWAA).

In this chapter, we will provide an overview of AWS Step Functions and MWAA services
and then explain how you can leverage them to orchestrate a data pipeline that can
create EMR clusters, submit jobs, and terminate clusters as required. The following
are the high-level topics we will be covering:

• Overview of AWS Step Functions

• Integrating AWS Step Functions to orchestrate EMR jobs

• Overview of Apache Airflow and MWAA

• Integrating Airflow to trigger EMR jobs

Getting an overview of these orchestration tool options will give you a starting point and
you should be able to build more complex data pipelines that not only integrate Amazon
EMR jobs but also other AWS and non-AWS services to automate your workflow.

Technical requirements
In this chapter, we will showcase the features of AWS Step Functions and MWAA and
demonstrate how you can integrate them to trigger EMR jobs. So, before getting started,
make sure you have the following requirements to hand.

• An AWS account with access to create Amazon S3, Amazon EMR, AWS Step
Functions, and MWAA resources

• An IAM user with access to create IAM roles, which will be used to trigger or
execute jobs

Now let's get an overview of these orchestration tools and learn how we can integrate them.

Overview of AWS Step Functions
AWS Step Functions is a serverless workflow service that provides integration with several
AWS services natively, which means you can create a workflow that is able to integrate or
invoke actions of all the supported AWS services.

Overview of AWS Step Functions 331

AWS Step Functions provides both a visual interface and a JSON based-definition
approach to design workflows. With the visual interface, you can drag and drop different
AWS service actions and modify their parameters to integrate a workflow. In addition to
the visual interface, Step Functions also provides the option to code your workflow with
a JSON-based definition called a state machine, where each step is referred to as a state.
Step Functions also provides a few sample projects that are frequently in use, which you
can inherit and modify for your use case.

You can integrate AWS Step Functions to automate IT business processes or build data or
machine learning pipelines, or can integrate it to design real-time, event-based streaming
applications. When you start designing a workflow using Step Functions, you can choose
either of the following types.

• Standard: This is great for long-running batch workflows that can be related to
building data analytics pipelines or automating IT processes that need durable and
auditable workflows. Standard state machines can stay active for a year and are
billed based on the number of state transitions.

• Express: This is useful when you need to build an event-driven workflow that has
a higher volume of requests compared to a batch workload that runs on a schedule.
These workflows have a maximum execution timeout of 5 minutes and are billed
based on the number of requests and the duration of the workflow.

When you design a workflow using Step Functions, each step or state might be any of the
following types:

• Pass: This allows you to skip and move to the next step.

• Task: This allows you to invoke the actions of other AWS services, such as invoking
an AWS Lambda function or triggering an EMR Spark Job.

• Choice: This is similar to Switch-Case statements in programming languages,
where you can define conditions and actions based on parameter values.

• Wait: This enables you to introduce a wait time (in seconds) into the workflow.

• Succeed: This enables you to successfully terminate the workflow.

• Fail: This enables you to terminate the workflow with a fail status.

• Parallel: This is an important feature that enables you to run multiple tasks
in parallel.

• Map: This is also an important type that allows you to iterate the complete workflow
steps for a given set of records.

332 Orchestrating Amazon EMR Jobs with AWS Step Functions and Apache Airflow/MWAA

Out of all the state types that AWS Step Functions supports, the Task type is the most
commonly used one as that enables you to invoke actions of other AWS services to
build the workflow. Now, let's learn how you can leverage AWS Step Functions to build
a workflow using Amazon EMR actions.

Integrating AWS Step Functions to orchestrate
EMR jobs
AWS Step Functions supports createCluster, createCluster.sync,
terminateCluster, terminateCluster.sync, addStep, cancelStep,
setClusterTerminationProtection, modifyInstanceFleetByName, and
modifyInstanceGroupByName EMR actions, which provides a great flexibility to
build workflows on top of EMR.

Let's assume that you would like to build a workflow that gets triggered as soon as a file
arrives in S3 and the objective of the workflow is to execute a Spark + Hudi job to process
the input file. The workflow is supposed to create a transient EMR cluster, submit a
Spark job that does ETL transforms, and then, upon completion of the job, terminate the
cluster. You can easily build this workflow using AWS Step Functions' createCluster,
addStep, and terminateCluster actions.

The following JSON definition is an example of a Step Functions' step that is of the Task
type and invokes the EMR createCluster action with parameters that are required
to create the cluster:

"Launch_EMR_Cluster":{

 "Type":"Task",

"Resource":"arn:aws:states:::elasticmapreduce:createCluster.
sync",

 "Parameters":{

 "Name":"StepFn-EMR-Hudi",

 "ServiceRole":"EMR_DefaultRole",

 "JobFlowRole":"EMR_EC2_DefaultRole",

 "EbsRootVolumeSize":10,

 "ReleaseLabel":"emr-6.4.0",

 "Applications":[{"Name":"Hadoop"},{"Name":"Spark"},{"Name":
"Hive"},{"Name":"Livy"}],

 "LogUri":"s3://<bucket-name>/emr/logs",

Integrating AWS Step Functions to orchestrate EMR jobs 333

 "ManagedScalingPolicy":{

 "ComputeLimits":{

 "MaximumCapacityUnits":2,

 "MaximumCoreCapacityUnits":2,

 "MaximumOnDemandCapacityUnits":2,

 "MinimumCapacityUnits":1,

 "UnitType":"InstanceFleetUnits"

 }

 },

 "VisibleToAllUsers":true,

 "Instances":{

 "KeepJobFlowAliveWhenNoSteps":true,

 "Ec2KeyName":"<key-pair-name>",

 "Ec2SubnetId":"<subnet-id>",

 "InstanceFleets":[

 {

 "InstanceFleetType":"MASTER",

 "Name":"Master",

 "TargetOnDemandCapacity":1,

 "InstanceTypeConfigs":[{"InstanceType":"m5.
xlarge"}]

 },

 {

 "InstanceFleetType":"CORE",

 "TargetOnDemandCapacity":1,

 "InstanceTypeConfigs":[{"InstanceType":"m5.xlarge"}]

 }

]

 }

 },

 "Next":"Copy_Hudi_JARs"

There are a few variables, including <bucket-name>, <key-pair-name>, and
<subnet-id>, that you must replace before integrating this state.

334 Orchestrating Amazon EMR Jobs with AWS Step Functions and Apache Airflow/MWAA

The following JSON definition represents an example of a Step Functions' step that adds
a step or job to the EMR cluster. You may observe that it references the $.ClusterId
variable from the previous createCluster action to submit a job to the same cluster:

"Trigger_Spark_Job":{

 "Type":"Task",

 "ResultPath":"$.Result",

 "Catch":[

 {

 "ErrorEquals":["States.ALL"],

 "ResultPath":"$.error-info",

 "Next":"Terminate_EMR_Cluster"

 }

],

 "Resource":"arn:aws:states:::elasticmapreduce:addStep.sync",

 "Parameters":{

 "ClusterId.$":"$.ClusterId",

 "Step":{

 "Name":"Spark Transform Step",

 "ActionOnFailure":"CONTINUE",

 "HadoopJarStep":{

 "Jar":"command-runner.jar",

 "Args":["spark-submit", "--deploy-mode", "cluster",
"--jars", "/usr/lib/hudi/hudi-spark-bundle.jar", "--conf",
"spark.serializer=org.apache.spark.serializer.KryoSerializer",
"s3://<bucket-name>/<script-path-name>.py"

]

 }

 }

 },

 "Next":"Terminate_EMR_Cluster"

},

As you can see, it receives the PySpark script path as a parameter. You must replace the
<bucket-name> and <script-path-name> variables before integrating this into
your parent state machine definition.

Integrating AWS Step Functions to orchestrate EMR jobs 335

After you complete all your ETL transformation steps, if you plan to integrate the
terminateCluster step, then you can refer to the following JSON definition that
invokes the EMR terminateCluster step:

"Terminate_EMR_Cluster":{

 "Type":"Task",

"Resource":"arn:aws:states:::elasticmapreduce:terminateCluster.
sync",

 "Parameters":{"ClusterId.$":"$.ClusterId"},

 "End":true

}

Please note that .sync in all these EMR actions represents the fact that Step Functions
will wait for the step to be completed before moving on to the next step.

The complete state machine definition is available here: https://github.com/
PacktPublishing/Simplify-Big-Data-Analytics-with-Amazon-EMR-/
blob/main/chapter_12/emr-cluster-job-step-functions.json. This
can be downloaded, modified, and integrated into your AWS account. The following
is a snapshot of Step Functions' visual representation of the workflow when it is being
executed. If you notice, it has an additional step after creating a cluster, which is to copy
the Hudi JARs. If you recollect from Chapter 11, Implementing UPSERT on S3 Data Lake
with Apache Hudi, we have performed this manual JAR copy operation by SSHing to
master nodes, which can also be automated using the Step Functions' task.

Figure 12.1 – AWS Step Functions visual workflow for EMR jobs

https://github.com/PacktPublishing/Simplify-Big-Data-Analytics-with-Amazon-EMR-/blob/main/chapter_12/emr-cluster-job-step-functions.json
https://github.com/PacktPublishing/Simplify-Big-Data-Analytics-with-Amazon-EMR-/blob/main/chapter_12/emr-cluster-job-step-functions.json
https://github.com/PacktPublishing/Simplify-Big-Data-Analytics-with-Amazon-EMR-/blob/main/chapter_12/emr-cluster-job-step-functions.json

336 Orchestrating Amazon EMR Jobs with AWS Step Functions and Apache Airflow/MWAA

The workflow visualization uses color-coding to represent the status of the tasks. Green
indicates that the task has been completed successfully, while blue indicates that the task
is currently being executed, and red means that the task failed with an error. While being
executed, you can click each task to see its status, the input parameters passed to it, and
the output or error it generated following its execution.

After learning how AWS Step Functions can be integrated to trigger EMR jobs, next, let's
get an overview of Apache Airflow and MWAA and see how they help to trigger EMR jobs.

Overview of Apache Airflow and MWAA
Apache Airflow is an open source workflow management framework that allows you
to build workflows using the Python programming language. It has the following
fundamental differences compared to AWS Step Functions:

• Being an Apache open source project, Airflow not only supports AWS services,
but also supports integration with other public cloud providers and open source
projects such as Apache Sqoop, Apache Spark, and many more.

• AWS Step Functions provides a low-code, JSON-based definition, whereas Airflow
is more popular with programmers as you need to design a workflow by writing
Python scripts.

• AWS Step Functions provides a serverless offering, whereas Airflow needs
infrastructure provisioned to act as a cluster on top of which you can run
multiple jobs.

From a use case perspective, Airflow is a great fit when your workflow involves AWS
and non-AWS services. For example, not all your applications are in AWS; a few are
on-premises and a few are in another cloud. You would like to build a workflow that
invokes an on-premises job, and then triggers an Amazon EMR job and some other cloud
job. In this case, AWS Step Functions is not useful as you need to invoke non-AWS jobs
and Airflow is a great fit for that. It is very popular in the open source world for designing
complex workflows.

To take away the infrastructure provisioning and management overhead, AWS started
offering Amazon Managed Workflows for Apache Airflow (MWAA), which is highly
available, secure, and is also scalable to serve resource requirements. It is the same as open
source Airflow, with support for the same open source integrations, but is a managed
offering where you can create a cluster using just a few clicks. It also integrates with AWS
CloudWatch and CloudTrail for monitoring and auditing capabilities.

Now, let's see how you can integrate Airflow to invoke EMR jobs using Python.

Integrating Airflow to trigger EMR jobs 337

Integrating Airflow to trigger EMR jobs
Airflow provides the following API functions to interact with the Amazon EMR cluster:

• EmrCreateJobFlowOperator: This method enables you to create an
EMR cluster.

• EmrJobFlowSensor: This helps to check the status of the EMR cluster.

• EmrAddStepsOperator: With this, you can add a step to the EMR cluster.

• EmrStepSensor: This helps to check the status of an existing step in your
EMR cluster.

• EmrModifyClusterOperator: This is used to modify an existing cluster.

• EmrTerminateJobFlowOperator: This enables you to terminate an
existing cluster.

As explained, you can design a workflow in Airflows using the Python programming
language, where you can define each action and then define the sequence of execution.
The following is sample Python code that executes the EmrCreateJobFlowOperator
method of Airflow that triggers an EMR create cluster action:

cluster_create_action = EmrCreateJobFlowOperator(

 task_id='create_job_flow_task',

 job_flow_overrides=<JOB_FLOW_OVERRIDES>

)

You can pass a cluster configuration through the <JOB_FLOW_OVERRIDES> parameter
that follows a JSON structure.

After a cluster is created, if you need to add a step to the existing EMR cluster, then
you can use the EmrAddStepsOperator method, as shown in the following sample
code, which takes EMR step details through a JSON configuration that is a <SPARK_
STEPS> variable:

add_step_action = EmrAddStepsOperator(

 task_id='add_steps',

 job_flow_id="{{ task_instance.xcom_pull(task_ids='create_
job_flow', key='return_value') }}",

 aws_conn_id='aws_default',

 steps=<SPARK_STEPS>,

)

338 Orchestrating Amazon EMR Jobs with AWS Step Functions and Apache Airflow/MWAA

After you have defined all your steps, you can define the sequence of execution by writing
something like the following:

cluster_create_action >> add_step_action

These are a few sample code blocks to explain how you can write Python scripts to define
a workflow in Airflow. You can refer to the Airflow documentation to learn more about
its methods and way of integration.

Summary
Over the course of this chapter, we have provided an overview of AWS Step Functions,
Apache Airflow, and MWAA. In addition, we have shared example code blocks to explain
how you can define Step Functions' state machine or write Python code to design a
workflow for Airflow.

That concludes this chapter! Hopefully, this helped you get an idea of how you integrate
these services to design workflows and will provide a starting point to design more
complex data or machine learning pipelines. In the next chapter, we will explain how you
can migrate your on-premises Hadoop workloads to Amazon EMR.

Test your knowledge
Before moving on to the next chapter, test your knowledge with the following questions:

1. Assume you are designing a data pipeline that needs to process two input files
as two parallel steps and then invoke a common ETL process to aggregate the
output of these parallel steps. You have decided to leverage AWS Step Functions to
orchestrate the pipeline. Which Task types will you be integrating and how?

2. Assume you have a few Hadoop workloads running on-premises and a few Spark
ETL jobs running in Amazon EMR. To simplify orchestration and monitoring, you
are looking for an orchestration tool. While comparing different options, you found
that AWS Step Functions and MWAA are the two best options. Which of them is
better suited to your workload and why?

Further reading 339

Further reading
The following are a few resources you can refer to for further reading:

• Learn more about Airflow EMR actions: https://airflow.apache.org/
docs/apache-airflow-providers-amazon/stable/operators/emr.
html

• Learn more on the integration of AWS Step Functions with Amazon EMR:
https://docs.aws.amazon.com/step-functions/latest/dg/
connect-emr.html

• Learn how you can leverage AWS Step Functions to orchestrate EMR on an EKS
job: https://aws.amazon.com/blogs/big-data/orchestrate-
an-amazon-emr-on-amazon-eks-spark-job-with-aws-step-
functions/

https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/operators/emr.html
https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/operators/emr.html
https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/operators/emr.html
https://docs.aws.amazon.com/step-functions/latest/dg/connect-emr.html
https://docs.aws.amazon.com/step-functions/latest/dg/connect-emr.html
https://aws.amazon.com/blogs/big-data/orchestrate-an-amazon-emr-on-amazon-eks-spark-job-with-aws-step-functions/
https://aws.amazon.com/blogs/big-data/orchestrate-an-amazon-emr-on-amazon-eks-spark-job-with-aws-step-functions/
https://aws.amazon.com/blogs/big-data/orchestrate-an-amazon-emr-on-amazon-eks-spark-job-with-aws-step-functions/

13
Migrating

On-Premises
Hadoop Workloads

to Amazon EMR
Throughout the previous chapters, we have explained what Amazon EMR is, what its
features are, how it integrates with AWS services, and how you can integrate a few of
the batch or streaming ETL pipelines using EMR. If you are about to start your big data
analytics journey, then you can get started with Amazon EMR and other AWS analytics
services right away, but there are lot of customers who are already using Hadoop and
Spark in their on-premises environments and are in the planning stage to migrate to the
AWS cloud.

If you have Hive, Spark, or Hadoop workloads running in an on-premise Hadoop cluster,
then there are several factors you need to consider before migrating to AWS, such as
support for the Hadoop services you are using, their versions, how security will work in
AWS, and what your migration strategy should be.

342 Migrating On-Premises Hadoop Workloads to Amazon EMR

In this chapter, we will walk through possible migration approaches, options for migrating
your cluster data, catalog metadata, ETL jobs, and related workflow services. You will also
learn how can you integrate quality control to validate your migration. The following are
the high-level topics we will cover in this chapter:

• Migration approaches

• Migrating data and metadata

• Migrating ETL jobs and Oozie workflows

• Testing and validation

• Best practices for migration

Getting an overview of these topics will give you perspectives on the different aspects you
should be thinking about while planning for cloud migrations and what changes need to
happen to your existing applications to meet the specifications of cloud-native architecture.

Understanding migration approaches
Migrating from an on-premise environment to the AWS cloud provides several benefits
including decoupling your compute and storage to provide independent scaling, better
security with the AWS infrastructure, the flexibility to design pipelines by integrating
other AWS analytics services, and saving resources that would be spent managing
infrastructure and instead focusing on application development.

When you plan to migrate your on-premise Hadoop cluster to EMR, you need to analyze
how your cluster will work in AWS, compare this with your on-premise environment, and
then plan for the migration accordingly. The following are a few of the things you need
to analyze:

• Which Hadoop ecosystem services are you using, and are they all supported in AWS?

• If the Hadoop services that are supported are available, then which EMR release
version is the closest to your on-premise Hadoop version?

• Does your on-premise cluster use HDFS as a persistent store? When you move
to EMR, do you want to continue the same way, or integrate Amazon S3 as the
persistent store, which is the recommended approach?

• How much data do you have and how do you plan to migrate it?

• Do you need a single persistent EMR cluster, or you can go with multiple
transient workloads?

Understanding migration approaches 343

• How are you managing authentication and authorization on your current
on-premise cluster and how do you plan to do that in AWS?

• What are other security aspects of your cluster do you need to consider, such as
encryption or networking, and how do you plan to do them in EMR?

• Do you have any centralized metadata catalog, and if so, how do you plan to use it
with EMR?

• What kind of ETL jobs do you have, and do they need to be customized to work
with S3 in EMR?

• Do you have high-priority jobs that you would like to migrate at the end to avoid
any risk affecting your production pipelines?

The answer to all these questions will give you a direction to plan the migration. You will
likely be considering the following three approaches:

• Lift and shift

• Re-architecting

• Hybrid architecture

Next, let's understand what each of these approaches means so you can decide on the best
approach for your workload.

Lift and shift
Lift and shift means moving the workloads as-is from on-premise environment to AWS
without substantial changes to the architecture or ETL scripts, assuming that most of the
Hadoop services are available in EMR.

This approach makes more sense in the following situations:

• Your project is time-sensitive and you would like to complete the migration as fast
as possible.

• You want to avoid the risk of changes to the architecture or scripts, as it may cause
unknown issues while migrating.

• Most of your applications are tied to tight customer Service-Level Agreements
(SLAs) compared to nightly-batch workloads, so you don't have room to make
changes quickly.

344 Migrating On-Premises Hadoop Workloads to Amazon EMR

Though this approach makes sense in preceding scenarios, there are few prerequisites
involved in planning for it, such as the following:

• When you lift and shift your workloads, you need to confirm whether your
on-premises big data workloads are using Amazon S3 as persistent storage or a local
data node's HDFS. If you are already using S3 as persistent data store, then you can
completely avoid data migration and only focus on migrating applications or
ETL jobs.

However, if you are using cluster-node HDFS as the persistent store in your
on-premise environment and you are going to embark on a simple lift and shift,
then after creating the EMR cluster, you will have to migrate the on-premises cluster
HDFS data to the EMR cluster's HDFS so that your ETL scripts continue to work
as-is.

• The next thing you should check is which EMR release is closest to your on-premise
cluster and whether it has all the required Hadoop ecosystem services at the exact
same versions. If not, what minor changes need to be done?

• Also, check for any of the Hadoop services such as Hive, Spark, Tez, and others.
What are the default values of the configuration parameters and do you need to
override any of them for your workloads?

• EMR clusters use the capacity scheduler by default, so validate whether you can
proceed with this or if you'll need to customize the EMR cluster configurations to
use Fair Scheduler.

• Check whether you need to integrate additional AWS VPCs, security groups, or
IAM roles in order for your authentication, authorization, and connectivity to work
as expected.

• Check your on-premise cluster capacity and verify whether you need to have the
same or similar capacity using EMR core and task nodes.

Even if you plan to migrate your workloads as-is to EMR, as a next step you should plan
to integrate Amazon S3 as your cluster's persistent storage, so that you have the flexibility
to integrate multiple transient clusters and also can integrate other AWS analytics services
as needed.

Now that we understand the lift-and-shift approach, let's understand how re-architecting
might help.

Understanding migration approaches 345

Re-architecting
The primary objective of moving your big data workloads to the cloud is to take
advantage of cloud features such as scaling, cost optimization, security, and operational
efficiency, among others. If you follow the lift-and-shift approach, then you may not get
all the benefits of cloud computing and should look at re-architecting your Hadoop or
Spark workloads.

Re-architecting involves a lot of planning and implementation steps, validation of
output, and maybe integration with other AWS services. It requires time and resources to
re-architect but this is the best way to take advantage of the features of the AWS cloud and
Amazon EMR.

The following are some of the aspects you should consider when planning to re-architect
your on-premises Hadoop workloads:

• If you are using the Hadoop cluster's HDFS as your persistent storage layer, then
plan to migrate your data to Amazon S3 and make application-level changes to
work with Amazon S3.

• Check whether your on-premise cluster is being used consistently, meaning
whether its CPU and memory resources are used optimally. If not, and all your
workloads are batch workloads, then can you consider integrating multiple transient
EMR clusters that are job-specific, instead of keeping one long-running cluster for
all workloads?

• If your on-premises cluster resources are not used consistently, but you still need
a long-running persistent cluster, then check whether starting with a small EMR
cluster with managed scaling or scaling with custom policies will help.

• If you are using Hive Metastore as your metadata catalog and plan to build a
decoupled architecture with multiple transient EMR clusters, then integrating AWS
Glue Data Catalog will add a lot of value by providing a managed and scalable
catalog service.

• If you are using Apache Ranger for authorization on your Hive Metastore and plan
to re-architect with multiple transient EMR clusters, then integrating AWS Lake
Formation for fine-grained access control will provide the flexibility to build a
centralized permission management system.

• To orchestrate your transient EMR cluster jobs, you can integrate Amazon
EventBridge to trigger jobs based on events or schedules and you can integrate AWS
Step Functions to build a workflow.

346 Migrating On-Premises Hadoop Workloads to Amazon EMR

Apart from the preceding re-architecting best practices, you might have other feature
requirements that are missing in EMR and might be planning to build custom workaround
solutions for them. Before putting effort in that direction, it's better to check with your
AWS Account Manager, who can help by providing information on the EMR feature
roadmap and timeline, so that you can take the best decision for your requirements.

Now let's look at how, if you cannot completely re-architect, taking a hybrid approach
might also be an option.

Hybrid architecture
You can take a hybrid approach to migration by employing a mix of lift-and-shift and
re-architecting. For existing mission-critical workloads, you can take the lift-and-shift
approach, whereas for less critical and new applications you can use the cloud-native
re-architecting approach. Then, you can start to slowly migrate mission-critical existing
workloads to the AWS cloud-native architecture.

This way, you can avoid the risk of re-architecting mission-critical workloads and will also
be able to experiment and gain experience by re-architecting other workloads first.

Now let's see what approaches you can follow for data and metadata catalog migration.

Migrating data and metadata catalogs
As we learned earlier, using Amazon S3 as the persistent data store is the recommended
approach when migrating your workloads to AWS or Amazon EMR. If your on-premise
environment does not use Amazon S3 as the persistent data store or your existing cluster
has Hive Metastore tables, then you need to plan for migrating both data and metadata.

Let's understand what options we have when planning to migrate on-premises cluster data
and/or metadata catalogs.

Migrating data
To migrate your on-premises datasets to Amazon S3 or other storage solutions in AWS,
you can consider the following tools and services AWS offers:

• Offline data movement using AWS Snowball and Snowmobile, which helps to
migrate petabyte- and exabyte-scale datasets.

• For faster online data movement, integrate AWS Direct Connect, which provides
dedicated internet bandwidth for data transfers.

Migrating data and metadata catalogs 347

• Use Hadoop's distcp command to do a distributed copy from on-premises HDFS
to S3 using MapReduce.

• Leverage Amazon Kinesis Data Stream or Kinesis Data Firehose to move real-time
streaming sources to AWS. You can also leverage AWS DMS to move data from
OLTP databases to AWS services.

• Using AWS DataSync or AWS Storage Gateway to migrate files from on-premise
environment to AWS.

Now, let's dive deep into each of these approaches.

AWS Snowball and Snowmobile
Both AWS Snowball and Snowmobile are part of AWS Transfer Family and are used to
transfer high volumes of data. They also include edge computing capabilities, meaning
they offer the CPU capacity to do processing on the data.

If your data volume is so high that it would take months to transfer over the internet,
then AWS Snowball or Snowmobile are good options. Let's have an overview of both
these services.

AWS Snowball
AWS Snowball is an AWS service using which you can transfer petabyte-scale data from
your on-premise environment to AWS. It can transfer multiple terabytes of data and you
can cluster multiple devices together to transfer petabyte-scale data in parallel. It can also
act as a standalone device for edge computing and is very helpful in places where you
have reduced or no connectivity. It is secure as it provides 256-bit encryption and is
simple to use.

Snowball Edge provides two options to choose from. One is Snowball Edge Storage
Optimized and the other is Snowball Edge Compute Optimized. Both of them have
CPU capacity and block storage, whereas the Compute Optimized version has an optional
GPU component for use cases such as machine learning or motion video analysis. You can
use these edge computing capabilities in contexts where you don't have any connectivity
but you still need compute capacity before the device gets shipped back to AWS.

Snowball has support for AWS Lambda functions and specific EC2 instance types,
using which you can develop and test applications and then deploy to devices in remote
locations to collect data, do a bit of pre-processing on it, and then finally ship it back
to AWS.

Next let's understand, where AWS Snowmobile helps.

348 Migrating On-Premises Hadoop Workloads to Amazon EMR

AWS Snowmobile
We have learned AWS Snowball can help transfer petabyte-scale data, but what if you have
a lot more than that, maybe even exabyte-scale? AWS Snowmobile is a service that can
help you transfer exabytes of data from your on-premise environment to AWS. It comes
as an actual 45-foot-long container truck that you can connect to your local environment,
transfer the data, and then ship the container back to AWS. Each Snowmobile container
can transfer 100 petabytes of data.

It is optimized for fast data transfer speeds. As an example, if you have 100 petabytes of
data, then with a 1 Gbps data transfer speed, it might take you 20+ years to transfer all of
the data. However, with AWS Snowmobile, you might be able to complete the transfer in a
few weeks and then ship it back to AWS. Like Snowball, it is also highly secure with 256-bit
encryption and the option to integrate AWS KMS to manage the encryption key.

Comparing AWS Snowball with Snowmobile, a single AWS Snowmobile is equivalent
as 1,250 Snowball devices. So as a general practice, if you have less than 10 petabytes
of data then you can consider Snowball devices, and if you have more than that,
consider Snowmobile.

Transferring data with AWS Direct Connect
In the previous section, we discussed large-scale data migrations that would take years
to complete over regular internet bandwidth. But if you have terabyte-scale data and
you would like to transfer data on an ongoing basis, then using your regular internet
connection for data transfers may not be a recommended approach. In such scenarios, to
get consistent data transfer speeds using a dedicated network, you can take advantage of
AWS Direct Connect.

With AWS Direct Connect, you can establish either one or multiple 1-Gbps or 10-Gbps
dedicated connections, using which you can transfer data from your on-premise
environment to AWS on a continuous basis. It uses VLANs to access AWS Virtual Private
Cloud (VPC) resources using a private IP address.

Using the S3DistCp utility for data transfer
When you need to copy data from your on-premises Hadoop clusters HDFS directly, then
consider the Apache DistCp tool or command-line utility, which executes a MapReduce
job under the hood to do a distributed copy.

Amazon S3DistCp is an extension of Apache DistCp, which is optimized for transferring
data to Amazon S3. You can also use it to load data from Amazon S3 to the EMR
cluster's HDFS.

Migrating data and metadata catalogs 349

You can use S3DistCp as an EMR step too, which will execute a MapReduce job on the
cluster for a distributed copy.

The following is a sample Hadoop distcp command that copies data from HDFS to
Amazon S3 using the s3a protocol:

hadoop distcp hdfs://<source-hdfs-folder> s3a://<target-s3-
path>

The following is a sample S3DistCp command that is optimized for Amazon S3:

s3-dist-cp --src <source-hdfs-path> --dest s3://<path>
--srcPattern .*\.parquet

The optional srcPattern parameter allows you to specify a specific file pattern that
should be copied alone, instead of all files. In the preceding example, we are going to copy
all .parquet files from <source-hdfs-path> to s3://<path>.

Important Note
If S3DistCp failed because it couldn't copy a few specific files, then the EMR
step returns a non-zero status and also does not clean up the files already
copied. Also, note that S3 bucket names containing underscore characters are
not supported, and that S3DistCp cannot concatenate Parquet files.

Migrating real-time streaming sources and on-premises databases
When you plan to migrate your on-premise Hadoop cluster to AWS, your cluster might
have real-time streaming workloads or might need other data sources available in a few
databases. In those cases, consider integrating Amazon Kinesis Data Stream or AWS
Data Migration Service (DMS).

If you have real-time data sources, then as we have learned in previous chapters, you can
integrate Amazon Kinesis Data Stream to which your real-time applications can publish
data and you can integrate an EMR + Spark Streaming job to read from Kinesis Data
Stream and write to the target storage layer.

Similarly, if you have on-premises databases and would like to move data to Amazon RDS
Amazon S3, or other supported targets as a one-time extract or Change Data Capture
(CDC), then consider integrating AWS DMS, which is used to move data from a source
system to the target system.

350 Migrating On-Premises Hadoop Workloads to Amazon EMR

Using AWS DataSync to sync data online
AWS DataSync is a secure, managed online data transfer service used to automate
and accelerate the movement of data between your on-premise environment and the
AWS cloud. It can sync data between different systems including Amazon S3, HDFS,
Network File System (NFS), Elastic File System (EFS), Amazon FSx, and Amazon
FSx for Luster. It helps to sync your data through your regular internet or AWS Direct
Connect dedicated network.

DataSync has features that allow it to scale with data volume, monitor and validate the
data transfer, and also notify you in case of failures. All of this makes it a great choice for
some of your data stores while you plan for migration.

Using AWS Storage Gateway
AWS Storage Gateway is another data migration service, using which you can sync data
between your on-premises filesystems and Amazon S3. You can use this to extend your
on-premises storage to the unlimited storage offered by Amazon S3, or you can use
Amazon S3 to take a backup of your data.

With this your on-premises environments can access Amazon S3 through an NFS mount
point connection, which means anything written to this mount point is automatically
synced back to Amazon S3 in its original form. Its low-latency access to Amazon S3
provides interactive file sharing.

This is great when you are planning to migrate in a phased approach, where you plan to
sync the data to Amazon S3 first while continuing to use your on-premises systems such
as databases and data warehouses.

Migrating metadata catalogs
If you are using Hive Metastore in your on-premise cluster, then in addition to the HDFS
data, you also need to consider migrating the Hive Metastore data to AWS. The reason
for this is that your existing Hive or Spark jobs can then continue operating on top of the
catalog tables defined in your on-premise environment.

When you integrate Apache Hive, then there are few different deployment options
to integrate the Hive Metastore such as embedded Metastore, local Metastore, and
remote Metastore.

In Amazon EMR, it is strongly recommended to either use AWS Glue Data Catalog as
your Metastore or use a remote database such as Amazon RDS as your Hive Metastore.
That means you need to plan to migrate your on-premises Hive Metastore data to any of
the databases either once or on a continuous basis.

Migrating data and metadata catalogs 351

Let's have an overview of how you can migrate the data.

One-time Hive Metastore migration to AWS Glue Data Catalog
When you have an on-premise Hive Metastore and you plan to migrate it to AWS Glue
Data Catalog, then you can integrate an AWS Glue ETL job, which will connect to the
source Metastore database using a JDBC connection to extract the data and then write
into Glue Data Catalog.

This is a one-time migration, so a small application or utility can facilitate a smooth
migration. You can look at a few of the sample scripts already available in the AWS Samples
GitHub repository. Please check https://github.com/aws-samples/aws-glue-
samples/tree/master/utilities/Hive_metastore_migration.

One-time Hive Metastore migration to Amazon RDS
Instead of Glue Data Catalog, if you are migrating on-premise Hive Metastore to Amazon
RDS, which is a relational database, then you can employ any of the following options to
migrate the data:

• You can follow the export and import approach, which means you execute an export
job on your on-premises database and import the output in your target Amazon
RDS database.

• You can also use database replication features, where any time data is written to
on-premises metastore, it will be replicated to the target database.

• You can integrate tools such as AWS DMS or its equivalents to do a one-time full
load to the target database.

After migration, you can start using EMR by pointing your Hive Metastore to the new
Amazon RDS instance.

Ongoing replication to Amazon RDS
We have learned how you can do a one-time migration of your on-premise Hive
Metastore catalog to AWS Glue Data Catalog or Amazon RDS. But you might have
specific requirements, because of which you plan to run both your on-premises
and Amazon EMR environments for some time and then terminate the on-premise
environment. In such scenarios, you will have to keep both the on-premises and Amazon
RDS catalogs in sync.

352 Migrating On-Premises Hadoop Workloads to Amazon EMR

To sync data between both databases, we need to look for the source database changelog,
capture the change event, and stream it back to the target database. To make this sync
happen, we can think of integrating AWS DMS that supports both one-time data movement
and continuous changelog streaming. For our use case here, we can start a DMS task of the
type Migrate existing data and replicate ongoing changes and make it
connect to both the source and target databases to sync them continuously.

The following architecture diagram shows how the flow should look:

Figure 13.1 – Reference architecture for a Hive Metastore migration

As shown in the diagram, AWS DMS is the centerpiece that migrates the data from the
on-premises Hive Metastore to Amazon RDS.

In this section, we have learned about both data and metadata migration. As a next step,
we should review ETL jobs being executed in your on-premise cluster and plan for
their migration.

Migrating ETL jobs and Oozie workflows
If you are doing lift and shift and your ETL scripts are configured to read from and
write to HDFS, then your existing ETL scripts such as Hive, MapReduce, and Spark will
work just fine in EMR without substantial changes. But if, while migrating to AWS, you
re-architected to use Amazon S3 as your persistent layer instead of HDFS, then you will
have to change your scripts to interact with Amazon S3 (s3://) using EMRFS.

Migrating ETL jobs and Oozie workflows 353

Important Note
Prior to the release of Amazon EMR 5.22.0, EMR supported the s3a://
and s3n:// prefixes to interact with EMRFS. These prefixes haven't been
deprecated and still work, but it is now recommended to use the new s3://,
which provides a higher level of security and easier integration with Amazon S3.

Apart from your Hive and Spark scripts, if you are using Apache Oozie for workflow
orchestration of your ETL jobs, then you need to plan for its migration too. Let's
understand what options you have for this.

Migrating Oozie workflows
Apache Oozie is a workflow scheduler that is very popular in the Hadoop ecosystem to
manage and orchestrate Hadoop jobs such as Hive, Pig, Sqoop, Spark, DistCp, Linux
shell actions, and many more. It is a scalable, reliable system that is popular in the
Hadoop world.

Oozie has two components: one is workflow jobs, using which you can design workflow
steps as Directed Acyclic Graphs (DAGs). The other is Oozie Coordinator, which is used
to schedule your workflow jobs to run with an event or through timed schedule.

Oozie allows you to define workflows using XML definitions and is available in Amazon
EMR starting with the 5.0.0 release.

Similar to Hive, Oozie also has a Metastore database for which you will need to plan the
migration. When considering migrating Oozie workflows to EMR, we need to migrate all
workflow definition files and the Metastore database.

Migrating Oozie Metastore databases
By default, Oozie uses Apache Derby as its Metastore database and also provides a
command-line option to export its database. Similar to Hive Metastore in EMR, it
is recommended to keep the Oozie Metastore outside of the EMR cluster for better
reliability, so consider using Amazon RDS as the Oozie Metastore.

To migrate an Oozie database to the Amazon RDS MySQL engine, refer to the following
steps that guide you through the export and import process:

1. Log in to the Oozie server node of your on-premise cluster, navigate to the path
where oozie-setup.sh exists, and execute the following Oozie command to
export the Metastore database:

./oozie-setup.sh export /<path>/<oozie-exported-db>.zip

In EMR, oozie-setup.sh can be found in /usr/lib/oozie/bin/.

354 Migrating On-Premises Hadoop Workloads to Amazon EMR

2. Next, upload the exported database ZIP file to Amazon S3, from which you
can import:

aws s3 cp <oozie-exported-db>.zip s3://<bucket-name-
path>/<oozie-exported-db>.zip

3. Then SSH into the EMR master node using PuTTY or equivalent software by
following the steps explained in the PySpark Notebook section of Chapter 11,
Implementing UPSERT on S3 Data Lake with Apache Spark and Apache Hudi, and
then execute the following step to download the exported Oozie database file from
Amazon S3 to the local filesystem:

aws s3 cp s3://<bucket-name-path>/<oozie-exported-db>.zip
<oozie-exported-db>.zip

4. Next, you need to create the Oozie database in Amazon RDS and grant the required
permissions. Log in to your database as root and execute the following commands
in the MySQL prompt:

mysql> create database oozie default character set utf8;

mysql> grant all privileges on oozie.* to
'oozie'@'localhost' identified by 'oozie';

mysql> grant all privileges on oozie.* to 'oozie'@'%'
identified by 'oozie';

5. After you have created the database with all the required permissions, as a next step
we can import the database file using the same oozie-setup.sh utility as shown
in the following command:

./oozie-setup.sh import <oozie-exported-db>.zip

6. After the database is ready with all the imported metadata, we need to make some
changes to the Oozie configuration in EMR, so that it points to the new Amazon
RDS database. Please make the following changes in the oozie-site.xml
configuration file:

<property>

 <name>oozie.service.JPAService.jdbc.driver</name>

 <value>com.mysql.jdbc.Driver</value>

</property>

<property>

Migrating ETL jobs and Oozie workflows 355

 <name>oozie.service.JPAService.jdbc.url</name>

 <value>jdbc:mysql://<amazon-rds-host>:3306/oozie</
value>

</property>

<property>

 <name>oozie.service.JPAService.jdbc.username</name>

 <value><mysql-db-username></value>

</property>

<property>

 <name>oozie.service.JPAService.jdbc.password</name>

 <value><mysql-db-password></value>

</property>

Please make sure you replace the <amazon-rds-host>, <mysql-db-
username>, and <mysql-db-password> variables in the preceding code with
your own database connection information.

7. As a final step, to reflect the changes in Oozie, we need to restart the Oozie service
using the following command:

sudo restart oozie

These steps help in migrating the Oozie Metastore database to the remote EMR RDS
database. As the next step, you need to move all the workflow definition files to EMR.

Migrating Oozie workflow definitions
For every workflow definition, you will have an XML definition file and the following
dependent files:

• job.properties

• workflow.xml

• coordinator.xml

• Any other dependent file

You can take a backup of these files by archiving them as a single ZIP file, uploading it
to Amazon S3, and then copying it back to EMR using the aws s3 cp command for
integration. Make sure, to modify the workflow configuration file to reflect the connection
with EMR.

Then you can submit your jobs to EMR as you used to do in your on-premise environment,
and can use the Hue interface to view your Oozie workflows.

356 Migrating On-Premises Hadoop Workloads to Amazon EMR

The next step of your migration is testing and validation to make sure your cluster setup
works as expected and that the data was migrated accurately.

Testing and validation
In the previous section, we learned how we can migrate data, metadata, ETL jobs, and
workflows, but after the migration is complete, it's very much essential to validate the
migration with a proper testing strategy.

Your options for data validation will vary based on the methodology you used for your
migration. We previously explained the different phases of a migration where you migrate
the data and metadata separately. So, let's now understand how you can validate the data
quality for each of those phases.

Validating metadata quality
We discussed about migrating Hive and Oozie Metastore, and you can apply same
knowledge to migrate Hue Metastore too. All of them integrate a relational database as
their Metastore, which means we have the option of executing standard SQL statements to
count records or validate data.

Let's look at a few of the options we can consider to validate our metadata migration:

• Relational data migration with AWS DMS: If you used AWS DMS for any
relational database migration, then you can look at the table statistics provided by
AWS DMS that shows how many rows were added, updated, and deleted per table.
In addition, DMS also provides options to create control tables in the target system,
which compares the source and target table records to validate whether the data
migration was successful. This is helpful for when we plan to migrate on-premises
Hive Metastore tables to Amazon RDS.

• Manually running queries: As the metadata volume is not as huge as data (usually
in the GB to TB range), we can also include manual testing as one of the approaches
to validate the quality of data. This involves running a few standard SQL queries to
confirm the table record count or field population.

• Directly integrating services with the cluster: This is another way you can validate
a successful migration of Metastore, where you use the respective services such as
Hive, Spark, Hue, or Oozie to validate that they work as expected. For example, are
you able to create a new Hive database or table? Are you able to run queries on a
Hive table using Spark code?

Testing and validation 357

These are few of the options you can look at, and you also can explore other third-party
products (both free and paid) that can help validate the metadata as well. Next, let's
understand how you can validate the data itself.

Validating data quality
Now that we understand our options for validating our metadata migration, let's next
see what options we have to validate the actual data that we transferred. This is not an
exhaustive list, rather a few of the options you can consider.

Amazon S3 Inventory Report
Amazon S3 Inventory Report is a great feature of Amazon S3 that you can enable on your
S3 bucket or a specific folder to generate a report in CSV, ORC, or Parquet formats. This
report includes stats about objects, storage classes, encryption, and more. You can select
which attributes you need as part of your report and schedule it to be generated every day
or week.

Enabling S3 Inventory Report is very easy and offers a great way to validate your data. If
you have transferred data from HDFS to Amazon S3, then the bucket or folder size could
help in identifying whether all the data was copied successfully. You can also use the
object count if the files were transferred directly, instead of via MapReduce or Spark jobs,
as they may create different set of PART files, named part-0, part-1... part-n in
the S3 target path.

Sqoop or DistCp job output
If you used a Sqoop job to transfer the data, or used the DistCp command, which employs
a MapReduce job under the hood, then you can rely on the command output to validate
its success.

Sqoop provides a -validate option in its CLI that instructs Sqoop to compare the
source record count with that of the target to validate the success of the transfer. The
following is a sample Sqoop export command with the -validate option:

sqoop export –connect jdbc:mysql://<host>/<db-name> –table
<table-name> –export-dir /<path> –validate

Similarly, for the DistCp command, you can specify the -log <log-dir> parameter to
analyze the logs to validate the success of command execution or data transfer.

358 Migrating On-Premises Hadoop Workloads to Amazon EMR

Deequ framework
You might be familiar with the unit test cases that we write for application scripts. An
example of this is JUnit, which is integrated into Java applications to do unit testing on your
code. It would be great if we had similar tool or utility to test our data quality too, which
could validate whether the data quality is good. This is where the Deequ framework comes
in and adds lots of value. Deequ is used internally in Amazon and also by many customers
to validate the quality of their terabyte-scale datasets with the Spark processing engine.

Deequ is a GitHub-based utility, built on top of Apache Spark and used to process large
volumes of data for quality checking. It has the following three high-level components:

• Metrics Computation: Deequ performs data quality checks with a set of
statistical metrics including the maximum value, minimum value, correlation, and
completeness of a column.

• Constraint Verification: Deequ provides the flexibility to define constraints on
your data and it uses same constraints to derive metrics and generate a report that
includes constraint verification results.

• Constraint Suggestion: Deequ has intelligence built in to analyze your data and
suggest constraints that you can implement.

The following is a high-level architecture diagram that represents the Deequ components:

Figure 13.2 – Reference architecture for Deequ

Deequ provides several metrics while validating the data quality. Some examples of the
popular metrics are Completeness, Compliance, Correlation, CountDistinct,
Distinctness, Maximum, Mean, Minimum, Sum, UniqueValueRatio, and
Uniqueness.

Best practices for migration 359

There is a Python equivalent of Deequ called PyDeequ, using which you can integrate
Deequ functionality in PySpark code and AWS Glue jobs.

AWS Glue DataBrew profiling
AWS Glue DataBrew is a service built on top of the Spark framework for distributed
processing of large volumes of data. It provides a rich visual interface and offers 250+
built-in transformations that you can use to build your ETL flows, all without writing
any code.

AWS Glue DataBrew also provides a feature to profile your data, which you can use to
check your data quality. This is very useful, as without writing any code, you can profile
your data in the visual interface by specifying a list of columns you want to profile. The
profile output includes several metrics such as correlation, duplicate row count,
distinct, max, mean, median, mode, percentile, range, sum, and variance.

With additional ETL transformations, you can automate the conversion of your data to
standard format, fixing missing or invalid values and also filtering anomalies. Similar to
most AWS services, AWS Glue DataBrew also offers a pay-as-you-go model, which means
you pay for node usage for the duration of the job execution.

Manual sanity check
In all previous options we have discussed, what are some of the tools you can use to check
data quality. Even if you have implemented automation throughout the process, it's still a
good practice to do a bit of manual checking, either by opening a few files or by running a
sample ETL job that you know ran without problems in your on-premise environment.

We have now covered how you can validate your migration and check the quality of the
migrated data and metadata with a variety of tools. In the next section, we will cover some
of the best practices to follow while migrating your workloads to AWS.

Best practices for migration
The following are some of the best practices you should follow when onboarding your
solutions into a cloud-native architecture:

• Split batch and interactive or streaming workloads: Look for opportunities to build
transient EMR workloads so that your persistent cluster resources are not idle when
you don't have any processes running. Of course, you might have other workloads
where a persistent cluster is required, such as for interactive development or real-time
streaming workloads, so it's better to identify which workloads need the persistent
cluster, and then move the other workloads to transient job-specific EMR clusters.

360 Migrating On-Premises Hadoop Workloads to Amazon EMR

• DevOps automation: For the launching of clusters or other AWS resources,
consider integrating AWS CloudFormation to automate the creation of the required
infrastructure resources. This increases efficiency when you plan to launch the same
set of resources and configurations in multiple environments, such as development,
staging, and production. For Continuous Integration (CI) and Continuous
Deployment (CD) pipelines, you can either continue with your on-premise setup
or integrate the AWS CodeCommit, CodeDeploy, or CodePipeline services, which
provide CI/CD capability on AWS.

• Reserved and Spot instances: Reserved and Spot instances provide cost savings.
If you have defined workloads that require specific EC2 instance types for years to
come, then you can purchase Reserved instances, which provide good discounts for
usage commitments.

On the other hand, when integrating autoscaling for your EMR cluster, using EC2
Spot instances of your task nodes provides great discounts. Amazon EC2 Spot
Instance is an alternate purchasing option compared to EC2 on-demand type, which
allows you to purchase EC2 capacity that is unused and is available for purchase
with higher discount. You can acquire EC2 Spot instances through bidding process
but they come up with a risk of getting terminated at any point in time as the price
goes beyond your bidding price.

• Regulatory and compliance requirements: Check whether your organization
has specific regulatory or compliance requirements and whether EMR meets
all your needs in this regard. You can identify these requirements from
https://docs.aws.amazon.com/emr/latest/ManagementGuide/
emr-compliance.html.

• Skill gaps: When migrating from on-premise to the AWS cloud, you need to
identify your team's skill levels with AWS and EMR to see how they can help with
the migration. If they are new to AWS, you can offer them the necessary training
resources to upskill them to handle the migration project.

• Prototyping: Before migrating your workloads, building a small prototype using the
EMR cluster and integrating other related services is a good idea. This allows you to
explore any unknowns and gain the confidence to proceed with the migration.

Summary 361

• Cost estimation: It is recommended that you calculate the Total Cost of
Ownership (TCO) in AWS and look at all aspects of the application before
migrating to AWS. Firstly, define the number of transient and persistent EMR
clusters you require, the size of the clusters, the types of EC2 instances you will be
using, and for how long the clusters will be active. This should give you a ballpark
estimation of your EMR cost. On top of that, factor in Amazon S3, AWS Glue
Data Catalog, the Metastore databases, and any other optional AWS services you
will be integrating into your architecture. The AWS Pricing calculator available at
https://calculator.aws/#/ is a great tool for estimating your cost.

• Define data retention policies: When using Amazon S3 as your persistent data
store, you have several options to control your data accessibility. You can choose
from Amazon S3's different storage classes such as S3 Standard, S3 Intelligent
Tiering, S3 Standard-IA, and Glacier depending on your usage pattern. For
example, if some of your data is no longer used for processing, then you can create
S3 life cycle polices to move old data to Glacier, so that you can retain data longer
with reduced storage costs. Glacier is a type of S3 storage class, which is used to
archive data with an assumption that you will not be accessing your data frequently
and you pay a minimal fee to retrieve data.

These are few of the general best practices that should help you to get started. Moving
forward, you can dive deep into each of the workloads and apply the knowledge you have
gained from the previous chapters to plan your migration.

Summary
Over the course of this chapter, we have looked at an overview of different migration
strategies you can follow while migrating your on-premises Hadoop workloads to AWS,
and how you can migrate data, metadata, and ETL jobs. We then covered a few testing and
validation strategies you can follow to check the quality of your data, and also discussed
some of the best practices you can follow during the migration process.

That concludes this chapter! Hopefully, this helped you get an idea of how you can plan
your migration and some of the aspects you should be considering. In the next chapter, we
will examine some of the best practices for EMR, along with how you can optimize costs
while integrating your ETL flows.

362 Migrating On-Premises Hadoop Workloads to Amazon EMR

Test your knowledge
Before moving on to the next chapter, test your knowledge with the following questions:

1. Assume you have several on-premises Hadoop workloads, out of which a few are
subject to sensitive customer SLAs, and your organization has decided to move all
workloads to AWS. Which migration strategy do you think is ideal for your use case?

2. Assume you have around 100 petabytes of data in your on-premise environment
and you are planning to migrate the data to Amazon S3. Looking at the volume of
data, which data migration strategy or tool do you think is best for your use case?

3. Assume you have completed the migration of your on-premise environment that
included several Hadoop workloads and 100s of terabytes of data. Now you are
looking for ways to validate the data quality in Amazon S3. Which tool or utility
will be helpful to check the quality of the data?

Further reading
The following are a few resources you can refer to for further reading:

• Amazon EMR Compliance: https://docs.aws.amazon.com/emr/latest/
ManagementGuide/emr-compliance.html

• AWS Risk and Compliance whitepaper: https://docs.aws.amazon.com/
whitepapers/latest/aws-risk-and-compliance/welcome.html

• A look at the EMR migration program offered by AWS: https://aws.amazon.
com/emr/emr-migration/

• A look at AWS Data Lab, which can help to architect your solution in AWS:
https://aws.amazon.com/aws-data-lab/

• Data profiling with AWS Glue DataBrew: https://docs.aws.amazon.com/
databrew/latest/dg/jobs.profile.html

• The Deequ framework for data quality checks: https://github.com/
awslabs/deequ

• Amazon S3 Intelligent Tiering: https://aws.amazon.com/s3/storage-
classes/

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-compliance.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-compliance.html
https://docs.aws.amazon.com/whitepapers/latest/aws-risk-and-compliance/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/aws-risk-and-compliance/welcome.html
https://aws.amazon.com/emr/emr-migration/
https://aws.amazon.com/emr/emr-migration/
https://aws.amazon.com/aws-data-lab/
https://docs.aws.amazon.com/databrew/latest/dg/jobs.profile.html
https://docs.aws.amazon.com/databrew/latest/dg/jobs.profile.html
https://github.com/awslabs/deequ
https://github.com/awslabs/deequ
https://aws.amazon.com/s3/storage-classes/
https://aws.amazon.com/s3/storage-classes/

14
Best Practices and
Cost-Optimization

Techniques
Welcome to the last chapter of the book! During all the previous chapters, you learned
about EMR and its advanced configurations and security. You also learned how you
can migrate your on-premise workloads to AWS and how you can implement batch,
streaming, or interactive workloads in the AWS cloud. In this chapter, we will focus on
some of the best practices and cost optimization techniques you can follow to get the best
out of Amazon EMR.

When considering best practices for implementing big data workloads in EMR, we should
look at different aspects such as EMR cluster configuration, sizing your cluster, scaling it,
applying optimization on S3 or HDFS storage, implementing security best practices, and
different architecture patterns. Apart from these, optimizing costs is also a best practice
and AWS provides several ways to optimize costs and offers various tools to monitor,
forecast, and get notified when your spending goes beyond the defined budget threshold.

364 Best Practices and Cost-Optimization Techniques

The following are the high-level topics we will be covering in this chapter:

• Best practices around EMR cluster configurations

• Optimization techniques for data processing and file storage

• Security best practices

• Cost-optimization techniques

• Limitations of Amazon EMR and possible workarounds

As we saw in Chapter 13, Migrating On-Premises Hadoop Workloads to EMR, migrating to
AWS or using AWS resources provides a lot of benefits, but understanding how you can
get the best out of those AWS services and how you can optimize your workloads on AWS
adds a lot of value as you truly get the power of the AWS cloud. Apart from best practices,
it is also important to understand different limitations, so that you can plan for different
workarounds.

Best practices around EMR cluster
configurations
When you start using EMR clusters for your Hadoop workloads, the primary focus is on
writing logic for the ETL pipeline, so that your data gets processed and is available for
end user consumption. There are several factors you might have considered to optimize
your ETL code and the business logic integrated into it but, apart from optimizing code,
there are several other optimizations that you can consider in terms of EMR cluster
configurations that can help optimize your usage.

Let's understand some of the best practices that you can follow.

Choosing the correct cluster type (transient versus
long-running)
As explained in Chapter 2, Exploring the Architecture and Deployment Options, there are
two ways you can integrate EMR clusters. One is a long-running EMR cluster, which
is useful for multi-tenant workloads or real-time streaming workloads. Then we have
short-term job-specific transient clusters that get created when an event occurs or on
a schedule, and then get terminated after the job is done.

When you have batch workloads, there will be some jobs where you need a fixed-capacity
cluster. Then there might be a few other workloads where the cluster capacity you need
will be variable and you will have to take advantage of EMR's cluster scaling feature.

Best practices around EMR cluster configurations 365

So, looking at your workload, selecting the type of EMR cluster is the first best practice
you can follow. The following diagram shows all three types of implementations you can
choose:

Figure 14.1 – Reference architecture for multiple EMR workloads sharing S3 and a metadata catalog

As you can see, all the EMR clusters are sharing the same external metastore and Amazon
S3 persistent store. Let's understand how it helps using Amazon S3 with EMRFS and what
value is added with an external metastore.

Choice of storage (HDFS versus Amazon S3)
While implementing multiple transient EMR clusters, Amazon S3 plays a crucial role
as all transient EMR clusters share data using S3 and you can also leverage other AWS
services such as AWS Glue, Amazon Athena, or Amazon Redshift to access and process
the same datasets. With S3, you get higher reliability and also can integrate different
security and encryption mechanisms.

While Amazon S3 is widely used for most big data processing use cases, still there are
some use cases where HDFS storage is needed for faster querying. For those workloads,
you can think of initiating your cluster with a DistCp step that copies data to your EMR
cluster for long-running workloads and then syncs it back to Amazon S3 so that your
other EMR clusters or AWS Glue-based jobs can read the same datasets.

366 Best Practices and Cost-Optimization Techniques

Externalizing the metastore
As we learned in Chapter 4, Big Data Applications and Notebooks Available in Amazon
EMR, externalizing a cluster metastore such as a Hive or Hue metastore is one of the best
practices as it enables you to split your workloads into multiple transient workloads and
also provides higher reliability.

When you externalize your Hive metastore, integrating AWS Glue Data Catalog is
recommended as that is a managed scalable service and also enables you to integrate
other AWS services such as Amazon Redshift, AWS Glue, Amazon Athena, Amazon
QuickSight, or AWS Lake Formation in the same centralized catalog and provides unified
data governance.

In this section, we have looked at best practices around cluster type, metadata catalogs,
and persistent storage. Next, let's see what best practices we can follow while configuring
an EMR cluster.

Best practices around sizing your cluster
When you are configuring an EMR cluster, there are a few best practices that you can
follow to get the best out of it. The following are some of the priority ones, but there can
be others, depending on the workload.

Choosing the right instance type
When you are configuring an EMR on EC2 cluster, you have flexibility to select the type
of instance you will be integrating for the master as well as core or task nodes. Depending
on your workloads, you should choose the right EC2 instance type.

Choosing the master node instance type
The master nodes in Hadoop or EMR clusters do not process ETL jobs or tasks, rather
they act as driver nodes to coordinate between core, task nodes and also keep track of
cluster and node status. For master nodes, its best to choose either EC2 M5, C5, or R5
instances depending on the use case:

• If you have fewer than 50 core and task nodes, then we can consider that a low or
medium cluster and a master node of m5.xlarge instance type will be able to
manage the cluster jobs.

Best practices around EMR cluster configurations 367

• If you have more than a 50-node cluster, then the next thing you can check is
whether you have workloads that have a heavy network I/O. If yes, then the C5 or
R5 instance family with enhanced networking is the recommended option. If you
don't need enhanced networking, then you can choose higher than the m5.xlarge
instance type.

These are general guidelines to give you a starting point. Then, depending on your use case,
which might have higher read versus write or a higher number of jobs running in parallel,
you need to experiment a bit with different instance types before making a decision.

Choosing the core and task node instance type
For core or task nodes, you need to first understand and identify the purpose of your EMR
cluster. Then, based on that, you can select any of the following:

• General Purpose: In general, batch ETL workloads fall into this category, which can
integrate M4 or M5 EC2 instance family nodes.

• Compute Intensive: You might have compute-heavy workloads such as machine
learning jobs that need more CPU power. For those workloads, you can consider
integrating C4 or C5 instances.

• Memory Intensive: For memory-intensive workloads such as interactive analysis
or fast querying use cases, you can consider integrating R5 or X1 instances that have
higher memory capacity.

• Dense Storage: If you have workloads that require large HDFS capacity, which
means every core node should have more disk capacity, then you can consider
D2 or I3 EC2 instance family nodes.

These instance type suggestions are based on the type of EC2 instances available while
writing this book. Please refer to the latest supported instance types while configuring
your EMR cluster.

Deciding the number of nodes for your cluster
After selecting the correct instance type for your use case, the next question we need to
answer is how many instances we should configure for our cluster.

As you might be aware, for Hadoop workloads, every input dataset gets divided into
multiple splits and then gets executed in parallel using multiple core or task nodes. If you
have configured a bigger instance type, then your job will have higher memory and CPU
capacity, which might help you to complete the job faster. On the other hand, if the cluster
has smaller instance types, then your mapper or reducer tasks wait for the resources to be
available and take a comparatively longer time to complete the job.

368 Best Practices and Cost-Optimization Techniques

All your mappers can run in parallel, but that does not mean you can add unlimited
nodes to your cluster so that your mappers complete without having to be queued. But
in reduce or aggregate operations, most of the nodes go into the idle state, so you have to
experiment and arrive at the right number of nodes. In addition, you can try answering
the following questions, which can guide you to arrive at the correct number of instances
to start with:

• How many tasks will you have to execute?

Look at the input file size, using which you can guess the file split size, and then
look at the operation you are going to do to have a rough guess of the number of
total tasks you might need.

• How soon do you want the job to be completed?

This question will help you evaluate how much parallelism you should be aiming
at and also how many tasks each of the core or task nodes can handle based on the
CPU or memory the job or task might have.

• How many core or task nodes might you need?

HDFS and Hadoop services run only on the core nodes. So, depending on the
HDFS size you need, you can select the number of core nodes and configure the
rest as task nodes where you can implement auto-scaling. Please try to maintain a
1:5 ratio between core and task nodes, which means do not add more than five task
nodes per single core node.

In general, one of the recommendations you can follow is to prefer a smaller cluster with
a larger instance type as that can provide better data locality and your Hadoop or Spark
processes can avoid more shuffling between nodes.

Determining cluster size for transient versus persistent clusters
Depending on whether you have a transient or persistent cluster, the following are some
of the sizing best practices you can follow:

• Transient cluster use cases: For transient EMR cluster use cases, which are mostly
used for batch ETL workloads, if you do not have strict Service-Level Agreements
(SLAs), then think of using Spot EC2 instances with task nodes, so that you can
save costs. If you have strict SLAs to meet, then you can consider using on-demand
or reserved instances for predictable costs.

• Persistent cluster use cases: For persistent clusters, think of using Reserved
Instances for master and core nodes. For scaling needs, use Spot or On-Demand
instances, depending on your SLA requirements.

Best practices around EMR cluster configurations 369

After understanding how you should choose cluster instance type and the number of
nodes, next we will explain how you can configure high availability for your cluster's
master node.

Configuring high availability
For high availability, you should configure multiple master nodes (three master nodes) for
your cluster, so that your cluster does not go down when a single master node goes down.

Important Note
All the master nodes are configured in a single Availability Zone and in
the event of failover, the master node cannot be replaced if its subnet is
overutilized. So, it is recommended to reserve the complete subnet for the
EMR cluster and also make sure the master node subnet has enough private IP
addresses.

Apart from master nodes, if you need to enable high availability for core nodes, then
consider using a core node instance group with at least four core nodes. If you are
launching a cluster with a smaller number of core nodes, then you can think of increasing
the HDFS data replication by setting it to two or more.

Best practices while configuring EMR notebooks
In Chapter 4, Big Data Applications and Notebooks Available in Amazon EMR, we
explained the usage and benefits of EMR notebooks, which you can use for interactive
development and attach them to an EMR cluster for job execution.

The following are some of the best practices you can follow while integrating
EMR notebooks:

• It's better if you keep the notebooks outside of the cluster so that you can attach
them to or detach them from different clusters as needed.

• You can configure multiple users to attach their notebooks to the same cluster.
You can also enable auto-scaling on the clusters to support them with the
required resources.

• Configure to save notebooks to Amazon S3 for better reliability.

• Integrate GitHub control for code sharing.

• Enable tag-based access control.

Next, we will explain how Apache Ganglia can help in monitoring your cluster resources.

370 Best Practices and Cost-Optimization Techniques

Using Ganglia for cluster usage monitoring
As explained in Chapter 4, Big Data Applications and Notebooks Available in Amazon
EMR, Apache Ganglia is an open source project, which is scalable and designed to
monitor the usage and performance of distributed clusters or grids.

In an EMR cluster, Ganglia is configured to capture and visualize Hadoop and Spark
metrics. It provides a web interface where you can see your cluster performance with
different graphs and charts representing CPU and memory utilization, network traffic,
and the load of the cluster.

Ganglia provides Hadoop and Spark metrics for each EC2 instance. Each metric of
Ganglia is prefixed by category, for example, distributed filesystems have the dfs.*
prefix, Java Virtual Machine (JVM) metrics are prefixed as jvm.*, MapReduce metrics
are prefixed as mapred.*.

If you have a persistent EMR cluster, then Ganglia is a great tool to monitor the usage of
your cluster nodes and analyze their performance.

Tagging your EMR cluster
Tagging your AWS resources is a general best practice, which you can apply to Amazon
EMR too. Every time you create a cluster, it's better to provide as much metadata as
possible using tags such as project name, team name, owner, type of workload, and
job name.

For example, you can identify EC2 instances that are part of your EMR cluster using the
following tags:

• aws:elasticmapreduce:instance-group-role=CORE

• aws:elasticmapreduce:job-flow-id=j-<id>

You can use these tags for reporting, analytics, and controlling costs too. It is
recommended you arrive at a set of tag keys first and use it consistently across clusters.

As a best practice, do not include any sensitive information as part of your tag keys or
values as they are used by AWS for reporting.

Optimization techniques for data processing and storage 371

Optimization techniques for data processing
and storage
We have recommended using Amazon S3 as the EMR cluster's persistent storage as it
provides better reliability, support for transient clusters, and it is cost-effective. But
there are several best practices we can follow while storing the data in Amazon S3 or
an HDFS cluster.

Let's understand some of the general best practices that you can follow to get better
performance and save costs from a storage and processing perspective.

Best practices for cluster persistent storage
As part of your cluster storage, there are some general best practices that apply to both
Amazon S3 and HDFS cluster storage. The following are a few of the most important ones.

Choosing the right file format
You might be receiving files in CSV, JSON, or as TXT files, but after processing through
the ETL process, when you write to a data lake based on S3 or HDFS, you should choose
the right file format to get the best performance while querying it.

We can divide the file formats into two types – columnar or row-based formats.
Row-based formats are good for write-heavy workloads, whereas columnar formats are
great for read-heavy workloads.

Most of the big data workloads are related to analytics use cases, where data analysts
or data scientists perform column-level operations such as finding the average, sum, or
median of a column. Because of that, for analytical workloads, columnar formats such as
Parquet are very popular.

Apart from the columnar nature, you should also be considering whether the file format
is splittable, which means can the Hadoop or Spark framework split the file for parallel
processing. In addition, we should check whether the file format supports schema
evolution, which means whether incremental files can support additional columns.

372 Best Practices and Cost-Optimization Techniques

The following table shows a comparison of features supported by the text, ORC, Avro, and
Parquet file formats:

Figure 14.2 – Table comparing features of different file formats

These four formats are commonly used and by looking at their features, you can choose
the right file format for your use case.

Choosing the compression algorithm
On top of the correct file format, you can also apply an additional compression algorithm
to get improved performance for file transfers. While choosing a compression algorithm,
we also need to make sure the compression algorithm is splittable so that it can be split by
Hadoop or Spark frameworks for parallel processing.

Each compression algorithm has a rate of compression that reduces your original file size
by x percentage. The higher the compression rate, the more time it takes to decompress.
So, it's a space-time trade-off, where you save more storage with a high compression rate
and spend more time decompressing it.

The following table shows a comparison of the popular compression algorithms.

Figure 14.3 – Table comparing compression algorithms

This should help you make a decision on the file format and compression algorithm you
should integrate.

Optimization techniques for data processing and storage 373

Choosing an S3 storage class
If you are using Amazon S3 as your cluster's persistent storage, then you have additional
flexibility to choose from different S3 storage classes. S3 standard is the commonly used
storage class, assuming you are accessing your data frequently. But if you have data that
is not being frequently accessed and you would like to save costs, then you should move
your data to any of the following S3 storage classes:

• S3 Standard-IA

• S3 One Zone-IA

• S3 Glacier Instant Retrieval

• S3 Glacier Flexible Retrieval

• S3 Glacier Deep Archive

• S3 Intelligent Tiering

Out of all the preceding options, S3 Intelligent Tiering can be a good option to choose if
your access patterns are not fixed and you are not sure when to move to another storage
class. S3 Intelligent Tiering looks at your access pattern and automatically moves objects
to the most cost-effective storage tier without any effect on performance or without
any retrieval costs or operational overhead. It provides high performance for Frequent,
Infrequent, and Archive Instant Access tiers.

Data partitioning
This is applicable to both Amazon S3 and HDFS storage, where you need to structure
your data into folders and subfolders so that your queries perform better. Assume you are
receiving weather data every day and your query patterns on them are mostly date-based
filters. In such use cases, if you store your data with the <year>/<month>/<date>
sub-folder structure and you write SQL queries with WHERE year=<value> AND
month=<value>, it will scan the respective sub-folder to get the data instead of
scanning all the folders.

In S3, the path will look like this: s3://<bucket-name>/<year>/<month>/<day>/.

374 Best Practices and Cost-Optimization Techniques

Best practices while processing data using EMR
While processing your data in EMR, you have the option to use Hive, Spark, Tez, or
any other Hadoop frameworks for your ETL or streaming workloads. Based on the
framework you are using, you can apply its tuning parameter to get the best performance.
For example, if you are using Spark, you can play with the Spark executor or the driver's
memory and CPU parameters to get the best performance, or you can pass any other
tuning parameters open source Spark offers.

Security best practices
Security is one of the important aspects when you move to the AWS cloud. It includes
authentication, authorization on cluster resources, protecting data at rest and in transit,
and finally, protecting infrastructure from unauthorized access. We have discussed these
topics in detail in Chapter 7, Understanding Security in Amazon EMR.

The following are a few of the general best practices that you can follow while
implementing security:

• Follow the least privilege principle of AWS and provide the minimal required access
to your cluster.

• Avoid using the same AWS IAM role for multiple clusters; rather, create use case or
cluster-specific roles to reduce the blast radius.

• If you do not have a specific EMR release dependency, then prefer to use the latest
EMR release, which has all the security patches integrated.

• It's better to consider all security aspects from the very beginning, as implementing
it later is more complex and expensive.

• Continuously review your organization's security guidelines and review your
implementation in AWS and Amazon EMR.

• Use EMR security configuration to templatize the setup and apply it to
multiple clusters.

• It's better if you launch your clusters within a private subnet so that you can limit
access to your cluster.

• Leverage AWS CloudFormation to create cluster resources so that you can use the
application to create resources on other lower or higher environments.

Apart from the general security best practices, you can consider a few of the following
specific best practices to make your environment more secure.

Security best practices 375

Configuring edge nodes outside of the cluster to limit
connectivity
When you have a persistent EMR cluster and you plan to provide SSH access to it, or you
would like to configure port forwarding to access the Spark history server or Ganglia web
UI, then it is recommended to create a separate edge node, instead of providing access to
the EMR cluster's master node.

Not only for a single cluster but if you have multiple EMR clusters, then you can have a
common edge node in a public subnet of your VPC to limit access to your cluster nodes.

The following is a reference architecture that shows how you can configure a common
edge node in a public subnet, which can be used as a jump box to connect to EMR clusters
available in private subnets.

Figure 14.4 – Reference architecture for an edge node to be outside of the EMR cluster

This also provides another recommendation, which is to configure an S3 endpoint to
access Amazon S3, which can avoid the request routing through the public internet and
gets better performance with access through an Amazon internal network.

You can connect to the edge node from your corporate data center using Direct Connect,
or can directly access it through an internet gateway as the edge node is available in the
public subnet.

376 Best Practices and Cost-Optimization Techniques

Integrating logging, monitoring, and audit controls
into your cluster
When you have production EMR workloads, it is recommended to enable logging,
monitoring, and audit controls on your EMR cluster. This helps in debugging or
troubleshooting failures, monitoring cluster usage or performance, and auditing activity
for security controls.

You should integrate AWS CloudWatch for logging and monitoring, and AWS CloudTrail
for audit controls. With CloudTrail audit trails, you can look for unauthorized cluster
access and take the required action to harden your security implementation.

If you have integrated AWS Lake Formation on top of the Glue Data Catalog, then you
should also monitor Lake Formation activity history to monitor unauthorized access on
your central metastore catalog.

Blocking public access to your EMR cluster
EMR provides a great security feature, which restricts users from launching clusters
with security groups that allow public access. The following screenshot shows the EMR
console's Block public access configuration:

Figure 14.5 – The EMR console's Block public access settings

Cost-optimization techniques 377

By default, all the ports are blocked, except port 22 for SSH access. You can add more
ports to the exception list so that it is applicable to all clusters. You can override the port
configurations through cluster security groups.

This configuration is enabled by default and is applicable to a single region of an AWS
account, which means any new cluster you launch will have the same restrictions apply.

Protecting your data at rest and in transit
Data is the center of everything and protecting that is the topmost priority. When we
think of protecting data, we need to consider securing it at rest and in transit.

As explained in Chapter 7, Understanding Security in Amazon EMR, for encryption at rest,
you should encrypt your data stored in Amazon S3, HDFS, or the EMR cluster node's
local disc. For data security in transit, you can configure SSL or TLS protocols.

When you consider encrypting data in transit or at rest, you should follow these
best practices:

• Make sure you rotate your encryption keys regularly.

• If you do not have a specific requirement, then you can integrate AWS Key
Management Service (KMS) to manage your keys, which seamlessly integrates with
all AWS services, including Amazon EMR.

Having understood best practices around cluster configuration and security, next, we will
explain some of the cost-optimization techniques that you can follow.

Cost-optimization techniques
There are several cost-optimization techniques that AWS offers and the primary ones are
related to compute and storage resources. Let's understand some of the cost optimization
techniques you can apply.

Cost savings with compute resources
When you are creating EMR on an EC2 cluster, then you have the option to choose any of
the following EC2 pricing models:

• On-Demand Instances: This follows the pay-as-you-go model, where you pay
for the EC2 instance, for the duration of time you have used it, without any
commitment.

378 Best Practices and Cost-Optimization Techniques

• Savings Plans: With Savings Plans, you get up to a 72% discount when you commit
for a certain amount of usage ($/Hr) for 1 to 3 years. You can choose from no
upfront, partial upfront, or all upfront.

• Standard Reserved Instances: Standard Reserved Instances (RIs) are the same as
Savings Plans but with a variation that you must commit for specific EC2 instance
type usage and also need to validate the AWS services that support RIs such as
Redshift, EC2, and RDS. This offers a higher discount with less flexibility and you
get a better discount with partial upfront or all upfront payment.

• Spot Instances: With Spot Instances, you can expect up to a 90% discount on your
EC2 hourly cost. These are unused EC2 instances, with which you can take a risk
but they also come with the risk of getting terminated.

Choosing the right type of EC2 pricing model can provide great savings. Analyze your
cluster usage to identify the type of instances you should integrate and whether you have
the flexibility to opt for a 1-year or 3-year commitment.

The following are some of the best practices you can follow to save costs:

• If you have persistent clusters and you are aware of the minimum number of nodes
that will always be active, then look at RIs to save costs.

• If you do not have tight SLAs, then look to integrate Spot Instances for task nodes,
which provide great discounts.

• For variable workloads, take advantage of EMR managed scaling, where you start
small and scale as per your need.

• Use On-Demand Instances only for master and core nodes and select the
appropriate instance type to optimize usage.

• Continuously monitor the usage of the CPU and memory of cluster nodes and
readjust the instance type or the number of nodes as needed.

These best practices are applicable to EMR on EC2 only as with EMR on EKS, you
can follow best practices for your EKS cluster. Next, we will learn what optimization
techniques we can apply to the storage layer.

Cost-optimization techniques 379

Cost savings with storage
There are several cost savings you can get from the storage side. The following are a few of
the main ones:

• Use S3 as your persistent storage to save costs.

• Use an appropriate S3 storage class to avoid paying the cost of S3 Standard. S3
Intelligent tiering is a good option if your access patterns are not consistent.

• Define life cycle policies to move unused data to S3 Glacier for archival.

• Use columnar formats with compression, which can help with storage savings.

• If you are using cluster HDFS instead of Amazon S3, then based on the sensitivity
of data or SLAs, specify different HDFS replication factors. For example, for less
sensitive data that you can reproduce easily, go with replication factor 1, so that in
the event of data loss, you can recover easily and can save storage costs. For highly
sensitive data that has a tighter SLA, configure a replication factor of 2 or 3.

• As explained earlier, implementing partitioning provides great performance as
you scan less data. It also provides great cost savings if you are planning to use
Amazon Athena to query data, which has pricing based on the amount of data
you are scanning.

Having understood compute- and storage-related cost savings, now let's understand what
other tools AWS provides to monitor and optimize costs.

Integrating AWS Budgets and Cost Explorer
AWS Budgets and Cost Explorer are great tools to monitor costs and define thresholds to
get alerted about costs going beyond the defined budget.

AWS Cost Explorer
AWS Cost Explorer is a tool that you can use to filter or group your AWS service
usage costs to analyze and build visualization reporting, or you can use it to forecast
your usage costs. It provides an easy-to-use web interface, where you can apply filters
by AWS account, AWS service, or different date ranges and save reports for ongoing
analysis. You can build some of the reports, such as monthly cost by AWS service, hourly
or resource-level reports, and also a report of Savings Plans to RIs utilization costs.

380 Best Practices and Cost-Optimization Techniques

AWS Cost Explorer also allows you to identify trends in usage or detect anomalies. The
following is a screenshot of AWS Cost Explorer that shows its usage for the past two
quarters and its forecast for the next quarter.

Figure 14.6 – AWS Cost Explorer report for EC2 usage

Having understood how you can benefit from AWS Cost Explorer, next let's understand
how AWS Budgets can help to control your costs.

AWS Budgets
When you get started on AWS, you follow a pay-as-you-go pricing model, which means
as you make progress using AWS services, your usage costs go up. As a business owner,
you must have control over your costs and should have a budget defined, and if spending
goes beyond that threshold, you should be notified for manual verification. This feature
is offered by AWS Budgets, where you can set a custom budget and integrate notifications
using Amazon Simple Notification Service (SNS) or email if actual spending or
forecasted spending goes beyond the defined maximum threshold.

You can also define alarms or notifications on Savings Plans and RI usage. AWS Budgets
integrates with several AWS services, including AWS Cost Explorer, to identify spending
and can send notifications to your Slack channel or Amazon Chime room.

Cost-optimization techniques 381

When integrating AWS Cost Explorer and AWS Budgets, you should take note of the
following features and patterns:

• Use AWS Budgets to set custom budgets to track your costs and usage.

• Configure alert notifications using SNS to get notified if your usage exceeds your
defined maximum budget.

• Configure notifications to be alerted if your usage of Savings Plans or RIs drops
below your defined threshold.

• Use AWS Cost Explorer to continuously monitor your costs and do analysis for
optimization or anomaly detection.

• AWS Budgets also natively integrates with AWS Service Catalog and that gives
you the flexibility to track costs on the approved list of AWS services. AWS Service
Catalog is a tool or service in AWS that allows you to define a list of services
approved for usage in the organization and helps you to put restrictions on
something that is not approved for usage. AWS users treat these approved services
as available for use.

Having learned about AWS Cost Explorer and AWS Budgets, next we will learn about the
AWS Trusted Advisor tool to understand what it offers.

AWS Trusted Advisor
AWS Trusted Advisor is one of the great tools provided by AWS. It scans your AWS
service usage and provides recommendations on performance, security, fault tolerance,
service limits, and cost optimization pillars.

For cost optimization recommendations, the tool looks for several factors, including the
following to identify issues and potential savings:

• Low utilization of Amazon EC2 instances

• Amazon EC2 RI optimization

• Underutilized Amazon EBS volumes

• Amazon RDS database idle instances

• Amazon RDS RI optimization

• Unassociated Elastic IP addresses

382 Best Practices and Cost-Optimization Techniques

The following is a screenshot of AWS Trusted Advisor, which suggests potential monthly
savings with the number of checks that have passed and the number of items that need
action or investigation:

Figure 14.7 – AWS Trusted Advisor showing recommendations for cost optimization

Apart from cost optimizations, please do review recommendations suggested for
performance, security, and fault tolerance to increase the stability of your AWS
service implementation.

Cost allocation tags
Cost allocation tags are a unique feature offered by the AWS Billing service, which allows
you to tag resources for cost calculations. It offers two types of tags – AWS generated tags
and user-defined tags. AWS or AWS Marketplace Independent Software Vendors (ISVs)
automatically assign tags prefixed by aws:, whereas for user-defined tags you define your
custom tagging based on department, application name, cost center, or any other category.

The aws:createdBy tag is applied automatically to resources that are created after the
tag has been activated. The user-defined tags created by users need to be activated first so
that they appear in Cost Explorer or Cost and Usage Reports (CURs).

The cost allocation report that is generated at the end of each billing period includes both
tagged and untagged resources so you can filter and order them to analyze the data based
on the tags you have defined and can decide to optimize costs.

Limitations of Amazon EMR and possible workarounds 383

As a best practice, please make sure only authorized personnel get access to cost allocation
tags in the AWS Billing console so that all the finance-related details are limited to
authorized employees. Also, it's a good practice to use AWS-generated cost allocation tags.

In this section, you learned about different cost optimization techniques and available
tools that can help. Next, we will cover some of the limitations that you should be aware of
when you are integrating EMR for your big data analytics workloads.

Limitations of Amazon EMR and possible
workarounds
Understanding best practices is very important as that helps to optimize your usage in
AWS and will give you the best performance and cost optimization. Apart from best
practices, it is also important to understand different limitations the service has so that
you can plan for alternate workarounds.

The following are some of the limitations that you should consider while implementing
big data workloads in Amazon EMR:

• S3 throughput: When you are writing to or reading from S3, there are a few API
limits that you should be aware of. S3 has a limit of 3,500 PUT/POST/DELETE
requests per second per prefix in a bucket and 5,500 GET requests per second per
prefix in a bucket. These limits are per S3 prefix but there is no limit on how many
prefixes you might have. So, as a workaround, you should think of having more
prefixes and leverage a partition or sub-partition structure while storing data in S3.
As an example, if you have 10 S3 prefixes, then you can get 55,000 read requests
per second.

Please note, these throughput limits are based on what AWS published while writing
this chapter and are subject to change. Please check the Amazon S3 documentation
(https://docs.aws.amazon.com/AmazonS3/latest/userguide/
optimizing-performance.html) for up-to-date information.

• EMR master failover: EMR's cluster with multiple master nodes provide high
availability but all its master nodes are on a single Availability Zone (AZ). If, out
of three master nodes, any two fail simultaneously or the entire AZ goes down,
then your EMR cluster will go down and, in that case, it is not fault-tolerant. This
is another reason to consider S3 as your persistent store and use CloudFormation
to create resources so that in the event of AZ failure, you can create another cluster
quickly pointing to the same S3 bucket.

https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance.html

384 Best Practices and Cost-Optimization Techniques

• Supported applications for multiple master nodes: Note that EMR does not
support high availability for all Hadoop or big data services it deploys and it also
does not guarantee fault tolerance of the cluster services. Please refer to https://
docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-
ha-applications.html to have up-to-date information on supported
applications for multi-master nodes.

• Cluster Monitoring: In terms of cluster monitoring, EMR integrates with
Amazon CloudWatch and provides different metrics for monitoring. But note
that EMR currently does not provide any metrics specific to YARN or HDFS. So as
a workaround, you can look at MultiMasterInstanceGroupNodesRunning,
MultiMasterInstanceGroupNodesRunningPercentage, or
MultiMasterInstanceGroupNodesRequested CloudWatch metrics
to monitor how many master nodes are running, or on the verge of failure
or replacement.

For example, if the value of
MultiMasterInstanceGroupNodesRunningPercentage
metrics is between 0.5 and 1.0, then the cluster might have
lost a master node and EMR will attempt to replace it. If
MultiMasterInstanceGroupNodesRunningPercentage falls below 0.5,
that means two master nodes are down and the cluster cannot recover and you
should be ready to take manual action.

• EMR Studio: There are multiple considerations and limitations listed for EMR
Studio. One example is EMR Studio is not supported on EMR clusters that have
a security configuration attached to them with Kerberos authentication enabled.
Another example is EMR Studio is not supported on an EMR cluster that is
integrated with multi-master nodes or AWS Lake Formation or if the cluster
integrates EC2 graviton instance types. Also note that if the EMR cluster is deployed
on EKS, then it does not support SparkMagic with EMR Studio.

• AWS Lake Formation Integration: When you integrate AWS Lake Formation
with Amazon EMR, it only supports authorization for EMR Notebooks, Apache
Zeppelin, and Apache Spark through EMR Notebooks. EMR with Lake Formation
does not support Single Sign-On (SSO) integration and you cannot query Glue
Data Catalog tables that have partitions under a different S3 path.

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-ha-applications.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-ha-applications.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-ha-applications.html

Summary 385

• Service Quotas and Limits: Look for EMR service limits that can affect your
production workloads. When you launch an EMR cluster on EC2, check for EC2
limits on your account. In addition, check for limits around the maximum number
of concurrent active clusters you can have in your account, and in a cluster, how
many maximum instances you can have per instance group.

If you are integrating EMR SDKs or APIs, then you should be aware of the API
limits it has. The two sets of limits we should be aware of are the burst limit and rate
limit. The burst limit is the number of API calls you can make per second, whereas
the rate limit is the cooldown period you need to have before hitting the Burst API
again. For example, the AddInstanceFleet API call has a limit of 5 calls
per second, which is the burst limit, and if you hit that limit, then you need to wait
for 2 seconds before making another API call, which is called the rate limit.

These limitations are around the commonly used services or features of EMR and there
will be others that you should consider while implementing your workloads. Please check
the latest AWS documentation for your service before implementing it so that you can
plan for alternate workarounds if possible.

Summary
Over the course of this chapter, we have learned about recommendations around choosing
between transient and persistent clusters, how you can right-size your cluster with different
EC2 instance types, and EC2 pricing models. We have also provided best practices around
EMR cluster configurations that included cluster scaling, high availability, monitoring,
tagging, catalog management, persistent storage, and security best practices.

Then, later in the chapter, we covered cost-optimization techniques that included
recommendations around compute and storage, and also covered different tools AWS
offers, such as AWS Cost Explorer, AWS Trusted Advisor, and cost allocation tags to
monitor and control your costs with alarm notifications with AWS Budgets.

That concludes this chapter and, with it, we have reached the end of the book! Hopefully,
this book has helped you to get deep knowledge of EMR's features, usage, integration with
other AWS services, on-premise migration approaches, and best practices you can follow
while implementing your big data analytics pipelines.

Thank you for your patience while going through this journey. If we helped you to gain
knowledge, please do share your feedback and share the book with your friends and
colleagues who want to get started with Amazon EMR. Thanks again, and happy learning!

386 Best Practices and Cost-Optimization Techniques

Test your knowledge
Before finishing this last chapter, test your knowledge with the following questions:

1. Assume you have recently migrated your on-premise Hadoop cluster to Amazon
EMR by following a lift and shift model. You have several batch and streaming
workloads running on the same cluster. You have integrated your EMR cluster with
AWS CloudWatch and while monitoring the cluster usage, you found not all the
EC2 resources are always optimally used. What's the best architecture pattern you
can follow to optimize your resource usage and costs?

2. Assume you have around five different teams who have requested to have their own
persistent EMR clusters for different big data workloads. They need SSH access
to the cluster master node and would like to access the web interface of Hadoop
applications. How should you provide them with access while maintaining security
best practices?

3. Assume you have a multi-tenant persistent EMR cluster that is deployed on EC2. It
has 5 core nodes and 10 task nodes and you have enabled auto-scaling rules defined
to scale the task nodes to 50 nodes as the demand arises. Which EC2 pricing model
could reduce costs for you?

Further reading
Here are a few resources you can refer to for further reading:

• Spark Performance Optimization in EMR: https://docs.aws.amazon.com/
emr/latest/ReleaseGuide/emr-spark-performance.html

• AWS Cost Explorer: https://aws.amazon.com/aws-cost-management/
aws-cost-explorer/

• AWS Trusted Advisor: https://aws.amazon.com/premiumsupport/
technology/trusted-advisor/

• AWS Cost Allocation Tags: https://docs.aws.amazon.com/
awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

• EMR Studio Considerations: https://docs.aws.amazon.com/emr/
latest/ManagementGuide/emr-studio-considerations.html

• Considerations and limitations with AWS Lake Formation integration: https://
docs.aws.amazon.com/emr/latest/ManagementGuide/emr-lf-
scope.html

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-performance.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-performance.html
https://aws.amazon.com/aws-cost-management/aws-cost-explorer/
https://aws.amazon.com/aws-cost-management/aws-cost-explorer/
https://aws.amazon.com/premiumsupport/technology/trusted-advisor/
https://aws.amazon.com/premiumsupport/technology/trusted-advisor/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-studio-considerations.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-studio-considerations.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-lf-scope.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-lf-scope.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-lf-scope.html

Index

A
Active Directory Federation

Services (AD FS) 240, 245
additional custom-managed

security groups
specifying, for cluster 228
working with 227

AES (Advanced Encryption Standard) 225
Airflow

integrating, to trigger EMR
jobs 337, 338

Amazon AppFlow 64
Amazon Athena

about 74
output data, querying with standard

SQL query in 297, 298
used, for validating output 271, 296

Amazon Athena standard SQL
output data, querying with 272-274

Amazon Aurora
configuring, as Hive metastore 89, 90

Amazon DynamoDB 16, 69
Amazon Elastic MapReduce (EMR)

about 4
advantages 9-11

Apache Ranger, setting up 248
benefits 80
comparing, with AWS Glue 21
comparing, with AWS Glue

DataBrew 21
components 242, 243
connecting, on EC2 cluster with VPC

endpoint interface 230, 231
connecting, on EKS cluster with VPC

endpoint interface 232, 233
cons 26
deployment options 44
integrating, with Apache

Ranger 247, 248
integrating, with AWS Lake

Formation 240, 241
integrating, with AWS Glue

Data Catalog 238, 239
Lake Formation 242
limitations 383-385
overview 8
pros 26
target users 26
use cases 26

388 Index

Amazon Elastic MapReduce
(EMR), components

record server 248
secret agent 248

Amazon EMR cluster
creating 291-293

Amazon EMR on Amazon EC2 44
Amazon EMR on Amazon EC2 pricing

about 51, 52
example 52

Amazon EMR on Amazon EKS
about 45
architecture 46
AWS CLI commands, example 47, 48
benefits 45
high-level components 47

Amazon EMR on Amazon EKS pricing
about 52
estimating, with AWS Fargate 53
example, with AWS Fargate 53

Amazon EMR on AWS Outposts
about 49, 50
benefits 50, 51
prerequisites 50
pricing 54

Amazon ES 81
Amazon FSx 350
Amazon FSx for Luster 350
Amazon KDS 64
Amazon Kinesis Data Streams (KDS)

about 15
creating 283, 285

Amazon Linux AMI
using, for EMR 141, 142

Amazon Machine Image (AMI)
about 136
components 141
working with 140, 141

Amazon Machine Images (AMIs) 10
Amazon Managed Streaming

for Kafka (MSK) 15
Amazon Managed Workflows for

Apache Airflow (MWAA)
about 336
overview 336

Amazon OpenSearch Service 80
Amazon RDS

configuring, as Hive metastore 89, 90
one-time Hive Metastore migration 351
ongoing replication 351, 352
options 351
using, as Hue database 107

Amazon RDS database
creating, with AWS console 107, 108
specifying, for Hue 108, 109

Amazon Redshift 16, 64
Amazon Relational Database

Service (RDS) 16
Amazon S3

log files, archiving to 162, 163
used, for improving EMR Spark

performance 97, 98
using, as HBase storage mode 100, 101
using, to store HBase snapshots 104
with EMR File System (EMRFS) 15

Amazon S3 as persistent data store
about 38, 39
benefits 38, 39

Amazon S3 bucket
creating 260-262, 282, 283, 312, 313

Amazon S3 CSE 223
Amazon S3 data

virtual Glue Data Catalog table,
defining 271, 272, 297

Amazon S3DistCp 348
Amazon S3 Inventory Report 357

Index 389

Amazon S3 SSE
about 223
SSE-KMS 223
SSE-S3 223

Amazon S3 storage layers
S3 consumption layer 60
S3 processed layer 60
S3 raw layer 60

Apache Airflow
overview 336

Apache Airflow clusters 41
Apache Bigtop 19
Apache Derby 353
Apache DistCp 348
Apache Hudi

capabilities 305
overview 305-307
use cases 307, 308

Apache Kafka 15
Apache MXNet 112
Apache Oozie 353
Apache or Nginx server logs 79
Apache Ranger

about 11, 246
admin server, setting up 248, 249
EMR security configurations 250
IAM roles for native integration, to

set up admin server 249, 250
setting up, in Amazon Elastic

MapReduce (EMR) 248
TLS certificates, storing in AWS

Secrets Manager 250
used, for integrating Amazon Elastic

MapReduce (EMR) 246, 248
Apache Ranger, components

plugin 247
policy admin server 247

Apache Ranger plugins
about 251
for EMRFS S3 253
for Hive 251
for Spark 252

Apache Zeppelin
about 120
accessing 246

application logs 79
applications

monitoring, with web user
interfaces 169

application-specific encryption features
Hadoop 225
HBase 225
Presto 225
Spark 225
Tez 225

application team 80
Athena 74
Atomicity, Consistency, Isolation,

Durability (ACID) transaction 88
autoscaling

comparing, with EMR-managed
scaling 197, 198

auto-termination 148
Availability Zone (AZ) 37
AWS Budgets

integrating 380, 381
used, for controlling costs 54
used, for monitoring costs 54

AWS CLI
custom scaling policy, configuring

with 194, 195
EMR-managed scaling,

enabling with 187
security configuration, creating with 210

390 Index

security configuration,
specifying with 212

security group, specifying with 229
used, for aggregating logs in

Amazon S3 163, 164
used, for resizing EMR cluster 196, 197
using 149-152

AWS CLI commands
job run, cancelling 49
job run, describing 49
job run, listing 49
to manage cluster and jobs 47, 48

AWS CloudTrail
EMR information 181, 183
used, for logging EMR API audit 180

AWS console
EMR-managed scaling,

enabling with 185, 186
used, for resizing EMR cluster 195, 196
using 149-151

AWS Cost Explorer
integrating 379, 380

AWS DataSync
about 350
using, to sync data online 350

AWS Direct Connect
using, for data transfer 348

AWS Glue
about 21
components 21
cons 25
pros 25
target users 25
use cases 25

AWS Glue DataBrew
about 23
advantages 25
disadvantages 25

target users 25
use cases 25

AWS Glue DataBrew profiling 359
AWS Glue Data Catalog

about 15, 237
configuring, as Hive metastore 90-92
integrating, with Amazon Elastic

MapReduce (EMR) 238, 239
one-time Hive Metastore migration 351
Presto, working with 93, 94
Spark SQL, working with 95
using 238

AWS Glue Data Catalog, AWS services
Amazon Athena 238
Amazon EMR 238
Amazon Lake Formation 238
Amazon Redshift Spectrum 238
AWS Glue jobs 238

AWS Glue Schema Registry 83
AWS IAM console

reference link 217
AWS IAM integration, with Amazon EMR

about 212
authentication, configuring

to cluster nodes 221
best practices, of identity-based

policies 221
IAM action permissions, for

users and groups 220
IAM policy components 212, 213
IAM roles, configuring for EMRFS 218
IAM roles, integrating in

applications 219, 220
IAM service role, configuring

for EMR cluster 213
identity-based policies 220

AWS Identity and Access
Management (IAM) 17, 212

Index 391

AWS IoT 73
AWS Key Management Service

(KMS) 17, 223, 377
AWS Lake Formation

about 11, 17, 240
benefits 241
integrating, with Amazon Elastic

MapReduce (EMR) 240, 241
used, for launching EMR

cluster 243, 244
used, for setting up EMR notebooks 245

AWS Lake Formation, features
Blueprints 240
Granular permission management 240
Lake Formation-governed tables 240

AWS Lambda 68
AWS Lambda function

code 274, 275
creating 263-266

AWS Pricing calculator
reference link 361

AWS services
integration with 14
selecting, for use case 24-26

AWS Snowball 347
AWS Snowmobile 347, 348
AWS Step Functions

about 41
integrating, to orchestrate

EMR jobs 332-336
overview 330, 331

AWS Storage Gateway
about 350
using 350

AWS Transfer Family 347
AWS Trusted Advisor 381, 382

B
batch ETL pipeline

architecture example 22, 23
architecture overview 258-260
implementation steps 260
use case 258

batch ETL pipeline, implementation steps
Amazon S3 buckets, creating 260-262
AWS Lambda function,

creating 263-266
EMR job, triggering 268-271
S3 file arrival event, configuring to

trigger Lambda function 266-268
batch ETL workloads, reference

architecture
about 58, 62
best practices 61
use case, overview 59
walkthrough 59-61

big data 4, 5
big data applications

configuring, for high availability with
multi-master node cluster 199-201

big data applications, in EMR
about 86
Ganglia 110
HBase 98
Hive 87
Hue 106
Presto 92
Spark 94

big data applications web interfaces
accessing, on EMR clusters 169-171

big data releases
history 9

browser
SOCKS proxy, configuring on 174-176

392 Index

Burst limit 385
business intelligence (BI) 16, 58

C
California Consumer Privacy

Act (CCPA) 307
change data capture (CDC) 60, 307, 349
Classless Inter-Domain

Routing (CIDR) 172
clickstream analytics, reference

architecture
about 62
best practices 65
use case, overview 63
walkthrough 63-65

client-side master key (CSE-C) 223
CloudWatch events

monitoring 176, 177
rules, creating for EMR events 178, 179
viewing, with EMR console 177, 178

CloudWatch metrics
monitoring 179
reported by, EMR to 180

CloudWatch monitoring
used, for monitoring cluster metrics 176

cluster
about 34
number of nodes, deciding for 367, 368
setting up, with EMR console's

quick create option 126-129
setup 39
use cases 13

cluster application processes
restarting 153
viewing 153

cluster-level
versus instance-level custom

AMIs 143, 144
cluster metrics

monitoring, with CloudWatch
monitoring 176

cluster network traffic
controlling, with security groups 226

cluster parameters 265
cluster persistent storage, best practices

compression algorithm, selecting 372
data partitioning 373
file format, selecting 371, 372
S3 storage class, selecting 373

cluster resources
scaling 183, 184

cluster size
determining, for transient versus

persistent clusters 368
cluster termination

controlling 140
cluster type

selecting 364, 365
command-line interface (CLI) 39, 239
compaction 99
compute and storage

decoupling 11, 12
Constraint Suggestion 358
Constraint Verification 358
Continuous Deployment (CD) 360
Continuous Integration (CI) 360
core node

about 34
instance type, selecting 367

cost allocation tags 382
Cost and Usage Reports (CURs) 382

Index 393

Cost Explorer
used, for controlling costs 54
used, for monitoring costs 54

cost-optimization, techniques
AWS Budgets, integrating 380, 381
AWS Cost Explorer, integrating 379, 380
cost savings with compute

resources 377, 378
cost savings with storage 379

custom Amazon Machine Image (AMI)
using, with EMR cluster 142, 143

custom roles, IAM service roles
autoscaling role 215
creating 214
EMR notebook role 216
EMR role 214, 215
service-linked role 217

D
data catalog

access management options 236
building 236
permission management 240

Data Definition Language (DDL) 74
data encryption at rest, for

EMRFS on Amazon S3
enabling 222

data lake 236
data migration 346
data migration, approach

AWS DataSync, using to sync
data online 350

AWS Snowball 347
AWS Snowmobile 347
AWS Storage Gateway, using 350
data, transferring with AWS

Direct Connect 348

on-premise databases, migrating 349
real-time streaming sources,

migrating 349
S3DistCp utility, using for

data transfer 348, 349
Data Migration Service (DMS) 60, 349
data online

syncing, with AWS DataSync 350
Data Processing Units (DPUs) 22
data processing with EMR

best practices 374
data protection, in EMR

about 222
encryption at rest, for EMRFS

on Amazon S3 222
high-level security guidelines 222
in-transit encryption, for EMRFS

on Amazon S3 225
data quality

validating 357
data quality, options

Amazon S3 Inventory Report 357
AWS Glue DataBrew profiling 359
DistCp job output 357
manual sanity check 359
Sqoop job output 357

data testing 356
data transfer

with AWS Direct Connect 348
with S3DistCp utility 348, 349

data validation 356
debugging tool

enabling 164
Deequ framework

about 358
metrics 358

Deequ framework, high-level components
Constraint Suggestion 358

394 Index

Constraint Verification 358
Metrics Computation 358

default log files, EMR cluster 161
DevOps team 79
Directed Acyclic Graph (DAG) 94, 353
DistCp job output 357
distributed processing frameworks

about 33
MapReduce 33
Spark 33

distributed storage layer 31
dynamic port forwarding

SSH tunnel, setting up to
master node 173, 174

E
EBS volume encryption

about 224
EBS encryption 224
LUKS encryption 224

EC2 instance profile role
about 215
permissions 215

EC2 instance types, supporting workloads
compute-intensive 45
dense disk storage 45
general-purpose 45
memory-intensive 45

EC2 server logs 79
EC2 spot instances 32
Elastic Block Store (EBS) 31, 141
Elastic Compute Cloud (EC2) 8
Elastic File System (EFS) 350
Elastic Kubernetes Service (EKS) 8
EMR

Amazon Linux AMI, using for 141, 142

EMR API
using 152

EMR API audit
logging, with AWS CloudTrail 180

EMR architecture
distributed processing frameworks 33
distributed storage layer 31
exploring 30
Hadoop applications 33
YARN 32

EMR cluster
autoscaling rules, configuring 192
autoscaling, with custom policy

for instance groups 190
big data applications web interfaces,

accessing on 169-171
cloning 203
configuring, to auto terminate 145
creating 309, 310
default log files 161
launching and terminating, with

multiple master nodes 201
launching, with AWS Lake

Formation 243, 244
logging 151
monitoring 168
monitoring, with web user

interfaces 169
options 41
performance metrics, viewing

with Ganglia 176
prerequisites, for configuring autoscaling

with custom policy 191
resizing, manually 195
resizing, with AWS CLI 196, 197
resizing, with AWS console 195, 196
Spark job, submitting to 96

Index 395

Spark Streaming job,
triggering on 294-296

SSH tunnel, setting up to master
node with dynamic port
forwarding 173, 174

SSH tunnel, setting up to master node
with local port forwarding 172, 173

SSO URL, updating with IdP 245
tagging 370
troubleshooting 151

EMR cluster, autoscaling rules
custom scaling policy, configuring

with AWS CLI 194, 195
custom scaling policy, configuring

with EMR console 192-194
EMR cluster configurations, best practices

cluster type, selecting 364, 365
high availability, configuring 369
instance type, selecting 366
metastore, externalizing 366
number of nodes, deciding

for cluster 367, 368
storage, options 365

EMR cluster life cycle 39, 41
EMR cluster local disc encryption

about 224
EBS volume encryption 224
HDFS encryption 224
instance store encryption 224

EMR cluster security group
inbound SSH traffic, allowing 171, 172

EMR cluster termination process
controlling 144, 145

EMR cluster, tools debugging
about 151
cluster details, displaying 151
cluster performance, monitoring 152
log files, viewing 152

EMR console
CloudWatch events, viewing

with 177, 178
custom scaling policy,

configuring with 192-194
reference link 210
security configuration, creating with 210
security configuration,

specifying with 211
security group, specifying with 228

EMR events
CloudWatch event rules,

creating with 178, 179
EMR File System (EMRFS)

about 15, 31, 92, 136
using, in Amazon S3 15

EMRFS S3-optimizer committer 98
EMR information

in AWS CloudTrail 181, 183
EMR job

triggering 268-271
EMR-managed scaling

about 183
comparing, with autoscaling 197, 198
configuration, modifying for

existing running cluster 186
configuring, for EMR cluster 185
enabling 184
enabling, with AWS CLI 187
enabling, with AWS console 185, 186
node allocation strategy of 188
parameters, setting 184

EMR-managed scaling, node
allocation strategy

scale-down strategy 188, 189
scale-up node allocation strategy 188

EMR managed security groups
ElasticMapReduce-master 227

396 Index

ElasticMapReduce-Master-Private 227
ElasticMapReduce-ServiceAccess 227
ElasticMapReduce-slave 227
ElasticMapReduce-Slave-Private 227
specifying, for cluster 228
working with 226

EMR notebook
about 113
accessing 246
configuring, best practices 369
configuring, to use Hudi JARs 318, 319
creating 311, 312
disadvantages 311
setting up 114, 115
setting up, with AWS Lake

Formation 245
working with 114, 115

EMR permission management
options 240

EMR pricing
for deployment options 51

EMR quick creation option
general configuration 127, 128
hardware configuration 129
security and access 129
software configuration 127, 128
used, for configuring clusters 126, 127
used, for setting up clusters 126, 127

EMR release
history 19, 21

EMR release version
Hadoop jobs, building, with

dependencies 43
EMR service role

creating 214
EMR Spark performance

improving, with Amazon S3 97, 98

EMR steps
job, submitting to cluster as 41-43
PySpark ETL code, integrating into 276
used, for exporting HBase

snapshots 105, 106
used, for restoring HBase

snapshots 105, 106
EMR Studio

about 118
features 118
kernels, installing 119
libraries, installing 119
workspaces 119

ETL jobs
migrating 352, 353

Extract, Load, and Transform (ELT) 58
Extract, Transform, and Load

(ETL) 8, 39, 237

F
failed cluster

troubleshooting, steps 154-158
Flink 200

G
Ganglia

about 110, 169, 201
used, for viewing EMR cluster

performance metrics 176
using, for cluster usage monitoring 370

general configurations 127, 136-138
General Data Protection

Regulation (GDPR) 307
genomics 76

Index 397

genomics data analytics,
reference architecture

about 76
best practices 78
use case, overview 76
walkthrough 76-78

Glow 77
Glue crawlers 15
Glue Data Catalog 15

H
Hadoop

about 5-7
components 6

Hadoop applications 33
Hadoop clusters

challenges 7, 8
Hadoop Distributed File System

(HDFS) 6, 31, 199
Hadoop jobs

building, with dependencies in
specific EMR release 43

Hadoop User Experience (Hue) 106, 107
hardware configuration 129, 133-136
HBase 7, 98, 99, 200
HBase on Amazon S3

cluster, shutting down to
avoid data loss 102

configuring, with AWS CLI 101
configuring, with AWS console 101
performance tuning parameters 102

HBase read replica cluster
synchronizing 103
using 103

HBase snapshots
exporting, with EMR steps 105, 106

exporting, with master node's
command prompt 104, 105

restoring with EMR steps 105, 106
restoring with master node's

command prompt 104, 105
storing, with Amazon S3 104

HBase storage mode
Amazon S3, using 100, 101

HCatalog 200
HDFS as cluster-persistent storage

about 37
properties 37, 38
HDFS as cluster storage 31

HDFS encryption 224
high availability

with multiple master nodes 198
Hive

about 7, 87
external metastore, integrating 88, 89
file merge behavior 88
with Amazon S3 as persistent

storage layer 88
Hive authorization 88
Hive job 41
Hive Live Long and Process (LLAP) 88
Hive metastore

about 237
Amazon Aurora or RDS,

configuring as 89, 90
AWS Glue Data Catalog,

configuring as 90-92
Hive Query Language (Hive QL) 87
Hive Step in EMR

variables, passing to 87
Hudi

integrating, with PySpark
notebook 315-318

398 Index

used, for deleting records from
S3 data lake 322-325

used, for querying incremental
data 325, 326

used, for updating records from
S3 data lake 322-325

Hudi data
registering, with Glue catalog

metastore 308
registering, with Hive metastore 308

Hudi JARs
EMR notebook, configuring

to use 318, 319
Hudi scripts

executing, in notebook 319
Hue 223
Hue database

Amazon RDS, using as 107
hybrid architecture 346
Hypertext Transfer Protocol

Secure (HTTPS) 73

I
IAM action permissions 220
IAM policy

actions 212
condition keys 213
resources 213

IAM role configuration, for EMRFS
performing 218
security configurations,

setting up 218, 219
IAM service role

configuring, for EMR cluster 213
for EMR 214

identity-based policies
about 220
best practices 221

identity provider (IdP)
about 242
SSO URL, updating 245

Impala 86
inbound SSH traffic

allowing, in EMR cluster
security group 171, 172

incremental data
querying, with Hudi 325, 326

Independent Software Vendors (ISVs) 382
instance fleet 35, 36
instance group 35
instance-level custom AMIs

versus cluster-level 143, 144
instance store 31
instance store encryption 224
instance type

selecting 366
integrated development

environment (IDE) 11
interactive analytics and ML,

reference architecture
about 66
best practices 70, 71
use case, overview 67
walkthrough 68-70

interface VPC endpoints
used, for Amazon EMR connection

on EC2 cluster 230, 231
used, for Amazon EMR connection

on EKS cluster 232, 233
using 226

Internet of Things (IoT) 15, 71
in-transit encryption

features 225

Index 399

J
Java ARchive (JAR) 315
Java Database Connectivity (JDBC) 202
Java Virtual Machine (JVM) 110, 370
job

submitting, to cluster as
EMR steps 41-43

job run 47
JupyterHub

about 115, 116, 173, 200
configuring 116, 117
setting up 116, 117

Jupyter Notebook 112

K
Key Distribution Center (KDC) 202
Key Management Service (KMS) 71, 250
Kinesis Consumer Library (KCL) 15
Kinesis Data Firehose 73
Kinesis Data Generator tool

configuring 285-288
configuring, to publish JSON events

to Kinesis Data Streams 288, 290
creating 285-288

Kinesis Data Streams (KDS)
about 60, 349
input data, validating 290, 291
Kinesis Data Generator, configuring

to publish 288, 290
Kinesis Producer Library (KPL) 15, 65, 82
Kubernetes namespace 47

L
Lake House architecture

overview 17-19

Lambda function
code 274
S3 file arrival event, configuring

to trigger 266-268
lift and shift

about 343, 344
prerequisites 344

Linux Unified Key Setup (LUKS) 224
Livy 200
local port forwarding

used, for setting up SSH tunnel
to master node 172, 173

log analytics, reference architecture
about 79
best practices 83
use case, overview 79
walkthrough 80-82

log files
archiving, to Amazon S3 162, 163

log files, types
instance state logs 162
step logs 161

logs
aggregating, in Amazon S3

with AWS CLI 163, 164
Long Range Wide Area Network

(LoRaWAN) 73
Lynx 170

M
machine learning data preparation

architecture example 24
machine learning frameworks

about 111
Apache MXNet 112
TensorFlow 111

Mahout 201

400 Index

managed endpoint 47
managed scaling CloudWatch metrics

about 189, 190
examples 189

Managed Workflows for Apache
Airflow (MWAA) 11

MapReduce 33
massively parallel processing (MPP) 6
master node

about 34
instance type, selecting 366, 367
SSH tunnel, setting up with dynamic

port forwarding 173, 174
master node's command prompt

used, for exporting HBase
snapshots 104, 105

used, for restoring HBase
snapshots 104, 105

Message Queuing and Telemetry
Transport (MQTT) 73

metadata catalogs migration
about 346, 350
Amazon RDS, ongoing

replication 351, 352
AWS tools and services 346
one-time Hive Metastore migration,

to Amazon RDS 351
one-time Hive Metastore migration,

to AWS Glue Data Catalog 351
metadata quality

validating 356, 357
metadata quality, options

manually running queries 356
relational data migration,

with AWS DMS 356
services, integrating with cluster 356

metastore
externalizing 366

Metrics Computation 358
migration approach

about 342, 343
hybrid architecture 346
lift and shift 343, 344
re-architecting 346

migration, best practices
about 359
cost estimation 361
data retention policies, defining 361
DevOps automation 360
interactive or streaming workloads 359
prototyping 360
regulatory and compliance

requirements 360
Reserved and Spot instances 360
skill gaps 360
split batch 359

multi-master node cluster
used, for configuring big data 200, 201
used, for configuring big data

applications for high availability 199
multiple master nodes

considerations and limitations 202, 203
high availability 198
used, for launching and terminating

EMR cluster 201
MXNet 201

N
network access control list (NACL) 245
Network File System (NFS) 350
node

about 34
local filesystem 31

node types
core nodes 34

Index 401

master nodes 34
task nodes 34

Non-Volatile Memory Express
(NVMe)-based SSDs 224

notebook 69
notebook options

about 112
Apache Zeppelin 120
EMR Notebooks 113
EMR Studio 118
JupyterHub 115

O
one-time Hive Metastore migration

to Amazon RDS 351
to AWS Glue Data Catalog 351

on-premises databases
migrating 349

on-premises systems 59
Oozie 7
Oozie Coordinator 353
Oozie Metastore databases

migrating 353-355
Oozie workflow

definition, migrating 355
migrating 352, 353

Open Database Connectivity (ODBC) 202
output data

querying, with Amazon Athena
standard SQL 272-274

P
Parquet 371
persistent clusters

about 12
versus transient clusters 12, 13

Phoenix 200
Pig 201
Presto

about 7, 92
working, with AWS Glue

Data Catalog 93, 94
product inventory data

inserting, into S3 data lake 319-322
proxy agent 242
PyDeequ 359
PySpark ETL code

integrating, into EMR step 276
PySpark job 41
PySpark notebook

creating, for development 314
used, for integrating Hudi 315-318

R
Rate Limit 385
Read Optimized view 307
real-time streaming analytics,

reference architecture
about 71
best practices 75
use case, overview 72
walkthrough 72-74

real-time streaming pipeline
architecture overview 280-282
implementation steps 282
use case 280, 281

real-time streaming pipeline,
implementation steps

Amazon EMR cluster, creating 291-293
Amazon Kinesis data stream,

creating 283, 285
Amazon S3 buckets, creating 282, 283

402 Index

Kinesis Data Generator tool,
configuring 285-288

Kinesis Data Generator tool,
creating 285-288

Spark Streaming job,
configuring 291-293

real-time streaming sources
migrating 349

re-architecting
about 345, 346
aspects 345

record server 243
Relational Database Service (RDS) 60

S
S3 data lake

product inventory data,
inserting 319-322

S3DistCp utility
using, for data transfer 348, 349

S3 file arrival event
configuring, to trigger Lambda

function 266-268
S3 Select 97, 98
S3 with EMR File System (EMRFS)

as cluster storage 31
sanity

checking, manually 359
schema-on-read approach 237
schema-on-write approach 237
secret agent 242
Secure Shell (SSH) 129
security

basics 208, 209
best practices 374

security and access 129

security, best practices
data, protecting at rest and in transit 377
edge nodes, configuring outside of

cluster to limit connectivity 375
logging, integrating into cluster 376
public access, blocking to

EMR cluster 376, 377
security configuration

creating 210
creating, AWS CLI used 210
creating, EMR console used 210
specifying, AWS CLI used 212
specifying, EMR console used 211
specifying, for cluster 211

security groups
additional custom-managed security

groups, working with 227, 228
cluster network traffic,

controlling with 226
EMR managed security groups,

working with 226, 227
specifying, AWS CLI used 229
specifying, EMR console used 228
specifying, for EMR notebooks 229, 230
using 226

security groups, for EMR Notebooks
ElasticMapReduceEditors-Editor 230
ElasticMapReduceEditors-Livy 230

Security Options 139, 140
security-shared responsibility

AWS responsibility for
Security of Cloud 209

Customer responsibility for
Security in Cloud 209

security team 79
Security Token Service (STS) 242

Index 403

security groups, types
custom-managed security groups 226
managed security groups 226

semi-structured 237
Service-Level Agreements (SLAs)

about 31, 343, 368
re-architecting 345

Simple Authentication and Security
Layer (SASL) 224

Simple Notification Service (SNS) 380
Simple Storage Service (S3)

about 11, 31, 59
using, with EMRFS as cluster storage 31

single sign-on (SSO) 240
slow cluster

troubleshooting, steps 158-161
Snowball Edge Compute Optimized 347
Snowball Edge Storage Optimized 347
SOCKS proxy

configuring, on browser 174-176
software-as-a-service (SaaS) 64
software configuration

about 128, 130-132
steps 132, 133

Spark
about 6, 33, 94, 95, 169
used, for deleting records from

S3 data lake 322-325
used, for updating records from

S3 data lake 322-325
Spark applications 200
Spark ETL

code 274
Spark job

submitting, through AWS CLI 96, 97
submitting, through AWS console 96
submitting, to EMR cluster 96

Spark scripts
executing, in notebook 319

Spark SQL
working, with AWS Glue

Data Catalog 95
Spark Streaming

code 298-300
Spark Streaming job

configuring 291-293
triggering, on EMR cluster 294-296

Splunk 81
Sqoop 200, 357
Sqoop job output 357
SSH File Transfer Protocol (SFTP) 59
SSH tunnel

setting up, to master node with
dynamic port forwarding 173, 174

setting up, to master node with local
port forwarding 172, 173

SSO URL
updating, with IdP 245

standard SQL query
used, for querying output data in

Amazon Athena 297, 298
state machine 331
step execution 148
structured data 237

T
task node

about 34
instance type, selecting 367

TensorBoard
using 111

TensorFlow 111, 201

404 Index

termination protection
about 148
configuring, for running cluster 150
configuring, while launching

cluster 148, 149
using, for long-running cluster 146
with EC2 instances 147
with Spot instances 147

termination protection behavior
with unhealthy YARN nodes 147, 148

Tez 200
TLS (Transport Layer Security) 223
Total Cost of Ownership (TCO) 361
transient clusters, versus persistent clusters

about 12, 13
cluster size, determining for 368

U
uniform instance groups 35, 36
unstructured data 236

V
variables

passing, to Hive Step in EMR 87
vendor filesystem 59
virtual cluster 47
virtual Glue Data Catalog table

defining, on Amazon S3
data 271, 272, 297

Virtual Private Cloud (VPC) 10, 126, 348

W
web interfaces

accessing, options 170, 171
web interfaces, accessing in EMR clusters

reference link 169
WebSockets Secure (WSS) 73
web user interfaces

applications, monitoring with 169
EMR cluster, monitoring with 169

Y
YARN ResourceManager 200
Yet Another Resource Negotiator (YARN)

about 6, 30, 32
components 32

Z
Zeppelin 7, 200
ZooKeeper 7, 200

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

406 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Serverless Analytics with Amazon Athena
Anthony Virtuoso, Mert Turkay Hocanin, Aaron Wishnick
ISBN: 978-1-80056-234-9

• Secure and manage the cost of querying your data
• Use Athena ML and User Defined Functions (UDFs) to add advanced features to

your reports
• Write your own Athena Connector to integrate with a custom data source
• Discover your datasets on S3 using AWS Glue Crawlers
• Integrate Amazon Athena into your applications
• Setup Identity and Access Management (IAM) policies to limit access to tables and

databases in Glue Data Catalog
• Add an Amazon SageMaker Notebook to your Athena queries
• Get to grips with using Athena for ETL pipelines

https://www.packtpub.com/product/aws-penetration-testing/9781839216923

Other Books You May Enjoy 407

Data Engineering with AWS

Gareth Eagar

ISBN: 978-1-80056-041-3

• Understand data engineering concepts and emerging technologies

• Ingest streaming data with Amazon Kinesis Data Firehose

• Optimize, denormalize, and join datasets with AWS Glue Studio

• Use Amazon S3 events to trigger a Lambda process to transform a file

• Run complex SQL queries on data lake data using Amazon Athena

• Load data into a Redshift data warehouse and run queries

• Create a visualization of your data using Amazon QuickSight

• Extract sentiment data from a dataset using Amazon Comprehend

https://www.packtpub.com/free-ebook/learn-kali-linux-2019/9781789611809

408

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Simplify Big Data Analytics with Amazon EMR, we'd love to hear your
thoughts! If you purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site
that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-801-07107-1
https://packt.link/r/1-801-07107-1

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Section 1:
Overview, Architecture, Big Data Applications, and Common Use Cases of Amazon EMR
	Chapter 1: An Overview of
Amazon EMR
	What is Amazon EMR?
	What is big data?
	Hadoop – processing framework to handle big data
	Overview of Amazon EMR – managed and scalable Hadoop cluster in AWS
	A brief history of the major big data releases

	Benefits of Amazon EMR
	Decoupling compute and storage
	Persistent versus transient clusters

	Integration with other AWS services
	Amazon S3 with EMR File System (EMRFS)
	Amazon Kinesis Data Streams (KDS)
	Amazon Managed Streaming for Kafka (MSK)
	AWS Glue Data Catalog
	Amazon Relational Database Service (RDS)
	Amazon DynamoDB
	Amazon Redshift
	AWS Lake Formation
	AWS Identity and Access Management (IAM)
	AWS Key Management Service (KMS)
	Lake House architecture overview

	EMR release history
	Comparing Amazon EMR with AWS Glue and AWS Glue DataBrew
	AWS Glue
	AWS Glue DataBrew
	Choosing the right service for your use case

	Summary
	Test your knowledge
	Further reading

	Chapter 2: Exploring the Architecture and Deployment Options
	EMR architecture deep dive
	Distributed storage layer
	YARN – cluster resource manager
	Distributed processing frameworks
	Hadoop applications

	Understanding clusters and nodes
	Uniform instance groups
	Instance fleet

	Using S3 versus HDFS for cluster storage
	HDFS as cluster-persistent storage
	Amazon S3 as a persistent data store

	Understanding the cluster life cycle
	Options to submit work to the cluster
	Submitting jobs to the cluster as EMR steps

	Building Hadoop jobs with dependencies in
a specific EMR release version
	EMR deployment options
	Amazon EMR on Amazon EC2
	Amazon EMR on Amazon EKS
	Amazon EMR on AWS Outposts
	EMR pricing for different deployment options
	Monitoring and controling your costs with AWS Budgets and Cost Explorer

	Summary
	Test your knowledge
	Further reading

	Chapter 3: Common Use Cases and Architecture Patterns
	Reference architecture for batch ETL workloads
	Use case overview
	Reference architecture walkthrough
	Best practices to follow during implementation

	Reference architecture for clickstream analytics
	Use case overview
	Reference architecture walkthrough
	Best practices to follow during implementation

	Reference architecture for interactive analytics and ML
	Use case overview
	Reference architecture walkthrough
	Best practices to follow during implementation

	Reference architecture for real-time streaming analytics
	Use case overview
	Reference architecture walkthrough
	Best practices to follow during implementation

	Reference architecture for genomics data analytics
	Use case overview
	Reference architecture walkthrough
	Best practices to follow during implementation

	Reference architecture for log analytics
	Use case overview
	Reference architecture walkthrough
	Best practices to follow during implementation

	Summary
	Test your knowledge
	Further reading

	Chapter 4: Big Data Applications and Notebooks Available in Amazon EMR
	Technical requirements
	Understanding popular big data applications in EMR
	Hive
	Presto
	Spark
	HBase
	Hue
	Ganglia

	Machine learning frameworks available in EMR
	TensorFlow
	MXNet

	Notebook options available in EMR
	EMR Notebooks
	JupyterHub
	EMR Studio
	Zeppelin

	Summary
	Questions
	Further reading

	Section 2:
Configuration, Scaling, Data Security, and Governance
	Chapter 5: Setting Up and Configuring
EMR Clusters
	Technical requirements
	Setting up and configuring clusters with the EMR console's quick create option
	Advanced configuration for cluster hardware and software
	Understanding the Software Configuration section
	Understanding Steps
	Understanding the Hardware Configuration section
	Understanding general configurations
	Understanding Security Options

	Working with AMIs and controlling cluster termination
	Working with AMIs
	Controlling the EMR cluster termination process

	Troubleshooting and logging in your EMR cluster
	Tools available to debug your EMR cluster
	Viewing and restarting cluster application processes
	Troubleshooting a failed cluster
	Troubleshooting a slow cluster
	Logging in your EMR cluster

	Summary
	Test your knowledge
	Further reading

	Chapter 6: Monitoring, Scaling, and High Availability
	Technical requirements
	Monitoring your EMR cluster
	Monitoring clusters and applications with
web user interfaces
	Monitoring cluster metrics with CloudWatch monitoring
	EMR API audit logging with AWS CloudTrail

	Scaling cluster resources
	Managed scaling in EMR
	Autoscaling in EMR with a custom policy for
instance groups
	Manually resizing your EMR cluster
	Comparing managed scaling with autoscaling

	Cluster cloning and high availability with multiple master nodes
	High availability with multiple master nodes
	Cloning an existing EMR cluster

	Summary
	Test your knowledge
	Further reading

	Chapter 7: Understanding Security in
Amazon EMR
	Technical requirements
	Understanding the basics of security
	Creating security configurations
	Specifying a security configuration for your cluster

	AWS IAM integration with Amazon EMR
	Configuring an IAM service role for your EMR cluster
	Configuring IAM roles for EMRFS
	Integrating IAM roles in applications that invoke AWS services directly
	Allowing users and groups to create and modify roles
	Identity-based policies and best practices
	Understanding authentication to cluster nodes

	Understanding data protection in EMR
	Encrypting data at rest for EMRFS on Amazon S3 data
	Encrypting data in transit for EMRFS on Amazon S3 data

	Role of security groups and interface VPC endpoints
	Controlling cluster network traffic with security groups
	Connecting to Amazon EMR on an EC2 cluster using an interface VPC endpoint
	Connecting to Amazon EMR on an EKS cluster using an interface VPC endpoint

	Summary
	Test your knowledge
	Further reading

	Chapter 8: Understanding Data Governance in Amazon EMR
	Technical requirements
	Understanding data catalog and access management options
	Using AWS Glue Data Catalog
	Integrating AWS Glue Data Catalog with Amazon EMR
	Permission management on top of a data catalog

	Understanding Amazon EMR integration with AWS Lake Formation
	Integrating Lake Formation with Amazon EMR
	Launching an EMR cluster with Lake Formation
	Setting up EMR notebooks to work with
Lake Formation

	Understanding Amazon EMR integration with Apache Ranger
	Setting up Ranger in EMR
	Understanding Apache Ranger plugins

	Summary
	Test your knowledge
	Further reading

	Section 3:
Implementing
Common Use Cases
and Best Practices
	Chapter 9: Implementing BatchETL Pipeline withAmazon EMR andApache Spark
	Technical requirements
	Use case and architecture overview
	Architecture overview

	Implementation steps
	Creating Amazon S3 buckets
	Creating the AWS Lambda function
	Configuring an S3 file arrival event to trigger the Lambda function
	Triggering the EMR job

	Validating the output using Amazon Athena
	Defining a virtual Glue Data Catalog table on top of Amazon S3 data
	Querying output data using Amazon Athena
standard SQL

	Spark ETL and Lambda function code
walk-through
	Understanding the AWS Lambda function code
	Understanding the PySpark script integrated into the EMR step

	Summary
	Test your knowledge
	Further reading

	Chapter 10: Implementing
Real-Time Streaming with Amazon EMR and Spark Streaming
	Technical requirements
	Use case and architecture overview
	Architecture overview

	Implementation steps
	Creating Amazon S3 buckets
	Creating the Amazon Kinesis data stream
	Creating and configuring the Kinesis Data Generator tool
	Creating an Amazon EMR cluster and configuring a Spark Streaming job

	Validating output using Amazon Athena
	Defining a virtual Glue Catalog table on top of Amazon S3 data
	Querying output data using a standard SQL query in Amazon Athena

	Spark Streaming code walk-through
	Summary
	Test your knowledge
	Further reading

	Chapter 11: Implementing UPSERT on S3
Data Lake with Apache Spark and Apache Hudi
	Technical requirements
	Apache Hudi overview
	Popular use cases
	Registering Hudi data with your Hive or Glue Data Catalog metastore

	Creating an EMR cluster and an EMR notebook
	Creating the EMR cluster
	Creating an EMR notebook
	Creating an Amazon S3 bucket

	Interactive development with Spark and Hudi
	Creating a PySpark notebook for development
	Integrating Hudi with our PySpark notebook
	Executing Spark and Hudi scripts in your notebook

	Summary
	Test your knowledge
	Further reading

	Chapter 12: Orchestrating Amazon EMR
Jobs with AWS
Step Functions
and Apache
Airflow/MWAA
	Technical requirements
	Overview of AWS Step Functions
	Integrating AWS Step Functions to orchestrate EMR jobs
	Overview of Apache Airflow and MWAA
	Integrating Airflow to trigger EMR jobs
	Summary
	Test your knowledge
	Further reading

	Chapter 13: Migrating
On-Premises Hadoop Workloads to Amazon EMR
	Understanding migration approaches
	Lift and shift
	Re-architecting
	Hybrid architecture

	Migrating data and metadata catalogs
	Migrating data
	Migrating metadata catalogs

	Migrating ETL jobs and Oozie workflows
	Migrating Oozie workflows

	Testing and validation
	Validating metadata quality
	Validating data quality

	Best practices for migration
	Summary
	Test your knowledge
	Further reading

	Chapter 14: Best Practices and Cost-Optimization Techniques
	Best practices around EMR cluster configurations
	Choosing the correct cluster type (transient versus long-running)
	Best practices around sizing your cluster

	Optimization techniques for data processing and storage
	Best practices for cluster persistent storage
	Best practices while processing data using EMR

	Security best practices
	Configuring edge nodes outside of the cluster to limit connectivity
	Integrating logging, monitoring, and audit controls into your cluster
	Blocking public access to your EMR cluster
	Protecting your data at rest and in transit

	Cost-optimization techniques
	Cost savings with compute resources
	Cost savings with storage
	Integrating AWS Budgets and Cost Explorer
	AWS Trusted Advisor
	Cost allocation tags

	Limitations of Amazon EMR and possible workarounds
	Summary
	Test your knowledge
	Further reading

	Index
	Other Books You May Enjoy

